RU2715171C2 - Получение пеноматериала на основе pmma с применением сшивающих средств, регуляторов и порообразующих средств - Google Patents

Получение пеноматериала на основе pmma с применением сшивающих средств, регуляторов и порообразующих средств Download PDF

Info

Publication number
RU2715171C2
RU2715171C2 RU2017134704A RU2017134704A RU2715171C2 RU 2715171 C2 RU2715171 C2 RU 2715171C2 RU 2017134704 A RU2017134704 A RU 2017134704A RU 2017134704 A RU2017134704 A RU 2017134704A RU 2715171 C2 RU2715171 C2 RU 2715171C2
Authority
RU
Russia
Prior art keywords
meth
acrylate
mol
pmma
polymerization
Prior art date
Application number
RU2017134704A
Other languages
English (en)
Other versions
RU2017134704A (ru
RU2017134704A3 (ru
Inventor
Томас РИХТЕР
Кристоф ЗАЙПЕЛЬ
Кай БЕРНАРД
Сивакумара К. КРИШНАМООРТХИ
Себастьян БЮЛЕР
Original Assignee
Эвоник Рём ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Рём ГмбХ filed Critical Эвоник Рём ГмбХ
Publication of RU2017134704A publication Critical patent/RU2017134704A/ru
Publication of RU2017134704A3 publication Critical patent/RU2017134704A3/ru
Application granted granted Critical
Publication of RU2715171C2 publication Critical patent/RU2715171C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/046Unimodal pore distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Настоящее изобретение относится к новым типам пеноматериалов на основе PMMA, а также к их получению. Описан способ получения пеноматериала на основе полиметакрилата, отличающийся тем, что композицию, содержащую от 0,01 до 2,0 вес. % инициатора, от 2 до 20 вес. % порообразующего средства и от 75 до 97,9 вес. % смеси мономеров, где указанная смесь мономеров состоит из от 79,70 до 99,995 мол. % MMA, от 0 до 20 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,002 до 0,5 мол. % сшивающего средства и от 0,003 до 1,5 мол. % регулятора степени полимеризации, и при этом может присутствовать от 0 до 80 вес. % полимера и/или олигомера, полимеризуют при температуре от 20°C до 100°C, а затем вспенивают при от 130°C до 250°C, причем регулятор степени полимеризации предусматривает пентаэритритолтетратиогликолят, 2-меркаптоэтанол, алкилмеркаптан, имеющий от 2 до 12 атомов углерода, тиогликолевую кислоту, тиогликолят, γ-терпинен или смесь двух или более из них. Также описан пеноматериал на основе PMMA. Технический результат: повышение вспенивания и уровня механической прочности состава на основе PMMA. 2 н. и 9 з.п. ф-лы, 1 табл., 5 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к новым типам пеноматериалов на основе PMMA, а также к их получению. Составы, применяемые в способе получения, содержат, в частности, сшивающие средства и регуляторы степени полимеризации в качестве составляющих компонентов состава, в основном в низких концентрациях, в дополнение к подходящим порообразующим средствам. Неожиданно было обнаружено, что настоящее изобретение предусматривает простой в получении стабильный пеноматериал на основе PMMA, имеющий очень хорошие свойства.
Предшествующий уровень техники
Жесткие полимерные пеноматериалы являются широко/общеизвестными и часто используются, например, в качестве изолирующего материала в упаковках, а также в легких конструкциях. В частности, если пеноматериалы применяют в легких конструкциях, они должны характеризоваться высокой прочностью в сочетании с низкой плотностью. Пеноматериалы, применяемые в таких конструкциях, включают PVC, PET, определенные пеноматериалы на основе PU и P(M)I (поли(мет)акриламида), и их применяют, среди прочего, в качестве материала сердцевины в слоистых композиционных материалах.
Пеноматериалы на основе PMMA подробно описаны в литературе, но до настоящего времени вообще не приобрели какого-либо промышленного значения. Одной причиной является часто описываемое, но очень сложное получение посредством процессов автоклавирования, в которых PMMA загружают с газообразными порообразующими средствами, например, CO2 или N2, под высоким давлением в автоклав и затем расширяют посредством снижения давления. Жесткие пеноматериалы на основе PMMA, которые раздувают с помощью порообразующего средства, добавленного к мономеру перед полимеризацией и растворенного в полимере после полимеризации, в отличие от этого, описаны мало. Тем не менее, пеноматериалы на основе PMMA в силу их прочности и устойчивости к воздействию атмосферных условий являются потенциально очень интересными конструкционными материалами для легких конструкций.
Sekisui имеет ряд патентных заявок, описывающих получение «акриловых пеноматериалов» (например, JP 48043054, JP 2002003635, JP 2006045256, JP 2012201704, JP 2012201705, JP 2013075935). Однако в данных патентных заявках описывают различные количества стирола и/или метакриламидов в качестве сомономеров в дополнение к MMA. Применяемое порообразующее средство преимущественно представляет собой мочевину. Мочевина в качестве порообразующего средства, однако, может приводить к проблемам в связи с плохой растворимостью в смеси мономеров, и это может в свою очередь привести к неоднородности пеноматериала. Еще один недостаток мочевины в качестве порообразующего средства заключается в том, что она выступает в роли порообразующего средства за счет своего разложения на CO и NH3. Таким образом, температура вспенивания всегда должна быть выше температуры разложения мочевины, что значительно ограничивает возможности для изменения температуры вспенивания. Кроме того, NH3 и CO являются токсичными.
В JP 55139433 описывают получение пеноматериала, содержащего от 4 до 35 вес. % акриловой и/или метакриловой кислоты в качестве сомономера, а также мочевину и воду в качестве порообразующего средства. Это не является пеноматериалом на основе PMMA в истинном его значении.
В US 4816492 описывают получение пеноматериалов на основе (мет)акрилата, где смесь мономеров полимеризуется в присутствии порообразующих средств. Применяемые порообразующие средства представляют собой галогенированные углеводороды. Однако в случае применения галогенированных углеводородов возникают проблемы, поскольку они оказывают крайне неблагоприятное воздействие на озоновый слой и, следовательно, являются объектом существенных ограничений. Кроме того, в технологической операции вспенивания существуют ограничения в отношении степеней свободы, которые заключаются в том, что размер ячейки, распределение ячеек и плотность пеноматериала регулируются только в ограниченной степени и не по отдельности.
В IL 62693A и EP 0032720 описывают получение вспененных PMMA, преднамеренно имеющих очень крупные ячейки. Получение происходит посредством набухания в MMA гранулированных полимеров на основе PMMA, содержащих порообразующее средство, и последующего расширения и полимеризации с расширением, происходящим перед отверждением. Порообразующее средство выбирают таким образом, чтобы раздувать гранулы PMMA при температуре ниже температуры, которая могла бы вызвать полимеризацию еще жидкой реактивной смолы. В настоящее время основное внимание уделяется получению прозрачного полимерного пеноматериала. Одна из проблем этого процесса заключается в том, что полимеризация еще не завершена во время вспенивания и, следовательно, ячейки успешно стабилизируются только в очень узких пределах параметров обработки.
В EP 0068439 раскрывают получение пеноматериалов на основе PMMA посредством полимеризации MMA в присутствии порообразующего средства и последующего вспенивания. Здесь следует подчеркнуть, что пластифицирующее средство, в частности, сложный метакриловый эфир, имеющий три или более атомов углерода в алкильной группе, применяют в количествах от 5 до 40 частей по весу, исходя из MMA, чтобы получить непосредственно пеноматериалы. Порообразующие средства, как сообщается, представляют собой углеводороды и/или (гидро)фторуглероды. Целью является получение пеноматериалов, имеющих большие ячейки, например, диаметром приблизительно 5 мм и, таким образом, сохранение прозрачности основного полимера в отличие от пеноматериалов с более мелкими ячейками. Однако алкильные фрагменты с относительно длинной цепью оказывают пластифицирующее воздействие на матричный полимер, что с механической точки зрения является нежелательным, в частности, для применения в жестких пеноматериалах. Галогенированные углеводороды также относятся к описанным порообразующим средствам. Аналогично идея из EP 0068439 также ограничена очень крупными ячейками в матрице пеноматериала.
В FR 1423844 описывают получение PMMA, который содержит пузырьки, где применяемое порообразующее средство представляет собой AIBN, который также выступает в роли инициатора полимеризации. Концентрация инициатора соответственно является высокой, и поэтому молярная масса матричного полимера в пеноматериале очень низкая. Очень низкая молярная масса, в свою очередь, имеет неблагоприятные последствия для механических свойств пеноматериала. Однако проиллюстрированные пеноматериалы имеют лишь небольшое количество неравномерно распределенных ячеек. Полученные значения плотности также не описываются.
Проблема
Таким образом, проблема, рассматриваемая в настоящем изобретении, заключается в обеспечении нового способа получения пеноматериалов на основе PMMA без описанных недостатков предшествующего уровня техники.
Проблема, рассматриваемая в настоящем изобретении, заключается, в частности, в обеспечении состава на основе PMMA, который является легко вспениваемым, обеспечивая при этом высокие степени свободы в отношении установления размера ячейки, распределения ячеек и плотности пеноматериала. С другой стороны, вспененный материал должен иметь очень высокий уровень механической прочности.
Проблема, рассматриваемая в настоящем изобретении, в связи с этим заключается, в частности, в достижении целей, обеспечивающих состав на основе PMMA, который подходит для вспенивания и который должен иметь достаточною текучесть для вспенивания, а также высокую молекулярную массу в качестве пеноматериала - без применения для этой цели пластификаторов, или композицию на основе мономера, вспениваемую и только затем полимеризуемую. Эти цели на первый взгляд кажутся, в частности, взаимоисключающими.
Проблема, рассматриваемая в настоящем изобретении, заключается, в частности, в обеспечении пеноматериалов на основе PMMA, имеющих фактор вспенивания по меньшей мере 2 и, таким образом, плотность ниже 150 кг/м3.
В этом процессе необходимо дополнительно избегать применения порообразующих средств, которые являются токсичными и/или экологически вредными среды и/или имеют высокий ODP (потенциал озонного истощения), как например, в случае большинства (гидро)галогенуглеродов.
Дополнительные проблемы, рассматриваемые без подробного их перечисления, могут стать очевидными из общего контекста настоящего изобретения, из формулы изобретения, из описания или из примеров.
Решение
Данные проблемы решаются посредством нового типа способа получения пеноматериалов на основе PMMA, который предусматривает получение указанных пеноматериалов посредством полимеризации, например, посредством полимеризации с получением листа, например, смесей мономеров, содержащих преимущественно MMA, и/или концентрированного раствора, состоящего из полимера, состоящего полностью или преимущественно из MMA, и смеси мономеров, состоящей полностью или преимущественно из MMA, в присутствии порообразующего средства, которое не является газообразным в условиях полимеризации. Полностью полимеризованный лист на основе PMMA, полученный таким образом, который нагружен порообразующим средством, затем вспенивают на второй стадии посредством нагревания.
Этот способ, в частности, характеризуется тем, что композицию, содержащую от 0,01 до 2,0 вес. %, предпочтительно от 0,2 до 1,5 вес. % одного или более инициаторов, от 2 до 20 вес. %, предпочтительно от 3 до 15 вес. % одного или более порообразующих средств, и от 75 до 97,9 вес. %, предпочтительно от 80 до 96,8 вес. % смеси мономеров, исходно полимеризуют при температуре от 20°C до 100°C, предпочтительно от 30°C до 70°C, а затем вспенивают при температуре от 130°C до 250°C, предпочтительно от 150°C до 230°C. Помимо перечисленных компонентов, композиция может содержать до 22,99 вес. % дополнительных компонентов. Примерами этих дополнительных компонентов являются, в частности, дополнительные полимерные компоненты, отличные от полимеров, представляющие собой MMA, УФ-стабилизаторы, наполнители и пигменты.
Применяемая смесь мономеров содержит от 79,70 до 99,995 мол. %, предпочтительно от 89,85 до 99,988 мол. % MMA, от 0 до 20 мол. %, предпочтительно от 0 до 10 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,002 до 0,5 мол. %, предпочтительно от 0,005 до 0,3 мол. % сшивающего средства и от 0,003 до 1,5 мол. %, предпочтительно от 0,006 до 1 мол. % регулятора степени полимеризации. В данном случае сополимеризуемые мономеры, а также MMA могут быть полностью использованы в качестве мономеров. Однако в более удобном для обработки варианте осуществления настоящего изобретения также возможно присутствие до 80 вес. %, предпочтительно не более 50 вес. % MMA и сополимеризуемых мономеров в качестве полимера и/или олигомера. Преимущество такого концентрированного раствора, состоящего из мономеров и полимеров/олигомеров, заключается в том, что он имеет более высокую вязкость, чем полностью мономерная смесь, а также создает более низкое давление паров при полимеризации.
MMA-сополимеризуемые мономеры могут предусматривать, в частности, акрилаты, такие как, в частности, метилакрилат, этилакрилат, пропилакрилат или н-бутилакрилат. Сополимеризация акрилатов способствует дополнительной стабилизации пеноматериала при высоких температурах вспенивания в частности, поскольку эти температуры вспенивания могут превышать предельную температуру для чистого MMA. Когда стабилизирующие сомономеры не включены, предпочтительными являются более короткое время вспенивания или соответственно более низкая температура вспенивания.
Дополнительными примерами подходящих сомономеров являются (мет)акриловая кислота, метакрилаты, такие как этилметакрилат, пропилметакрилат, н-бутилметакрилат, трет-бутил(мет)акрилат, изопропил(мет)акрилат, изобутил(мет)акрилат, стирол, (мет)акриламид, N-алкил(мет)акриламид, имеющий 1-12 атомов углерода в алкильной группе, гидроксиалкил(мет)акрилат, имеющий 1-4 атомов углерода в алкильной группе, простой полиэфир(мет)акрилат, где простой полиэфир может иметь молекулярную массу от 200 до 5000. Эти сомономеры могут также принимать форму смеси из двух или более из них. Когда эти сомономеры предусматривают н-бутил(мет)акрилат и/или н-пропил(мет)акрилат, часть общей композиции, относящейся к ним, не должна превышать в совокупности 3 вес. %.
Сшивающие средства предпочтительно предусматривают ди-, три- или тетра(мет)акрилат, аллил(мет)акрилат, триаллилцианурат, триаллилизоцианурат или смесь, содержащую два или более из них.
Регулятор степени полимеризации предпочтительно предусматривает соединение, содержащее от одной до пяти меркаптановых групп, γ-терпинен или смесь двух или более из них. Регулятор степени полимеризации предусматривает особенно предпочтительно пентаэритритолтетратиогликолят, 2-меркаптоэтанол, алкилмеркаптан, имеющий 2-12 атомов углерода, тиогликолевую кислоту, тиогликолят, γ-терпинен или смесь двух или более из них.
Особенно важным аспектом настоящего изобретения является применение сшивающих средств и регуляторов степени полимеризации в композиции, подлежащей вспениванию. Эта комбинация компонентов является новой по сравнению с предшествующим уровнем техники и имеет неожиданный эффект, заключающийся в явном повышении вспениваемости PMMA, нагруженного порообразующими средствами, и обеспечении стабильного пеноматериала, имеющего особенно хорошее, т. е. узкое распределение размера ячеек. Этот эффект настоящего изобретения был, в частности, непредвиденным и, таким образом, неожиданным, поскольку, как правило, применение сшивающих средств ухудшало бы текучесть полимера и, следовательно, приводило бы к худшей вспениваемости.
Описанная комбинация относительно небольших количеств сшивающего средства с описанными небольшими количествами регулятора степени полимеризации обладает особенно положительным эффектом в отношении вспениваемости в частности, поскольку применение сшивающего средство обуславливает улучшение вспениваемости таким образом, что можно отказаться от применения сравнительно больших количеств регулятора степени полимеризации. Это является преимущественным, поскольку на механические свойства матричного полимера и, таким образом, на такие свойства собственно пеноматериала на основе PMMA не оказывается неблагоприятного воздействия. Кроме того, высокие значения молярной массы или - преимущественно - сшитые полимеры являются очень желаемыми для улучшенных механических свойств пеноматериала. В принципе, хорошая вспениваемость полимера требует определенного уровня пластичности/текучести матричного полимера при температуре вспенивания, поскольку процесс вспенивания требует, чтобы матричный полимер тек. Если пластичность/текучесть матричного полимера при температуре вспенивания слишком низкая, вспенивание не происходит. Общеизвестно, что текучесть полимера, как правило, снижается при повышении молярной массы при заданной температуре. Вспениваемость и очень высокая молярная масса, соответственно, кажутся противоречивыми требованиями. Это противоречие неожиданно разрешается путем смешивания небольших количеств сшивающего средства и сниженного количества регулятора степени полимеризации.
Пеноматериалы на основе PMMA, полученные согласно настоящему изобретению, дополнительно имеют неожиданно высокую прочность и также неожиданно низкую хрупкость, и, таким образом, могут, например, находить применение в легких конструкциях. Благодаря хорошим свойствам материала, также можно отказаться от применения пластификаторов, например, алкил(мет)акрилатов с относительно длинной цепью или фталатов, которые, как известно на сегодняшний день, оказывают положительное влияние на текучесть и/или вспениваемость, но в то же время оказывают отрицательное влияние на механические свойства пеноматериала на основе PMMA, в частности, на его прочность.
Однако также неожиданно было обнаружено, что регулятор степени полимеризации не может быть полностью исключен, но тем не менее небольшие количества должны добавляться, чтобы обеспечить оптимальное вспенивание.
Особенно подходящие порообразующие средства предусматривают трет-бутанол, н-гептан, MTBE, метилэтилкетон, спирт, имеющий от одного до четырех атомов углерода, воду, метилаль, мочевину, простой трет-бутилметиловый эфир, изопропил(мет)акрилат и/или трет-бутил(мет)акрилат. Когда применяют изопропил(мет)акрилат и/или трет-бутил(мет)акрилат, они одновременно являются частью указанной мономерной композиции, и они исходно полностью или частично сополимеризованы в полимеры, образовавшиеся из них. В ходе стадии вспенивания в полимере образуются повторяющиеся звенья (мет)акриловой кислоты за счет удаления, соответственно, пропена и изобутена. Полимеры, полученные из больших соотношений этих мономеров или полностью из этих мономеров, также можно применять в специальном варианте осуществления. Применение таких полимеризуемых и/или полимеризованных сомономеров, которые высвобождают порообразующие средства, способствует, в частности, получению особенно небольших и равномерных ячеек.
Особенно подходящие порообразующие средства представляют собой трет-бутил(мет)акрилат, изопропил(мет)акрилат, трет-бутанол, изопропанол и поли(трет-бутил(мет)акрилат).
Полимеризацию предпочтительно осуществляют в придающем форму сосуде, в частности, в форме камеры для полимеризации между двумя пластинами, например, стеклянными пластинами. В наиболее простом случае можно рассматривать, например, прямоугольную чашу. Результатом полимеризации в такой чаше позже будет пластина, толщина которой была продиктована уровнем заполнения чаши и расстоянием между пластинами. Кроме того, для сосуда, однако, возможны более сложные формы. Полимеризацию предпочтительно осуществляют при температуре от 30 до 70°C. Применимые инициаторы включают не только широко/общеизвестные свободнорадикальные инициаторы, например, пероксиды или азоинициаторы, но также редокс-системы или УФ-инициаторы. Температуры полимеризации ниже 40°C особенно применимы к этим редокс-системам и УФ-инициаторам УФ-инициаторы инициируются посредством облучения соответствующим УФ-светом, в то время как редокс-инициаторы предусматривают двухкомпонентные системы, инициируемые посредством смешивания двух компонентов и мономеров.
Вспенивание может впоследствии происходить в том же самом сосуде, в случае чего увеличение объема ограничивается одним направлением - открытой стороной сосуда. Тем не менее, полимеризованный материал также поддается вспениванию без ограничивающей герметизации. Вспенивание предпочтительно осуществляют в печи. В качестве альтернативы вспенивание можно осуществлять под воздействием ИК-излучения, в частности, в диапазоне длин волн от 0,78 до 2,20, предпочтительно от 1,20 до 1,40 мкм. Вспенивание под воздействием микроволнового излучения представляет собой еще один альтернативный вариант. Также возможна комбинация различных способов, таких как ИК-излучение, микроволновое излучение и/или нагревание в печи.
Как вспенивание, так и предшествующая полимеризация могут осуществляться на нескольких температурных ступенях. Температуру позже можно повысить на стадии полимеризации для дополнительного усиления превращения и тем самым уменьшить содержание остаточного мономера. На стадии вспенивания ступенчатое повышение температуры вспенивания можно применять для воздействия на распределение ячеек, размер ячеек и количество ячеек.
Необязательно способ можно также осуществлять посредством неполного проведения полимеризации, в этом случае превращение предпочтительно осуществляют по меньшей мере на 80%, а полную конечную полимеризацию осуществляют в ходе стадии вспенивания. Такой способ имеет преимущество в том, что оставшиеся мономеры оказывают пластифицирующее воздействие в начале технологической операции вспенивания без явного присутствия какого-либо пластифицирующего соединения в конечном пеноматериале. Следовательно, в таком варианте осуществления, полимеризация и вспенивание будут происходить одновременно, в некоторой степени при одной температуре вспенивания.
Наряду со способом, настоящее изобретение также предусматривает пеноматериалы на основе PMMA, например, получаемые посредством такого способа. Такой пеноматериал на основе PMMA характеризуется тем, что твердая фракция этого пеноматериала состоит по меньшей мере из не менее 95 вес. % полимера, состоящего из от 79,70 до 99,995 мол. % MMA, от 0 до 20 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,002 до 0,5 мол. % сшивающего средства, от 0,003 до 1,5 мол. % фрагмента регулятора степени полимеризации и фрагмента инициатора. Кроме того, пеноматериал имеет плотность от 25 до 400 кг/м3, предпочтительно от 40 до 250 кг/м3.
Предпочтение отдается, в частности, пеноматериалам на основе PMMA, в которых полимер был образован исключительно из MMA, инициатора, одного или более сшивающих средств, выбранных из ди-, три- или тетра(мет)акрилатов, аллил(мет)акрилата, триаллилцианурата и/или триаллилизоцианурата, и одного или более регуляторов степени полимеризации, выбранных из соединений, содержащих от одной до пяти меркаптановых групп, и/или γ-терпинена, предпочтительно выбранных из пентаэритритолтетратиогликолята, 2-меркаптоэтанола, алкилмеркаптанов, имеющих от 2 до 12 атомов углерода, тиогликолевой кислоты, тиогликолята и/или γ-терпинена.
Пеноматериалы на основе PMMA согласно настоящему изобретению, а также пеноматериалы на основе PMMA, полученные согласно настоящему изобретению, применимы для многих и различных целей. Примерами таких применений являются устойчивые к воздействию атмосферных условий изолирующие материалы, материал сердцевины для слоистых композиционных материалов, в легких конструкциях, в качестве упаковочного материала, в качестве поглотителя энергии в деформируемых элементах, в архитектурных конструктивных элементах, в качестве рассеивателя в системах освещения, в мебельном производстве, в судостроении, в машиностроении, в аэрокосмической промышленности или в моделировании.
Примеры
Сравнительный пример 1
В этом примере пеноматериал на основе PMMA получали из композиции, содержащей регулятор степени полимеризации и не содержащей сшивающее средство.
Смесь из 281,13 г полиметакрилата, полученного исключительно из MMA, 1124,52 г MMA, 0,75 г 2,2'-азобис(2,4-диметилвалеронитрил), 3,60 г пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации, 15,00 г н-бутилакрилата и 75,00 г трет-бутилметакрилата полимеризовали при 42°C в течение 24 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Получали крупноячеистый, очень неоднородный пеноматериал.
Пример 1
В этом примере, который соответствует настоящему изобретению, пеноматериал на основе PMMA получали из композиции, содержащей относительно небольшое количество регулятора степени полимеризации и относительно небольшое количество сшивающего средства.
Смесь из 281,25 г (18,75 вес. %) полиметакрилата, полученного исключительно из MMA, 1125,00 г (75,00 вес. %) MMA, 0,75 г (0,05 вес. %) 2,2'-азобис(2,4-диметилвалеронитрил), 0,60 г (0,04 вес. %) пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации, 15,00 г (1,00 вес. %) н-бутилакрилата, 75,00 г (5,00 вес. %) трет-бутилметакрилата, 1,50 г (0,10 вес. %) разделительного средства Rewopol SB-DO 75 и 0,90 г (0,06 вес. %) этиленгликольдиметакрилата в качестве сшивающего средства полимеризовали при 42°C в течение 24 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. После этого выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Смесь очень хорошо вспенивалась, и ячейки были значительно меньше, чем в пеноматериале, полученном согласно сравнительному примеру 1.
Из практики известно, что разделительное средство не влияет на технологическую операцию полимеризации или вспенивания и служит лишь для облегчения отделения стеклянных пластин от полимерного листа.
Примеры 2-5
В этих примерах в соответствии с настоящим изобретением пеноматериал на основе PMMA получали из различных композиций, содержащих различные количества регулятора степени полимеризации, а также относительно небольшое количество сшивающего средства.
Смеси, состоящие в каждом случае из полиметакрилата (количество смотри в таблице 1), полученного исключительно из MMA, MMA (количество смотри в таблице 1), 0,75 г (0,05 вес. %) 2,2'-азобис-(2,4-диметилвалеронитрил), пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации (количество смотри в таблице 1), 15,00 г (1,00 вес. %) н-бутилакрилата, 75,00 г (5,00 вес. %) трет-бутилметакрилата, 1,50 г (0,10 вес. %) Rewopol SB-DO 75 и 0,90 г (0,60 вес. %) этиленгликольдиметакрилата в качестве сшивающего средства полимеризовали при 42°C в течение 24 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 205°C в течение 1 ч. Все четыре смеси очень хорошо вспенивались. Чем больше количество используемого регулятора степени полимеризации, тем быстрее происходит вспенивание.
Ячейки были заметно меньшими, чем в пеноматериале, полученном согласно сравнительному примеру 1.
Таблица 1
Figure 00000001
Пример 6
В этом примере, который соответствует настоящему изобретению, пеноматериал на основе PMMA получали из композиции, содержащей регулятор степени полимеризации и сшивающее средство. В данном случае не применяли порообразующее средство, которое высвобождается из сополимеризуемого компонента композиции, но присутствует в ней в свободном состоянии.
Смесь из 281,25 г (18,75 вес. %) полиметакрилата, полученного исключительно из MMA, 1125,00 г (75,00 вес. %) MMA, 0,75 г (0,05 вес. %) 2,2'-азобис(2,4-диметилвалеронитрил), 0,60 г (0,04 вес. %) пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации, 15,00 г (1,00 вес. %) н-бутилакрилата, 75,00 г (5,00 вес. %) изопропанола, 1,50 г (0,10 вес. %) Rewopol SB-DO 75 и 0,90 г (0,06 вес. %) этиленгликольдиметакрилата в качестве сшивающего средства полимеризовали при 42°C в течение 24 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Получали эффективно вспененный материал, имеющий достаточно крупные ячейки.
Сравнительный пример 2
В этом примере пеноматериал на основе PMMA получали из композиции, содержащей регулятор степени полимеризации и не содержащей сшивающее средство.
Смесь из 162,21 г полиметакрилата, полученного исключительно из MMA, 648,56 г MMA, 0,85 г 2,2'-азобис(2,4-диметилвалеронитрил), 0,68 г пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации и 37,40 г простого трет-бутилметилового эфира полимеризовали при 50°C в течение 3 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Образец не поддавался вспениванию. Единственное, что происходило, это появление в полимере небольших пузырьков.
Сравнительный пример 3
В этом примере пеноматериал на основе PMMA получали из композиции, содержащей меньшие количества регулятора степени полимеризации чем в сравнительном примере 2, и не содержащей сшивающее средство. Дополнительным изменением сравнительного примера 2 было значительное увеличение количества порообразующего средства.
Смесь из 162,00 г полиметакрилата, полученного исключительно из MMA, 648,00 г MMA, 0,85 г 2,2'-азобис(2,4-диметилвалеронитрил), 0,34 г пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации и 65,50 г простого трет-бутилметилового эфира полимеризовали при 50°C в течение 3 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Образец не поддавался вспениванию. Единственное, что происходило, это появление в полимере небольших пузырьков.
Сравнительный пример 4
В этом примере пеноматериал на основе PMMA получали из композиции, содержащей меньшие количества регулятора степени полимеризации и не содержащей сшивающее средство. Порообразующее средство варьировалось по сравнению со сравнительным примером 2.
Смесь из 167,00 г полиметакрилата, полученного исключительно из MMA, 668,00 г MMA, 0,85 г 2,2'-азобис(2,4-диметилвалеронитрил), 0,34 г пентаэритритолтетратиогликолята в качестве регулятора степени полимеризации и 31,88 г трет-бутанола полимеризовали при 50°C в течение 3 ч между двумя стеклянными пластинами 400 мм * 300 мм, отделенными друг от друга пространством в 10 мм, и герметизированными по бокам резиновой лентой. Затем выдерживали при 115°C в течение 4 ч. В заключение после удаления стеклянных пластин полученный лист на основе PMMA вспенивали в печи при 215°C в течение 1 ч. Образец не поддавался вспениванию. Единственное, что происходило, это появление в полимере небольших пузырьков.

Claims (12)

1. Способ получения пеноматериала на основе полиметакрилата, отличающийся тем, что композицию, содержащую от 0,01 до 2,0 вес. % инициатора, от 2 до 20 вес. % порообразующего средства и от 75 до 97,9 вес. % смеси мономеров, где указанная смесь мономеров состоит из от 79,70 до 99,995 мол. % MMA, от 0 до 20 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,002 до 0,5 мол. % сшивающего средства и от 0,003 до 1,5 мол. % регулятора степени полимеризации, и при этом может присутствовать от 0 до 80 вес. % полимера и/или олигомера, полимеризуют при температуре от 20°C до 100°C, а затем вспенивают при от 130°C до 250°C,
причем регулятор степени полимеризации предусматривает пентаэритритолтетратиогликолят, 2-меркаптоэтанол, алкилмеркаптан, имеющий от 2 до 12 атомов углерода, тиогликолевую кислоту, тиогликолят, γ-терпинен или смесь двух или более из них.
2. Способ по п. 1, отличающийся тем, что композиция содержит от 0,2 до 1,5 вес. % инициатора, от 3 до 15 вес. % порообразующего средства и от 80 до 96,8 вес. % смеси мономеров, где указанная смесь мономеров состоит из от 89,85 до 99,988 мол. % MMA, от 0 до 10 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,005 до 0,3 мол. % сшивающего средства и от 0,006 до 1 мол. % регулятора степени полимеризации, и при этом присутствует от 0 до 50 вес. % полимера и/или олигомера.
3. Способ по п. 1 или 2, отличающийся тем, что полимеризацию осуществляют при температуре от 30°C до 70°C, а вспенивание при температуре от 150°C до 230°C.
4. Способ по одному из пп. 1-3, отличающийся тем, что сшивающее средство предусматривает ди-, три- или тетра(мет)акрилат, аллил(мет)акрилат, триаллилцианурат, триаллилизоцианурат или смесь, содержащую два или более из них.
5. Способ по одному из пп. 1-4, отличающийся тем, что сомономеры предусматривают (мет)акриловую кислоту, метилакрилат, этил(мет)акрилат, пропил(мет)акрилат, н-бутил(мет)акрилат, трет-бутил(мет)акрилат, изопропил(мет)акрилат, изобутил(мет)акрилат, стирол, (мет)акриламид, N-алкил(мет)акриламид, имеющий от одного до 12 атомов углерода в алкильной группе, гидроксиалкил(мет)акрилат, имеющий от одного до 4 атомов углерода в алкильной группе, или смеси двух или более из них, при этом общая доля н-бутил(мет)акрилата и н-пропил(мет)акрилата не превышает 3 вес. %.
6. Способ по одному из пп. 1-5, отличающийся тем, что полимеризацию и/или вспенивание осуществляют ступенчато при разных температурах.
7. Способ по одному из пп. 1-6, отличающийся тем, что полимеризацию и вспенивание осуществляют по меньшей мере частично одновременно.
8. Способ по одному из пп. 1-7, отличающийся тем, что порообразующее средство предусматривает трет-бутил(мет)акрилат, изопропил(мет)акрилат, трет-бутанол, изопропанол, простой трет-бутилметиловый эфир и поли(трет-бутил(мет)акрилат), где изопропил(мет)акрилат и/или трет-бутил(мет)акрилат являются одновременно частью указанной мономерной композиции и полностью или частично сополимеризованы в полимеры, образованные из них.
9. Пеноматериал на основе PMMA, полученный с помощью способа по любому из пп. 1-8, отличающийся тем, что твердая фракция этого пеноматериала состоит по меньшей мере из 95 вес. % полимера, полученного из смеси, состоящей из от 79,70 до 99,995 мол. % MMA, от 0 до 20 мол. % одного или более MMA-сополимеризуемых мономеров, от 0,002 до 0,5 мол. % сшивающего средства, от 0,003 до 1,5 мол. % регулятора степени полимеризации и инициатора, и при этом пеноматериал имеет плотность от 25 до 400 кг/м3.
10. Пеноматериал на основе PMMA по п. 9, отличающийся тем, что пеноматериал на основе PMMA имеет плотность от 40 до 250 кг/м3.
11. Пеноматериал на основе PMMA по п. 9 или 10, отличающийся тем, что полимер был образован исключительно из MMA, инициатора и из компонентов по пп. 1, 4, 5.
RU2017134704A 2015-03-31 2016-03-21 Получение пеноматериала на основе pmma с применением сшивающих средств, регуляторов и порообразующих средств RU2715171C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15161898.0A EP3075769A1 (de) 2015-03-31 2015-03-31 Herstellung eines PMMA-Schaumstoffs unter Verwendung von Vernetzern, Reglern und Treibmitteln
EP15161898.0 2015-03-31
PCT/EP2016/056085 WO2016156078A1 (de) 2015-03-31 2016-03-21 Herstellung eines pmma-schaumstoffs unter verwendung von vernetzern, reglern und treibmitteln

Publications (3)

Publication Number Publication Date
RU2017134704A RU2017134704A (ru) 2019-04-04
RU2017134704A3 RU2017134704A3 (ru) 2019-07-24
RU2715171C2 true RU2715171C2 (ru) 2020-02-25

Family

ID=52780958

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017134704A RU2715171C2 (ru) 2015-03-31 2016-03-21 Получение пеноматериала на основе pmma с применением сшивающих средств, регуляторов и порообразующих средств

Country Status (18)

Country Link
US (1) US10954319B2 (ru)
EP (2) EP3075769A1 (ru)
JP (1) JP6856539B2 (ru)
KR (1) KR102497897B1 (ru)
CN (1) CN107531845B (ru)
AU (1) AU2016239618B2 (ru)
BR (1) BR112017020141B1 (ru)
CA (1) CA2981194C (ru)
DK (1) DK3277747T3 (ru)
ES (1) ES2837125T3 (ru)
IL (1) IL254052B (ru)
PL (1) PL3277747T3 (ru)
PT (1) PT3277747T (ru)
RU (1) RU2715171C2 (ru)
SG (1) SG11201707947YA (ru)
SI (1) SI3277747T1 (ru)
TW (1) TWI756170B (ru)
WO (1) WO2016156078A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082848B (zh) * 2017-05-15 2019-03-08 陕西理工大学 一种可发泡pmma粉体及其制备方法
CN111566154A (zh) 2017-12-01 2020-08-21 阿科玛股份有限公司 可发泡丙烯酸类组合物
CN109021162A (zh) * 2018-08-25 2018-12-18 浙江中科恒泰新材料科技有限公司 一种阻燃型聚甲基丙烯酸甲酯泡沫的制备方法
CN113302031A (zh) * 2019-01-16 2021-08-24 赢创运营有限公司 通过使用微波使含有发泡剂的聚合物发泡
TW202039665A (zh) 2019-01-16 2020-11-01 德商贏創運營有限公司 製造發泡體材料之新穎發泡方法
CN112831082A (zh) * 2021-01-29 2021-05-25 高密浩翰木塑材料科技有限公司 一种用于pvc发泡鞋底的物理发泡剂的生产工艺
CN113336882B (zh) * 2021-05-24 2022-11-04 博立尔化工(扬州)有限公司 一种采用间歇式本体聚合法制备窄分子量分布的pmma树脂的工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018647A (ja) * 2008-07-08 2010-01-28 Sekisui Chem Co Ltd (メタ)アクリル酸エステル樹脂発泡原反の製造方法、(メタ)アクリル酸エステル樹脂発泡原反を用いた(メタ)アクリル酸エステル樹脂発泡体の製造方法及び(メタ)アクリル酸エステル樹脂発泡体
RU2425847C2 (ru) * 2005-08-23 2011-08-10 Басф Се Способ получения пенопластовых плит
RU2012126173A (ru) * 2009-11-25 2013-12-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Нанопористая полимерная пена, имеющая высокую пористость

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1423844A (fr) 1964-11-23 1966-01-07 Electrochimie Soc Polyacrylates et polyméthacrylates d'alcoyle contenant des bulles
JPS5038143B2 (ru) 1971-09-29 1975-12-08
JPS5858369B2 (ja) 1979-04-16 1983-12-24 住友化学工業株式会社 アクリル系発泡体の製造方法
DE3001205C2 (de) 1980-01-15 1982-12-09 Fa. August Hohnholz, 2000 Hamburg Verfahren zur Herstellung von Schaumstoff aus einem Polymeren
IL62693A (en) 1981-04-22 1984-11-30 Hohnholz August Process for producing transparent foamed plastics materials
DE3124980C1 (de) 1981-06-25 1987-07-09 Fa. August Hohnholz, 2000 Hamburg Verfahren zum Herstellen von Gegenständen aus geschäumtem Polymethylmethacrylat
US4816492A (en) 1987-05-19 1989-03-28 Schiller Rolf M Polymerized foamed or reinforced translucent panels and process for making same
US5053437A (en) 1990-02-06 1991-10-01 The Dow Chemical Company Expandable and expanded plastic materials and methods for casting metal castings employing such expanded cellular plastic materials
JP3637785B2 (ja) * 1998-09-16 2005-04-13 住友化学株式会社 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP3987261B2 (ja) * 2000-02-25 2007-10-03 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子、及びこれを用いた発泡体
JP3879364B2 (ja) * 2000-04-26 2007-02-14 住友化学株式会社 メタクリル酸メチル系樹脂粒子、その製造方法、それを用いた発泡性メタクリル酸メチル系樹脂粒子および発泡体
JP2002003635A (ja) 2000-06-21 2002-01-09 Sekisui Chem Co Ltd 異形熱可塑性樹脂発泡体の製造方法
CN1213086C (zh) * 2002-04-16 2005-08-03 杭州余杭亚太化工有限公司 新型可发性共聚树脂及制备方法
US8722751B2 (en) 2003-10-30 2014-05-13 Evonik Rohm Gmbh Thermostable microporous polymethacrylimide foams
DE10350971A1 (de) 2003-10-30 2005-06-02 Röhm GmbH & Co. KG Wärmeformbeständige Polymethacrylimid-Schaumstoffe mit feinen Poren
JP4452576B2 (ja) 2004-07-30 2010-04-21 積水化学工業株式会社 熱可塑性アクリル系樹脂発泡体及びその製造方法
DE102009027244A1 (de) * 2009-06-26 2010-12-30 Evonik Röhm Gmbh Verfahren zur Herstellung eines Schaumstoffteils aus vernetzten Poly(meth)acrylaten sowie der Schaumstoff und dessen Verwendung
DE102010038716A1 (de) * 2010-07-30 2012-02-02 Evonik Degussa Gmbh Verfahren zum In-Mold Foaming mit einem schäumbaren Medium und Deckschichten und dadurch erhältlicher Kunststoffformkörper
JP2012201705A (ja) 2011-03-23 2012-10-22 Sekisui Plastics Co Ltd アクリル系樹脂発泡体の製造方法
JP5613599B2 (ja) 2011-03-23 2014-10-29 積水化成品工業株式会社 アクリル系樹脂発泡体の製造方法
JP2013075935A (ja) 2011-09-29 2013-04-25 Sekisui Plastics Co Ltd 重合性溶液およびアクリル系樹脂発泡体の製造方法
CN104995243A (zh) * 2013-02-15 2015-10-21 赢创罗姆有限公司 用于制备pmi泡沫的珠状聚合物
DE102013225132A1 (de) 2013-12-06 2015-06-11 Evonik Industries Ag Vorschäumung von Poly(meth)acrylimid-Partikeln für das anschließende Formschäumen in geschlossenen Werkzeugen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2425847C2 (ru) * 2005-08-23 2011-08-10 Басф Се Способ получения пенопластовых плит
JP2010018647A (ja) * 2008-07-08 2010-01-28 Sekisui Chem Co Ltd (メタ)アクリル酸エステル樹脂発泡原反の製造方法、(メタ)アクリル酸エステル樹脂発泡原反を用いた(メタ)アクリル酸エステル樹脂発泡体の製造方法及び(メタ)アクリル酸エステル樹脂発泡体
RU2012126173A (ru) * 2009-11-25 2013-12-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Нанопористая полимерная пена, имеющая высокую пористость

Also Published As

Publication number Publication date
IL254052A0 (en) 2017-10-31
RU2017134704A (ru) 2019-04-04
SG11201707947YA (en) 2017-10-30
PL3277747T3 (pl) 2021-04-19
EP3075769A1 (de) 2016-10-05
US10954319B2 (en) 2021-03-23
BR112017020141B1 (pt) 2022-04-05
CN107531845B (zh) 2021-02-19
BR112017020141A2 (pt) 2018-07-03
CA2981194C (en) 2023-03-14
AU2016239618A1 (en) 2017-10-19
RU2017134704A3 (ru) 2019-07-24
KR20170133421A (ko) 2017-12-05
US20180066078A1 (en) 2018-03-08
CN107531845A (zh) 2018-01-02
DK3277747T3 (da) 2021-01-25
WO2016156078A1 (de) 2016-10-06
EP3277747B1 (de) 2020-11-11
JP2018513894A (ja) 2018-05-31
JP6856539B2 (ja) 2021-04-07
AU2016239618B2 (en) 2020-08-13
KR102497897B1 (ko) 2023-02-08
CA2981194A1 (en) 2016-10-06
SI3277747T1 (sl) 2021-03-31
ES2837125T3 (es) 2021-06-29
PT3277747T (pt) 2020-11-25
IL254052B (en) 2021-03-25
EP3277747A1 (de) 2018-02-07
TWI756170B (zh) 2022-03-01
TW201708264A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
RU2715171C2 (ru) Получение пеноматериала на основе pmma с применением сшивающих средств, регуляторов и порообразующих средств
RU2715527C2 (ru) Получение мелкопористых пеноматериалов на основе pmma с использованием зародышеобразователей
RU2741814C2 (ru) Улучшение свойств пенополиметилметакрилатов путем применения метакриламидов
CN114207019B (zh) 具有改进的机械性能的基于pmma的铸塑聚合物

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200707