RU2707035C1 - Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля - Google Patents

Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля Download PDF

Info

Publication number
RU2707035C1
RU2707035C1 RU2019104276A RU2019104276A RU2707035C1 RU 2707035 C1 RU2707035 C1 RU 2707035C1 RU 2019104276 A RU2019104276 A RU 2019104276A RU 2019104276 A RU2019104276 A RU 2019104276A RU 2707035 C1 RU2707035 C1 RU 2707035C1
Authority
RU
Russia
Prior art keywords
nickel
temperature
trifluorophosphine
tetrakis
oxalate
Prior art date
Application number
RU2019104276A
Other languages
English (en)
Inventor
Игорь Александрович Меркулов
Денис Валерьевич Тихомиров
Андрей Викторович Обедин
Андрей Юрьевич Жабин
Светлана Александровна Парецкова
Артем Николаевич Томарев
Юлия Вениаминовна Кудрина
Виктория Андреевна Григорьева
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority to RU2019104276A priority Critical patent/RU2707035C1/ru
Application granted granted Critical
Publication of RU2707035C1 publication Critical patent/RU2707035C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

Изобретение относится к области получения фторфосфиновых соединений никеля, в частности к способу получения тетракис-(трифторфосфина) изотопно-обогащенного никеля, и может быть использовано в технологии получения бета-вольтаических источников тока. Способ проводят в две стадии c возможностью последовательного их проведения в отдельных аппаратах: на первой стадии осуществляют обезвоживание и разложение оксалата никеля путем нагрева реакционного объема со скоростью подъема температуры 0,3-5,5°С/мин до температуры 370±5°С с дальнейшей выдержкой при температуре 370-390°С и на второй стадии осуществляют взаимодействие полученного порошкообразного металлического никеля с трифторидом фосфора при температуре 100-150°С и давлении 8,1-14,5 МПа. Изобретение обеспечивает увеличение выхода тетракис-(трифторфосфина) никеля, сокращение длительности процесса и увеличение производительности процесса. 4 з.п. ф-лы, 2 пр.

Description

Изобретение относится к области получения фторфосфиновых соединений никеля и может быть использовано в технологии получения бета-вольтаических источников тока при синтезе тетракис-(трифторфосфина) никеля с последующим его газоцентрифужным обогащением по целевому изотопу и обратной конверсией на полупроводниковую подложку.
Известен способ получения тетракис-(трифторфосфина) никеля [SU 1406966, опубл. 30.08.90], включающий обработку никельсодержащего агента водородом при 300-350°С и давлении 1 атм и его последующее взаимодействие с трифторфосфином при температуре 60-70°С и давлении 2-5 атм, отличающийся тем, что с целью повышения производительности процесса при сохранении высокого выхода продукта, в качестве никельсодержащего агента используют оксалат никеля, который предварительно нагревают до 120-150°С в присутствии серы, взятой в количестве 0,1-3% мас. %, а обработку водородом ведут до прекращения выделения углекислого газа. Недостатками способа являются: высокий расход трифторида фосфора в результате его взаимодействия при температуре синтеза с остаточной водой, недостаточная чистота получаемого продукта по причине отсутствия операций обезгаживания и обезвоживания загрузки после восстановления водородом, необходимость проведения дополнительной очистки от соединений серы с трифторидом фосфора.
Наиболее близким к заявленному способу является способ получения тетракис-(трифторфосфина) никеля [заявка №2017117942 от 23.05.2017], выбранный в качестве прототипа, включающий обезвоживание и разложение оксалата никеля путем его нагревания при пониженном давлении и последующее взаимодействие полученного материала с трифторидом фосфора при повышенной температуре и давлении, отличающийся тем, что разложение оксалата никеля в реакторе синтеза осуществляют при температуре 300-350°С при остаточном давлении в реакторе синтеза не более 5 Па без дополнительной обработки водородом, а процесс синтеза тетракис-(трифторфосфина) никеля проводят при 100-200°С и давлении 30-80 атм. Недостатками способа являются: отсутствие технологической пригодности, длительность операции разложения оксалата никеля в заявленном диапазоне пониженного давления и операции фторфосфинирования в заявленном диапазоне избыточного давления, дополнительные требования к конструкции и материалу реактора при последовательном проведении в нем низкотемпературного и высокотемпературного процессов. Отсутствие технологической пригодности способа-прототипа обусловлено неэффективной транспортировкой из зоны реакции значительного количества выделяющейся воды, и как следствие, образование крупнокристаллических металлических форм, определяющих снижение реакционной способности промежуточного продукта и заявленного выхода на операции фторфосфинирования.
Задачей изобретения является разработка технологически пригодного способа синтеза тетракис-(трифторфосфина) никеля, обеспечивающего получение в качестве промежуточного продукта реакционно-способного порошка металлического никеля с площадью активной поверхности более 60 м2/г и максимальной однородностью гранулометрического состава.
Задача решается использованием потока инертного газа для удаления паров воды из зоны реакции при разложении оксалата никеля и увеличением избыточного давления при обработке получаемого порошка металлического никеля трифторидом фосфора (в диапазоне температур принятом в способе-прототипе).
Техническим результатом изобретения является увеличение выхода тетракис-(трифторфосфина) никеля и сокращение длительности процесса на операциях разложения оксалата никеля и фторфосфинирования образующегося металлического никеля.
Для достижения технического результата в способе получения тетракис-(трифторфосфина) изотопно-обогащенного никеля, проводят термообработку оксалата никеля в потоке инертного газа путем нагрева реакционного объема до температуры 370±5°С с дальнейшей выдержкой при температуре 370-390°С, а процесс синтеза тетракис-(трифторфосфина) никеля осуществляют при давлении 8,1-14,5 МПа и температуре 100-150°С.
Сущность изобретения заключается в глубоком обезвоживании оксалата никеля в процессе термообработки, что приводит к увеличению реакционной способности промежуточного продукта (металлического никеля) при взаимодействии с трифторидом фосфора. Подавление интенсивности агломерационных процессов в момент кристаллизации металлической фазы достигается удалением воды из реакционного объема путем транспортировки ее паров потоком инертного газа.
Основным фактором, определяющим реакционную способность металлического никеля при взаимодействии с трифторидом фосфора, является преобладание в его гранулометрическом составе ультратонких частиц, что косвенно выражается в увеличении площади активной поверхности порошка при полном отсутствии на ней оксидных пленок. Наличие в слое загрузки даже следовых количеств воды вызывает при восстановлении укрупнение кристаллитов в структуре образующихся зерен металла и препятствует получению площади активной поверхности порошка металлического никеля более 8-10 м2/г. Таким образом, задача увеличения реакционной способности получаемого промежуточного продукта решается увеличением скорости и полноты обезвоживания при термообработке оксалата никеля. Интенсификация (по сравнению со способом-прототипом) принудительной транспортировки паров воды из реакционной зоны в процессе обезвоживания и разложения оксалата никеля обеспечивается использованием потока газообразного носителя, в роли которого выступает инертный газ. В частном случае используется аргон.
Режим термообработки оксалата никеля при избыточном давлении обеспечивает его устойчивость в среде инертного газа вплоть до 360°С, что позволяет количественно выделить связанную воду из слоя загрузки в газовую фазу. Полное обезвоживание загрузки достигается благодаря увеличению финишной температуры нагрева (по сравнению со способом-прототипом). Скорость подъема температуры составляет 0,3-5,5°С/мин. В частном случае для увеличения полноты удаления воды нагрев реакционного объема проводят в периодическом режиме с выдержкой загрузки оксалата никеля при температуре 170±5°С, 210±5°С, 260±5°С до полного удаления воды на каждой ступени нагрева. С целью контроля свойств получаемого в результате термообработки порошкообразного металлического никеля разложение оксалата никеля и получение тетракис-(трифторфосфина) никеля проводят в отдельных аппаратах-реакторах с промежуточным хранением, и перегрузкой порошкообразного металлического никеля в среде инертного газа. В частном случае при разложении оксалата никеля в качестве аппарата используют кварцевый проточный аппарат-реактор, помещенный в трубчатую печь омического нагрева с визуальным контролем наличия/отсутствия воды в зоне конденсации, что позволяет точно определять длительность выдержки реакционной зоны при выбранной температуре.
В частном случае для увеличения полноты удаления поверхностных оксидных пленок образующийся порошок металлического никеля при остывании реакционного объема до температуры 270-325°С кратковременно обрабатывают потоком водорода. Вместо чистого водорода может быть использована смесь водорода и аргона при содержании водорода 7-8% масс., применение которой соответствует требованиям пожаро-взрывобезопасности. Обработка водородом уже сформированных кристаллических конгломератов металлического никеля, образованных в результате дезинтеграции макроструктур оксалата, позволяет снизить пирофорные свойства получаемого порошка без существенного снижения площади активной поверхности, что существенно упрощает транспортировку промежуточного продукта из одного аппарата-реактора в другой. При этом свойства водорода как восстановителя не используются в полной мере, а количество выделяемой воды пренебрежимо мало и в выбранном диапазоне температур существенно не влияет на процесс перекристаллизации уже сформированной структуры зерна.
Предлагаемый способ реализуют следующим образом. Оксалат никеля получают из азотнокислых растворов в диапазоне содержания азотной кислоты 0,6-15 г/л путем обратного осаждения при температуре 70-90°С 50-80% избытком щавелевой кислоты с дальнейшим отделением осадка на фильтрационной перегородке, 3-х кратной его промывки на фильтрационной перегородке при температуре 40-70°С и сушки при температуре 100-120°С в течение 2-6 часов. Высушенный оксалат никеля представляет собой кристаллогидрат с водностью 2,0-2,9.
На первой стадии процесса высушенный оксалат никеля при толщине слоя 15-30 мм загружают в горизонтальный контейнер (типа лодочка), расположенный по всей зоне нагрева в кварцевом проточном аппарате-реакторе. В потоке инертного газа поводят нагрев порции оксалата никеля до температуры 370±5°С и выдерживают при температуре 370-390°С заданное количество времени. После охлаждения в атмосфере инертного газа проводят разгрузку образовавшегося порошкообразного металлического никеля непосредственно в аппарат-реактор фторфосфинирования, либо в промежуточный полиэтиленовый контейнер, а затем передают в аппарат-реактор фторфосфинирования. Последовательное проведение первой и второй стадий процесса в одном аппарате возможно непосредственно в аппарате-реакторе фторфосфинирования с обеспечением на первой стадии в процессе термообработки эффективной циркуляции потока инертного газа над слоем порции оксалата никеля. В этом случае аппарат-реактор представляет собой автоклав из нержавеющей стали с отношением диаметра к высоте 1:2.
На второй стадии процесса, оснащенный ротационным перемешивающим устройством аппарат-реактор фторфосфинирования с находящимся в нем порошкообразным металлическим никелем (в среде инертного газа) вакуумируют до остаточного давления 5-15 Па и затем охлаждают жидким азотом. При достижении температуры минус 102-180°С в аппарат-реактор фторфосфинирования принимают расчетное количество трифторида фосфора. Дозирование трифторида фосфора проводят весовым способом, посредством постоянного (on-line) контроля массы оставшегося в питающем баллоне количества газообразного реагента. Аппарат-реактор фторфосфинирования нагревают до комнатной температуры путем продувки съемной внешней рубашки сжатым воздухом, либо циркуляцией по ней специализированного теплоносителя. Дальнейший нагрев до температуры 100-150°С проводят посредством съемного блока омического нагрева. Требуемое для количественного выхода целевого продукта давление в диапазоне 8,1-14,5 МПа обеспечивается введением расчетного избытка трифторида фосфора на операции загрузки аппарата-реактора фторфосфинирования. При достижении давления в реакционном объеме 8,1 МПа включают ротационное перемешивающее устройство и ведут процесс до полного завершения при скорости его вращения 100-800 об/мин. Момент окончания процесса определяют по отсутствию снижения давления в реакционном объеме на протяжении более 1 часа. Охлаждают аппарат-реактор до комнатной температуры. До разгрузки аппарата-реактора выход целевого продукта и полноту реакции оценивают расчетным способом по остаточному давлению трифторида фосфора. При необходимости процесс проводят повторно. Дополнительно к баллону с трифторидом фосфора подключают к системе коммуникаций аппарата-реактора приемный баллон тетракис-(трифторфосфина) никеля. Вакуумируют систему коммуникаций до остаточного давления 5-15 Па. Жидким азотом до минус 150-180°С охлаждают приемные баллоны под трифторид фосфора и тетракис-(трифторфосфин) никеля. С помощью специализированного теплоносителя через съемную внешнюю рубашку охлаждают аппарат-реактор до температуры минус 70-80°С и отгоняют избыточный трифторид фосфора в приемный баллон. При достижении аппарата-реактора фторфосфинирования температуры минус 15°С в результате принудительного нагрева через съемную внешнюю рубашку начинают передачу тетракис-(трифторфосфин) никеля в приемный баллон. Передачу целевого продукта завершают при достижении и выдержке аппарата-реактора при температуре 50°С в течение 0,5 часа. Удаляют остатки реагентов из аппарата-реактора фторфосфинирования путем вакуумирования аппарата-реактора и системы коммуникаций до остаточного давления 5-15 Па. Разбирают аппарат-реактор и выгружают не прореагировавший металлический никель. После его повторного переведения в нитратную форму присоединяют получаемый раствор к поступающим на оксалатное осаждение продуктам.
Пример 1
Разложение 135 г оксалата (дигидрата) никеля-62 с обогащением по никелю-63 2,5%, предварительно высушенного при температуре 110°С в течение 4 часов, проводили в режиме периодического нагрева в потоке аргона при температуре от 170°С до 375°С, с выдержкой от 30 минут до 3 часов. Общее время процесса нагрева составило 8 часов. При достижении температуры 315°С в процессе остывания аппарата-реактора в течение 10 минут через реакционный объем пропускали поток аргоно-водородной смеси (7% масс. водорода). Дальнейшее остывание аппарата до комнатной температуры проводили в потоке аргона. Полученный порошок металлического никеля в количестве 45,0 г с площадью поверхности 130 м2/г переносили в аппарат-реактор фторфосфинирования емкостью 1 дм3. Аппарат-реактор герметизировали и одновременно с системой коммуникаций вакуумировали до остаточного давления 6 Па. Из установленного на весы баллона принимали 400 г трифторида фосфора. Нагрев аппарата-реактора вели со скоростью 3,4°С/мин до температуры 110°С. При этом давление в аппарате-реакторе составляло 14,3 МПа. В результате протекания реакции в течение 4 часов происходило снижение давления до 5,2 МПа. По истечении 6 часов от начала процесса аппарат-реактор фторфосфинирования охлаждали до температуры минус 70°С и передавали в баллон с трифторидом фосфора не прореагировавший реагент в количестве 143 г. Передачу тетракис-(трифторфосфина) никеля проводили в течение 60 минут в диапазоне температур 0-45°С. Количество полученного продукта составило 297 г при выходе 98,8%. Длительность производственного цикла при параллельном проведении стадий разложения оксалата никеля и фторфосфинирования твердофазного продукта разложения (металлического никеля) составила 11,2 часов. За сутки реализовано два производственных цикла с получением 595 г тетракис-(трифторфосфина) изотопно-обогащенного никеля.
Пример 2
Разложение 135 г оксалата (дигидрата) никеля-62 с обогащением по никелю-63 2,5%, предварительно высушенного при температуре 120°С в течение 6 часов, проводили в режиме постоянного нагрева от 170°С до 370°С в потоке аргона. Выдержка при температуре 370° составила 60 мин. При достижении температуры 325°С в процессе остывания аппарата-реактора в течение 4 минут через реакционный объем пропускали поток водорода. Дальнейшее остывание аппарата до комнатной температуре проводили в потоке аргона. Общее время процесса составило 12 часов. Полученный порошок металлического никеля в количестве 45,0 г с площадью поверхности 210 м2/г переносили в аппарат-реактор фторфосфинирования емкостью 1 дм3. Аппарат-реактор герметизировали и одновременно с системой коммуникаций вакуумировали до остаточного давления 10 Па. Из установленного на весы баллона принимали 300 г трифторида фосфора. Нагрев аппарата-реактора вели до температуры 140°С. При выходе на заданную температуру давление аппарате-реакторе составило 11,5 МПа. Падение давления до 1,9 МПа происходило в течение 5 часов. По истечении 7 часов от начала процесса аппарат-реактор фторфосфинирования охлаждали до температуры минус 70°С и передавали в баллон с трифторидом фосфора не прореагировавший реагент в количестве 45 г. Передачу тетракис-(трифторфосфина) никеля проводили при в течение 120 минут в диапазоне температур от минус 15°С до 50°С. Количество полученного продукта составило 295 г при выходе 98,2%. Длительность производственного цикла при параллельном проведении стадий разложения оксалата никеля и фторфосфинирования твердофазного продукта разложения (металлического никеля) составила 11,9 часов. За сутки реализовано два производственных цикла с получением 591 г тетракис-(трифторфосфина) изотопно-обогащенного никеля.
Разделение процесса получения тетракис-(трифторфосфин) никеля на две стадии и возможность последовательного их проведения в отдельных аппаратах позволяет увеличить совокупную производительность процесса. Продолжительность стадии обезвоживания и разложения оксалата никеля до металлического никеля составляет менее 8 часов, а продолжительность стадии фторфосфинирования составляет менее 12 часов. Таким образом при поточной организации процесса с использованием аппарата-реактора объемом 1 дм3 средняя производительность установки составляет 550-600 г тетракис-(трифторфосфин) никеля в сутки.
Интенсификация обезвоживания оксалата никеля в потоке инертного газа обеспечивает улучшение качественных характеристик промежуточного продукта, выраженных в увеличении реакционной способности порошка металлического никеля. Благодаря этому в отличие от способа-прототипа в предложенном способе достигается стабильный выход целевого продукта на уровне 98,2-99,8% и снижение процента брака на отдельных загрузках.
В отличие от способа-прототипа предлагаемый способ обеспечивает получение тонкодисперсного порошка металлического никеля с площадью активной поверхности 120-230 м2/г, что в совокупности с увеличением давления в реакционном объеме позволяет сократить длительность стадии фторфосфинирования с 30-40 часов (по способу-прототипу) до 3÷10 часов без снижения выхода и качества получаемого продукта.

Claims (5)

1. Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля, включающий на первой стадии обезвоживание и разложение оксалата никеля в результате его термообработки при избыточном давлении и последующее взаимодействие на второй стадии получаемого порошкообразного металлического никеля с трифторидом фосфора при повышенной температуре и давлении, отличающийся тем, что термообработку оксалата никеля проводят в потоке инертного газа путем нагрева реакционного объема со скоростью подъема температуры 0,3-5,5°C/мин до температуры 370±5°C с дальнейшей выдержкой при температуре 370-390°C, а процесс синтеза тетракис-(трифторфосфина) никеля осуществляют при давлении 8,1-14,5 МПа и температуре 100-150°C.
2. Способ по п. 1, отличающийся тем, что термообработку оксалата никеля и получение тетракис-(трифторфосфина) никеля проводят в отдельных аппаратах-реакторах с промежуточным хранением и перегрузкой порошкообразного металлического никеля в среде инертного газа.
3. Способ по п. 1 или 2, отличающийся тем, что в качестве инертного газа используют аргон.
4. Способ по п. 1, отличающийся тем, что нагрев реакционного объема проводят в периодическом режиме с выдержкой загрузки оксалата никеля при температуре 170±5°C, 210±5°C, 260±5°C до полного удаления воды на каждой ступени нагрева.
5. Способ по п. 1, отличающийся тем, что порошкообразный металлический никель при остывании реакционного объема до температуры 270-325°C обрабатывают потоком водорода в течение 2-20 минут.
RU2019104276A 2019-02-15 2019-02-15 Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля RU2707035C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019104276A RU2707035C1 (ru) 2019-02-15 2019-02-15 Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019104276A RU2707035C1 (ru) 2019-02-15 2019-02-15 Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля

Publications (1)

Publication Number Publication Date
RU2707035C1 true RU2707035C1 (ru) 2019-11-21

Family

ID=68653114

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019104276A RU2707035C1 (ru) 2019-02-15 2019-02-15 Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля

Country Status (1)

Country Link
RU (1) RU2707035C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750621C1 (ru) * 2020-11-27 2021-06-30 Лев Эдуардович Барышников Способ получения тетракис-(трифторфосфина) никеля
CN116497231A (zh) * 2023-06-21 2023-07-28 核工业理化工程研究院 一种四(三氟膦)镍制备镍的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478890A (en) * 1983-09-12 1984-10-23 The United States Of America As Represented By The Secretary Of The Navy Low temperature deposition of nickel films
SU1061391A1 (ru) * 1982-02-11 1987-02-15 Предприятие П/Я А-1758 Способ получени тетракис (трифторфосфин) никел
SU1406966A1 (ru) * 1986-01-22 1990-08-30 Предприятие П/Я А-1758 Способ получени тетракис(трифторфосфина) никел
RU2650955C1 (ru) * 2017-05-23 2018-04-18 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ получения тетракис-(трифторфосфина) никеля

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1061391A1 (ru) * 1982-02-11 1987-02-15 Предприятие П/Я А-1758 Способ получени тетракис (трифторфосфин) никел
US4478890A (en) * 1983-09-12 1984-10-23 The United States Of America As Represented By The Secretary Of The Navy Low temperature deposition of nickel films
SU1406966A1 (ru) * 1986-01-22 1990-08-30 Предприятие П/Я А-1758 Способ получени тетракис(трифторфосфина) никел
RU2650955C1 (ru) * 2017-05-23 2018-04-18 Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") Способ получения тетракис-(трифторфосфина) никеля

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750621C1 (ru) * 2020-11-27 2021-06-30 Лев Эдуардович Барышников Способ получения тетракис-(трифторфосфина) никеля
CN116497231A (zh) * 2023-06-21 2023-07-28 核工业理化工程研究院 一种四(三氟膦)镍制备镍的方法
CN116497231B (zh) * 2023-06-21 2024-01-05 核工业理化工程研究院 一种四(三氟膦)镍制备镍的方法

Similar Documents

Publication Publication Date Title
RU2707035C1 (ru) Способ получения тетракис-(трифторфосфина) изотопно-обогащенного никеля
US9676625B1 (en) Synthesis of microcrystalline alpha alane
JP5400550B2 (ja) 活性炭の製造方法及びその装置
US20160297678A1 (en) Heating Methods for Aluminum Hydride Production
CN108264078A (zh) 含氢稀土氟化物、其制备方法及应用
US20170275163A1 (en) Synthesis of Microcrystalline Alpha Alane
US6106765A (en) Purification process for chromium
CN111825058B (zh) 一种基于分子筛自动活化的锗烷制备方法及装置
CN117225441B (zh) 一种制备g-C3N4负载Pt复合材料的方法
CN109336105B (zh) 爆轰合成金刚石的连续提纯工艺及其装置
CN114309631B (zh) 一种铼粉的制备方法
CN114314596B (zh) 利用微波加热固定床连续合成高阶硅烷的方法及系统
CN114182293B (zh) 粒子尺寸可控的Ru基催化剂的制备方法及其在“可再生能源电解制氢-合成氨”中的应用
RU2480398C1 (ru) Способ получения углеродных нанотрубок и устройство для его осуществления
CN115814716A (zh) 一种氮化硅粉体的制备装置及制备方法
CN107416896B (zh) 一种可控制备钛的氧化物粉体的方法
JPS6177624A (ja) 硝酸ウラニルから二酸化ウランを製造する方法
CN106365201B (zh) 一种高纯砷化锌的制备装置和方法
CN1730207A (zh) 钨铜复合粉的生产方法
JPS6168310A (ja) シリコン切粉を原料とする高純度窒化けい素の製造方法
RU2750621C1 (ru) Способ получения тетракис-(трифторфосфина) никеля
RU2737103C1 (ru) Способ получения порошка циркония
CN104785305B (zh) 一种用于合成氨催化剂的还原钝化系统和方法
CN110734080B (zh) 洗涤碳酸锂的方法
CN112317757B (zh) 一种超高纯钨粉的制备方法