RU2737103C1 - Способ получения порошка циркония - Google Patents

Способ получения порошка циркония Download PDF

Info

Publication number
RU2737103C1
RU2737103C1 RU2020124698A RU2020124698A RU2737103C1 RU 2737103 C1 RU2737103 C1 RU 2737103C1 RU 2020124698 A RU2020124698 A RU 2020124698A RU 2020124698 A RU2020124698 A RU 2020124698A RU 2737103 C1 RU2737103 C1 RU 2737103C1
Authority
RU
Russia
Prior art keywords
calcium
powder
zirconium
zirconium dioxide
calcium chloride
Prior art date
Application number
RU2020124698A
Other languages
English (en)
Inventor
Вениамин Моисеевич Орлов
Михаил Валентинович Крыжанов
Original Assignee
Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН)
Priority to RU2020124698A priority Critical patent/RU2737103C1/ru
Application granted granted Critical
Publication of RU2737103C1 publication Critical patent/RU2737103C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Изобретение относится к металлотермическому получению порошка циркония, который может быть использован для производства пиротехнических изделий различного назначения, а также изготовления компактных заготовок и изделий. Способ включает приготовление смеси, содержащей хлорид кальция, порошок диоксида циркония и гранулы кальция, восстановление диоксида циркония кальцием в смеси, выщелачивание продуктов восстановления с выделением порошка циркония и его сушку. Смесь готовят путем смачивания гранул кальция раствором хлорида кальция в этиловом спирте с концентрацией 150-200 г/л, высушивания и смешивания с порошком диоксида циркония. Хлорид кальция используют в количестве 5-50 г на 100 г кальция. После этого проводят восстановление диоксида циркония кальцием при температуре 650-850°С в вакууме при остаточном давлении 5-20 Па. Затем осуществляют выщелачивание продуктов восстановления в две стадии 5-30%-ным раствором соляной или азотной кислоты с отмывкой порошка циркония и сушкой. Обеспечивается снижение энергоемкости и расхода реагентов при обеспечении высокого качества получаемого порошка циркония. 1 з.п. ф-лы, 3 пр.

Description

Изобретение относится к порошковой металлургии, более конкретно к металлотермическим способам получения порошка циркония, используемого для производства пиротехнических изделий различного назначения, а также изготовления компактных заготовок и изделий.
Одним из промышленных способов получения порошка циркония является восстановление диоксида циркония кальцием при высокой температуре, что делает процесс энергозатратным и приводит к ускоренному износу оборудования. Необходимость снижения содержания кислорода в порошках, используемых для получения компактных изделий из циркония, обуславливает применение значительного избытка кальция, длительную выдержку и добавку большого количества хлорида кальция для растворения оксида кальция, образующегося при восстановлении, что увеличивает расход реагентов.
Известен способ получения порошка циркония (см. Зеликман, А.Н. Металлургия редких металлов / А.Н. Зеликман, Б.Г. Коршунов // М.: Металлургия, 1991. - С. 212-213) путем восстановления диоксида циркония кальцием при повышенной температуре. Процесс ведут в герметичном аппарате из жаростойкой стали, куда загружают брикетированную смесь диоксида циркония с кальцием, вакуумируют аппарат, заполняют аргоном, нагревают до 1000-1100°С и выдерживают при этой температуре в течение 1 часа. Продукты восстановления измельчают, обрабатывают вначале большим объемом воды для удаления части оксида кальция, а затем разбавленной соляной кислотой. Полученный порошок промывают водой и сушат в вакууме при 40-50°С. Порошок циркония содержит 0,1-0,4 мас. % кислорода.
Известный способ характеризуется высокой температурой процесса, что ведет к повышенным энергетическим затратам и ускоренному износу оборудования.
Известен также способ получения порошка циркония, принятый в качестве прототипа (см. Abdelkader A.M., El-Kashi Е. Calciothermic Reduction of Zirconium Oxide in Molten CaCl2 // ISIJ International. - 2007. - V. 47, №1. - P. 25-31), включающий добавление хлорида кальция к диоксиду циркония и кальцию и последующее восстановление диоксида циркония кальцием, взятым в стехиометрическом количестве или с избытком до 250 мол. %, при повышенной температуре. Минимальное количество хлорида кальция выбирают таким образом, чтобы его было достаточно для растворения оксида кальция, образовавшегося в результате реакции (444 г CaCl2 на 100 г Са). Смесь диоксида циркония, кальция и хлорида кальция загружают в кварцевую лодочку, которую размещают в корундовом трубчатом реакторе. Реактор вакуумируют, заполняют аргоном, нагревают до 900-1300°С и выдерживают 1-5 часов. Затем продукты восстановления извлекают из реактора и выщелачивают горячей дистиллированной водой. Полученный порошок циркония сушат в атмосфере аргона. Порошок содержит 560-6500 ppm (0,056-0,65 мас. %) кислорода.
Недостатками данного способа являются высокая энергоемкость и ускоренный износ оборудования, а также большой расход реагентов.
Настоящее изобретение направлено на достижение технического результата, заключающегося в снижении энергоемкости способа и расхода реагентов, при обеспечении высокого качества получаемого порошка циркония.
Технический результат достигается тем, что в способе получения порошка циркония, включающем приготовление смеси, содержащей хлорид кальция, порошок диоксида циркония и гранулы кальция, восстановление диоксида циркония кальцием в смеси при повышенной температуре, выщелачивание продуктов восстановления с выделением порошка циркония и его сушку, согласно изобретению, хлорид кальция используют в количестве 5-50 г на 100 г кальция, при этом смесь, содержащую хлорид кальция, порошок диоксида циркония и гранулы кальция, готовят путем смачивания гранул кальция раствором хлорида кальция в этиловом спирте с концентрацией 150-200 г/л, высушивания и смешивания с порошком диоксида циркония, а восстановление диоксида циркония кальцием в смеси ведут при температуре 650-850°С в вакууме при остаточном давлении 5-20 Па.
Достижению технического результата способствует то, что выщелачивание продуктов восстановления ведут в две стадии 5-30% раствором соляной или азотной кислоты с отмывкой порошка циркония перед сушкой.
Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.
Использование хлорида кальция в количестве 5-50 г на 100 г кальция обеспечивает формирование на поверхности кальция тонкого слоя CaCl2, который способствует разрушению поверхностной пленки оксида кальция, препятствующей контакту с диоксидом циркония, что увеличивает степень восстановления.
Приготовление смеси, содержащей хлорид кальция, порошок диоксида циркония и гранулы кальция, путем смачивания гранул кальция насыщенным (150-200 г/л) раствором хлорида кальция в этиловом спирте, высушивания и смешивания с порошком диоксида циркония способствует равномерному распределению добавляемого количества CaCl2 в виде тонкого слоя на поверхности кальция, что позволяет уменьшить расход CaCl2 с обеспечением высокой степени восстановления.
Использование раствора хлорида кальция в этиловом спирте с концентрацией 150-200 г/л позволяет обеспечить достаточную для разрушения поверхностного оксида толщину слоя CaCl2. При концентрации хлорида кальция менее 150 г/л требуется избыточное количество раствора, а концентрация хлорида кальция 200 г/л является предельной.
Проведение восстановления при температуре 650-850°С в вакууме обусловлено тем, что в этих условиях давление паров кальция составляет 0,133-270 Па, что достаточно для разрушения поверхностной пленки оксида кальция и обеспечения более полного контакта с частицами диоксида циркония. При температуре восстановления менее 650°С давление паров кальция будет недостаточным для разрушения оксидной пленки и эффективного восстановления. Температура восстановления выше 850°С нежелательна, так как при этом повышаются потери кальция в зоне реакции, возрастают энергозатраты и увеличивается износ оборудования, что снижает эффективность способа.
Проведение восстановления в вакууме при остаточном давлении 5-20 Па позволяет обеспечить достаточную скорость испарения кальция для эффективного восстановления диоксида циркония. Проведение восстановления в вакууме при остаточном давлении менее 5 Па усложняет реализацию способа, не способствуя при этом существенному снижению температуры. При остаточном давлении более 20 Па снижается степень восстановления диоксида циркония.
Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в снижении энергоемкости способа и расхода реагентов, при обеспечении высокого качества получаемого порошка циркония.
В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.
Проведение выщелачивания продуктов восстановления в две стадии 5-30% раствором соляной или азотной кислоты с последующей отмывкой порошка циркония перед сушкой обеспечивает более полное удаление оксида кальция. При концентрации кислоты менее 5% снижается эффективность выщелачивания и образуется избыточное количество сбросных растворов, а концентрация более 30% является технологически неоправданной.
Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения снижения энергоемкости способа и расхода реагентов при обеспечении высокого качества получаемого порошка циркония.
В общем случае способ получения порошка циркония согласно изобретению осуществляют следующим образом.
Готовят смесь, содержащую хлорид кальция, порошок диоксида циркония и гранулы кальция. Берут гранулы кальция и смачивают раствором хлорида кальция в этиловом спирте с концентрацией 150-200 г/л. Хлорид кальция берут в количестве 5-50 г на 100 г кальция. После этого гранулы кальция высушивают на воздухе и смешивают с порошком диоксида циркония. Полученную смесь помещают в стальной реакционный стакан, который устанавливают в реактор, представляющий собой реторту из нержавеющей стали с герметично прилегающей крышкой. Реактор вакуумируют до остаточного давления 5-20 Па, нагревают до температуры 650-850°С и выдерживают при этой температуре в течение 1-5 часов. По окончании восстановления реактор охлаждают до комнатной температуры, осуществляют дозируемую подачу воздуха до достижения атмосферного давления, достают реакционный стакан, извлекают продукты восстановления и подвергают их выщелачиванию раствором соляной или азотной кислоты. Выщелачивание ведут в две стадии для более полного удаления образовавшегося оксида кальция и кальция. Полученный порошок циркония отмывают деионизированной водой, высушивают и производят оценку качества порошка.
Сущность и преимущества предлагаемого изобретения могут быть пояснены следующими примерами конкретного выполнения изобретения.
Пример 1. Навеску кальция массой 81,4 г, что на 25% превышает стехиометрическое количество, в виде гранул крупностью не более 5 мм смачивают 27 мл раствора хлорида кальция в этиловом спирте (150 г/л), что соответствует 5 г CaCl2 на 100 г Са. Затем сушат, смешивают с 100 г порошка диоксида циркония и ведут восстановление при температуре 650°С в вакууме при остаточном давлении 5 Па в течение 5 часов. Продукты восстановления выщелачивают 30% раствором соляной кислоты. На первой стадии выщелачивание ведут 0,6 л раствора кислоты при непрерывном перемешивании в течение 1 часа. На второй стадии порошок циркония обрабатывают свежим раствором кислоты при аналогичных условиях. Раствор кислоты после второй стадии может быть использован на первой стадии выщелачивания. Затем порошок циркония отмывают деионизированной водой и сушат. Содержание кислорода в полученном порошке составляет 0,4 мас. %.
Пример 2. Навеску кальция массой 97,7 г, что на 50% превышает стехиометрическое количество, в виде гранул крупностью не более 5 мм смачивают 170 мл раствора хлорида кальция в этиловом спирте (175 г/л), что соответствует 30 г CaCl2 на 100 г Са. Затем сушат, смешивают с 100 г порошка диоксида циркония и ведут восстановление при температуре 750°С в вакууме при остаточном давлении 10 Па в течение 3 часов. Продукты восстановления выщелачивают 15% раствором азотной кислоты. На первой стадии выщелачивание ведут 2,3 л раствора кислоты при непрерывном перемешивании в течение 1 часа. На второй стадии порошок циркония обрабатывают свежим раствором кислоты при аналогичных условиях. Раствор кислоты после второй стадии может быть использован на первой стадии выщелачивания. Затем порошок циркония отмывают деионизированной водой и сушат. Содержание кислорода в полученном порошке составляет 0,25 мас. %.
Пример 3. Навеску кальция массой 81,4 г, что на 25% превышает стехиометрическое количество, в виде гранул крупностью не более 5 мм смачивают 204 мл раствора хлорида кальция в этиловом спирте (200 г/л), что соответствует 50 г CaCl2 на 100 г Са. Затем сушат, смешивают с 100 г порошка диоксида циркония и ведут восстановление при температуре 850°С в вакууме при остаточном давлении 20 Па в течение 1 часа. Продукты восстановления выщелачивают 5% раствором соляной кислоты. На первой стадии выщелачивание ведут 3,4 л раствора кислоты при непрерывном перемешивании в течение 1 часа. На второй стадии порошок циркония обрабатывают свежим раствором кислоты при аналогичных условиях. Раствор кислоты после второй стадии может быть использован на первой стадии выщелачивания. Затем порошок циркония отмывают деионизированной водой и сушат. Содержание кислорода в полученном порошке составляет 0,2 мас. %.
Из приведенных Примеров видно, что заявляемый способ по сравнению с прототипом позволяет снизить энергоемкость за счет снижения температуры восстановления диоксида циркония до 650-850°С и уменьшить расход хлорида кальция более чем в 8 раз. Содержание кислорода в получаемом порошке циркония составляет 0,2-0,4 мас. %, что соответствует высокому качеству порошка. Предлагаемый способ относительно прост и может быть реализован в промышленных условиях.

Claims (2)

1. Способ получения порошка циркония, включающий приготовление смеси, содержащей хлорид кальция, порошок диоксида циркония и гранулы кальция, восстановление диоксида циркония кальцием в смеси при повышенной температуре, выщелачивание продуктов восстановления с выделением порошка циркония и его сушку, отличающийся тем, что хлорид кальция используют в количестве 5-50 г на 100 г кальция, при этом смесь, содержащую хлорид кальция, порошок диоксида циркония и гранулы кальция, готовят путем смачивания гранул кальция раствором хлорида кальция в этиловом спирте с концентрацией 150-200 г/л, высушивания и смешивания с порошком диоксида циркония, а восстановление диоксида циркония кальцием в смеси ведут при температуре 650-850°С в вакууме при остаточном давлении 5-20 Па.
2. Способ по п. 1, отличающийся тем, что выщелачивание продуктов восстановления ведут в две стадии 5-30%-ным раствором соляной или азотной кислоты с отмывкой порошка циркония перед сушкой.
RU2020124698A 2020-07-15 2020-07-15 Способ получения порошка циркония RU2737103C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020124698A RU2737103C1 (ru) 2020-07-15 2020-07-15 Способ получения порошка циркония

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020124698A RU2737103C1 (ru) 2020-07-15 2020-07-15 Способ получения порошка циркония

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2019118527A Division RU2725652C1 (ru) 2019-06-14 2019-06-14 Способ получения порошка циркония

Publications (1)

Publication Number Publication Date
RU2737103C1 true RU2737103C1 (ru) 2020-11-24

Family

ID=73543730

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020124698A RU2737103C1 (ru) 2020-07-15 2020-07-15 Способ получения порошка циркония

Country Status (1)

Country Link
RU (1) RU2737103C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404880C2 (ru) * 2004-06-21 2010-11-27 Х.К. Штарк Инк. Металлотермическое восстановление оксидов тугоплавких металлов
RU2649104C2 (ru) * 2012-10-17 2018-03-29 Юниверсити Оф Бредфорд Усовершенствованный способ получения металлов
US20180094336A1 (en) * 2003-07-15 2018-04-05 Albemarle Germany Gmbh Process for preparing metal powders and metal hydride powders of the elements ti, zr, hf, v, nb, ta and cr
CN109628763A (zh) * 2018-12-21 2019-04-16 有研工程技术研究院有限公司 一种钙原位蒸馏-脱氧制备高纯锆的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180094336A1 (en) * 2003-07-15 2018-04-05 Albemarle Germany Gmbh Process for preparing metal powders and metal hydride powders of the elements ti, zr, hf, v, nb, ta and cr
RU2404880C2 (ru) * 2004-06-21 2010-11-27 Х.К. Штарк Инк. Металлотермическое восстановление оксидов тугоплавких металлов
RU2649104C2 (ru) * 2012-10-17 2018-03-29 Юниверсити Оф Бредфорд Усовершенствованный способ получения металлов
CN109628763A (zh) * 2018-12-21 2019-04-16 有研工程技术研究院有限公司 一种钙原位蒸馏-脱氧制备高纯锆的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABDELKADER A.M. Calciothermic Reduction of Zirconium Oxide in Molten CaCl2. ISIJ International, 2007, V. 47, N1, с. 25-31. *

Similar Documents

Publication Publication Date Title
US4923531A (en) Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier
JPH072513A (ja) 合成石英ガラス粉の製造方法
CN1130311C (zh) 制备锂过渡金属取代物的方法
RU2737103C1 (ru) Способ получения порошка циркония
CA1251920A (en) Process for the production of porous products made from boron or boron compounds
RU2725652C1 (ru) Способ получения порошка циркония
CN1123205A (zh) 一种钛镍合金粉末的制造方法
CN114538444B (zh) 一种碳化铌及其制备方法
CN111206286B (zh) 一种紫外级氟化钙原料的烧结装置及工艺
RU2102513C1 (ru) Способ получения металлического скандия
CN109956742B (zh) 一种高温埋碳法制备高纯度铝酸铈的方法
JPH07216474A (ja) 高純度金属クロムの製造方法
US4080430A (en) Decomposition of cupric oxide using a reducing scavenger
KR900004489B1 (ko) 질화알루미늄 분말의 제조방법
CN112266014A (zh) 含杂质工业级偏钛酸粉体制备克级以上高纯相Ti4O7纳米材料的方法
US3114629A (en) Production of columbium and tantalum
JP2002003211A (ja) 炭素材料及び活性炭の製造方法
RU2465097C1 (ru) Способ получения порошка тантала
CN212133281U (zh) 一种紫外级氟化钙原料的烧结装置
RU2186863C1 (ru) Способ получения порошка палладия
RU1770276C (ru) Способ получени бора
US2537067A (en) Production of thorium
CN111747825B (zh) 一种乙醇铝的制备方法
JPH0681010A (ja) 合金粉末の製造方法
JPH0455316A (ja) 希土類オキシ硫化物の製造方法