RU2678027C1 - Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства - Google Patents

Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства Download PDF

Info

Publication number
RU2678027C1
RU2678027C1 RU2018104378A RU2018104378A RU2678027C1 RU 2678027 C1 RU2678027 C1 RU 2678027C1 RU 2018104378 A RU2018104378 A RU 2018104378A RU 2018104378 A RU2018104378 A RU 2018104378A RU 2678027 C1 RU2678027 C1 RU 2678027C1
Authority
RU
Russia
Prior art keywords
solution
silver
sorbent
reducing agent
chlorine
Prior art date
Application number
RU2018104378A
Other languages
English (en)
Inventor
Игорь Александрович Меркулов
Денис Валерьевич Тихомиров
Артем Игоревич Коробейников
Антон Сергеевич Дьяченко
Андрей Юрьевич Жабин
Глеб Алексеевич Апальков
Виктория Андреевна Григорьева
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Priority to RU2018104378A priority Critical patent/RU2678027C1/ru
Application granted granted Critical
Publication of RU2678027C1 publication Critical patent/RU2678027C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение может быть использовано в радиохимической технологии для снижения содержания хлорид-иона в азотнокислых технологических растворах. Способ включает проведение предварительной восстановительной обработки раствора, обеспечивающей перевод ионов-окислителей, содержащихся в исходном хлорсодержащем растворе, в низшие валентные состояния и хлора в форму хлорид-иона с регистрацией изменения (скачка) потенциала системы. В качестве восстановителя используют аскорбиновую кислоту, гидразин, карбогидразид, азотнокислый раствор U(IV). Последующее количественное извлечение хлорид-иона осуществляют в объеме слоя серебросодержащего сорбента с развитой поверхностью в динамическом режиме в аппарате колонного типа непрерывного действия с последующей промывкой, десорбцией хлора и регенерацией сорбента. Технический результат изобретения заключается в снижении содержания хлорид-иона в технологических растворах до концентрации менее 1,4 мг/л при содержании азотной кислоты в исходных растворах до 8 моль/л и при обеспечении высокой производительности процесса. 19 з.п. ф-лы, 2 табл., 3 пр.

Description

Изобретение относится к радиохимической технологии и может быть использовано для снижения содержания хлорид-иона в азотнокислых технологических растворах.
На ряде радиохимических производств для обеспечения пожарной безопасности используют органические негорючие хлорсодержащие разбавители, такие как четыреххлористый углерод и гексахлорбутадиен. Одним из продуктов радиолиза подобных экстрагентов является хлорид-ион, который под действием сильных окислителей и ионизирующего излучения может частично окисляться до молекулярного и атомарного хлора. Известно, что хлорид-ион, молекулярный и атомарный хлор являются сильными коррозионными агентами, при этом соединения хлора с продуктами коррозии сталей не выпадают в осадок и не маскируются, поэтому хлор сохраняет коррозионную активность на протяжении всего времени хранения растворов.
Проблема снижения содержания хлора в образующихся в ходе эксплуатации радиохимических производств растворах до концентраций (оценочно - менее 10 мг/л), при которых коррозия оборудования не превышает установленного предела, состоит в том, что этот элемент может быть избирательно и с достаточной степенью извлечен только в виде соединений хлорид-иона с благородными металлами и ртутью, являющимися дорогостоящими материалами. Для остальных неорганических анионов хлора до сих пор не предложено способов, обеспечивающих их селективное извлечение в присутствии высоких концентраций других анионов. Известно, что молекулярный хлор способен экстрагироваться в органические растворы, однако в присутствии сильных окислителей и интенсивного ионизирующего излучения он быстро диспропорционирует и окисляется. Кроме того, молекулярный хлор является гораздо более сильным коррозионным агентом, чем хлорид-ион.
Известен способ извлечения хлорида из водных растворов (Патент US 2919972 А от 5.01.1960), в котором фрагменты облученного ядерного топлива помещают в водный раствор азотной и соляной кислот с концентрацией 2-2,5 моль/л по соляной кислоте и 4-6 моль/л по азотной кислоте, контактируют полученный урансодержащий раствор с парами концентрированной азотной кислоты при повышенной температуре и при концентрации ионов водорода 3-6 моль/л, что приводит к удалению хлоридов из указанного раствора. Затем из полученного раствора, который практически не содержит хлора, извлекают уран. Недостатками способа являются: большие энергозатраты на ректификацию, отсутствие на радиохимических производствах пригодного оборудования для ректификации больших объемов растворов, недостаточное снижение содержания хлорид-иона (для предупреждения коррозии при длительном хранении), высокий расход азотной кислоты при ректификации.
Известен способ очистки пульп и растворов солей тяжелых металлов от хлора сорбцией (Авторское свидетельство №657072 от 20.04.1979), в котором сорбцию ведут на анионообменной смоле с последующей десорбцией хлора и регенерацией анионита. В качестве сорбента используют анионит, содержащий в качестве ионогенных групп третичные аминогруппы пиридинового ядра или амфотерный анионит, содержащий аминофосфорнокислые ионогенные группы. Десорбцию хлора проводят с одновременной регенерацией анионита раствором соды. Недостатками способа являются: необходимость нейтрализации растворов до рН 3,5-4,5, при котором происходит выпадение в осадок актиноидов со степенями окисления (+4) и (+6), недостаточная селективность при сорбции из сложных высокосолевых растворов, дополнительный расход реагентов и увеличение количества радиоактивных отходов (РАО) при нейтрализации.
Известен способ экстракции ионов Cl-, Br-, I- из водных растворов (Авторское свидетельство №1893091/23-26 от 12.03.73), в котором экстракцию ведут ртутьорганическим соединением в присутствии органического растворителя. В качестве ртутьорганического соединения используют серосодержащее хелатное соединение ртути, процесс экстракции ведут в присутствии ионов двухвалентной ртути. Недостатками способа являются: использование дорогостоящего и высокотоксичного элемента - ртути, использование трудоемкого процесса - экстракции.
Наиболее близким к заявленному технологическому решению является способ очистки цинковых растворов от хлора (Патент SU 1677076 А1 от 11.10.1989), включающий их обработку медным кеком цинкового производства в сернокислой среде. С целью интенсификации процесса и снижения остаточного содержания хлорид-иона в растворе, медный кек цинкового производства предварительно диспергируют в серной кислоте с концентрацией 50-130 г/л с последующей обработкой полученной пульпы сернистым газом до достижения постоянного значения окислительно-восстановительного потенциала. По технической сущности и достигаемому эффекту этот способ является наиболее близким к заявляемому способу и выбран в качестве прототипа. Недостатками способа являются высокая растворимость CuCl, не обеспечивающая снижения концентрации хлорид-иона ниже допустимого содержания, а также периодичность процесса.
Задачей, на решение которой направлено заявляемое изобретение, является снижение концентрации хлорид-иона в технологических азотнокислых растворах с обеспечением высокой производительности процесса в динамическом режиме в аппарате колонного типа.
Технический результат изобретения заключается в снижении содержания хлорид-иона в технологических растворах до концентрации менее 1,4 мг/л при содержании азотной кислоты до 8 моль/л.
Для достижения указанного технического результата в способе извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства в хлорсодержащий раствор предварительно вносят восстановитель, сорбцию хлорид-иона на серебросодержащем сорбенте с развитой поверхностью, полученном восстановлением водорастворимых солей серебра из раствора или в газовой фазе, проводят в динамическом режиме в аппарате колонного типа непрерывного действия с последующей промывкой, десорбцией хлора и регенерацией сорбента.
Сущность предлагаемого изобретения заключается в проведении предварительной восстановительной обработки раствора, обеспечивающей перевод в исходном хлорсодержащем растворе ионов-окислителей в низшие валентные состояния и хлора в форму хлорид-иона с регистрацией изменения (скачка) потенциала системы, с последующим количественным извлечением хлорид-иона в локализованном объеме слоя серебросодержащего сорбента с развитой поверхностью в результате образования труднорастворимого хлорида серебра.
В растворах радиохимических производств, как правило, содержится значительное количество окислителей (Fe3+, ТсO4 -, Pu4+, NpO2 + и др.), способных быстро окислять металлическое серебро с переводом его в раствор. Во избежание потерь серебра с сорбатом необходимо проводить восстановительную обработку технологических растворов. Для этого перед началом сорбции в хлорсодержащий технологический раствор вносят восстановитель для восстановления ионов с высоким окислительным потенциалом и перевода неорганических анионов хлора (Сl2, ClO-, ClO2 -,ClO3 -) в форму хлорид-иона.
Перевод ионов-окислителей в низшие валентные состояния и хлора в форму хлорид-иона в растворе оценивают по мере внесения в исходный хлорсодержащий раствор восстановителя и регистрации при этом резкого изменения (скачка) потенциала системы (вблизи точки эквивалентности). Использование предварительной восстановительной обработки для подготовки раствора к сорбции является отличительным признаком предлагаемого способа.
Для восстановления ионов сильных окислителей и окисленных форм хлора до хлорид-иона могут быть использованы вещества с достаточным восстановительным потенциалом (гидразин, карбогидразид, U(IV), U3O8, Cr(II), Sn(II), металлические U, Fe, Zn, лантаноиды и т.п.). В частном случае в качестве восстановителей для предварительного внесения в хлорсодержащий раствор используют азотнокислый раствор U(IV), гидразин, карбогидразид или аскорбиновую кислоту. Предварительное внесение в хлорсодержащий раствор восстановителя осуществляют при регистрации окислительно-восстановительного потенциала системы (раствора), дозирование восстановителя завершают при регистрации резкого изменения (скачка) потенциала.
В заявленном способе сорбент для извлечения хлорид-иона готовят путем получения металлического серебра при его восстановлении из нитратного раствора или из сухого нитрата в парах гидразина. В качестве восстановителей серебра используют гидразин, дигидразид угольной кислоты (карбогидразид) или аскорбиновую кислоту. В частном случае получение серебра с развитой поверхностью описывается уравнением:
2AgNO36Н8O6=2Ag6Н6O6+2HNO3.
Сорбцию ведут при расходе раствора до 280 мл/см2 и температуре 15-45°С.
После исчерпания сорбционной емкости колонны производится промывка колонны разбавленной азотной кислотой с концентрацией 0,01-0,2 моль/л при температуре до 30°С и регенерация, которая заключается в пропускании регенерирующего раствора, содержащего восстановитель и разбавленную азотную кислоту с концентрацией 0,1-0,5 моль/л при температуре 60-85°С в зависимости от условий восстановления. Объем пропускаемого регенерирующего раствора зависит от типа и концентрации восстановителя и должен обеспечивать количественное восстановление серебра и отмывку от хлорид-иона. В частном случае процесс регенерации металлического серебра описывается следующими реакциями:
при восстановлении аскорбиновой кислотой
2AgCl+С6Н8O6→2Ag↓+С6Н6О6+2НСl,
при восстановлении карбогидразидом
10AgCl+2N4H6CO+2Н2O→10Ag+3N2+2СO2+8НСl+2NH4Cl,
при восстановлении гидразином
4AgCl+N2H4→4Ag+N2+4HCl.
Затем аппарат колонного типа промывают водой или разбавленным раствором азотной кислоты для отмывки восстановленного серебра от остаточного раствора восстановителя и хлорид-иона.
Пример 1
В раствор, содержащий 25 г/л AgNO3, добавили аскорбиновую кислоту в сухом виде в количестве 27 г на 1 л раствора. Затем раствор выдержали 2 часа и отфильтровали осадок. Полученный отфильтрованный осадок мелкодисперсного серебра загрузили в термостатированный аппарат колонного типа, закрепив слой сорбента снизу и сверху фильтрующим материалом. Параметры процесса сорбции: объем сорбента 25 мл; масса серебра в сорбенте 51,2 г; высота слоя сорбента 14 см; диаметр рабочего пространства 15 мм. Для отмывки сорбента от остаточной аскорбиновой кислоты пропустили через колонку 250 мл деионизованной воды со скоростью 500 мл/час.
В качестве хлорид-содержащего раствора использовали раствор-имитатор азотнокислого технологического раствора радиохимического производства. Состав раствора-имитатора: 2 моль/л HNO3; 30 г/л U(VI); 1,0 г/л Fe(III); 0,5 г/л Аl; 0,2 г/л Cr(III); 1,2 г/л Ni; 0,7 г/л NaCl; 0,2 г/л Н3РO4.
Для восстановительной обработки хлоридсодержащего раствора использовали раствор восстановителя, полученный путем пропускания раствора, содержащего 192 г/л U(VI), 63 г/л HNO3, 30 г/л N2H5NO3, через колонну с платиновым катализатором. В полученном растворе содержание восстановителя U(IV) составило 106 г/л.
В результате окислительно-восстановительного титрования раствора-имитатора раствором восстановителя скачок потенциала произошел при добавлении 25,3 мл раствора восстановителя на 1 л раствора-имитатора.
Параметры сорбции: объемный расход 20 колоночных объемов в час (КО/ч); температура процесса 23-25°С. Выходящий сорбат (1 цикл) собирался порциями по 20 КО и анализировался на содержание серебра и хлорид-иона. Результаты эксперимента (1 цикл) представлены в таблице 1.
После пропускания более 180 КО раствора наблюдали проскок хлорид-иона, что указывало на исчерпание сорбционной емкости колонны.
После пропускания 200 КО раствора-имитатора провели регенерацию сорбента, которая включала в себя следующие операции:
1) промывка: через сорбент пропустили 250 мл раствора азотной кислоты с концентрацией 0,01 моль/л без нагревания;
2) восстановление серебра до металла и отмывка от хлорид-иона: через сорбент пропустили 250 мл раствора с концентрацией азотной кислоты 0,1 моль/л, содержащего 250 г/л аскорбиновой кислоты при температуре 60°С;
3) отмывка от остаточного количества восстановителя: через сорбент пропустили 125 мл дистиллированной воды при температуре 60°С.
После регенерации сорбента провели повторную сорбцию при аналогичных параметрах процесса. Результаты эксперимента (2 цикл) представлены в таблице 1.
Расчет материального баланса показал, что емкость сорбента после регенерации по хлорид-иону до его проскока (180 КО) составила не менее 126 г/л. Степень извлечения хлорид-иона до проскока (1 цикл) составила - 99,89%, после регенерации (2 цикл) - 99,87%. Потери серебра с сорбатом до проскока составили на 1 цикле - 120 мг (0,23%), на 2 цикле - 112 мг (0,22%).
Figure 00000001
Пример 2
В раствор, содержащий 25 г/л AgNO3, вносили раствор глицина с концентрацией 225,4 г/л для обеспечения рН 2,5-3,0, затем постепенно вносили раствор карбогидразида с концентрацией 90 г/л до его содержания в растворе 10 г/л. Раствор с осадком выдержали 30 мин при 70°С и отделили осадок фильтрацией. Полученный отфильтрованный осадок мелкодисперсного серебра использовали в качестве сорбента. В аппарат загрузили 25 мл (55,8 г) полученного сорбента. Для отмывки сорбента от остаточного карбогидразида и глицина пропустили через колонку 250 мл деионизованной воды со скоростью 500 мл/час.
Состав хлорсодержащего раствора, геометрические параметры рабочего пространства, скорость подачи раствора хлорсодержащего раствора-имитатора аналогичны примеру 1.
Восстановительную обработку хлорсодержащего раствора проводили раствором карбогидразида с концентрацией 90 г/л при комнатной температуре до скачка потенциала.
Выходящий сорбат (1 цикл) собирался порциями по 20 КО и анализировался на содержание серебра и хлорид-иона. Результаты эксперимента (1 цикл) представлены в таблице 1.
После пропускания более 120 КО раствора наблюдали проскок хлорид-иона, что указывало на исчерпание сорбционной емкости колонны.
После пропускания 160 КО раствора-имитатора провели регенерацию сорбента, которая включала в себя следующие операции:
1) промывка: через сорбент пропустили 250 мл раствора азотной кислоты с концентрацией 0,1 моль/л без нагревания;
2) восстановление серебра до металла и отмывка от хлорид-иона: через сорбент пропустили 250 мл раствора с концентрацией азотной кислоты 0,1 моль/л, содержащего 45 г/л карбогидразида и 75 г/л аминоуксусной кислоты при температуре 85°С.
3) отмывка от остаточного раствора восстановителя: через сорбент пропустили 125 мл дистиллированной воды при температуре 60°С.
После регенерации сорбента провели повторную сорбцию при аналогичных параметрах процесса. Результаты эксперимента (2 цикл) представлены в таблице 2.
Расчет материального баланса показал, что емкость сорбента после регенерации по хлорид-иону до его проскока (120 КО) составила не менее 82 г/л. Степень извлечения хлорид-иона до проскока (1 цикл) составила - 99,89%, после регенерации сорбента (2 цикл) - 99,91%. Потери серебра с сорбатом до проскока составили на 1 цикле - 51 мг (0,10%), на 2 цикле - 115 мг (0,21%).
Figure 00000002
Пример 3
В раствор, содержащий 50 г/л AgNO3, вносили гранулы γ-оксида алюминия при соотношении 2 мл раствора на 1 г гранул оксида алюминия. Полученную смесь сушили при 90-95°С. После упаривания жидкости досушивали гранулы при 200°С в течение 2 ч. Сухие гранулы загружали в кварцевую трубчатую печь и продували газовой смесью гидразина и азота с массовым содержанием N2H4 3-5% при кратности расхода газовой фазы в аппарате 110-130 реакционных объемов в час при 300°С. В сорбционную колонку загрузили 25 мл (52,0 г) полученного сорбента, содержащего 4,73 г Ag.
Восстановительную обработку хлорсодержащего раствора проводили путем внесения раствора NaOH до рН 1. Далее вносили раствор аминоуксусной кислоты до концентрации 0,3 моль/л, после чего проводили окислительно-восстановительное титрование раствором с концентрацией карбогидразида (восстановителя) 0,5 моль/л. Титрование проводили при температуре 75±5°С. Скачок потенциала произошел при добавлении 14,5 мл раствора восстановителя на 1 л исходного раствора-имитатора. Суммарное разбавление хлорсодержащего раствора составило 1,35.
Геометрические параметры рабочего сорбционного пространства, скорость подачи раствора, состав исходного хлорсодержащего раствора аналогичны примеру 1.
Выходящий сорбат (1 цикл) собирался порциями по 10 КО и анализировался на содержание серебра и хлорид-иона. Результаты эксперимента (1 цикл) представлены в таблице 3.
После пропускания более 70 КО раствора наблюдали проскок хлорид-иона, что указывало на исчерпание сорбционной емкости колонны.
После пропускания 90 КО раствора-имитатора провели регенерацию сорбента, которая включала в себя следующие операции:
1) промывка: через сорбент пропустили 250 мл раствора азотной кислоты с концентрацией 0,2 моль/л без нагревания;
2) восстановление серебра до металла и отмывка от хлорид-иона: через сорбент пропустили 250 мл раствора с концентрацией азотной кислоты 0,1 моль/л, содержащего 45 г/л карбогидразида и 75 г/л аминоуксусной кислоты при температуре 80°С.
3) отмывка от остаточного раствора восстановителя: через сорбент пропустили 125 мл дистиллированной воды при температуре 60°С.
После регенерации сорбента провели повторную сорбцию при аналогичных параметрах процесса. Результаты эксперимента (2 цикл) представлены в таблице 3.
Расчет материального баланса показал, что емкость сорбента после регенерации по хлорид-иону до его проскока (70 КО) составила не менее 36,4 г/л. Степень извлечения хлорид-иона до проскока (1 цикл) составила - 99,74%, после регенерации сорбента (2 цикл) - 99,77%. Потери серебра с сорбатом до проскока составили на 1 цикле - 140 мг (2,95%), на 2 цикле - 154 мг (3,26%).
Figure 00000003
Преимущества предлагаемого способа перед прототипом заключаются в следующем. В процессе извлечения хлорид-иона не требуется подогрев аппарата-реактора. Отсутствие потерь серебра как за счет растворения металлического серебра, так и уноса мелкодисперсного хлорида серебра. Предложенный серебросодержащий сорбент обладает динамической сорбционной емкостью до 126 г/л по хлорид-иону и позволяет проводить процесс сорбции в динамическом режиме с расходом раствора до 280 мл/см2. Слой непрореагировавшего серебра служит дополнительным фильтрующим материалом для образующейся взвеси хлорида серебра.

Claims (20)

1. Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства, включающий сорбцию хлорид-иона на серебросодержащем сорбенте, отличающийся тем, что в хлорсодержащий раствор предварительно вносят восстановитель, сорбцию хлорид-иона на серебросодержащем сорбенте с развитой поверхностью, полученном восстановлением водорастворимых солей серебра из раствора или в газовой фазе, проводят в динамическом режиме в аппарате колонного типа непрерывного действия с последующей промывкой, десорбцией хлора и регенерацией сорбента.
2. Способ по п. 1, отличающийся тем, что предварительное внесение в хлорсодержащий раствор восстановителя осуществляют при регистрации окислительно-восстановительного потенциала системы (раствора).
3. Способ по п. 2, отличающийся тем, что дозирование восстановителя завершают при регистрации резкого изменения (скачка) потенциала.
4. Способ по п. 1, отличающийся тем, что предварительно в качестве восстановителя в хлорсодержащий раствор вносят азотнокислый раствор U(IV).
5. Способ по п. 1, отличающийся тем, что предварительно в качестве восстановителя в хлорсодержащий раствор вносят аскорбиновую кислоту.
6. Способ по п. 1, отличающийся тем, что предварительно в качестве восстановителя в хлорсодержащий раствор вносят гидразин.
7. Способ по п. 1, отличающийся тем, что предварительно в качестве восстановителя в хлорсодержащий раствор вносят карбогидразид.
8. Способ по п. 1, отличающийся тем, что серебросодержащий сорбент с развитой поверхностью готовят восстановлением серебра из раствора нитрата серебра с использованием гидразина.
9. Способ по п. 1, отличающийся тем, что серебросодержащий сорбент с развитой поверхностью готовят восстановлением серебра из раствора нитрата серебра с использованием аскорбиновой кислоты.
10. Способ по п. 1, отличающийся тем, что серебросодержащий сорбент с развитой поверхностью готовят восстановлением серебра из раствора нитрата серебра с использованием карбогидразида.
11. Способ по п. 1, отличающийся тем, что серебросодержащий сорбент с развитой поверхностью готовят нанесением растворимой соли серебра на инертный носитель путем высушивания смеси раствора соли серебра и гранул инертного носителя с последующим нагреванием серебросодержащих гранул в газовой среде, содержащей восстановитель.
12. Способ по п. 1, отличающийся тем, что сорбцию ведут при расходе раствора до 280 мл/см2 и температуре 15-45°С.
13. Способ по п. 1, отличающийся тем, что промывку проводят разбавленной азотной кислотой с концентрацией 0,01-0,2 моль/л.
14. Способ по п. 1, отличающийся тем, что промывку проводят при температуре до 30°С.
15. Способ по п. 1, отличающийся тем, что регенерацию серебросодержащего сорбента проводят путем пропускания через слой сорбента раствора, содержащего восстановитель и разбавленную азотную кислоту.
16. Способ по п. 15, отличающийся тем, что при регенерации серебросодержащего сорбента в качестве восстановителя используют аскорбиновую кислоту.
17. Способ по п. 15, отличающийся тем, что при регенерации серебросодержащего сорбента в качестве восстановителя используют гидразин.
18. Способ по п. 15, отличающийся тем, что при регенерации серебросодержащего сорбента в качестве восстановителя используют карбогидразид.
19. Способ по п. 15, отличающийся тем, что регенерацию серебросодержащего сорбента проводят при температуре 60-85°С.
20. Способ по п. 15, отличающийся тем, что концентрация азотной кислоты в регенерирующем растворе составляет 0,1-0,5 моль/л.
RU2018104378A 2018-02-05 2018-02-05 Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства RU2678027C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018104378A RU2678027C1 (ru) 2018-02-05 2018-02-05 Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018104378A RU2678027C1 (ru) 2018-02-05 2018-02-05 Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства

Publications (1)

Publication Number Publication Date
RU2678027C1 true RU2678027C1 (ru) 2019-01-22

Family

ID=65085050

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018104378A RU2678027C1 (ru) 2018-02-05 2018-02-05 Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства

Country Status (1)

Country Link
RU (1) RU2678027C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1677076A1 (ru) * 1989-10-11 1991-09-15 Институт Химии Ан Узсср Способ очистки цинковых растворов от хлора
JP3710914B2 (ja) * 1997-05-15 2005-10-26 日本リファイン株式会社 塩化ナトリウムと硝酸ナトリウムが共存する廃水の処理方法および処理システム
US7037482B2 (en) * 2003-03-10 2006-05-02 Teck Cominco Metals Ltd. Solvent extraction of a halide from a aqueous sulphate solution
JP4307174B2 (ja) * 2003-07-22 2009-08-05 財団法人鉄道総合技術研究所 排水中の塩化物イオンの除去方法
RU2587449C1 (ru) * 2014-12-19 2016-06-20 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Способ очистки сернокислых или азотнокислых растворов от хлорид-иона
KR20160082609A (ko) * 2014-12-26 2016-07-08 재단법인 포항산업과학연구원 염화이온 분석방법, 염화이온 분석장치 및 이를 포함하는 수처리 장치
RU2610500C1 (ru) * 2015-09-17 2017-02-13 Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии Сибирского отделения РАН Способ очистки сульфатных цинковых растворов от хлорид-иона

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1677076A1 (ru) * 1989-10-11 1991-09-15 Институт Химии Ан Узсср Способ очистки цинковых растворов от хлора
JP3710914B2 (ja) * 1997-05-15 2005-10-26 日本リファイン株式会社 塩化ナトリウムと硝酸ナトリウムが共存する廃水の処理方法および処理システム
US7037482B2 (en) * 2003-03-10 2006-05-02 Teck Cominco Metals Ltd. Solvent extraction of a halide from a aqueous sulphate solution
JP4307174B2 (ja) * 2003-07-22 2009-08-05 財団法人鉄道総合技術研究所 排水中の塩化物イオンの除去方法
RU2587449C1 (ru) * 2014-12-19 2016-06-20 Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) Способ очистки сернокислых или азотнокислых растворов от хлорид-иона
KR20160082609A (ko) * 2014-12-26 2016-07-08 재단법인 포항산업과학연구원 염화이온 분석방법, 염화이온 분석장치 및 이를 포함하는 수처리 장치
RU2610500C1 (ru) * 2015-09-17 2017-02-13 Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии Сибирского отделения РАН Способ очистки сульфатных цинковых растворов от хлорид-иона

Similar Documents

Publication Publication Date Title
Marinho et al. Recovery of platinum, tin and indium from spent catalysts in chloride medium using strong basic anion exchange resins
US4732609A (en) Recovery of cyanide from waste waters by an ion exchange process
Aktas et al. Platinum recovery from dilute platinum solutions using activated carbon
JPH06123796A (ja) 使用済み核燃料再処理から生じた水溶液から或る元素を分離する方法
Zhang et al. Ion exchange recovery of gold from iodine–iodide solutions
JPH02296725A (ja) イオン交換樹脂からの金ヨウ素錯体の脱着方法
JP5220143B2 (ja) 白金族含有溶液からのIrの回収方法
Neag et al. Hydrometallurgical recovery of gold from mining wastes
JP2016163864A (ja) 活性炭の再生方法及び、金の回収方法
RU2678027C1 (ru) Способ извлечения хлорид-иона из азотнокислых технологических растворов радиохимического производства
JP6433395B2 (ja) 硫化銅鉱の浸出方法
JP2003201527A (ja) レニウムを単離する方法
US10301180B2 (en) Activated carbon regeneration method and gold recovery method
JP3303066B2 (ja) スカンジウムの精製方法
US3736126A (en) Gold recovery from aqueous solutions
JP2011195935A (ja) 白金族元素の分離回収方法
JP3232807B2 (ja) レニウム吸着用陰イオン交換樹脂の再生方法
JP3043522B2 (ja) 貴金属イオンを含有する酸洗廃液中の貴金属イオン回収方法
CN108083509B (zh) 吸附柱式不锈钢酸洗废液处理回收方法
Reents et al. Anion exchange removal of iron from chloride solutions
CN108408960A (zh) 一种回收处理含铁的酸洗报废液的方法
Korkisch Ion-exchange separation of uranium and thorium from ore pulps and clear solutions
JP2004181431A (ja) 水溶液の精製方法及び精製水溶液
JP3387109B2 (ja) ロジウムの回収方法
JPH02254126A (ja) ルテニウムの回収方法