RU2668372C1 - Способы лечения дегенеративных состояний костей - Google Patents
Способы лечения дегенеративных состояний костей Download PDFInfo
- Publication number
- RU2668372C1 RU2668372C1 RU2016104128A RU2016104128A RU2668372C1 RU 2668372 C1 RU2668372 C1 RU 2668372C1 RU 2016104128 A RU2016104128 A RU 2016104128A RU 2016104128 A RU2016104128 A RU 2016104128A RU 2668372 C1 RU2668372 C1 RU 2668372C1
- Authority
- RU
- Russia
- Prior art keywords
- bone
- bmd
- score
- regeneration
- formation
- Prior art date
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 712
- 238000000034 method Methods 0.000 title claims abstract description 192
- 230000003412 degenerative effect Effects 0.000 title claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 578
- 230000010478 bone regeneration Effects 0.000 claims abstract description 205
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 73
- 238000011049 filling Methods 0.000 claims abstract description 38
- 239000011800 void material Substances 0.000 claims abstract description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 239000011707 mineral Substances 0.000 claims abstract description 10
- 210000000689 upper leg Anatomy 0.000 claims description 87
- 208000001132 Osteoporosis Diseases 0.000 claims description 55
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 47
- 230000001965 increasing effect Effects 0.000 claims description 43
- 239000001506 calcium phosphate Substances 0.000 claims description 35
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 29
- 206010049088 Osteopenia Diseases 0.000 claims description 28
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 claims description 28
- 238000001727 in vivo Methods 0.000 claims description 24
- 235000011010 calcium phosphates Nutrition 0.000 claims description 23
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 22
- 210000002320 radius Anatomy 0.000 claims description 20
- 210000004394 hip joint Anatomy 0.000 claims description 16
- 210000002758 humerus Anatomy 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 9
- 230000000278 osteoconductive effect Effects 0.000 claims description 8
- 230000002138 osteoinductive effect Effects 0.000 claims description 8
- 208000020084 Bone disease Diseases 0.000 claims description 7
- 230000011164 ossification Effects 0.000 claims description 7
- 210000002805 bone matrix Anatomy 0.000 claims description 6
- 230000002188 osteogenic effect Effects 0.000 claims description 4
- 210000002303 tibia Anatomy 0.000 claims description 4
- 230000003262 anti-osteoporosis Effects 0.000 claims description 3
- 210000002082 fibula Anatomy 0.000 claims description 3
- 210000000623 ulna Anatomy 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims 1
- 230000001009 osteoporotic effect Effects 0.000 abstract description 37
- 230000000694 effects Effects 0.000 abstract description 23
- 239000003814 drug Substances 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 3
- 238000011282 treatment Methods 0.000 description 86
- 206010017076 Fracture Diseases 0.000 description 70
- 208000010392 Bone Fractures Diseases 0.000 description 53
- 239000000843 powder Substances 0.000 description 52
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 48
- 239000000203 mixture Substances 0.000 description 48
- 230000007423 decrease Effects 0.000 description 37
- 238000012360 testing method Methods 0.000 description 35
- 239000002245 particle Substances 0.000 description 26
- 238000002347 injection Methods 0.000 description 25
- 239000007924 injection Substances 0.000 description 25
- 239000000523 sample Substances 0.000 description 25
- 230000007850 degeneration Effects 0.000 description 24
- 239000000835 fiber Substances 0.000 description 23
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 20
- 238000007634 remodeling Methods 0.000 description 20
- 230000006835 compression Effects 0.000 description 19
- 238000007906 compression Methods 0.000 description 19
- 230000006378 damage Effects 0.000 description 19
- 230000006872 improvement Effects 0.000 description 19
- 238000002156 mixing Methods 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 230000012010 growth Effects 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 210000002436 femur neck Anatomy 0.000 description 14
- 210000001624 hip Anatomy 0.000 description 14
- 239000008187 granular material Substances 0.000 description 13
- 239000003102 growth factor Substances 0.000 description 13
- 230000003902 lesion Effects 0.000 description 13
- 238000001356 surgical procedure Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 241000282472 Canis lupus familiaris Species 0.000 description 12
- 238000002513 implantation Methods 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 238000002591 computed tomography Methods 0.000 description 11
- 235000019731 tricalcium phosphate Nutrition 0.000 description 11
- 230000037182 bone density Effects 0.000 description 10
- 239000011575 calcium Substances 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 10
- 230000001012 protector Effects 0.000 description 10
- 238000011012 sanitization Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000013543 active substance Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 210000002449 bone cell Anatomy 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- -1 phosphoric acid ions Chemical class 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000007943 implant Substances 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 230000002262 irrigation Effects 0.000 description 8
- 238000003973 irrigation Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000009245 menopause Effects 0.000 description 8
- 235000010755 mineral Nutrition 0.000 description 8
- 235000002639 sodium chloride Nutrition 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 230000010072 bone remodeling Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 7
- 229940078499 tricalcium phosphate Drugs 0.000 description 7
- 206010072395 Atypical fracture Diseases 0.000 description 6
- 229940122361 Bisphosphonate Drugs 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 150000004663 bisphosphonates Chemical class 0.000 description 6
- 230000004097 bone metabolism Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000005553 drilling Methods 0.000 description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000012744 reinforcing agent Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 5
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000002902 bimodal effect Effects 0.000 description 5
- 229940112869 bone morphogenetic protein Drugs 0.000 description 5
- 230000037118 bone strength Effects 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001054 cortical effect Effects 0.000 description 5
- 210000003275 diaphysis Anatomy 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000000527 greater trochanter Anatomy 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 230000001582 osteoblastic effect Effects 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 206010065687 Bone loss Diseases 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- 102000003693 Hedgehog Proteins Human genes 0.000 description 4
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 102000003982 Parathyroid hormone Human genes 0.000 description 4
- 108090000445 Parathyroid hormone Proteins 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 108010009583 Transforming Growth Factors Proteins 0.000 description 4
- 102000009618 Transforming Growth Factors Human genes 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000001804 debridement Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 229940047122 interleukins Drugs 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 4
- 235000019691 monocalcium phosphate Nutrition 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 229960001319 parathyroid hormone Drugs 0.000 description 4
- 239000000199 parathyroid hormone Substances 0.000 description 4
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 4
- 229910052939 potassium sulfate Inorganic materials 0.000 description 4
- 235000011151 potassium sulphates Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 4
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 206010041569 spinal fracture Diseases 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 239000013589 supplement Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 3
- 239000005695 Ammonium acetate Substances 0.000 description 3
- 208000006386 Bone Resorption Diseases 0.000 description 3
- 102000055006 Calcitonin Human genes 0.000 description 3
- 108060001064 Calcitonin Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 108010066486 EGF Family of Proteins Proteins 0.000 description 3
- 102000018386 EGF Family of Proteins Human genes 0.000 description 3
- 108090000031 Hedgehog Proteins Proteins 0.000 description 3
- 206010020100 Hip fracture Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- 102000013275 Somatomedins Human genes 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 235000019257 ammonium acetate Nutrition 0.000 description 3
- 229940043376 ammonium acetate Drugs 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 239000002639 bone cement Substances 0.000 description 3
- 230000008468 bone growth Effects 0.000 description 3
- 230000024279 bone resorption Effects 0.000 description 3
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 3
- 229960004015 calcitonin Drugs 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229960001251 denosumab Drugs 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 150000004683 dihydrates Chemical class 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010874 in vitro model Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000008093 supporting effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 description 3
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241001631457 Cannula Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108050009340 Endothelin Proteins 0.000 description 2
- 102000002045 Endothelin Human genes 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 2
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000014128 RANK Ligand Human genes 0.000 description 2
- 108010025832 RANK Ligand Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000003096 antiparasitic agent Substances 0.000 description 2
- 229940125687 antiparasitic agent Drugs 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000018678 bone mineralization Effects 0.000 description 2
- 239000000316 bone substitute Substances 0.000 description 2
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000011833 dog model Methods 0.000 description 2
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 210000000501 femur body Anatomy 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- 230000002669 organ and tissue protective effect Effects 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 210000002997 osteoclast Anatomy 0.000 description 2
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 2
- 210000003049 pelvic bone Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002633 protecting effect Effects 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IMLJLCJZQLGHJS-JEKSYDDFSA-N (4s,4ar,5s,5ar,6s,12ar)-4-(dimethylamino)-1,5,6,10,11,12a-hexahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide;dihydrate Chemical compound O.O.C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O IMLJLCJZQLGHJS-JEKSYDDFSA-N 0.000 description 1
- DJFJPNMBOOAZOA-UHFFFAOYSA-N 1h-pyrimidine-2,4-dione;silver Chemical compound [Ag].O=C1C=CNC(=O)N1 DJFJPNMBOOAZOA-UHFFFAOYSA-N 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- PKKDWPSOOQBWFB-UHFFFAOYSA-N 2,4-dichloro-6-[(3,5-dichloro-2-hydroxyphenyl)methyl]phenol Chemical compound OC1=C(Cl)C=C(Cl)C=C1CC1=CC(Cl)=CC(Cl)=C1O PKKDWPSOOQBWFB-UHFFFAOYSA-N 0.000 description 1
- WLYIIDKKPCXCLS-UHFFFAOYSA-N 3,4,5-tribromo-2-hydroxy-n-phenylbenzamide Chemical compound OC1=C(Br)C(Br)=C(Br)C=C1C(=O)NC1=CC=CC=C1 WLYIIDKKPCXCLS-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 102100027400 A disintegrin and metalloproteinase with thrombospondin motifs 4 Human genes 0.000 description 1
- 101710100373 A disintegrin and metalloproteinase with thrombospondin motifs 4 Proteins 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 201000006935 Becker muscular dystrophy Diseases 0.000 description 1
- 208000037663 Best vitelliform macular dystrophy Diseases 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 108010049951 Bone Morphogenetic Protein 3 Proteins 0.000 description 1
- 102100028728 Bone morphogenetic protein 1 Human genes 0.000 description 1
- 108090000654 Bone morphogenetic protein 1 Proteins 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 108010001789 Calcitonin Receptors Proteins 0.000 description 1
- 102100038520 Calcitonin receptor Human genes 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 239000004099 Chlortetracycline Substances 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- 208000030814 Eating disease Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 208000019454 Feeding and Eating disease Diseases 0.000 description 1
- 108090000381 Fibroblast growth factor 4 Proteins 0.000 description 1
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 206010020707 Hyperparathyroidism primary Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108050007241 Indian hedgehog proteins Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 208000032984 Intraoperative Complications Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 240000000462 Nertera granadensis Species 0.000 description 1
- 206010030247 Oestrogen deficiency Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010077077 Osteonectin Proteins 0.000 description 1
- 102000009890 Osteonectin Human genes 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 201000000981 Primary Hyperparathyroidism Diseases 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- IIDJRNMFWXDHID-UHFFFAOYSA-N Risedronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CC1=CC=CN=C1 IIDJRNMFWXDHID-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000005250 Spontaneous Fractures Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010049264 Teriparatide Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940062527 alendronate Drugs 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 108010091628 alpha 1-Antichymotrypsin Proteins 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 239000005313 bioactive glass Substances 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940028101 boniva Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000000459 calcaneus Anatomy 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AVWJKAIFMUEKMH-UHFFFAOYSA-L calcium hydrogen phosphate phosphoric acid Chemical compound [Ca+2].OP(O)(O)=O.OP(O)(O)=O.OP([O-])([O-])=O AVWJKAIFMUEKMH-UHFFFAOYSA-L 0.000 description 1
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- OABQFEHDVMFLLE-UHFFFAOYSA-L calcium;dihydrogen phosphate;dihydrate Chemical compound O.O.[Ca+2].OP(O)([O-])=O.OP(O)([O-])=O OABQFEHDVMFLLE-UHFFFAOYSA-L 0.000 description 1
- ZBZJARSYCHAEND-UHFFFAOYSA-L calcium;dihydrogen phosphate;hydrate Chemical compound O.[Ca+2].OP(O)([O-])=O.OP(O)([O-])=O ZBZJARSYCHAEND-UHFFFAOYSA-L 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- NFCRBQADEGXVDL-UHFFFAOYSA-M cetylpyridinium chloride monohydrate Chemical compound O.[Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 NFCRBQADEGXVDL-UHFFFAOYSA-M 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 235000019365 chlortetracycline Nutrition 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229960001378 dequalinium chloride Drugs 0.000 description 1
- LTNZEXKYNRNOGT-UHFFFAOYSA-N dequalinium chloride Chemical compound [Cl-].[Cl-].C1=CC=C2[N+](CCCCCCCCCC[N+]3=C4C=CC=CC4=C(N)C=C3C)=C(C)C=C(N)C2=C1 LTNZEXKYNRNOGT-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 229960003887 dichlorophen Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940063123 diflucan Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 235000014632 disordered eating Nutrition 0.000 description 1
- UKHVLWKBNNSRRR-ODZAUARKSA-M dowicil 200 Chemical compound [Cl-].C1N(C2)CN3CN2C[N+]1(C\C=C/Cl)C3 UKHVLWKBNNSRRR-ODZAUARKSA-M 0.000 description 1
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004821 effect on bone Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000008472 epithelial growth Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229960004585 etidronic acid Drugs 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229940091249 fluoride supplement Drugs 0.000 description 1
- 229940001490 fosamax Drugs 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 229960004068 hexachlorophene Drugs 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 210000001621 ilium bone Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229960002358 iodine Drugs 0.000 description 1
- 229940035535 iodophors Drugs 0.000 description 1
- 210000002239 ischium bone Anatomy 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 description 1
- 229960004384 ketorolac tromethamine Drugs 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940049018 mycostatin Drugs 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 208000029985 osteonecrosis of the jaw Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000000803 paradoxical effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- XDRYMKDFEDOLFX-UHFFFAOYSA-N pentamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 XDRYMKDFEDOLFX-UHFFFAOYSA-N 0.000 description 1
- 229960004448 pentamidine Drugs 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 description 1
- 239000001521 potassium lactate Substances 0.000 description 1
- 235000011085 potassium lactate Nutrition 0.000 description 1
- 229960001304 potassium lactate Drugs 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- FIJPWGLOBMXXSF-UHFFFAOYSA-M potassium;2-hydroxyacetate Chemical compound [K+].OCC([O-])=O FIJPWGLOBMXXSF-UHFFFAOYSA-M 0.000 description 1
- 208000037920 primary disease Diseases 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940092597 prolia Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229940126409 proton pump inhibitor Drugs 0.000 description 1
- 239000000612 proton pump inhibitor Substances 0.000 description 1
- 210000003689 pubic bone Anatomy 0.000 description 1
- 108010014374 puros Proteins 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 229940107023 reclast Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229940089617 risedronate Drugs 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229940023144 sodium glycolate Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229960005460 teriparatide Drugs 0.000 description 1
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-S tobramycin(5+) Chemical compound [NH3+][C@@H]1C[C@H](O)[C@@H](C[NH3+])O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H]([NH3+])[C@H](O)[C@@H](CO)O2)O)[C@H]([NH3+])C[C@@H]1[NH3+] NLVFBUXFDBBNBW-PBSUHMDJSA-S 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- VQNBUJAEBQLLKU-UHFFFAOYSA-H tricalcium;diphosphate;hydrate Chemical compound O.[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VQNBUJAEBQLLKU-UHFFFAOYSA-H 0.000 description 1
- ICUTUKXCWQYESQ-UHFFFAOYSA-N triclocarban Chemical compound C1=CC(Cl)=CC=C1NC(=O)NC1=CC=C(Cl)C(Cl)=C1 ICUTUKXCWQYESQ-UHFFFAOYSA-N 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- JEJAMASKDTUEBZ-UHFFFAOYSA-N tris(1,1,3-tribromo-2,2-dimethylpropyl) phosphate Chemical compound BrCC(C)(C)C(Br)(Br)OP(=O)(OC(Br)(Br)C(C)(C)CBr)OC(Br)(Br)C(C)(C)CBr JEJAMASKDTUEBZ-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 208000029761 vertebral disease Diseases 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 208000020938 vitelliform macular dystrophy 2 Diseases 0.000 description 1
- 210000003857 wrist joint Anatomy 0.000 description 1
- 229960002555 zidovudine Drugs 0.000 description 1
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- 229960004276 zoledronic acid Drugs 0.000 description 1
- 229940002005 zometa Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1659—Surgical rasps, files, planes, or scrapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1664—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
- A61B17/1668—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the upper femur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
- A61M1/743—Suction control by changing the cross-section of the line, e.g. flow regulating valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/77—Suction-irrigation systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/005—Auxiliary appliance with suction drainage system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2217/00—General characteristics of surgical instruments
- A61B2217/002—Auxiliary appliance
- A61B2217/007—Auxiliary appliance with irrigation system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Molecular Biology (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Materials Engineering (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Compounds Of Unknown Constitution (AREA)
- Prostheses (AREA)
Abstract
Изобретение относится к медицине. Описан способ лечения пациента с дегенеративными костями. Способ включает образование пустоты в локализованном участке дегенеративной кости и заполнениематериалом для регенерации костей, что приводит к образованию нового здорового естественного костного материала. Способ пригоден для улучшения качества кости в локализованном участке дегенеративной кости, такой как остеопенической или остеопорозной кости, путем улучшения минеральной плотности костей (BMD) вплоть до достижения по сути аналогичной BMD среднего здорового человека в возрасте пика BMD. 9 з.п. ф-лы, 34 ил., 9 табл., 3 пр.
Description
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способам лечения пациентов, страдающих от дегенерацией костей, например остеопении и остеопороза. В частности, изобретение предусматривает способы лечения пациентов, страдающих дегенерацией костей путем замещения хотя бы части дегенерированного костного материала.
УРОВЕНЬ ТЕХНИКИ
Минеральная плотность костей (BMD) является общепринятым термином, характеризующим количество кальцинированной ткани, приходящееся на квадратный сантиметр кости. Понятно, что данный термин не характеризует степень истинную плотность (в виде соотношения массы на объем материала), но скорее используется для передачи информации о твердости кости и восприимчивости кости к перелому. Как правило, BMD рассчитывается с помощью таких способов, как двухэнергетическая рентгеновская абсорбциометрия (или DEXA-сканирование), ультразвук и количественная компьютерная томография (QCT). Из вышеупомянутых способов DEXA-сканирование часто рассматривается как наиболее надежный способ оценки BMD. Например, ультразвуковое исследование имеет ограничения при оценке пяточной кости и непригодно для прямом выявлении участков, наиболее часто подверженных переломам вследствие остеопороза, таких как тазобедренный сустав и позвоночник. QCT, как правило, используют для обследования позвоночника; ее следует проводить в соответствии со строгими правилами в лабораториях для обеспечения приемлемой степени воспроизводимости. Другие испытательные способы оценки BMD включают однофотонную абсорбциометрию (SPA), двухфотонную абсорбциометрию (DPA), цифровую рентгенографию (DXR) и одноэнергетическую рентгеновскую абсорбциометрию (SEXA).
BMD является крайне важной физической характеристикой, поскольку она может является индикатором восприимчивости к переломам. У большинства взрослого населения BMD достигает пика в возрасте около 30-35 и имеет тенденцию к медленному снижению после этого возраста. Снижение BMD возникает вследствие уменьшения образования новых костных клеток, так что резорбция существующих костных клеток организмом превосходит степень образования новых костных клеток. Фиг. 1 (доступная по ссылке http://courses.washington.edu/bonephys/opbmd.html) иллюстрирует типичное снижение BMD (показано в мг/см2) у взрослых и демонстрирует вариативность снижения в зависимости от расы и пола. Менопауза у женщин является крайне значимым событием в связи с BMD, поскольку снижение BMD значительно ускоряется в течение периода времени после менопаузы. Таким образом, женщины с наступившей менопаузой, как правило, получают содействие в проведении регулярной оценки BMD для оценки необходимости проведения лечения и типа лечения. Национальная Организация Остеопороза (США) рекомендует проведение тестирования BMD для следующих категорий: все женщины в возрасте от 65 лет и старше вне зависимости от факторов риска; более молодые женщины с наступившей менопаузой с одним или более факторами риска; женщины с наступившей менопаузой с переломами (для подтверждения диагноза и определения степени серьезности заболевания); женщины с дефицитом эстрогена с клинически определенным риском возникновения остеопороза; пациенты с вертебральными расстройствами; пациенты, проходящие или планирующие пройти долговременный курс лечения глюкокортикоидами (стероидами); пациенты с первичным гиперпаратиреозом; пациенты, проходящие мониторинг в целях определения ответа или эффективности примененной лекарственной терапии, направленной на лечение остеопороза; пациенты с длительными пищевыми расстройствами.
Сниженная BMD, как правило, рассматривается в отношении остеопении и остеопороза, а существование данных состояний определяется в зависимости от количества баллов пациента, рассчитанных при проведении тестирования в целях определения BMD, в частности Т-балла, полученного при проведении DEXA-сканирования. Т-балл, полученный на основе проведенного DEXA-сканирования, является нормализованной величиной, демонстрирующий отношение BIVID пациента к среднему показателю взрослых людей с пиковыми значениями BMD. Нормализованное значение выражается в рамках стандартных отклонений от среднего значения. Таким образом значение Т-балла 0 является индикатором отсутствия отличия значения BMD по сравнению со средним взрослым, отрицательное значение Т-балла является индикатором значения BMD ниже среднего, а положительное значение Т-балла является индикатором того, что значение BMD находится выше среднего. Т-балл является нормализованной величиной в связи с тем, что среднее значение обладает вариативностью в связи с зависимостью от расы и пола. Т-балл различных костей одного человека также может иметь различные значения. В целом, кость с Т-баллом, значение которого больше - 1, рассматривается в качестве входящей в нормальный диапазон (хотя отрицательное значение балла все же является индикатором того, что значение BMD лежит ниже нормализованного среднего значения). Состояние остеопении, как правило, рассматривается в качестве присущего кости со значениями Т-балла от -1 до -2,5. Состояние остеопороза, как правило, рассматривается в качестве присущего кости со значениями Т-балла менее -2,5.
BMD может коррелировать со степенью прочности кости и, таким образом, может является показателем риска возникновения перелома. В целом, считается, что риск возникновения перелома увеличивается с каждым стандартным отклонением ниже нормальных значений. У пожилых людей перелом костей (в частности переломы тазобедренного сустава или позвоночника) могут коррелировать с увеличенными показателями смертности. Таким образом, увеличение BMD может являться целью медицинского вмешательства у пациентов, страдающих остеопенией и/или остеопорозом, поскольку BMD может коррелировать с возрастающим риском возникновения перелома. Несмотря на то, что были испробованы различные виды вмешательств, в данной области все еще сохраняется потребность в способах лечения, способных эффективно увеличивать BMD.
Лечение и профилактика разрушения костей (то есть снижения BMD) может принимать различные формы. Предотвращение, как правило, начинается в детстве с помощью физических упражнений и правильного питания, которое включает достаточные количества кальция и витамина D, поскольку была доказана необходимость совмещения физических упражнений и питания для максимизации развития BMD. Это является важным, поскольку было доказано замедление снижения BMD с возрастом при более высоком уровне BMD в пиковом возрасте.
При наличии состояний остеопении и остеопороза доступно большое количество различных способов лечения. Лечение женщин после наступления менопаузы может замедлить наступление и/или развитие дегенерации костей. Таким же образом, селективные модуляторы эстрогеновых рецепторов (SERM), такие как ралоксифен, могут использоваться для симулирования высоких уровней эстрогена в организме и, таким образом, замедлять убыль костной ткани. Может быть назначен кальцитонин, являющийся материалом, естественно вырабатываемым клетками щитовидной железы. Кальцитонин действует непосредственно на остеокласты (через кальцитониновые рецепторы на поверхности клеток), осуществляя модификацию остеокластов и, таким образом, останавливает резорбцию костей. Бисфосфонаты, такие как этидронат (DIDRONEL®), памидронат (AREDIA®), алендронат (FOSAMAX®), ризедронат (ACTONEI,), золедронат (ZOMETA® или RECLAST) и ибандронат (BONIVA®) могут увеличивать прочность костей путем увеличения плотности минерализации и снижения резорбции костей. Все бисфосфонаты связаны с пирофосфатом, являющимся побочным продуктом клеточного метаболизма и естественным циркулирующим в крови и моче ингибитором минерализации. Несмотря на то, что пирофосфаты не могут проникать в кости (в связи с тем, что выстилающие клетки уничтожают пирофосфат с помощью щелочной фосфатазы), бисфосфонаты могут проникать в кости (и прикрепляться очень крепко) в связи с химическим замещением в соединениях. Несмотря на то, что такие лекарства могут обладать некоторой пользой, недавние исследования показали, что долговременное использование бифосфонатов может увеличить риск спонтанных переломов подвертела и диафиза бедренной кости (то есть атипичных переломов). Деносумаб (PROLIA®) является другим фармацевтическим препаратом, недавно допущенным Управлением по контролю качества пищевых продуктов и лекарственных средств (США) для проведения инъекций дважды в год у пациентов, страдающих остеопорозом с высоким риском возникновения переломов, или у пациентов, не переносящих другие виды лечения. Деносумаб является полностью человеческим моноклональным антителом, которое связывает RANK-лиганд и воздействует на естественный процесс костного метаболизма организма. Несмотря на то, что долговременные эффекты от использования данного антитела еще не известны, врачи были предупреждены о необходимости проведения мониторинга пациентов с неблагоприятными реакциями, такими как остеонекроз челюсти, атипичные переломы и задержка в сращивании переломов. Далее, поскольку данное антитело вносит изменения в иммунную систему организма, было получено доказательство того, что использование данного антитела может увеличить риск возникновения серьезной инфекции у пациента. Еще один препарат, терипаратид (FORTE0®), является рекомбинантным паратиреоидным гормоном (rPTH), который обладает парадоксальным воздействием, заключающимся в увеличении костной массы путем изменения паттерна выработки в сторону естественного, паратиреоидного гормона организма (РТН), и, таким образом, изменяет скелетальный эффект оценки постоянного уровня РТН, что может приводить к увеличению ломкости костей, потери кальция и остеопорозу. С помощью активации различных путей костного метаболизма rPTH увеличивает количество активных остеобластов, снижает степень естественно запрограммированной смерти остеобластных клеткок и отбирает контурные клетки для действия в качестве остеобластных клеток. Данный препарат, по-видимому, оказывает широкое воздействие на формирующие кости остеобластные клетки и максимально стимулирует их чрезмерную активность. Исследования на крысах, направленные на изучение безопасности применения, показали вероятное увеличение риска возникновения остеосаркомы, связанной с использованием rPTH. Таким образом, в данной области сохраняется потребность в способах лечения, которые не требуют долговременного использования препаратов с вероятностью эффектов, которые, являясь непредусмотренными, могут еще и являться вредоносными.
Нефармацевтические способы лечения, как правило, используются только после возникновения перелома. Например, переломы (в частности, позвоночные) могут лечиться с помощью немедленной фиксации, при этом полиметилметакрилатный цемент (как правило, называемый «костным цементом») или похожий нерассасывающийся материал вводится в перелом для перманентного усиления и «фиксации» кости на месте. Несмотря на то, что такие способы лечения могут быть направлены на лечение существующего перелома, неестественные физические свойства (то есть жесткость, модуль упругости кости и так далее) кости после проведения лечения, как считается, увеличивают вероятность перелома смежной кости, в частности, в том случае, если смежная кость подвергнута остеопорозу в продвинутой стадии. Сверх того, результатом данного способа лечения не является образование естественной кости в переломе, но, скорее, функционирование в качестве подвергающихся резорбции заменителей кости.
Несмотря на наличие фармацевтических и хирургических способов лечения дегенерации костей и переломов, в данной области остается потребность в дополнительных способах лечения, способных увеличить BMD в ключевых участках в целях снижения риска возникновения переломов и сопутствующих рисков для здоровья, включая смерть. В частности, окажется полезным и наличие средств для лечения, нацеленных на определенные участки скелета с высоким риском возникновения переломов за счет, в частности, формирования нового, здорового (то есть нормального) костного материала. К данным способам лечения не будут применяться текущие ограничения, существующие в данной области.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение обеспечивает улучшение костной структуры у пациентов, находящихся в состоянии, характеризующемся дегенерацией костной ткани, таком как остеопения или остеопороз. В частности, данное изобретение позволяет осуществлять селективное замещение дегенеративного костного материала в локализированных участках костей материалом для регенерации костей, который ресорбируется организмом в течение времени и замещается вновь сформированным костным материалом. Благоприятно, что вновь сформированный костный материал является костным материалом, который естественен по отношению к пациенту в смысле, что он не является костным трансплантатом (например кадаверной костью) или нерастворимым костным заменителем (например, костным цементом). Более того, вновь сформированный костный материал не является дегенеративным по своей природе, а является здоровым костным материалом в смысле того, что костный материал (который может включать непосредственно окружающие части кости) обладает характеристиками, такими как BMD и сопротивление на сжатие, которые делают вновь сформированный костный материал, в некоторых вариантах осуществления данного изобретения, по существу аналогичным костному материалу у среднего, здорового 30-летнего человека (то есть при возрасте, в котором BMD, как правило, находится на пике). В других вариантах осуществления данного изобретения вновь сформированная кость может характеризоваться как улучшенная по сравнению с костью, находящейся под воздействием остеопении или остеопороза. Такое улучшение, кроме того, может характеризоваться по определенной шкале, такой как связь с Т-баллом, полученном на основе проведенного DEXA-сканирования.
В определенных вариантах осуществления, данное изобретение, таким образом, может быть направлено на способ лечения пациента, страдающего дегенерацией костей. В частности, способ может включать формирование в локализованном участке кости, например, путем проведения механической санации дегенеративного костного материала или, другим образом, путем разрушения дегенеративного костного материала для формирования (полости). Необязательно часть дегенеративного костного материала может быть удалена для образования . В некоторых вариантах осуществления данного изобретения дегенеративный костный материал может оставаться в , но, в связи с дегенеративным состоянием костного материала, данный материал не занимает значительного объема в образующейся . Данный способ далее может включать хотя бы частичное заполнение сформированной материалом для регенерации костей.
В определенных вариантах осуществления данного изобретения дегенеративное состояние кости, в частности, может быть выбрано из группы, включающей остеопению и остеопороз. В то время, как пациент, проходящий лечение, может страдать любым заболеванием, вызывающим дегенерацию костей, термины остеопения и остеопороз могут рассматриваться для, в целом, описания пациентов, страдающих любым заболеванием, вызывающим снижение BMD, в рамках которого значение Т-балла, подсчитанного при проведении DEXA-сканирования, ниже определенного уровня. Например, поскольку наличие остеопении технически определяется в тех случаях, когда значение Т-балла сканируемого участка кости меньше -1,0, и поскольку наличие остеопороза технически определяется в тех случаях, когда значение Т-балла сканируемого участка кости меньше -2,5, данные клинические термины (и настоящие способы их лечения) могут рассматриваться в качестве применимых при лечении дегенерации костей вне зависимости от первичного состояния, вызывающего потерю костей (будь то потеря потеря костей в связи со старением или побочный эффект определенного первичного заболевания или медицинского лечения (например, лечение стероидами).
В определенных вариантах осуществления данного изобретения материал для регенерации костей, используемый в соответствии с данным изобретением, может включать остеоиндуктивный материал, остеокондуктивный материал, остеогенный материал, материал, способствующий образованию костной ткани, или остеофильный материал. Предпочтительно материал для регенерации костей включает сульфат кальция. В следующих вариантах осуществления данного изобретения материал для регенерации костей может включать фосфат кальция. В других вариантах осуществления данного изобретения материал для регенерации костей может включать гранулы трикальцийфосфата. В определенных вариантах осуществления данного изобретения материал для регенерации костей может включать комбинацию всех трех типов материалов. В некоторых вариантах осуществления данного изобретения материал для регенерации костей может включать материал, обладающий трехфазным профилем резорбции in vivo.
Материал для регенерации костей может быть охарактеризованным как материал, который вызывает формирование нового, недегенеративного костного материала в образовавшейся . В частности, недегенеративный костный материал может обладать плотностью, по существу идентичной плотности нормальной кости (то есть кости обычного здорового 30-летнего человека), в частности, кости из того же участка. В частности, это может быть охарактеризовано в связи с Т-баллом, измеряемым с помощью двухэнергетической рентгеновской абсорбциометрии (DEXA). Предпочтительно часть кости, включая вновь сформированный костный материал, имеет Т-балл, значение которого больше -1,0, больше -0,5 или, по меньшей мере, равно 0.
В определенных вариантах осуществления данного изобретения материал для регенерации костей может характеризоваться обеспечивающим осуществление ремоделирования локализованного участка кости в течение времени, которое, по существу, идентично времени для нормальной кости. В частности, возникновение костного метаболизма может быть выявлено в локализованном участке кости (после проведения имплантации материала для регенерации костей внутри ), первоначально обладающем значением Т-балла более 2,0, при этом значение Т-балла постепенно снижается с течением времени до значения от около 0 до около 2. Предпочтительно, подвергнутый костному ремоделированию локализованный участок кости поддерживает значение Т-балла более около 0 в течение времени от 1 года после образования нового костного материала.
В дальнейших вариантах осуществления данного изобретения материал для регенерации костей может характеризоваться в качестве стимулирующего образование нового костного материала с, по сути, нормальной степенью BMD в участке кости, смежном с образовавшейся пустотой. Это может быть охарактеризовано как градиентный эффект, который описывается далее здесь.
Кость, подвергнутая образованию , может являться любой костью, дегенеративна по своей природе и может рассматриваться в качестве участка, выбранного для лечения в соответствии с данным изобретением (например, для предотвращения возникновения переломов в будущем). В некоторых вариантах осуществления данного изобретения кость может быть выбрана из группы, включающей тазобедренный сустав, бедренную кость, позвонки, лучевую кость, локтевую кость, плечевую кость, большую берцовую кость и малоберцовую кость.
В дальнейших вариантах осуществления, данное изобретение, в частности, может быть охарактеризовано как обеспечивающее способ увеличения BMD в локализованном участке кости. Данный способ может включать формирование в локализованном участке кости и, необязательно, удаление содержимого расчищенного костного материала. Данный способ далее может включать хотя бы частичное заполнение сформированной материалом для регенерации костей таким образом, что новый костный материал образуется внутри , при этом плотность образованного костного материала больше, чем плотность костного материала, первоначально присутствующего в пространстве . Предпочтительно, увеличение BMD обеспечивается за счет образованного костного материалом со значением Т-балла, которое хотя бы на 0,5 единиц больше, чем значение Т-балла нативного костного материала до удаления с образованием . Могут быть отмечены даже большие улучшения относительно значения Т-балла, как описано далее здесь. В определенных вариантах осуществления данного изобретения Т-балл нативного костного материала до удаления в целях образования может составлять менее около -1,0, а образованный костный материал может обладать значением Т-балла более -1,0 или хотя бы около -0,5. Данное изобретение далее обладает преимуществом, заключающимся том, что увеличение BMD может поддерживаться в течение времени от около 1 года со времени образования нового костного материала.
В других дальнейших вариантах осуществления, данное изобретение может характеризоваться как обеспечивающее способ создания желаемого профиля BMD в локализованном участке кости. Как описано здесь далее, способы данного изобретения неожиданно не только увеличивают качество кости в локализованном участке кости, подвергнутой лечению, но также могут улучшать определенный профиль BMD, при этом BMD в локализованном участке значительно увеличивается с последующим постепенным возвратом нормальной, по сути, степени плотности. Способ данного изобретения может включать образование в локализированном участке кости и хотя бы частичное заполнение образованной материалом для регенерации костей таким образом, что новый костный материал образуется внутри в течение времени и хотя бы часть материала для регенерации костей ресорбируется. Предпочтительно, большая часть материала для регенерации костей ресорбируется. Профиль BMD в локализованном участке кости может является таким, что Т-балл увеливается от первоначального значения, составляющего менее -1, что подтверждается измерениями, проводимыми до образования , до максимального значения, равного, по меньшей мере, 5 в течение определенного промежутка времени начиная от момента заполнения материалом для регенерации костей. После этого Т-балл в локализованном участке кости может снижаться в течение какого-то времени до значений от около -0,5 до около 2,0 (то есть лежать, практически в нормальном диапазоне).
В других дальнейших вариантах осуществления настоящее изобретение может быть охарактеризовано как предусматривающее способы обеспечения степени костного метаболизма в локализованном участке дегенеративной кости, по сути идентичной степени костного метаболизма нормальной кости. Согласно вышеизложенному, способы данного изобретения неожиданно могут применяться для полного восстановления качества кости в локализованном участке кости, подвергающейся лечению. Другими словами, кость, находящаяся в дегенеративном состоянии, заменяется материалом для регенерации костей, а образованный новый естественный костный материал является не дегенерированным, а, по сути, нормальным костным материалом. Таким образом, кость в локализованном участке может быть охарактеризована как подвергнутая костному ремоделированию с переходом от дегенеративного костного материала к нормальному костному материалу. Как более полно описано ниже, ремоделирование костей не относится к естественному процессу, спонтанно осуществляющемуся в организме, но относится к манипулятивному восстановлению качества костей путем осуществления способов данного изобретения. В частности, данный способ может включать образование в локализованном участке кости и хотя бы частичное заполнение образованной материалом для регенерации костей, обеспечивая, таким образом, образование нового костного материала в образованной . Предпочтительно костный материал в локализованном участке до образования обладает значением Т-балла менее -1, что говорит о наличии дегенераии кости, при этом новый костный материал, появляющийся в результате проведения ремоделирования, обладает значением Т-балла более -1,0 (более предпочтительно, более 0), что говорит о том, что кость в локализованном участке была ремоделирована и, по сути, идентична нормальной кости.
В других дальнейших вариантах осуществления, данное изобретение может быть охарактеризовано как предусматривающее способы восстановления высоты позвонков или коррекции ангулярной деформации в позвонке, подвергнутом перелому (в частности, в позвонке, пораженном остеопенией или остеопорозом) с помощью стимулирования роста нового костного материала, который, по сути, идентичен нормальной кости. Данный способ может включать формирование в участке перелома, которая может включать механическое увеличение пространства в области перелома и, необязательно, удаление содержимого костного материала в участке перелома. Данный способ далее может включать хотя бы частичное заполнение образованной материалом для регенерации костей, так что новый костный материал образуется внутри с течением времени. Предпочтительно новый костный материал обладает значением Т-балла, подтверждающим то, что новый костный материал является, по сути, идентичным нормальной кости (например, значением Т-балла от -0,5 или от 0).
В других дальнейших вариантах осуществления настоящее изобретение может быть охарактеризовано как предусматривающее способы улучшения качества кости в локализованном участке кости. Как описано здесь, качество кости может быть охарактеризовано относительно измеряемых характеристик, таких как BMD, сопротивление на сжатие и сопротивление к переломам. Таким образом, способы улучшения качества кости могут быть подтверждены улучшением одной или нескольких из этих характеристик (а также с помощью других измеряемых характеристик, которые могут является полезными для определения качества костей). В некоторых вариантах осуществления данного изобретения данный способ может включать замену объема дегенерированного костного материала из локализованного участка кости, обладающего значением Т-балла менее 1,0 вновь образованным, естественным костным материалом, так что тот же локализованный участок кости обладает значением Т-балла более -1,0 (предпочтительно от -0,5 до 0 и более). В дальнейших предпочтительных вариантах осуществления данного изобретения Т-балл локализованного участка кости после проведения процедуры по данному изобретению может превосходить значение Т-балла дегенерированной кости на 1,0 единицу и более. В определенных вариантах осуществления данного изобретения замещение дегенерированного костного материала может включать образование в локализованном участке кости и хотя бы частичное заполнение образованной материалом для регенерации костей, образуя, таким образом, новый естественный костный материал в образованной .
В других аспектах данное изобретение может предусматривать различные материалы для применения в способах лечения дегенерированного костного материала. Такие материалы, в частности, могут применяться в комбинации, например, в виде набора, для обеспечения легкости выполнения различных способов данного изобретения. Таким образом, данное изобретение может быть охарактеризовано как предусматривающее набор для применения при замещении дегенерированного костного материала в локализованном участке кости материалом для регенерации костей, который стимулирует образование нового костного материала, который, по сути, идентичен нормальной кости.
В некоторых вариантах осуществления данного изобретения набор в соответствии с данным изобретением может включать одно или несколько канюлированных сверл, направляющую проволоку, рабочую канюлю, санирующий зонд, количество материала для регенерации костей, подходящее для заполнения в локализованном участке кости и устройство для инъецирования, предназначенное для доставки материала для регенерации костей. В дальнейших вариантах осуществления данного изобретения набор в соответствии с данным изобретением может включать инструментальный сгибатель, подходящий для изменения геометрии зонда (то есть любое устройство, которое может быть использовано для отбивания костного материала или удаления омертвевших тканей, или набивания и заполнения материала в другим способом) в целях соответствия анатомическим особенностям в локализованном участке кости. В частности, зондирующее устройство может включать головку заданной формы для соответствия анатомии в локализованном участке кости. Другими словами, зонд может быть предварительно изогнутым на определенный угол (или множество углов с помощью нескольких сгибаний). В дальнейших вариантах осуществления данного изобретения набор в соответствии с данным изобретением может включать один или несколько протекторов тканей, канюлированный обтуратор, направляющую проволоку, сверло, гибкую рабочую канюлю, обтуратор рабочей канюли, санирующий зонд и отсасывающее/ирригирующее устройство. Набор далее может включать набор инструкций в любой форме, подходящей для обучения, иллюстрирования, описания или демонстрации в другой форме того, как следует использовать различные компоненты набора для лечения пациента, страдающего дегенерацией костей.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Здесь приводятся ссылки на различные представленные графические изображения относящиеся к описанному в целом изобретению, при этом:
Фиг. 1 является графиком, иллюстрирующим типичное снижение BMD (мг/см2) всего тазобедренного сустава в зависимости от возраста, пола и национальности;
Фиг. 2а является снимком нормальной кости, сделанным сканирующим электронным микроскопом;
Фиг. 2b является снимком подверженной остеопорозу кости, сделанным сканирующим электронным микроскопом;
Фиг. 3a-3i являются радиографическими изображениями, иллюстрирующими инъецирование материала для регенерации костей в , образованную в проксимальной части бедренной кости пациента в от медиальном до латеральном положении в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 4 является детальным рентгеновским снимком проксимальной части бедренной кости, иллюстрирующим варианты осуществления данного изобретения, при этом могут быть образованы заполненные различной формы и размеров для заполнения материалом для регенерации костей;
Фиг. 5а-5с являются иллюстрациями, демонстрирующими выбранные этапы хирургической процедуры по замещению дегенерированного костного материала в дистальном отделе лучевой кости пациента в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 6а-6с иллюстрируют выбранные этапы хирургической процедуры по замещению дегенерированного костного материала в позвонке пациента в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 7а-7е являются изображениями, полученными с помощью сканирующей электронной микроскопии, демонстрирующими изменения с течением времени в материале для регенерации костей, использованном в качестве имлантата в соответствии с одним вариантом осуществления данного изобретения, при этом такие изменения обеспечивают контролируемый рост нового костного материала;
Фиг. 8 демонстрирует 13-недельный макроскопический образец в прокисмальном отделе плечевой кости собаки после введения трансплантата из материала для регенерации костей в соответствии с настоящим изобретением и демонстрирует образование плотной губчатой кости даже за пределами границ первоначального повреждения;
Фиг. 9 является графическим представлением примерного профиля BMD, который может быть выявлен в локализованном участке кости в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 10 является графиком, демонстрирующим ремоделирование кости в локализованном участке кости, демонстрирующим изменение BMD от остеопорозной модели к модели, по сути, идентичной нормальной кости;
Фиг. 11 иллюстрирует инструмент для защиты тканей, который может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 12 иллюстрирует канюлированный обтуратор, который может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 13 иллюстрирует направляющую проволоку, которая может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 14 является увеличенным изображение головки сверла, которое может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 15 иллюстрирует рабочую канюлю, которая может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 16 иллюстрирует обтуратор рабочей канюли, который может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 17 иллюстрирует санирующий зонд, который может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 18 иллюстрирует отсасывающее/ирригирующее устройство, которое может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 19 иллюстрирует 180' рабочую канюлю, которая может использоваться при осуществлении способа в соответствии с вариантом осуществления данного изобретения;
Фиг. 20 является рентгеновским снимком, демонстрирующим введение санирующего зонда, используемого при создании в проксимальной части бедренной кости в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 21 является рентгеновским снимком, демонстрирующим трансплантатный материал, заполняющий образованную in situ в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 22 является графиком, демонстрирующим среднюю пиковую нагрузку, наблюдаемую среди пар кадаверных бедренных костей, исследованных на сопротивление переломам после образования и ее заполнения материалом для регенерации костей в соответствии с одним вариантом осуществления изобретения;
Фиг. 23 является рентгеновским снимком проксимальной части бедренной кости до проведения инъецирования материала для регенерации костей в способе в соответствии с одним вариантом осуществления изобретения;
Фиг. 24 является изображением того же участка проксимальной части бедренной кости, показанного на Фиг. 23, до проведения инъецирования материала для регенерации костей, полученным с помощью компьютерной томографии;
Фиг. 25 является рентгеновским снимком проксимальной части бедренной кости, изображенной на Фиг. 23, во время проведения операции в течение процесса инъецирования материала для регенерации костей в соответствии с данным изобретением;
Фиг. 26 является рентгеновским снимком левой бедренной кости, изображенной на Фиг. 23, спустя 6 недель после лечения, осуществленного по способу в соответствии с одним вариантом осуществления данного изобретения;
Фиг. 27 является изображением левой бедренной кости, изображенной на Фиг. 23, спустя 12 недель после лечения, осуществленного по способу в соответствии с одним вариантом осуществления данного изобретения, полученным с помощью компьютерной томографии;
Фиг. 28 является изображением подвергнутой лечению левой бедренной кости, изображенной на Фиг. 23 спустя 24 недели после лечения, полученным с помощью компьютерной томографии;
Фиг. 29 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим средние значения Т-балла шейки бедра подвергнутого лечению тазобедренного сустава пациентов, прошедших лечение в соответствии с определенными вариантами осуществления данного изобретения;
Фиг. 30 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим средние значения Т-балла всего тазобедренного сустава в тазобедренном суставе пациентов, прошедших лечение в соответствии с определенными вариантами осуществления данного изобретения;
Фиг. 31 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим средние значения Т-балла участка треугольника Варда в подвергнутом лечению тазобедренном суставе пациентов, прошедших лечение в соответствии с определенными вариантами осуществления данного изобретения;
Фиг. 32 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим среднее процентное увеличение минеральной плотности костей (BMD) шейки бедра в подвергшемся лечению бедре пациентов, прошедших лечение в соответствии с определенными вариантами осуществления настоящего изобретения по сравнению со значениями BMD шейки бедра не подвергнутого лечению контралатерального тазобедренного сустава у тех же пациентов;
Фиг. 33 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим среднее процентное увеличение минеральной плотности костей (BMD) всего тазобедренного сустава в подвергнутом лечению тазобедренном суставе пациентов, прошедших лечение в соответствии с определенными вариантами осуществления настоящего изобретения по сравнению со значениями BMD всего тазобедренного сустава не подвергнутого лечению контралатерального тазобедренного сустава тех же пациентов; а
Фиг. 34 является графиком, включающим данные по курсу продолжительностью до двух лет, демонстрирующим среднее процентное увеличение минеральной плотности костей (BMD) зоны треугольника Варда в подвергнутом лечению тазобедренном суставе пациентов, прошедших лечение в соответствии с определенными вариантами осуществления настоящего изобретения по сравнению с BMD всего тазобедренного сустава не подвергнутого лечению контралатерального тазобедренного сустава у тех же пациентов.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Данное изобретение будет описано более полно здесь и далее путем раскрытия различных вариантов его осуществления. Эти варианты осуществления данного изобретения приведены для того, чтобы данное описание было всесторонним и полным, а также с целью полной передачи рамок изобретения для специалистов в данной области. Данное изобретение может быть осуществлено в виде многих различных форм и не должно рассматриваться как ограниченное вариантами осуществления, описанными далее здесь; скорее, данные варианты осуществления приведены для того, чтобы это описание удовлетворяло применимым правовым требованиям. Как указано в данном описании и прилагаемой формуле изобретения, единственное число существительных также подразумевает их множественное число, если контекст явно не указывает иное.
Настоящее изобретение является результатом установления возможности использования различных материалов для регенерации костей при проведении лечения, связанного с замещением дегенеративного костного материала. В частности, было обнаружено, что при замещении дегенеративного костного материала определенными материалами для регенерации костей, в локализованном участке кости вырабатывается новый костный материал при одновременном ресорбировании материалов для регенерации костей. Неожиданно было обнаружено, что даже в том случае, когда существующая кость находится в продвинутой стадии дегенерации (например, при остеопорозе), способность организма формировать новый, здоровый костный материал, который, по сути, является идентичным нормальным костям, сохраняется.
Термины «нормальная кость» или «нормальный костный материал», как они используются здесь, предназначены для обозначения кости или костного материала, обладающего характеристиками здоровой кости человека (предпочтительно того же пола и расы, как и пациент, проходящий лечений) в возрасте, когда BMD, как правило, находится на пике (то есть в возрасте около 30-35 лет). Другими словами, в соответствии с одним вариантом осуществления данного изобретения, было обнаружено, что при лечении страдающих остеопорозом белых пожилых женщин в соответствии с настоящим изобретением, возможно формирование новых костей, которые не подвержены остеопорозу, но, по сути, идентичны (то есть в отношении BMD и/или сопротивления на сжатие) костям средней белой женщины в возрасте 30-35 лет. Конечно, данные результаты могут быть продемонстрированы у обоих полов и среди всех рас. Таким образом, настоящее изобретение обеспечивает возможность локального изменения качества костей. В частности, является возможным, в соответствии с данным изобретением, улучшение качества костей в локализованном участке от дегенеративного состояния до менее дегенеративного состояния, предпочтительно от дегенеративного состояния до, по сути, нормального состояния. Другими словами, является возможным улучшение качества костей в локализованном участке так, что костный материал обладает плотностью, которая, по сути, идентична BMD человека той же расы и пола при среднем возрасте, в котором наблюдается пик BMD (то есть около 30-35 лет). Такие локализованные участки могут включать вновь сформированную кость, а также окружающие части кости, которые не были замещены в соответствии с данным изобретением.
Как описано выше, существуют многие способы в данной области, используемые для оценки BMD, при этом любой подходящий способ, который может использоваться для определения значения BMD в репрезентативной форме для определения нормальных и дегенеративных состояний, может использоваться для настоящего изобретения. Для легкости понимания эффективность способов данного изобретения изложена в настоящем описании в связи с Т-баллом, определяемым с помощью двухэнергетической рентгеновской абсорбциометрии (DEXA). Она является широко используемым способом оценки BMD. Более того, поскольку обычные состояния костной дегенерации могут, в целом, быть описаны с помощью Т-балла пациента, результаты DEXA обеспечивают наглядный способ определения результатов настоящего изобретения в связи с увеличением BMD. Аппараты для DEXA-сканирования, как правило, позволяют определять BMD в единицах г/см2. Из-за различий, связанных с производителями оборудования, однако, варианты определения BMD в единицах г/см2 не стандартизированы. В целях стандартизации Т-балл может быть переведен в BMD в мг/см2 в соответствии со следующим уравнением:
Т-балл=(BMD - базовый BMD) SD
где базовый BMD и стандартное отклонение (SD) относятся к среднему пациенту в возрасти 30-35, когда BMD находится на своем пике, и где BMD и SD используются в единицах мг/см2. Полученное значение Т-балла обеспечивает последовательную, воспроизводимую оценку BMD, которое может использоваться для получения подтверждения изменений BMD. В США Т-балл, как правило, подсчитывается с использованием базы той же расы и пола. Согласно стандартам Всемирной организации здравоохранения (ВОЗ), Т-балл вычисляется с использованием значений белых женщин в качестве базы. Для простоты описания, Т-баллы, описанные здесь, были получены с помощью проведения DEXA-сканирования с использованием измерителя плотности костей Hologic Delphi™ (производства Hologic, Inc., Danbury CT). Другим способом характеристики данных, полученных в результате проведения сканирования, является Z-балл, являющийся количеством стандартных отклонений от средних величин людей того же возраста, пола и национальности, что и испытуемый пациент. Данное изобретение также включает, тем не менее, дальнейшие способы оценки увеличения качества костей - например, BMD, сопротивления на сжатие или сопротивление к переломам - то есть такие, которые могут быть определены с помощью одного или нескольких альтернативных исследовательских способов - например, ультразвука, QCT, SPA, DPA, DXR или SEXA.
В определенных вариантах осуществления данного изобретения, полезность данного изобретения может быть охарактеризована на основе относительного улучшения BMD после применения одного или нескольких способов данного изобретения. Под «относительным улучшением» подразумевается увеличение качественного показателя костей (например, BMD, сопротивления на сжатие или сопротивления к переломам) по сравнению с состоянием локализованного участка кости до проведения лечения в соответствии с данным изобретением. Эта особенность характеристики данного изобретения может не зависеть от достижения стандарта, предназначенного для описания нормальных состояний костей у молодых, здоровых взрослых людей. Например, относительное улучшение, в частности, может включать улучшение качества костей отдельного пациента и влияние на качество жизни. Например, пациент с крайне низкой BMD проксимальной части бедренной кости (например, при значении Т-балла -3) может иметь значительно улучшенное качество жизни благодаря увеличению значения Т-балла на, вероятно, 1,5 единицы. Конечное значение Т-балла, составляющее -1,5, все еще будет говорить о наличии остеопенического состояния, но относительное улучшение качества кости в участке проксимальной части бедренной кости может являться достаточно значительным, являясь индикатором эффективности лечения вне зависимости от достижения заданной, нормальной степени BMD. В некоторых вариантах осуществления данного изобретения, тем не менее, эффективное лечение может быть значительно связано со возможностью достижения нормальной BMD в локализованном участке кости, подвергающейся лечению.
В некоторых вариантах осуществления данного изобретения способы настоящего изобретения могут быть описаны относительно увеличения BMD, что подтверждается увеличением Т-балла (либо определенного костного материала, подвергающегося замещению и образующегося нового костного материала или локализованного участка кости в целом), что может быть воспроизведено специалистом в данной области с помощью способов, которые уже описаны здесь. Таким образом, полезность данного изобретения может быть описана относительно увеличенного значения Т-балла, что может быть связано с уменьшенной степенью дегенеративного состояния (то есть относительным улучшением BMD) или таким изменением BMD, что кость характеризуется как нормальная (то есть не подверженная дегенерации) или лучше. В некоторых вариантах осуществления данного изобретения Т-балл может быть увеличен на, по меньшей мере, 0,25 единицы, на, по меньшей мере, 0,5 единицы, на, по меньшей мере, 0,75 единицы, на, по меньшей мере, 1,0 единицу, на, по меньшей мере, 1,25 единицы, на, по меньшей мере, 1,5 единицы, на, по меньшей мере, 1,75 единицы, на, по меньшей мере, 2,0 единицы, на, по меньшей мере, 2,25 единицы, на, по меньшей мере, 2,5 единицы, на, по меньшей мере, 2,75 единицы, на, по меньшей мере, 3,0 единицы. В других вариантах осуществления данного изобретения BMD может быть увеличена таким образом, что Т-балл находится на, по меньшей мере, минимальном уровне. Например, BMD может быть увеличена таким образом, что Т-балл равен, по меньшей мере, -1, по меньшей мере, -0,75, по меньшей мере, -0,5, по меньшей мере, -0,25, по меньшей мере, 0, по меньшей мере, 0,.25, по меньшей мере, 0,5, по меньшей мере, 0,75, по меньшей мере, 1,0, по меньшей мере, 1,25, по меньшей мере, 1,5, по меньшей мере, 1,75, по меньшей мере, 2,0, по меньшей мере, 2,5, по меньшей мере, 3,0, по меньшей мере, 4,0 или, по меньшей мере, 5,0. В других вариантах осуществления данного изобретения Т-балл может иметь значение более -1, что может свидетельствовать о падении BMD в рамках приемлемого нормального диапазона. В другом варианте осуществления данного изобретения Т-балл может быть равен от около -1,0 до около 2,0, от около -1,0 до около 1,0, от около -1,0 до около 0,5, от около -1,0 до около 0, от около -0,5 до около 2,0, от около -0,5 до около 1,5, от около -0,5 до около 1,0, от около -0,5 до около 0,5, от около 0 до около 2,0, от около 0 до около 1,5, от около 0 до около 1,0. Более того, дегенерированный костный материал в соответствии с данным изобретением может быть описан как кость, обладающая значением Т-балла менее -1,0, менее -1,5, менее -2,0, менее -2,5 или менее -3,0. Важность вышеприведенных значений является даже более существенной, как это следует из дальнейшего описания данного изобретения, приведенного ниже.
Данное изобретение, как описано здесь, может использоваться в отношении фактически любой кости в организме пациента в случаях, когда увеличение BMD является желательным. В определенных вариантах осуществления данного изобретения способы замещения предназначены для использования только в локализованных участках костей. Другими словами, не предполагается замена или образование костей в своем полном виде; замещению подлежат лишь отдельные части или локализованные секции или участки конкретной кости. Способы предпочтительно предназначены для использования в локализованных участках костей, поскольку данные способы предусматривают использование естественной способности тела ресорбировать материалы для регенерации костей, которые используются и замещаются вновь сформированными костями. В определенных вариантах осуществления данного изобретения было обнаружено, что такая костная регенерация может проходить благодаря разрастанию костного материала из окружающего костного материала. Для ясности, является понятным, что, в определенных вариантах осуществления данного изобретения слова «кость» и «костный материал» могут применяться независимым образом. В частности «кость» может относится к общей, целостной анатомической структуре (например, бедренной кости или позвонку), в то время как «костный материал» может относится ко множеству костных клеток и кальцинированных экстраклеточных матриксов, которые присутствуют (или вырабатываются) внутри и вокруг отдельного, локализованного участка большей костной структуры. Таким образом, при удалении костного материала остальная кость остается. Более того, при образовании в кости новый костный материал может формироваться внутри нее.
В некоторых вариантах осуществления данного изобретения способы данного изобретения, в частности, могут применяться по отношению к костям, которые, в частности, подвержены риску возникновения перелома у пациента, страдающего дегенеративным заболеванием костей. Данное дегенеративное заболевание костей может относиться к любому состоянию, характеризующемуся снижением BMD. В определенных вариантах осуществления данного изобретения состояние дегенерации костей может относится к остеопении или остеопорозу. Поскольку эти состояния могут быть описаны в отношении к значению Т-балла, находящегося в определенном диапазоне, данные термины могут быть использованы здесь для описания дегенерации костей в целом, вне зависимости от того, является ли причиной дегенерации естественная резорбция костных клеток, не вырабатываемых в достаточных количествах, или вызвана другим заболеванием, ведущим к дегенерации костей в качестве симптома или побочного эффекта.
В определенных вариантах способы данного изобретения могут применяться по отношению к кости, связанной с тазобедренным суставом. Это, в частности, может охватывать костные структуры, рассматриваемые, в целом, как бедренная кость, тазовая кость или тазовая кость (то есть седалищная кость, подвздошная кость и лобковая кость), а также как проксимальная часть бедренной кости и подвертельная часть бедренной кости (хотя бедренная кость, в целом, охватывается данным изобретением). Частями бедренной кости, представляющими, в частности, интерес в соответствии с данным изобретением, являются головка, шейка, большой вертел бедренной кости, малый вертел бедренной кости, а также участок, называемый «зоной Варда" (или «треугольником Варда»). Данные участки кости, в частности, подвержены переломам, связанным с падением у пожилых людей или атипичным переломам.
Другие кости, которые могут подвергаться лечению в соответствии с настоящим изобретением, включают позвонки и другие крупные кости, связанные с ногами и руками, такие как лучевая кость, локтевая кость, плечевая кость, большая берцовая кость и малоберцовая кость. Помимо костей бедра, это относится к позвонкам, дистальному отделу лучевой кости и сегментам определенных костей, которые могут быть подвержены атипичным переломам.
Данное изобретение предусматривает использование определенных материалов для регенерации костей. Данный термин может включать различные материалы, которые могут быть полезны для регенерации костей или костного материала, определенные материалы, которые также могут быть помещены в и обеспечивать разрастание нового клеточного материала внутри заполненной . Таким образом, в некоторых вариантах осуществления данного изобретения материал для регенерации костей может быть охарактеризован в качестве костного заполняющего материала. Предпочтительно, материал для регенерации костей включает существенное количество материала, способное быть ресорбировано организмом млекопитающего. Например, материал для регенерации костей может включать, по меньшей мере, 40%, по меньшей мере, 50% вес., по меньшей мере, 60% вес., по меньшей мере, 70% вес., по меньшей мере, 80% вес., по меньшей мере, 90% вес. материалов, способных быть ресорбированными организмом млекопитающего. Далее, является предпочтительной способность материала быть ресорбированным в степени, по существу, аналогичной степени образования нового костного материала. В некоторых вариантах осуществления данного изобретения материал для регенерации костей может включать содержимое, которое не способно быть быстро ресорбированным, но которое, с другой стороны, является совместимым с процессом формирования нового костного материала (например, такое, которое может быть включено в структуру кости, включая вновь образованный костный материал).
В некоторых вариантах осуществления данного изобретения материал для регенерации костей может являться материалом, являющимся остеокондуктивным или остеоиндуктивным материалом. «Остеоиндуктивными» называются материалы, которые приводят к митогенезу дифференцированных периваскулярных мезинхимных клеток, способствующих образованию остеопрогениторных клеток (то есть клеток, способных формировать новую кость или костный материал). «Остеокондуктивными» называют материалы, которые проникают в кровеносные сосуды и способствуют формированию новой кости или костного материала в заданной пассивной матричной структуре. Известно, что различные соединения, минералы, белки и им подобные обладают остеоиндуктивными, остеокондуктивными, остеогенными свойствами, способствуют образованию костной ткани. Соответственно, данные материалы могут использоваться в соответствии с настоящим изобретением.
В частности, далее следуют неограничивающие примеры материалов, которые могут использоваться благодаря своим остеоиндуктивным или остеокондуктивным свойствам в соответствии с настоящим изобретением: деминерализованный костный матрикс (DBM), костные морфогенетические белки (BMP), трансформирующие факторы роста (TGF), фибробластные факторы роста (FGF), инсулиноподобные факторы роста (IGF), факторы роста тромбоцитов (PDGF), эпидермальные факторы роста (EGF), факторы роста васкулярного эндотелия (VEGF), неорганический костный минерал (АВМ), фактор роста васкулярного эндотелия (VPF), молекулы клеточной адгезии (САМ), алюминат кальция, гидроксиапатит, коралловый гидроксиапатит, оксид алюминия, двуокись циркония, алюмосиликаты, фосфат кальция, трикальцийфосфат, брушит (кальция гидроортофосфат дигидрат), тетракальцийфосфат, октакальцийфосфат, сульфат кальция, фумарат полипропилена, пиролитический углерод, биоактивное стекло, пористый титан, пористый никель-титановый сплав, пористый тантал, подложки из спеченного сплава кобальта и хрома, керамика, коллаген, аутологичная кость, аллогенная кость, экзогенная кость, коралловый мох и их производные или комбинации, или другие биологически продуцируемые композитные минералы, содержащие кальций или гидроксиапатитные структурные элементы. Вышеупомянутые материалы могут использоваться в качестве материала для регенерации костей или в качестве добавки в определенную композицию материала для регенерации костей.
В определенных вариантах осуществления изобретения материал для регенерации костей, используемый в настоящем изобретении, в частности, может являться материалом, включающим сульфат кальция и может включать дополнительные ингредиенты, если это необходимо. Сульфат кальция, в частности, может являться полугидратом сульфата а-кальция, полугидратом сульфата 3-кальция, дигидратом сульфата кальция или их смесью. В некоторых вариантах осуществления данного изобретения, в частности, в тех случаях, когда сульфат кальция используется в комбинации с другими материалами, композиция сульфата кальция может быть использована в виде водного раствора или суспензии, которая может включать воду и, необязательно, одну или несколько добавок, выбранных из группы, состоящей из неорганических солей и поверхностно-активных агентов, таких как хлорид натрия, хлорид калия, сульфат натрия, сульфат калия, ЭДТА, сульфат аммония, ацетат аммония и ацетат натрия. Сульфат кальция далее может включать дополнительные компоненты, включая любые остеоиндуктивные и остеокондуктивные материалы, описанные здесь, а также катализаторы, используемые для катализа реакции получения дигидрата сульфата кальция из полугидрата сульфата кальция, пластификаторы или биологически активные агенты.
В некоторых вариантах осуществления данного изобретения материал для регенерации костей, в частности, включает фосфат кальция. В частности, данный материал может включать сульфат кальция и фосфат кальция. Фосфат кальция может быть в форме биокерамического материала, описанного как материал, обладающей определенной геометрией или формой, такой как кубики, гранулы, клинья блоки или диски различных размеров. Неограничивающие примеры фосфата кальция могут использоваться в соответствии с данным изобретением, они включают гидроксиапатит, трикальцийфосфат (например α-трикальцийфосфат, β-трикальцийфосфат), тетракальцийфосфат, безводный дикальцийфосфат, монокальцийфосфата моногидрат, кальция гидроортофосфат дигидрат, гептакальцийфосфат, октакальцийфосфат, пирофосфат кальция, оксиапатит, метафосфат кальция, углерод-апатит, карбонизированный гидроксиапатит и их комбинации или смеси в определенных вариантах осуществления данного изобретения, при этом фосфат кальция является α-трикальцийфосфатом, β-трикальцийфосфатом или их смесью. В некоторых вариантах осуществления данного изобретения может использоваться фосфат кальция в двух или более формах, что может приводить к образованию брушита, такого как трикальцийфосфат и кальцийфосфата моногидрат.
В определенных предпочтительных вариантах осуществления данного изобретения материал для регенерации костей, используемый в настоящем изобретении, может включать сульфат кальция, фосфат кальция и порошкообразный материал, такой как гранулы трикальцийфосфата или другой порошкообразный остеоиндуктивный или остеокондуктивный материал, такой как деминерализованный костный матрикс (DBM). Определенными примерами материалов, которые, в частности, могут быть использованы в соответствии с данным изобретением, являются материалы, коммерчески доступные под торговыми названиями PRO-DENSE® и PRO-STIM® (Wright Medical Technology, Inc., Arlington, Tenn.). Несмотря на то, что данные материалы, в частности, могут использоваться для выполнения данного изобретения, другие материалы, которые полезны для применения в костях, могут быть использованы в определенных вариантах осуществления данного изобретения. Несмотря на то, что связанность теорией является нежелательной, считается, что материалы, обладающие свойствами, способствующими регенерации костей, могут обеспечивать лучшие результаты в различных вариантах осуществления данного изобретения, в частности, материалы, обладающие мультифазным профилем, что противоречит описанному здесь. Примеры следующих материалов, которые могут использоваться в определенных вариантах осуществления данного изобретения, включают известные под торговыми OSTEOSET®, MIIG®X3, CELLPLEX®, ALLOMATRIX®, ALLOMATRIX® RCS, IGNITE, ACTIFUSE°, CEM-OSTETIC®, GENEX®, PROOSTEON® 500R, BONEPLAST®, CERAMENT®, α-BSM®, CONDUIT® TCP, γ-BSM®, β-BSM®, EQUIVABONE®, CARRIGEN®, MASTERGRAFT®, NOVABONE®, PERIOGLAS®, Chondromimetic, VITOSS®, PLEXUR® Bone Void Filler, BONESOURCE BVF, HYDROSET®, NORIAN® SRS® Fast Set Putty, NORIAN® CRS® Fast Set Putty, ALLOFUSE®, INTERGRO® DBM Putty, OPTEFORM®, OPTEFIL®, OPTECURE®, ACCELL® 100, ACCELL® CONNEXUS®, ACCELL EV03®, OPTIUM DBM®, PROGENIX® DBM Putty, OSTEOFIC DBM, DBX®, GRAFTON®, GRAFTON PLUS®, PUROS® Demineralized Bone Matrix, INFUSE® Bone Graft, OP-1®, OSTEOCEL®, TRINITY™ Matrix и TRINITY REVOLUTION™. Различные варианты осуществления материалов для регенерации костей, которые могут использоваться в соответствии с данным изобретением, описаны в патентах US 6,652,887; US 7,211,266; US 7,250,550; US 7,371,408; US 7,371,409; US 7,371,410; US 7,507,257; US 7,658,768 и заявке на патент США 2007/0059281, описание которых приводится здесь во всей их полноте для ссылки.
В некоторых вариантах осуществления данного изобретения материал для регенерации костей может быть в виде порошковой композиции, которая затвердевает или применяется при смешивании с водным раствором. Данные композиции могут включать одну или несколько форм сульфата кальция и одну или несколько форм фосфата кальция. Предпочтительно данная композиция может включать хотя бы одну форму сульфата кальция и, по меньшей мере, две формы фосфата кальция. В частности, данная композиция может включать полугидрат сульфата кальция в виде порошка (здесь и далее «CSH») и брушитобразующую смесь фосфата кальция, включающую моногидрат монокальцийфосфата в виде порошка (здесь и далее «МСРМ») и Р-трикальцийфосфат в виде порошка (здесь и далее «β-ТСР»).
Данная порошковая композиция может использоваться для образования материала для регенерации костей, включающего дигидрат сульфата кальция (здесь и далее «CSD»), который является продуктом реакции между CSH и водой. CSD может придавать существенную механическую твердость материалу для регенерации костей, стимулировать рост костей и обеспечивает относительно быструю степень резорбции in vivo, так что в материале для регенерации костей быстро создается пористая структура при проведении имплантации. Таким образом CSD может быть быстро замещен растущей костной тканью на участке имплантации.
Данные два компонента на основе фосфата кальция могут реагировать, образуя брушит при смешивании с водным раствором. Присутствие брушита в материале для регенерации костей может замедлить степень резорбции материала для регенерации костей по сравнению с композицией, содержащей только CSD. Таким образом, использование данного двухфазного материала для регенерации костей может обеспечивать двойную степень резорбции благодаря CSD и брушиту.
Кроме того, в целях замедления резорбции, использование данной порошковой композиции в качестве материала для регенерации костей в настоящем изобретении может обеспечивать высокий уровень механической прочности, удобство применения и приемлемое время осуществления. Кроме того, данный материал для регенерации костей, в частности, полезен для формирования высококачественных костей при использовании в соответствии с данным изобретением.
В некоторых вариантах осуществления данного изобретения порошок CSH может обладать бимодальным распределением частиц - распределением частиц, характеризующимся двумя пиками на диаграмме размера частиц относительно процентного содержания частиц каждого размера, хотя и другие распределения частиц предусматриваются данным изобретением. Например, бимодальное распределение частиц порошка CSH может быть охарактеризовано наличием от около 30 до около 60 процентов содержания частиц, обладающих размером от около 1,0 до около 3,.0 микрон и от около 40 до около 70 процентов содержания частиц, обладающих размером от около 20 до около 30 микрон от всего объема порошка CSH. В другом варианте осуществления данного изобретения бимодальное распределение частиц характерно для от около 40 до около 60 процентов содержания частиц, обладающих размером от около 1,0 до около 2,0 микрон и от около 40 до около 60 процентов содержания частиц, обладающих размером от около 20 до около 25 микрон. Средний размер частиц порошка CSH составляет, предпочтительно, от около 5 до около 20 микрон, более предпочтительно, от около 8 до около 15 микрон, и, более предпочтительно, от около 10 до около 15 микрон.
Порошковая композиция, используемая в составе материала для регенерации костей, используемого в соответствии с данным изобретением, включает порошок CSH в количестве, по крайней мере, 50 вес.% от всего веса порошковой композиции. В других вариантах осуществления данного изобретения материал для регенерации костей, используемый в соответствии с данным изобретением, может включать порошок CSH в количестве, по крайней мере, 60 вес.%, по крайней мере, 65 вес.%, по крайней мере, 70 вес.%, по крайней мере, 75 вес.%, по крайней мере, 80 вес.%, по крайней мере, 85 вес.%, по крайней мере, 90 вес.%. В других вариантах осуществления данного изобретения порошок CSH может присутствовать в количестве от около 50 вес.% до около 99 вес.%, от около 60 вес.% до около 98 вес.%, от около 65 вес.% до около 95 вес.%, от около 70 вес.% до около 95 вес.%, от около 70 вес.% до около 90 вес.%.
CSH является, предпочтительно, полугидратом сульфата α-кальция, который обладает более высокой механической прочностью по сравнению с β-формой при использовании для получения CSD. Присутствие CSD в материале для регенерации костей, используемом в данном изобретении, может обеспечить быструю регенерацию костного материала. Порошок CSH может быть приготовлен с помощью способа, описанного в патенте US 2,616,789, который приводится здесь в своей полноте для ссылки. Порошок CSH может включать другие компоненты, такие как катализатор, способный ускорять конверсию CSH в дигидратную форму, обеспечивая, таким образом, более быстрое получение материала для регенерации костей, изготавливаемого на его основе. Примерные катализаторы включают кристаллы дигидрата сульфата кальция (производимый US Gypsum), в частности, CSD, покрытый сахарозой (производимый VWR Scientific Products). Процесс стабилизации кристаллов дигидрата с помощью их покрытия сахарозой описан в патенте US 3,573,947, приводимый здесь в своей полноте для ссылки. Другие неограничивающие примеры катализаторов, которые могут использоваться, включают сульфаты щелочных металлов и сульфиды (например сульфат калия, сульфат натрия и сульфид кальция, включая их гидраты). Катализатор может присутствовать в количества до 1,0 вес.% от общего веса порошковой композиции. В некоторых вариантах осуществления данного изобретения порошковая композиция включает от около 0,001 до около 0,5 вес.% катализатора, в целом от около 0,01 до около 0,3 вес.%. Могут использоваться смеси двух и более катализаторов.
Часть фосфата кальция, входящего в состав порошковой композиции, используемой в материале для регенерации костей в соответствии с данным изобретением, может включать порошок МСРМ (Са(H2PO4)2Н2О) и порошок β-ТСР (Са3(PO4)2). Как явствует из уровня техники, основным продуктом реакции МСРМ, β-ТСР и воды является брушит, также известный как дигидрат гидроортофосфата кальция (CaHPO4.2H2O) (DCPD). Образующие брушит порошки могут также принимать участие в других реакциях, результатом которых является образование определенных фосфатов кальция с большей термодинамической стабильностью по сравнению с DCPD, таких как гидроксиапатит, октакальций фосфат и им подобные. Определенное количество порошка β-ТСР также может оставаться непрореагировавшим. Порошок β-ТСР может обладать средним размером частиц менее около 20 микрон. Как правило, порошок β-ТСР обладает средним размером частиц от около 10 микрон до около 20 микрон. Часть порошка β-ТСР, входящего в состав порошковой композиции, может обладать бимодальным распределением размера частиц, характеризующимся наличием от около 30 до около 70 процентов частиц в объеме, обладающих размером от около 2,0 до около 6,0 микрон, и от около 30 до около 70 процентов частиц в объеме, обладающих размером от около 40 до около 70 микрон от всего объема порошка фосфата β-трикальция. В одном варианте осуществления данного изобретения порошок β-ТСР обладает бимодальным распределением размера частиц, характеризующимся наличием от около 50 до около 65 процентов частиц в объеме, обладающих размером от около 4,0 до около 5,5 микрон, и от около 35 до около 50 процентов частиц в объеме, обладающих размером от около 60 до около 70 микрон от всего объема порошка β-трикальций фосфат.
Упоминание МСРМ предназначено для описания монокальций фосфата (МСР), являющимся, по сути, безводной формой МСРМ, образующей то же количество ионов кальция и фосфорной кислоты в растворе. Тем не менее, в том случае, если МСР используется в качестве замены МСРМ, количество воды, необходимое для образования материала для регенерации костей, может быть увеличено с учетом отсутствия молекулы воды в МСР (если является желательным получение того же продукта растворения, что и в случае использования МСРМ).
Присутствие брушита может замедлить резорбцию материала для регенерации костей in vivo по сравнению с сульфатом кальция. В свою очередь, более медленная резорбция может позволить материалу для регенерации костей обеспечить поддержку структуры в течение более длительных периодов времени.
Материал для регенерации костей, как описано выше, может быть, в частности, полезен согласно изобретению, благодаря способности становиться высокопористым матриксом из фосфата кальция, при введении in vivo в связи с относительно быстрой скоростью резорбции сульфата кальция в смеси. Оставшийся пористый матрикс из фосфата кальция обеспечивает замечательный каркас для роста кости в течение естественного процесса заживления.
Количество порошка МСРМ и порошка β-ТСР, присутствующее в порошковой композиции, может различаться и зависит, прежде всего, от желаемого количества брушита в замещающем цементе костного трансплантата. Композиция фосфата кальция, образующая брушит (то есть объединенное количество порошков МСРМ и β-ТСР), может присутствовать в концентрации от около 3 до около 30 вес.% от всего веса порошковой композиции. В других вариантах осуществления данного изобретения композиция фосфата кальция, образующая брушит, может присутствовать в концентрации от около 5 до около 25 вес.%, от около 10 до около 20 вес.%, от около 12 до около 18 вес.% или около 15 вес.%. Относительные количества МСРМ и β-ТСР могут быть выбраны в зависимости от их эквимолярного, стехиометрического соотношения в реакции образования брушита. В одном варианте осуществления данного изобретения порошок МСРМ может присутствовать в концентрации от около 3 до около 7 вес.%, в зависимости от всего веса порошковой композиции, а β-ТСР может присутствовать в количестве от около 3,72 до около 8,67 вес.%.
Порошковая композиция также может включать гранулы, частицы или порошкообразное содержимое, если иное не описано. В определенных вариантах осуществления данного изобретения данная композиция может включать множество гранул β-ТСР, обладающих большим средним размером частиц, чем средний размер частиц порошка β-ТСР. Гранулы β-ТСР, как правило, обладают средним размером частиц от около 75 до около 1,000 микрон, от около 100 до около 400 микрон или от около 180 до около 240 микрон. Данные гранулы далее служат для снижения степени резорбции замещающего цемента костного трансплантата и принимают участие в образовании каркаса. Гранулы β-ТСР могут присутствовать при концентрации до 20 вес.% от всего веса порошковой композиции. В других вариантах осуществления данного изобретения гранулы β-ТСР могут присутствовать при концентрации до 15 вес.% или до 12 вес.% от всего веса композиции. Данные гранулы, в частности, полезны для обеспечения третьей фазы (как более полно описано здесь в связи с трехфазными материалами), которая обладает более медленной резорбцией по сравнению с остальными материалами, используемыми в составе композиции для регенерации костей (например, по сравнению с фазой сульфата кальция и фазой брушита, описанными выше).
Водный компонент, который смешивают с порошковой композицией для образования материала для регенерации тканей, используемого в соответствии с данным изобретением, может быть выбран для обеспечения необходимой консистенции композиции, степени ее затвердевания или времени, необходимого для ее использования. Как правило, водный раствор используют в количестве, необходимым для достижения отношения массы жидкости к массе порошка (L/P), по крайней мере, 0,2, по крайней мере, 0,21 или, по крайней мере, 0,23. Предпочтительный диапазон соотношения L/P составляет от около 0,2 до около 0,3, или от около 0,2 до около 0,25. Примеры подходящих водных компонентов включают воду (например, стерильную воду) и ее растворы. Необязательно, материал для регенерации костей в соответствии с данным изобретением может включать одну или несколько добавок, выбранных из группы, состоящей из хлорида натрий, хлорида калия, сульфата натрия, сульфата калия, ЭДТА, сульфата аммония, ацетата аммония и ацетата натрия. В предпочтительном варианте осуществления данного изобретения водным раствором, предназначенным для смешивания, является солевой раствор или фосфатный солевой буферный раствор. Примерным водным раствором является 0.9% солевой раствор NaCl, поставляемый компанией Baxter International (Deerfleld, Ill.) и другие. Водный раствор может включать одно или несколько органических или неорганический соединений, содержащих карбоновую кислоту (здесь и далее карбоновые кислоты или соединения карбоновой кислоты), которые могут или не могут содержать гидроксильную группу, связанную с альфа-углеродом, необязательно оттитрованных до достижения нейтрального рН с помощью подходящего основания (например, нейтрализованы до достижения значения рН от около 6,5 до около 7,5 с помощью основания щелочного металла, такого как гидроксид натрия или гидроксид калия), которые могут изменять необходимое количество воды, текучесть и/или вязкость материала для регенерации костей при осуществлении смешивания. Примерные карбоновые кислоты включают гликолевую кислоту и молочную кислоту. Предпочтительные карбоновые кислоты имеют единственную карбоксильную группу, от 1 до 10 атомов углерода (например, 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 атомов углерода, включая карбонильный углерод) и 0-5 гидроксильных групп (например, 0, 1, 2, 3, 4 или 5), связанных с углеродной цепочкой. В одном варианте изобретения раствором для смешивания является 0,6М раствор гликолевой кислоты, нейтрализованный до рН 7,0 с помощью NaOH. Указание карбоновой кислоты означает здесь свободную кислоту и ее соли. Карбоновая кислота может быть нейтрализована до рН от около 6,5 до около 7,5 в растворе с помощью, например, основания щелочного металла, и затем выделена в виде кристаллического порошка путем выпаривания растворителя (например, воды). Кристаллический порошок является, как правило, выделенным в виде соли, такой как форма соли щелочного металла (например, солями лития, натрия или калия). Примерные сухие кристаллические порошки карбоновой кислоты в форме соли включают гликолят натрия, гликолят калия, лактат натрия и лактат калия. Порошкообразная соль карбоновой кислоты может быть добавлена в любой другой порошкообразный компонент, формируя совместно материал для регенерации костей, такой как CSH или другой компонент, являющийся фосфатом кальция. Тем не менее, в определенных вариантах осуществления данного изобретения порошкообразная карбоновая кислота хранится в отдельном контейнере, так что она может быть восстановлена с помощью водного раствора перед смешиванием с раствором, содержащим основные порошкообразные компоненты данной композиции.
Материал для регенерации костей, используемый в соответствии с данным изобретением, может включать одну или несколько добавок, которые могут быть выбраны из любых отдельных материалов, описанных здесь. Данные добавки могут быть в порошковой, жидкой или твердой форме и могут быть смешаны или являться частью материала для регенерации костей. Примерные добавки, подходящие для использовании в данном изобретении включают катализаторы (такие как частицы покрытого сахарозой дигидрата сульфата кальция), пластинки губчатого вещества кости, соли (например, хлоридные, хлористый калий, сульфат натрия, сульфат калия, ЭДТА, сульфат аммония, ацетат аммония и ацетат натрия), пластификаторы могут изменять консистенцию и время, необходимое для применения композиции (например, глицерин и другие высокомолекулярные спирты, виниловый спирт, стеариновая кислота, гиалуроновая кислота, производные целлюлозы и ее смеси, включая алкилцеллюлозы, такие как метилгидроксипропилцеллюлоза, метилцеллюлоза, этилцеллюлоза, гидроксиэтилцеллюлоза, гидроксипропилцеллюлоза, гидроксипропилметилцеллюлоза, карбоксиметилцеллюлоза, ацетобутират целлюлозы и их смеси или соли) и любой «биологически активный агент» (то есть любой агент, препарат, соединение, композиция или смесь, обладающие некоторым фармакологическим эффектом, который может быть продемонстрирован in vivo или in vitro), в частности, любой агент, рассматриваемый в качестве антиостеопенического или антиостеопорозного агента. Определенные фармакологические агенты могут включать препараты для лечения остеопороза, такие как бисфосфонаты, ингибиторы RANKL, ингибиторы протонного насоса, гормональные препараты и SERM, терипаратиды и rPTH. Другие примеры биологически активных агентов включают (но без ограничения) пептиды, белки, энзимы, низкомолекулярные лекарственные средства, красители, липиды, нуклеозиды, олигонуклеотиды, полинуклеотиды, нуклеиновые кислоты, клетки, вирусы, липосомы, микрочастицы и мицеллы. То есть включают агенты, обеспечивающие наличие локализованного или системного эффекта у пациента. Другие примеры биологически активных агентов включают антибиотики, химиотерапевтические препараты, пестициды (например, противогрибковые препараты и антипаразитические агенты), антивирусные препараты, противовоспалительные препараты и анальгетики. Примеры антибиотиков включают ципрофлоксацин, тетрациклин, окситетрациклин, хлортетрациклин, цефалоспорин, аминогликозиды (например, тобрамицин, канамицин, неомицин, эритромицин, ванкомицин, гентамицин и стрептомицин), бацитрацин, рифампицин, N-диметилрифампицин, хлоромицетин и их производные. Примеры химиотерапевтических препаратов включают цисплатин, 5-фторурацил (5-FU), таксол и/или таксотер, ифосфамид, метотрексат и гидрохлорид доксорубицина. Примерны анальгетиков включают гидрохлорид лидокаина, бипивакаин и нестероидные противовоспалительные препараты, такие как трометамин кеторолака. Примерны антивирусных препаратов включают ганцикловир, зидовудин, амантадин, видарабин, рибаравин, трифлуридин, ацикловир, дидеоксиуридин, антитела к компонентам вирусов или генных продуктов, цитокины и интерлейкины. Примерным антипаразитическим агентов является пентамидин. Примерны противовоспалительных агентов включают альфа-1-антитрипсин и альфа-1-антихимотрипсин. Используемые противогрибковые препараты включают дифлюкан, кетоконазол, нистатин, гризеофульвин, микостатин, миконазол и их производные, как описано в патенте US 3,717,655, приведенный здесь в своей полноте для ссылки; бисдигуаниды, такие как хлоргексидин и, в частности, соединения четвертичного аммония, такие как бромид домифена, хлорид домифен, фторид домифена, хлорид бензалкония, хлорид цетилпиридиния, хлорид деквалиния и цис-изомер 1-(3-хлораллил)-3,5,7-триаза-1-азониаадамантан хлорида (коммерчески поставляемого компанией Dow Chemical Company под торговым названием Dowicil 200) и его аналоги, как описано в патенте US 3,228,828, приведенный здесь в своей полноте для ссылки; бромистый цетилтриметиламмоний, а также хлорид бензетония и хлорид метилбензетония, как описано в патентах US 2,170,111, US 2,115,250 и US 2,229,024, приведенных здесь в своей полноте для ссылки; карбанилиды и салициланилиды, такие как 3,4,4-трихлоркарбанилид и 3,4,5-трибромсалициланилид; гидроксидифенилы, такие как дихлорфен, тетрахлорфен, гексахлорфен и 2,4,4'-трихлор-2'-гидроксидифениловый спирт; металлоорганические и галогеновые антисептики, такие как цинк пиритион, сульфадиазон серебра, урацил серебра, йод и иодофоры, полученные из неионных поверхностно-активных веществ, как описано в патентах US 2,710,277 и US 2,977,315, приведенных здесь в своей полноте для ссылки, и из поливинилпирролидона, такого как описанный в патентах US 2,706,701, US 2,826,532 и 2,900,305, приведенных здесь в своей полноте для ссылки. Пригодные факторы роста включают любой клеточный продукт, который модулирует рост и дифференциацию других клеток, в частности, прогениторных клеток соединительной ткани. Факторы роста, которые могут быть использованы в соответствии с настоящим изобретением, включают (но не ограничиваются): фибробластные факторы роста (например FGF-1, FGF-2, FGF-4), факторы роста тромбоцитов (PDGF), включая PDGF-AB, PDGF-BB и PDGF-AA, костные морфогенетические белки (BMP), такие как любой от ВМР-1 до BMP-18, остеогенные белки (например, ОР-1, ОР-2 или ОР-3), трансформирующие факторы роста а или трансформирующие факторы роста β (например β1, β2 или β3), минерализирующие белки LIM (LMP), остеоид-индуцирующий фактор (OIF), ангиогенином(ы), эндотелины, факторы роста дифференциации (GDF), ADMP-1, эндотелины, факторы роста гепатоцитов и факторы роста кератиноцитов, остеогенин (костный морфогенный белок-3), гепарин-связывающие факторы роста (HBGF), такие как HBGF-1 и HBGF-2, семейство белков hedgehog, включая белки indian hedgehog, sonic hedgehog и desert hedgehog, интерлейкины (IL), включая IL от -1 до -6, колоние-стимулирующие факторы (CSF), включая CSF-1, G-CSF, G-CSF и GM-CSF, эпителиальные факторы роста (EGF) и инсулиноподобные факторы роста (например IGF-I и IGF-II), деминерализованный костный матрикс (DBM), цитокины, остеопонтин и остеонектин, включая любые изоформы вышеуказанных белков. Также биологически активным агентом может являться антитело.
Подходящие антитела включают, например, STRO-1, SH-2, SH-3, SH-4, SB-10, SB-20 и антитела к щелочной фосфатазе. Данные антитела описаны у Haynesworth et al., Bone (1992), 13: 69-80; Bruder, S. et al., Trans Ortho Res Soc (1996), 21:574; Haynesworth, S. E., et al., Bone (1992), 13:69-80; Stewart, K., et al, J Bone Miner Res (1996), ll(Suppl.):S142; Flenuning 3 E, et al., in "Embryonic Human Skin. Developmental Dynamics," 212: 119-132, (1998) и Bruder S P, et al., Bone (1997), 21(3): 225-235, приводимые здесь в своей полноте для ссылки. Другие примеры биологически активных агентов включают аспират костного мозга, тромбоцитарный концентрат, кровь, аллотрансплантатные кости, пластинки губчатого вещества кости, пластинки минералов синтетического или естественного происхождения, таких как фосфат кальция или карбонат кальция, мезенхимные стволовые клетки и куски, кусочки и/или кубики сульфата кальция. Добавки, в частности, фармакологические добавки, более точно, антиостеопорозные добавки, которые добавляются в материал для регенерации костей или помещаются внутрь в кости и содержатся в материале для регенерации костей, могут присутствовать в твердой форме. Фармакологические препараты могут являться элюирующими(ся), растворяющими(ся), дезинтегрирующимися или выпаривающимися из материала для регенерации костей.
Материал для регенерации костей, применяемый в способах настоящего изобретения, может быть получен с помощью многих способов, в зависимости от конкретной природы композиции. В некоторых вариантах осуществления данного изобретения материал для регенерации костей может быть в порошкообразной форме и может быть помещенным в образованную в кости. В других вариантах осуществления данного изобретения материал для регенерации костей может являться инъецируемым, быть в текучей форме, может быть приготовлен с помощью смешивания порошкообразной композицией, такой как описано выше, с водным раствором, как описано здесь, с помощью ручного или механического смешивания и оборудования, известного из уровня техники. В частности, компоненты могут быть смешаны при атмосферном давлении или ниже (например, в вакууме) и при температуре, которая не приведет к замораживанию водного компонента смеси или его значительному испарению. После смешивания гомогенная композиция, как правило, обладает подходящей для инъецирования пастообразной консистенцией, несмотря на то, что вязкость и текучесть смеси может варьироваться в зависимости от содержащихся добавок. Материал для регенерации костей может быть помещен в устройство, предназначенное для его доставки, такое как шприц, и иъецирован в образованную . В некоторых вариантах осуществления данного изобретения материал может быть инъецирован через иглу размером от 11 Гаудж до 16 Гаудж длиной до, например, 10 см.
В определенных вариантах осуществления данного изобретения природа материала для регенерации костей может быть охарактеризована с учетом диапазонов усилия инъекции, при которой материал может быть инъецирован. В некоторых вариантах осуществления данного изобретения материал может обладать усилием инъецирования до 1,200 Н, до 1,000 Н, до 800 Н, до 600 Н, до 500 Н, до 400 Н. В других вариантах осуществления данного изобретения диапазон усилия инъецирования может составлять от около 1 Н до около 1,200 Н, от около 2 Н до около 1,000 Н, от около 3 Н до около 800 Н, от около 4 Н до около 700 Н,, от около 5 Н до около 660 Н, от около 10 Н до около 660 Н, от около 10 Н до около 330 Н.
В некоторых вариантах осуществления данного изобретения материалом для регенерации костей, используемым в соответствии с данным изобретением, может являться материал, время применения которого, в целом, в соответствии с испытанием сроков схватывания цемента иглой Вика, проведение которого описано ниже, составляет от около 3 до около 25 минут, более предпочтительно от около 10 до около 20 минут. Материал для регенерации костей, предпочтительно, достигнет твердости, равной и большей твердости кости, спустя от около 30 до около 60 минут. Использование материала может производится в различных средах, включая воздух, воду, in vivo, и при любом другом количестве in vitro состояний.
Затвердевший материал для регенерации костей, используемый в соответствии с данным изобретением, предпочтительно подвергается комплексному растворению с самопроизвольным формированием пористого каркаса, обладающего определенными жесткими механическими свойствами, в частности, характеризуемыми показателями диаметральной силы растяжения и сопротивления на сжатие. Например, данный материал может обладать величиной диаметральной силы растяжения, по меньшей мере, 4 МПа после отверждения в течение одного часа в воздушной среде комнатной температуры после приведения материала в готовое к доставке состояние, более предпочтительно, величиной диаметральной силы растяжения, по меньшей мере 5 МПа, более предпочтительно, по меньшей мере, 6 Мпа. Далее, материал для регенерации костей может обладать диаметральной силой растяжения, по меньшей мере, 8 МПа после отверждения в течение 24 часов в воздушной среде при комнатной температуре с последующей подготовкой материала к доставке, более предпочтительно диаметральной силой растяжения, равной, по крайней мере, 9 МПа после отверждения в течение 24 часов, и, наиболее предпочтительно, по меньшей мере, 10 МПа.
Материал для регенерации костей, используемый в настоящем изобретении, также обладает высоким уровнем сопротивления на сжатие, таким как сопротивление на сжатие, равное, по меньшей мере, 15 МПа после отверждения в течение одного часа в воздушной среде при комнатной температуре после подготовки материала к доставке, более предпочтительно сопротивление на сжатие, равное, по меньшей мере, 40 МПа. Далее, предпочтительные варианты материала для регенерации костей могут обладать сопротивлением на сжатие, по меньшей мере, 50 МПа после отверждения в течение 24 часов в воздушной среде при комнатной температуре после подготовки материала к доставке, более предпочтительно сопротивлением на сжатие, равным, по меньшей мере, 80 МПа.
В некоторых вариантах данного изобретения твердость отвержденного материала для регенерации костей может быть увеличина с помощью добавления различных материалов. Несмотря на то, что данное изобретение охватывает любые материалы, рассматриваемые в данной области в качестве способных увеличивать предел прочности при растяжении и/или сопротивление на сжатие, особо полезными могут являться варианты приготовления, включающие использование одного или нескольких волокнистых материалов. Таким образом, данное изобретение, в частности, охватывает волокнистые композиции материала для регенерации костей.
Волокнистые композиции, используемые в данном изобретении, в частности, могут включать биоразлагаемые полимерные волокна. Такие волокна не только могут обеспечивать увеличение свойств материала для регенерации костей, связанных с твердостью, но также могут обеспечивать непрерывную доставку одного или нескольких биологически активных агентов, Описанных выше (например, факторов роста, антибиотиков и так далее), поскольку активный агент может быть смешан с полимером перед образованием волокна, при этом активный агент будет постепенно выделяться in vivo при разложении волокон. В других вариантах осуществления данного изобретения также могут использоваться волокна, не являющиеся биоразлагаемыми, хотя инертная природа любых волокон, не являющихся биоразлагаемыми, является более предпочтительной. Не ограничивающие примеры материалов, известных своим применением в качестве волокон для увеличения твердости материала для регенерации костей, включают полимолочную кислоту (PLLA), полиэтилентерефталат (PET) (например, хирургические нити MERSILENE®), полиэтилен, полиэстер (например FIBERWIRE®) полиглекапрон (например, MONOCRYL®), полигликолевую кислоту и полипропилен. Конечно, специалист в данной области, используя данное описание, способен определить и другие материалы, которые могут быть представлены в виде волокон или увеличивать твердость материала для регенерации костей, используемого в соответствии с настоящим изобретением, иным образом.
Волокна, используемые для увеличения твердости материала для регенерации костей, могут обладать различным размером. Предпочтительно, волокна, используемые в различных вариантах осуществления данного изобретения, могут обладать средним диаметром от около 1 мкм до около 100 мкм, от около 2 мкм до около 75 мкм, от около 3 мкм до около 50 мкм, от около 4 мкм до около 40 мкм или от около 5 мкм до около 25 мкм. Данные волокна далее, предпочтительно, обладают средней длиной от около 100 мкм до около 1,000 мкм, от около 150 мкм до около 900 мкм, от около 200 мкм до около 800 мкм, от около 250 мкм до около 750 мкм.
Волокна, используемые для увеличения твердости материала для регенерации костей также могут включаться в различных концентрациях. В частности, данные волокна могут составлять от около 0,1% до около 10%, от около 0,25% до около 9%, от около 0,5% до около 8%, от около 0,75% до около 7%, от около 1% до около 6%, от около 1,5% до около 5% веса материала для регенерации костей.
Предпочтительно, волокна добавляются в такой концентрации, при которой обеспечивается заметное увеличение твердости материала для регенерации костей по сравнению с материалом без каких-либо волокнистых добавок.
В частности, волокна могут быть добавлены в количестве, предназначенном для увеличения предела прочности на растяжение материала для регенерации костей на, по меньшей мере, 5%, по меньшей мере, 10%, по меньшей мере, 15%, по меньшей мере, 20% или, по меньшей мере, 25%. Таким же образом, добавление волокнистого компонента может увеличить сопротивление на сжатие на, по меньшей мере, 10%, по меньшей мере, 15%, по меньшей мере, 20%, по меньшей мере, 25% или, по меньшей мере, на 30%.
В некоторых вариантах данного изобретения добавление волокнистого компонента может повлиять на вязкость материала для регенерации костей, что может снизить инъецируемость материала. Для преодоления данного увеличения вязкости возможно осуществлять инъецирование материала с помощью шприца с конической насадкой. Данная конфигурация насадки может снизить величину усилия, необходимого для инъецирования более вязкой пасты с помощью иглы.
При приготовлении данные волокна могут быть добавлены в сухую смесь материалов, используемых в материале для регенерации костей. Объединенные материалы могут быть увлажнены для образования пасты. Далее, может являться полезным включение дополнительных этапов обработки для улучшения размешивания волокон в материале для регенерации костей и снижения присутствия нерастворенных частей волокна. Например, данные волокна могут подвергаться ультразвуковому перемешиванию в течение определенного периода времени (например, в течение 30-60 минут), при этом данное смешивание может выполняться при нахождении волокон в жидкой среде, в которой полимер, из которого состоят волокна, является нерастворимым (например, в изопропиловом спирте). Обработанные ультразвуком волокна затем могут быть добавлены в сухие компоненты, входящие в состав материала для регенерации костей, и смешаны (например, путем размешивания с помощью вращения). Данную комбинацию затем фильтруют и высушивают в вакууме. Объединенные материалы могут быть затем увлажнены для образования предназначенного для применения пастообразного материала.
Способы настоящего изобретения в целом включают замещение определенного объема дегенерированного костного материала (необязательно, в участке, обладающем определенной формой) материалом для регенерации костей, который вызывает образование нового костного материала, обладающего большей плотностью (или другой характеристикой, связанной с качеством костей, как описано здесь), который заменяет дегенерированный костный материал. Термин «дегенеративный костный материал» или «дегенерированный костный материал» может означать костный материал, клинически определяемый в качестве подверженного остеопении или остеопорозу. Данные термины, в частности, могут означать кость со значением Т-балла менее -1, менее -1,5, менее -2, менее -2,5 или менее -3. Данный дегенерированный костный материал, как правило, находится в кости, которая, в целом, также определяется в качестве подверженной остеопении или остеопорозу.
Способы данного изобретения в целом могут быть описаны как способы улучшения качества кости в локализованном участке кости. В частности, качество кости может быть напрямую связано с BMD, но также может относиться к общей твердости кости (включая сопротивление на сжатие) и способности кости сопротивляться переломам вокруг и непосредственно в локализованном участке кости. Данная способность увеличивать качество кости в части возникает вследствие установления того факта, что качество локализованных участков кости может достигать качества более здоровой кости - то есть качества, присущего нормальной кости, или качества кости аналогичного пациента, достигаемого в состояниях, при которых определяется достижение BMD своего пика. Неожиданно было обнаружено, что дегенеративный костный материал в локализованном участке кости, например, у пациента, страдающего остеопорозом, может быть замещен с помощью материала для регенерации костей, который вызывает регенерацию нового костного материала в локализованном участке. В частности, неожиданным является то, что вновь образованный костный материал не обладает остеопорозными качествами. Это является неожиданным, поскольку ожидалось, что любой новый костный материал, формирующийся у пациента, страдающего остеопорозом, будет обладать сниженным качеством (то есть будет являться остеопорозным и обладать низкой плотностью). Настоящее изобретение, тем не менее, показало, что после проведения имплантации материала для регенерации костей в остепеническую или остеопорозную кость, данный материал ресорбируется в предсказуемой степени и не подвергается негативному влиянию системного заболевания. Последующее поколение плотного, нового костного материала в локализованном участке кости улучшает качество кости и BMD при измерении Т-балла с помощью DEXA. В частности, величины Т-баллов показывают, что вновь образованный костный материал, по сути, аналогичен нормальной кости, находясь в которой он демонстрирует плотность, которая, по крайней мере, находится на том же уровне, который ожидается у пациентов с BMD, находящейся на своем пике (например, величина Т-балла, лежащая в диапазоне от -1 до 1) и не находится в остеопеническом или остеопорозном состоянии. В других вариантах осуществления данного изобретения вновь сформированный костный материал может обладать сопротивлением на сжатие, которое, по сути, аналогично (или превосходит) сопротивление на сжатие нормальной кости. Данные характеристики могут относиться ко вновь сформированному костному материалу, в частности, в локализованном участке кости в целом (то есть ко вновь сформированному костному материалу и существующему костному материалу в непосредственно окружающем его участке).
В некоторых вариантах способы данного изобретения могут включать активные этапы формирования внутри кости пациента. В частности, данные способы могут включать формирование в локализованном участке кости. Любые способы, которые могут использоваться для формирования такой , могут быть использованы в соответствии с данным изобретением. В некоторых вариантах осуществления данного изобретения данные способы могут включать химическое растворение или удаление костного материала, выполняемое другим путем, в определенном участке кости для формирования . В других вариантах осуществления данного изобретения может использоваться жидкий лаваж для создания внутри кости, такой, как соответствующий способам, описанным в патентной публикации US 2008/0300603, которая приводится здесь для ссылки. В других вариантах осуществления данного изобретения может использоваться ультразвуковая обработка для расчистки костного материала в локализованном участке. В других вариантах осуществления данного изобретения может быть создана с помощью использования надувного или расширительного устройства (например, надувного шара или расширяемого римера in situ). Также могут использоваться расширяемые сетки. В определенных вариантах осуществления данного изобретения данные способы могут включать использование любых механических мер для создания внутри локализованного участка кости.
В некоторых вариантах осуществления данного изобретения данные способы могут включать сверление или создание каналов с помощью других способов (например, с помощью прокалывания канюлированной или цельной иглой, зондом или чем-то им подобным) во внутренней части локализованного участка кости. В некоторых вариантах осуществления данного изобретения канал, формируемый данным образом, может обеспечивать создание , необходимой для осуществления определенного способа лечения. В других, предпочтительных вариантах осуществления данного изобретения, сверление или создание каналов может быть охарактеризовано в качестве мер, необходимых для обеспечения доступа ко внутренней части локализованного участка кости для проведения лечения таким образом, который делает возможным формирование большего размера, чем канал. Благодаря использования канала для доступа к участку предназначенной для лечения кости, может быть сформирована желаемой формы и размера с помощью любых способов, используемых для создания , включая любые способы, описанные выше. В зависимости от степени дегенерации кости (то есть степени развития остеопении или остеопороза), образование может включать удаление, по меньшей мере, части дегенерированного костного материала.
На Фиг. 2а и Фиг. 2b показаны микрофотографии сканирующего электронного микроскопа нормальной кости и кости, подверженной остеопорозу, соответственно. Как видно на данных снимках, нормальная кость обладает крепко связанными между собой пластинками костного материала. Большая часть этого материала теряется при остеопорозе, а оставшаяся кость обладает более слабой стержнеподобной структурой, при этом у некоторых стержней полностью утеряна связь между собой. Кости, характеризующиеся подобной разобщенной внутренней структурой, могут обладать костной массой, но не вносят свой вклад в твердость костей. В некоторых вариантах осуществления данного изобретения может быть сформирована с помощью простого разбивания на части дегенерированного костного материала, такого как выскабливание, сверление или использование специализированных инструментов для рассверловки кости для формирования . Данная расчистка может быть по-другому описана как разбивание, растрескивание, разламывание, распыление, рассверловка, расширение или, по-другому, как разборка, толкание или сдвиг костного материала в участке формирования . В некоторых вариантах осуществления данного изобретения к этому может относиться санация кости в локализованном участке, нагнетание воздуха или извиливание. Предпочтительно, участок санации делают соответствующим определенной форме и размеру необходимой .
В связи с потерей BMD дегенерированный костный материал, который разбивают на части для формирования , может быть просто оставлен в качестве остаточного материала в формируемой . В других вариантах осуществления данного изобретения может являться желательным удаление некоторой части или всего дегенерированного костного материала, который расчищается для формирования . Таким образом, формирование в соответствии с данным изобретением может быть охарактеризовано как разбивание на части дегенерированного костного материала в локализованном участке и удаление, по меньшей мере, части данного материала или как этап, связанный с простым разбиванием на части. В некоторых вариантах осуществления данного изобретения активные этапы формирования в кости могут описываться как удаление поврежденного и/или дегенерированного костного материала из локализованного участка кости. Расчистка, таким образом, может охватывать полное или частичное разрушение дегенерированного костного материала и/или удаление части или всего дегенерированного костного материала из . В определенных вариантах осуществления данное изобретение может быть охарактеризовано как удаление поврежденного или дегенерированного костного материал из локализованного участка кости для формирования необходимой формы и размера. В других вариантах осуществления данного изобретения данный способ может быть охарактеризован как формирование бесформенной определенного объема.
Данные способы далее могут включать, по меньшей мере, частичное заполнение сформированной материалом для регенерации костей, таким как описанный здесь. Количество используемого материала для регенерации костей может зависеть от объема , формируемой на предыдущем этапе. В различных вариантах осуществления данного изобретения объем материала для регенерации костей может варьироваться от около 1 см3 до около 200 см3, от около 2 см3 до около 150 см3, от около 2 см3 до около 100 см3, от около 2 см3 до около 75 см3, от около 5 см3 до около 50 см3, от около 10 см3 до около 40 см3 или от около 15 см3 до около 35 см3. Вышеупомянутые объемы, таким образом, могут отражать общий объем , формируемой в кости, как описано выше. В определенных вариантах осуществления объемы могут быть, в частности, связаны с типом кости и участка, подвергающегося лечению. Например, для дистального отдела лучевой кости объем может составлять от около 1 см3 до около 10 см3, от около 1 см3 до около 8 см3 или от около 1 см3 до около 5 см3. Для тела позвонка объем может составлять от около 1 см3 до около 30 см, от около 2 см3 до около 25 см3 или от около 2 см3 до около 20 см3. Для проксимальной части бедренной кости объем может составлять от около 5 см3 до около 100 см3, от около 5 см3 до около 80 см3 или от около 10 см3 до около 50 см3. Для проксимального отдела плечевой кости объем может составлять от около 5 см3 до около 200 см3, от около 5 см3 до около 150 см3, от около 5 см3 до около 100 см3 или от около 10 см3 до около 80 см3.
Форма , формируемой в кости, может быть различной, в зависимости от кости, подвергающейся лечению. В некоторых вариантах осуществления данного изобретения форма формируемой может, по сути, соответствовать форме участка в проксимальной части бедренной кости, известной как зона Варда. В некоторых вариантах осуществления данного изобретения форма может, по сути, соответствовать форме локализованного участка кости, подвергающегося лечению. Например, относительно лечения дистального отдела лучевой кости данная может, по сути, соответствовать форме дистальной части кости размером 1-5 см. В определенных вариантах осуществления данного изобретения форма формируемой может не являться критической в плане успешности осуществления данного способа; тем не менее, данное изобретение характеризуется таким образом, что оно касается образования определенной формы и размера, которые могут являться желательными при лечении определенных костей.
В определенных вариантах осуществления данного изобретения, в частности, при лечении пациентов, в частности, с продвинутыми стадиями дегенерации костей, по меньшей мере, некоторая степень лечения может быть осуществлена без создания перед осуществлением инъецирования материала для регенерации костей. Как указано выше, последствием потери костей, связанной с остеопорозом, является снижение плотности костного материала или образование больших, более выраженных пустых пространств внутри кости. При выраженном остеопорозе образование в кости может позволить проведение инъецирования материала для регенерации костей непосредственно в локализованный участок кости, обладающей таким увеличенным количеством . В определенных вариантах осуществления данного изобретения усилие, необходимое для проведения инъецирования материала для регенерации костей само по себе может искусственно увеличивать свободное пространство внутри кости и, таким образом, может благодаря своему воздействию формировать , которая немедленно заполняется. В других вариантах осуществления данного изобретения инъецируемый материал для регенерации костей может попросту проникать в дегенерированную кость, обладающую увеличенной пористостью и, таким образом, по сути, заполнять пористый объем в локализованном участке кости, подвергающейся лечению. Соответственно, в некоторых вариантах осуществления данное изобретение охватывает одновременное создание и заполнение в локализованном участке кости. Несмотря на то, что эти варианты данного изобретения могут осуществляться, ожидается, что наиболее эффективные результаты могут быть достигнуты с помощью, по меньшей мере, формирования канала в участке дегенерированной кости, предназначенном для заполнения материалом для регенерации костей. В частности, при этом будет сформирована , как, с другой стороны, описано выше.
Могут быть использованы любые способы, подходящие для использования в целях заполнения сформированной материалом для регенерации костей. Например, в случае, если материал для регенерации костей находится в текучей форме, данный материал может быть инъецирован в сформированную , например, с помощью шприца. Таким образом, в частных вариантах осуществления данного изобретения может быть полезным ввод материала для регенерации костей в , находящегося, по сути, в текучем состоянии с последующим отверждением in vivo. В других вариантах осуществления данного изобретения может являться полезным, по сути, отверждение материала для регенерации костей вне организма с последующим помещением отвержденного материала в . Далее, материал для регенерации костей может находиться в других физических состояниях, таких как замазкоподобная консистенция. В некоторых вариантах осуществления данного изобретения материал для регенерации костей может находится в определенной форме различного размера, способной быть помещенной в . Более того, материал для регенерации костей может быть помещен в наряду с одним или несколькими дополнительными материалами, способствующими заполнению и способными обеспечивать одну или несколько других полезных функций, таких как обеспечение временной или постоянной поддержки в локализованном участке. В определенных вариантах осуществления элюирующий субстрат, такой как BMP или пропитанная пептидами губка, может быть помещен в перед вводом материала для регенерации костей.
В некоторых вариантах осуществления материал для регенерации костей может быть введен в созданную наряду с дополнительным армирующим агентом (например, винтообразным или цилиндрическим телом или лым материалом - например, покрывающим армирующий агент или заключенный внутри полой части армирующего агента). Обеспечивая более значительные результаты, тем не менее, данные способы настоящего изобретения позволяют осуществлять заполнение сформированной без необходимости использования любого дополнительного армирующего агента (вне зависимости от того, является ли армирующий агент ресорбируемым). В определенных вариантах данного изобретения материал для регенерации костей, используемый в данном изобретении, может являться материалом, который отверждается, обеспечивая немедленное обеспечение достаточной твердости в локализованном участке кости, подвергающейся лечению, так что участок кости, подвергающийся лечению, обладает сопротивлением к переломам, которое, по меньшей мере, эквивалентно сопротивлению к переломам данной кости до осуществления лечения. Данное преимущество описано более подробно в Примерах, приведенных ниже. Как также описано здесь, необходимость использования армирующих агентов далее снимается благодаря значительному увеличению прочности кости, обеспеченному ростом нового костного материала, который, по сути, идентичен по своим характеристикам естественной, здоровой кости. Данное увеличение качества кости становится видимым относительно скоро (например, в течение времени от менее одной недели до около 16 недель).
В некоторых вариантах осуществления данное изобретение, в частности, может обеспечить способ лечения пациента, страдающего от состояния, связанного с дегенерацией костей. В частности, данный пациент может страдать и/или иметь диагноз остеопения или остеопороз. С другой стороны, данный пациент, может страдать от любого другого состояния, обладающего способностью вызывать дегенерацию костей, в частности, потерю BMD и/или твердости костей.
Данное изобретение, в частности, полезно тем, что образование удаляет дегенерированный костный материал из локализованного участка, так что в нем может быть обеспечено введение и присутствие материала для регенерации костей. Благоприятно то, что материал для регенерации костей стимулирует образования в нового недегенерированного костного материала. Преимущественно, вновь сформированный костный материал является естественным для организма пациента. Предпочтительно, вновь сформированный костный материал обладает плотностью, которая, по сути, идентична или превосходит плотность нормальной кости. Другими словами, вновь сформированный костный материал обладает плотностью, которая, по сути, идентична плотности кости у человека (предпочтительно той же расы и пола) в возрасте около 30-35 лет. В частных вариантах осуществления данного изобретения это может означать, что вновь сформированный костный материал обладает значением Т-балла при измерении с помощью DEXA более -1, предпочтительно, по меньшей мере, -0,5 или, по меньшей мере, 0. В других вариантах осуществления данного изобретения Т-балл может быть равен от около -0,1 до около 2,0, от около -1,0 до около 1,0, от около -1,0 до около 0,5, от около -1,0 до около 0, от около -0,5 до около 2,0, от около -0,5 до около 1,5, от около -0,5 до около 1,0, от около -0,5 до около 0,5, от около 0 до около 2,0, от около 0 до около 1,5, от около 0 до около 1,0.
В другом варианте осуществления данного изобретения вновь сформированный костный материал может обладать BMD, которая значительно превосходит BMD до проведения лечения (как это демонстрирует увеличение Т-балла), так что пациент рассматривается в качестве обладающего значительным относительным увеличением BMD. Вновь сформированная кость также может обладать сопротивлением на сжатие, которое, по сути, идентично или превосходит ее степень, присущую нормальной кости.
Способы изобретения, в частности, обладают пользой, заключающейся в том, что подвергаемый лечению локализованный участок кости может быть эффективно ремоделирован в течение времени до достижения, по сути, состояния, идентичного нормальной кости (то есть обладающего нормальной BMD и/или нормальным сопротивлением на сжатие и/или нормальным сопротивлением к переломам). Более того, в некоторых вариантах осуществления данного изобретения влияние материала для регенерации костей в плане стимулирования роста новой, естественной кости может, по сути, продолжаться вне границ сформированной . В частности, в соответствии с данным изобретением было обнаружено, что является возможным наличие градиентного эффекта в новом естественном костном материале увеличенной плотности, который может быть образован в первоначально сформированной , однако новый костный материал также может формироваться в зоне кости, смежной по отношению с сформированной . Это, в частности, благоприятно в том отношении, что зона кости, являющейся смежной по отношению к сформированной , также может быть укреплена таким образом, что снижается вероятность возникновения переломов смежных костей.
Как было отмечено, способы данного изобретения могут быть осуществлены по отношению к различным костям в теле млекопитающего. В конкретном полезном варианте осуществления данного изобретения способы изобретения могут быть осуществлены по отношению к кости, находящейся в зоне бедра пациента. Например, далее приводится примерный способ лечения пациента, страдающего дегенеративным костным заболеванием с помощью замены костного материала в локализованном участке бедренной кости пациента, в частности, проксимальной бедренной кости. Хирургический метод включает использование латерального подхода, аналогичного стандартной ядерной декомпрессии или установке бедренного винта. Одним из отличий данного способа является придание формы повреждению или для получения трансплантата (то есть материала для регенерации костей), который впоследствии формирует прочную новую естественную кость для улучшения качества кости в локализованном участке кости, усиления шейки бедра и Треугольника Варда, и снижения риска возникновения перелома. Следующая процедура (являющаяся вариативной в отношении придания формы) может использоваться в других участках метафизарной кости, такой как тело позвонка, дистальный отдел лучевой кости, проксимальный отдел плечевой кости и большая берцовая кость.
Для осуществления данного способа пациент может принять положение лежа навзничь, находясь на рентгенопрозрачном столе. Рентгенологическая поддержка может быть обеспечена с помощью C-arm оборудования и присутствия рентгенолога, обеспечивающего рентгенную навигацию в течение времени проведения процедуры. Как указано выше, может использоваться латеральный подход к проксимальной части бедренной кости. В других вариантах осуществления данного изобретения также может использоваться подход к большому вертелу бедренной кости. Малый дистальный надрез может быть осуществлен в зоне большого вертела бедренной кости, при этом направляющая проволока может быть введена в проксимальную часть бедренной кости при рентгеноскопическом обзоре, осуществляемом в переднезадней (АР) и латеральной проекции. Канюлированное сверло диаметром 5,3 мм может быть введено с помощью направляющей проволоки, достигая при этом головки бедра; при этом может быть сформирован канал, достигающий (и, возможно, выходящий за пределы) зоны образования . Этот канал может быть назван сердцевиной. В альтернативных вариантах осуществления данного изобретения могут использоваться любые методы разбивания слабого, подверженного остеопорозу костного материала, такие как использование зенковочного сверла или кортикального пробойника и тупого обтуратора для создания свободного пространства. Сверло и направляющая проволока могут быть удалены, при этом рабочая канюля может быть введена в сердцевину для формирования хирургически созданного повреждения или . Санирующий зонд может использоваться для создания свободного пространства внутри локализованного участка бедренной кости для имплантации материала для регенерации костей. В частности, данный зонд может обладать точно направленной головкой, соответствующей эндостеальному строению шейки бедра и Треугольника Варда. Придание такой формы для обеспечения полного заполнения шейки и Треугольника Варда обеспечивает наилучшую возможность для осуществления полной регенерации и более высокой твердости кости в целом. Хирургически созданное повреждение (или ), предпочтительно, промывается и аспирируется перед переходом к следующему этапу. Материал для регенерации костей приготавливают, если это необходимо, и инъецируют через длинную канюлю в хирургически созданное повреждение. Инъецирование через канюлю позволяет избежать создания повышенного давления, а также возможного самовентилирования вдоль медуллярного канала. После инъецирования материала для регенерации костей надрез закрывают обычным образом. Преимуществом является то, что данная процедура может выполняться в течение минимального времени для пациента и, предпочтительно, не требует проведения суточной госпитализации (например, требуя только до около 6-8 часов при проведении в клинике, больнице или другом медицинском учреждении). Фиг. 3a-3i являются радиографическими изображениями инъекции материала для регенерации клеток PRO-DENSE® (поставляемого компанией Wright Medical, Adington, TN) в , которая была создана в проксимальной части бедренной кости пациента непосредственно перед осуществлением инъецирования материала для регенерации костей. Как видно на данных изображениях, материал для регенерации костей заполняет через длинную канюлю, которая была первоначально введена в головку бедра (Фиг. 3а), перемещена для полного заполнения (Фиг. 3b - Фиг. 3h) и удалена при достижении заполнения (Фиг. 3i).
Разнообразные вариации вышеупомянутой процедуры могут использоваться в рамках области, охватываемой данным изобретением. Например, Фиг. 4 является увеличенным рентгеновским снимком проксимальной части бедренной кости, изображающим целевую зону, предназначенную для заполнения, любая часть которой может быть заполнена с проведением или без проведения первичной санации данной зоны. Данная фигура также иллюстрирует приблизительное месторасположение и размер исходного канала, который может быть образован при использовании латерального подхода. В частности, Фиг. 4 иллюстрирует расширяющийся в стороны канал, проходящий через проксимальную часть бедренной кости и достигающий головку бедра; штриховка приведена для иллюстрации примерной зоны в проксимальная части бедренной кости, любая часть которой может являться целью в качестве кандидата для удаления костного материала и заполнения материалом для регенерации костей. Далее, в качестве неограничивающих примеров может быть сформирована одна или несколько «стоек» в проксимальной части бедренной кости в качестве ответвлений исходного канала и затем быть заполнены материалом для регенерации костей. Далее, одна или несколько стоек могут обладать одной или несколькими частями, являющимися заметно увеличенными в целях увеличения количества материала для регенерации костей, который помещается внутрь определенного участка кости. Далее, более общий, больший участок проксимальной части бедренной кости может быть обработан и заполнен. Далее, аналогичные варианты данного изобретения также могут быть представлены в свете настоящего описания.
Другая хирургическая методика, которая может быть использована в соответствии с настоящим изобретением, описана ниже применительно к угрожающему атипичному перелому бедра. Данные переломы наиболее часто происходят в проксимальной трети диафиза бедренной кости, но они также могут происходить в любом месте диафиза бедренной кости, от дистального до малого вертела бедренной кости, проксимального надмыщелкового расширения, дистального метафиза бедренной кости.
Данный перелом является атипичным вследствие того, что он обычно возникает не в результате травмы или минимальной травмы, эквивалентной падению с высоты роста или менее значительной высоты. Данный перелом может являться полным, распространяющимся по всему диафизу бедренной кости, часто с образованием срединного шипа, или неполным, соответствующим поперечной рентгенопрозрачной линии в латеральном кортексе.
Далее, в частности, описывается методика введения материала для регенерации костей в тело бедренной кости пациента, в частности, пациента с угрозой возникновения атипичного перелома, например, пациентов, страдающих остеопенией или остеопорозом, путем создания в неповрежденном теле бедренной кости до возникновения атипичного перелома бедренной кости. Первоначальный этап - помещение направляющей спицы - включает образование кожного надреза (например, 1 см), являющегося проксимальным по отношению к кончику большого вертела бедренной кости. Рифленый защищающий ткани рукав с канюлированным центрирующим направляющим и направляющая спица вставляются в кортекс большого вертела бедренной кости. Направляющую спицу продвигают через кортекс большого вертела бедренной кости и далее в зону, которой угрожает перелом диафиза бедренной кости. Глубина и положение направляющей спицы могут контролироваться с помощью рентгеноскопии в обеих плоскостях.
Далее создают повреждение и подготавливают его к инъекции материала для регенерации тканей. В частности, при удержании рифленого протектора тканей на месте, канюлированное центрирующее направляющее извлекают, при этом вставляют канюлированное сверло диаметром 5,3 мм и продвигают его через вертел. Данное сверло затем извлекают, оставляя на месте направляющую спицу и вводят гибкий ример. Данный ример продвигают вдоль направляющей проволоки и далее через вертел, при этом направляющую спицу извлекают. Данный ример затем продвигают в зону, которой угражает возникновение перелома, и извлекают. Рабочую канюлю со троакаром затем вставляют через рифленый протектор тканей и помещают ее внутри кортекса (то есть, добиваясь плотного прилегания). Рифленый протектор тканей и троакар затем удаляют. Инъекционная канюля может быть размещена с помощью рабочей канюли и продвинута в зону перелома бедренной кости, при этом данная канюля может быть использована с отсасыванием в целях удаления любых образованных частиц в бедренной кости. Затем инъецируют материал для регенерации костей, предпочтительно при проведении мониторинга (например, с помощью рентгеноскопии). Время, необходимое для инъецирования, как правило, занимает около 2-4 минут для достижения оптимального заполнения. Инъекционную и рабочую канюлю затем удаляют. Мягкие ткани затем могут быть подвергнуты ирригированию, а кожу закрывают с помощью подходящих для этого средств (например, с помощью наложения швов).
Другое описание хирургической методики, которая может быть использована в соответствии с настоящим изобретением, описана ниже в отношении дистального отдела лучевой кости. Далее приводится, в частности, описание методики ввода материала для регенерации костей в дистальный отдел лучевой кости у пациентов, страдающих остеопенией или остеопорозом, с помощью создания в неповрежденном дистальном отделе лучевой кости перед образованием любого перелома, связанного с хрупкостью. Для выполнения данной методики рука пациента может быть расположена на рентгенопрозрачном столе ладонью вверх. Рентгенологическая поддержка может быть обеспечена с помощью C-arm оборудования и присутствия рентгенолога, обеспечивающего рентгенную навигацию в течение времени проведения процедуры. Для формирования отверстия для инъецирования совершается надрез длиной 1 см2 по средней линии радиального стилоида, а подкожная ткань рассекается вдоль надкостницы между первым и вторым тыльным разгибательным компартментом. Проволоку Киршнера вводят при рентгеноскопическом контроле на 3-4 мм проксимально линии лучезапястного сустава и центрируют (от тыльной до ладонной стороны) в радиальном стилоиде. Канюлированное сверло используют для сверления метафиза дистального отдела лучевой кости. Санирующий зонд может быть использован для создания свободного пространства в локализованном участке дистального отдела лучевой кости для имплантации материала для регенерации костей. В частности, данный зонд может обладать точно изогнутой головкой для соответствия эндостеальному строению дистального отдела лучевой кости. Хирургически созданное повреждение, предпочтительно, промывают и аспирируют перед осуществлением следующего этапа. Материал для регенерации костей готовят, если это необходимо, и инъецируют через канюлю в хирургически созданное повреждение. После инъецирования материала для регенерации костей разрез закрывают с помощью стандартного способа. Данная хирургическая методика не рассматривается в качестве требующей госпитализации пациента, что позволяет проводить более благотворное лечение дегенерации костей с минимальным периодом нетрудоспособности пациента. Фиг. 5а-5с иллюстрируют определенные этапы хирургической методики, описанной выше. Фиг. 5а иллюстрирует формирование доступа к метафизу дистального отдела лучевой кости. Фиг. 5b иллюстрирует механически сформированную в дистальном отделе лучевой кости. Фиг. 5с иллюстрирует локализованный участок лучевой кости после заполнения материалом для регенерации костей.
Другое описание хирургической методики, которая может быть использована в соответствии с настоящим изобретением, дано ниже в отношении позвонков. Следующая методика включает использование надуваемого тампона (или надувного баллонообразного тампона), такого как производимые компанией Kyphon, Inc (теперь являющейся подразделением компании Medtronic, Inc.). Таким образом, как далее описано здесь, некоторые способы в соответствии с настоящим изобретением могут являться усовершенствованиями кифопластической методики. В других вариантах осуществления, теме не менее, методики замены дегенеративных костей в позвонках могут, по сути, являться аналогичными по своей природе методикам, описанным выше в отношении проксимальной части бедренной кости и дистального отдела лучевой кости. Известное различие между известными методиками лечения переломов позвонков заключается в том, что способы настоящего изобретения могут осуществляться по отношению к позвонку до возникновения компрессионного перелома позвонка (или любого другого типа перелома).
В примерных хирургических методиках замены дегенеративной кости в позвонке пациент может быть расположен на рентгенопрозрачном столе в положении лежа. Рентгенологическая поддержка может быть обеспечена с помощью оборудования C-arm и присутствия рентгенолога, обеспечивающего рентгенную навигацию в течение времени проведения процедуры. После фиксирования позвонка, подвергаемого лечению, и связанных с ним ножек в рентгенологическом аппарате в прямой проекции может быть осуществлен малый кожный надрез (около 1 см) на передней или поясничной стороне, в которую вводят иглу для костной биопсии размером 11/13 гаудж через заднюю часть ножек под наклоном спереди медиально в нижней части. Подход в данном примерном способе является двусторонним. Непосредственно при подтверждении достижения иглой необходимого положения вводят проволоку Киршнера. Наконечник сверла продвигают в стенку в нескольких миллиметрах от переднего края кортекса для формирования внутрипозвонкового канала в кости для последующего прохода надувного баллонообразного тампона.
Далее, при осуществлении рентгеноскопического контроля в латеральной проекции, зонд осторожно проталкивают вперед и помещают в передних двух третях позвонка. Он может обладать длиной от 15 до 20 мм, при максимальном объеме, соответственно, от 4 до 6 мл. Непосредственно при подтверждении достижения баллонообразными тампонами необходимого положения в позвонках, недоразвитых с одной стороны, с помощью двух рентгеноконтрастных меток, расположенных в крайних точках (проксимальных и дистальных), данные тампоны обрабатывают жидкостью, содержащей 60% рентгеноконтрастного вещества, достигая подъема вышележащих позвонковых концевых пластинок и создания внутренней полости с помощью компрессии окружающей губчатой кости. Надувание прекращают, когда образуется свободное пространство, при контакте с кортикальной соматической поверхностью или при достижении максимального давления (220 пси), или при достижении расширения баллонообразного тампона. Хирургически созданная затем может быть промыта и подвергнута аспирированию.
Материал для регенерации костей может быть приготовлен как необходимо. Материал для регенерации костей затем загружают в отдельные канюли и двигают вперед через рабочую канюлю до обеспечения сообщения с передней третью . Немедленно после этого материал для регенерации костей проталкивают при небольшом давлении с помощью плунжерного стилета при продолжительном рентгеноскопическом контроле. Заполняющий объем обычно на 1-2 мл больше, чем объем , полученный с помощью баллонообразного тампона, что позволяет материалу для регенерации костей эффективно распределиться. Для завершения процедуры все канюли извлекают, кожные надрезы зашивают, а пациенту может быть сообщено о необходимости оставаться в постели в течение следующих нескольких часов. Продолжительность процедуры для каждого позвонка, подвергающегося лечению, как правило, составляет около 35-45 минут. Традиционное радиографическое обследование может быть осуществлено после процедуры для оценки полученных результатов. Фиг. 6а-6с иллюстрируют определенные этапы примерной процедуры по замене кости в позвонке. Фиг. 6а иллюстрирует двусторонний ввод баллонообразного тампона в позвонок, подвергающийся лечению. Фиг. 6b иллюстрирует формирование баллонообразным тампоном в позвонке. Фиг. 6с иллюстрирует удаление баллонообразных тампонов при одновременном заполнении сформированной в позвонке материалом для регенерации костей.
Несмотря на то, что способы изобретения могут быть охарактеризованы в рамках лечения пациента, страдающего дегенеративным заболеванием костей (таким как остеопения или остеопороз), данное изобретение далее может быть охарактеризовано в связи со способностью, в частности, изменять локализованные участки кости таким путем, как улучшение BMD, улучшение качества костей, увеличение прочности костей, улучшение естественной структуры костей и им подобным. Данное изобретение также может быть охарактеризовано в отношении способности обеспечивать ремоделировать локализованных участков костей, включая получение значительно большей плотности в локализованном участке кости, которая постепенно снижается, достигая нормального уровня BMD.
В определенных вариантах осуществления данное изобретение может быть охарактеризовано в качестве предусматривающего различные способы улучшения качества костей в локализованном участке кости. Качество костей может быть охарактеризовано, в частности, на основе BMD, которая может быть оценена на основе величины Т-балла, полученного с помощью проведения DEXA. Качество костей также может относиться, в большей степени, в целом, к общей структуре костного материала на основе степени образования костного каркаса. Далее, качество костей может, в частности, относиться к твердости костей - то есть к сопротивлению на сжатие.
Специфичная механическая твердость костей в отношении естественного костного материала или костного материала, регенерированного в хирургически образованных повреждениях (включая данные повреждения у пациентов, страдающих остеопенией или остеопорозом) в настоящее время не может быть непосредственно измерена у живых субъектов в связи с тем, что данное тестирование в настоящее время требует удаления значительных сегментов костей. Таким образом, прямое изменение механической твердости кости может осуществляться исключительно с помощью посмертных исследований, осуществляемых в клинических условиях. Тем не менее, исследования говорят об ожидающемся значительном увеличении твердости наряду с сопутствующим увеличениями BMD, как описано здесь. Далее ожидается дальнейшее улучшение свойств костей, таких как объем костей, трабекулярная толщина, трабекулярное количество, разделение трабекул, результаты измерений взаимосвязности и толщины кортикальной стенки. Подтверждающее доказательство данного увеличения механической твердости приводится в приложенных Примерах в отношении исследования на собаках, в котором сопротивление на сжатие и количество кальцинированной кости были напрямую измерены у эксплантированных образцов регенерированной кости после 13 и 26 недель после кавитирующей и заполняющей процедур согласно настоящему изобретению. После 13 недель сегменты кости, включая регенерированный костный материал, показывали значительное увеличение количества кальцинированной кости в размере 172% по сравнению с нормальной костью, забранной из того же анатомического участка при измерении с помощью количественной гистологии. Сопутствующее увеличение сопротивления на сжатие кости, содержащей регенерированный костный материал, по сравнению с сопротивлением на сжатие естественной кости составляло 283%. Спустя 26 недель после проведения операции вновь сформированный костный материал обеспечивал осуществление ремоделирования, приводящее к постепенному возврату к архитектуре нормальной кости и ее свойствам. Увеличение содержания кальцинированной кости в размере 24%, установленное с помощью проведенного гистологического анализа (также по сравнению с естественной костью), соответствовало сопротивлению на сжатие, которое было на 59% выше нормальных значений. Также необходимо отметить, что было отмечено увеличение плотности при проведении радиографии, что соответствует количественным результатам, полученным с помощью проведенной гистологии.
Клиническое доказательство увеличения BMD у человеческих субъектов приводится в приложенных Примерах и рассматривается как поддерживающее заключение о том, что увеличение BMD действительно может коррелировать с увеличением механической прочности костей, в частности, сопротивления на сжатие. Кратко говоря, было выполнено исследование с использованием 12 пациентов (людей), каждый из которых считался страдающим остеопорозом в рамках определения Всемирной Организации Здравоохранения (ВОЗ). Одно бедро каждого пациента было подвергнуто лечению в соответствии с настоящим изобретением, в то время как противоположное бедро не подвергалось лечению в целях сравнения. BMD измеряли в обоих бедрах с помощью DEXA до проведения лечения (для использования в качестве контроля) и через предопределенные интервалы, включающие 6, 12 и 24 недели. Средняя BMD шейки бедра увеличилась на 120%, 96% и 74% соответственно, на каждом интервале по сравнению с контролем. Средняя BMD зоны Варда увеличилась на 350%, 286%) и 189% соответственно, на каждом интервале по сравнению с контролем. Состояние двух пациентов далее оценивали через 24 месяца после окончания исследования. Данные два пациента обладали средним увеличением BMD в размере 15% (в участке шейки бедра) 133% (в зоне Варда) в конце исследования. Процентные значения на данном уровня говорят о том, что трансплантатный материал был ресорбирован и замещен новым костным материалом, как это наблюдалось в исследовании на собаках. В не подвергнутых лечению зонах заметных изменений при проведении оценки BMD по сравнению с контролем не было.
На сегодняшний день не существует известных исследований, подтверждающих, что увеличение BMD и увеличение прочности в подвергнутой остеопорозу кости человека могут в точности коррелировать с теми же значениями, получаемыми при измерении у здоровых собак. Тем не менее, значительное увеличение обоих свойств в исследовании на собаках, а также увеличение BMD, измеряемой при проведении клинических исследований, являются сильным доказательством связанности увеличения прочности костей в отношении человеческих костей, подвергнутых остеопорозу, подвергающихся лечению в соответствии описанными способами.
Качество костей также может быть связано со способностью костей сопротивляться возникновению перелома. Таким образом, варианты осуществления данного изобретения, которые могут быть охарактеризованы как относящиеся к увеличению качества костей, могут, в частности, охватывать улучшение структуры костей таким образом, что подвергающийся лечению участок кости обладает сниженным риском возникновения перелома по сравнению с риском пререлома до осуществления лечения (например, в том случае, если пациент страдает остеопеническим или остеопорозным заболеванием).
Низкий уровень BMD является одним из наиболее значимых факторов риска образования переломов, вызванных хрупкостью. Кроме того, ухудшение архитектуры губчатой кости является фактором, вносящим вклад в хрупкость костей. Таким образом, в то время как остеопороз традиционно определяли в качестве заболевания, характеризующегося недостатком твердости костей, далее он должен быть определен как заболевание, связянное с низкой плотностью костей и ухудшением качества костей. Несмотря на то, что измерение BMD является мощным клиническим инструментом и «золотым стандартом» определения костной массы, качество костей также в значительной степени определяется костным метаболизмом и микроархитектурой. В тех случаях, когда данные свойства костей ухудшаются (например, при истончении трабекул и потере связанности), существует связанное с этим увеличение хрупкости костей и риска возникновения переломов.
Различные неинвазивные способы могут применяться для исследования микроархитектуры, включая (без ограничения): периферическую количественную компьютерную томографию (pQCT) в высоком разрешении, ультрабыструю компьютерную томографию (uCT) и функциональную магнитно-резонансную томографию (fMRI). Изображения, полученные с помощью данных методов, могут использоваться для различения кортикальных костей и губчатой кости, а также визуализации мелких деталей трабекулярной микроархитектуры, изучаемой до этого исключительно с помощью проведения инвазивной биопсии. Результаты, полученные с помощью компьютерной томографии (и также MTI) могут являться компьютерно-смоделированными с помощью анализа методом конечных элементов (FEA) для оценки жесткости костей. Каждый из этих способов может применяться для оценки архитектуры кости. Данные исследования архитектуры включают измерение костного объема, трабекулярной толщины, трабекулярного количества, разделения трабекул, измерения взаимосвязанности и толщины кортикальной стенки.
В связи с развитием технологии также развивается и степень детализации результатов, получаемых с помощью компьютерного программного обеспечения. pQCT и FEA могут использоваться совместно для определения точки начала будущего перелома и его потенциала при определенной нагрузке. Данный анализ также известен как биомеханическая компьютерная томография (ВСТ). При использовании наряду с традиционными методами исследований, такими как всестороннее испытание на животных, изучение остеопороза на животных или трупное биомеханическое исследование, ВСТ может использоваться для определения будущего потенциала возникновения перелома у пациента - включая риск возникновения перелома в результате падения - и обеспечивать получение информации, необходимой для оценки степени улучшения качества костей у живого пациента без необходимости осуществления инвазивной биопсии. В связи с количественным характером оценки ВСТ может ограничивать критерии включения/исключения для любого исследования, поскольку она фокусируется на качестве костей пациента. Также продолжительность любого исследования может быть потенциально снижена, поскольку требуются только определенные подмножества пациентов, находящихся «под угрозой» по сравнению с пациентами, «рассматриваемыми в качестве находящихся под угрозой». Кроме того, ВСТ может снижать потребность в конечной точке, такой как перелом бедра в целом, что имеет высокую связь со смертностью, для определения положительного эффекта проведенного лечения.
Таким образом, в определенных вариантах осуществления данного изобретения подтверждение улучшения качества костей в соответствии с данным изобретением может быть получено с помощью применения ВСТ-анализа к имплантированному костному матриксу, как описано выше, наряду с другими признанными научными исследованиями качества костей. Объединенные результаты могут быть использованы для анализа изменения плотности костей и качества костей в течение времени, и, таким образом, демонстрировать общее снижение риска возникновения переломов после проведения лечения в соответствии с данным изобретением по сравнению с состоянием естественной кости до проведения лечения (то есть в то время, когда данная кость находится в остеопеническом или остепорозном состоянии). Используя данные методы, появляется, таким образом, возможность, оценить риск возникновения перелома до и после проведения лечения в соответствии с данным изобретением, и, на основе данных оценки, продемонстрировать способность данного изобретения снижать восприимчивость к переломам или повышать сопротивляемость к переломам. Например, вероятность возникновения перелома может быть измерена аналогично оценке Т-балла BMD таким образом, что балл, равный около 0, соответствует риску возникновения перелома, аналогичному риску у среднего здорового человека в возрасте около 30 лет (возможно даже с учетом данных о поле, расе и/или национальности, если подтверждение говорит о том, что данные факторы должны приниматься во внимание). Отрицательный балл может соответствовать степени риска возникновения перелома, являющейся большей, чем у среднего здорового человека с возможным увеличением риска при получении более отрицательных значений (например, величина балла, равная -2, соответствует более значительному риску образования перелома, чем величина балла, равная -1). Положительное значение балла может соответствовать тому, что риск возникновения перелома менее, чем у среднего здорового взрослого человека с возможным снижением риска при получении более положительных значений (например, величина балла, равная 2, соответствует менее значительному риску образования перелома, чем величина балла, равная 1).
В определенных вариантах осуществления данного изобретения способ улучшения качества костей в локализованном участке кости может включать замещение объема дегенерированной кости с Т-баллом, равным менее -1,0, вновь образованным естественным костным материалом с Т-баллом, равным более -1,0. Предпочтительно, Т-балл кости с вновь образованным естественным костным материалом равен, по меньшей мере, -0,5, по меньшей мере, 0,5, по меньшей мере, 1,0. В определенных вариантах осуществления данного изобретения Т-балл кости, подвергающейся лечению, может превосходить Т-балл дегенерированной кости на, по меньшей мере, 0,5 единиц, на, по меньшей мере, 1,0 единиц, на, по меньшей мере, 1,5 единиц, на, по меньшей мере, 2,0 единиц, на, по меньшей мере, 2,5 единиц, на, по меньшей мере, 3,0 единиц. В вариантах осуществления данного изобретения, в которых Т-балл подвергающейся лечению кости превосходит Т-балл дегенерированной кости на, по меньшей мере, определенную величину, может являться необязательным превышение значения Т-балла определенного минимума, поскольку увеличение BMD, подтвержденное увеличением Т-балла, отражает достаточно значительное улучшение качества кости для использования у пациента (например, при трансформации кости в локализованном участке с переходом от серьезной степени остеопороза к средней степени остеопороза или от остеопорозного к остеопеническому состоянию).
В способе улучшения качества костей этап замещения может включать образование в локализованном участке кости с помощью расчистки дегенеративного костного материала в данном участке и, необязательно, удаления содержимого дегенеративного костного материала. Данный способ далее может включать, по меньшей мере, частичное заполнение образованной материалом для регенерации костей, способствуя, таким образом, росту нового естественного костного материала в образованной .
В некоторых вариантах осуществления данного изобретения возможность замены дегенеративного костного материала костным материалом улучшенного качества, в частности, может возникать вследствие полезных качества материала для регенерации костей, который используется для заполнения образованной в кости. Предпочтительно, материал для регенерации костей является материалом, как описано здесь, который обеспечивает надежную, последовательную резорбцию организмом в степени, в значительной мере аналогичной степени образования организмом нового костного материала. Например, может, в частности, являться особенно полезным использование материала, описанного здесь, который обеспечивает мультифазный профиль резорбции in vivo, который может оптимизировать рост новой кости. Данные материалы могут являться двухфазным (то есть включающими, по меньшей мере, два различных материала, которые ресорбируются в различной степени in vivo), трехфазными (то есть включающими, по меньшей мере, три различных материала, которые ресорбируются в различной степени in vivo) или могут включать даже большее количество различных материалов, которые ресорбируются в различной степени in vivo.
В определенных вариантах осуществления данного изобретения материал для регенерации костей может включать сульфат кальция в качестве компонента первой фазы, который быстро ресорбируется, как правило, путем простого растворения, брушит (CaPO4) в качестве компонента второй фазы, который подвергается остеобластной резорбции (а также простому растворению) и трикальцийфосфат в качестве компонента третьей фазы, который подвергается, в основном, остеобластной резорбции. Любой материал, обладающий данным трехфазным профилем резорбции, может использоваться в соответствии с данным изобретением. Изменения, происходящие с течением времени в материале для регенерации костей, обладающим данным типом структуры, который позволяет осуществлять контролируемый рост нового костного материала, приведены на Фиг. 7а - 7е. Указанные фигуры иллюстрируют растворение трансплантата в ускоренной in vitro модели, являющееся приблизительно в шесть раз более быстрым, чем растворение, наблюдаемое in vivo в модели с собаками. Более детальное описание профиля резорбции материала для регенерации костей в отношении Фиг. 7а - 7е приведено в Примерах ниже.
Хотя все фазы мультифазного материала могут обнаруживать некоторую степень резорбции вскоре после размещения трансплантата, мультифазный ресорбирующийся материал может быть описан как материал, первую фазу которого составляет резорбция первого материала (например, материала, состоящего из сульфата кальция) до окончания большей части первой фазы, вторую фазу которого составляет резорбция второго материала (например, брушита), а любые дальнейшие фазы которого могут быть описаны как период времени, в течение которого ресорбируются оставшиеся части материала(ов) трансплантата (например, гранулированный TCP). Определенные периоды времени, необходимые для завершения резорбции каждой фазы, могут зависеть от определенных используемых материалов и размера повреждения.
Ангиогенез является ключевым ранним событием, происходящим в течение первой фазы резорбции, поскольку, в связи с тем, что материал, состоящий из сульфата кальция, ресорбируется, начинается пористая вторая фаза, способствующая васкулярной инфильтрации. Пористая вторая фаза также может образовывать связи со свободными белками, такими как VEGF и ВМР-2 в месте имплантации/образования повреждения. Резорбция второй фазы затем может высвобождать связанные белки, способные привлекать клетки к поверхности имплантата. Факторы роста в зоне имплантации могут стимулировать пролиферацию и дифференциацию мезенхимных стволовых клеток. Соответственно, дифференцированные остеобласты выстилают остеоид, который затем осуществляет минерализацию для превращения в новую грубоволокнистую кость. Принципы Закона Вольфа затем могут позволить запустить процесс ремоделирования вновь образованного костного материала. Это, далее, является полезным для пациента в отношении того, что укрепление участков, таких как бедро, склонных к возникновению переломов, может обеспечивать уверенность у пациента, приводящую к большему количеству движений и упражнений, что, в свою очередь, может оказывать положительное влияние на общее качество костей и общее здоровье.
В других вариантах осуществления данное изобретение предусматривает способы увеличения BMD в локализованном участке кости. Данный способ может включать образование в локализованном участке кости, например, образованной с помощью расчистки нативного дегенерированного костного материала в локализованном участке в соответствии с данным изобретением с помощью подходящего способа из описанных здесь. Расчищенный нативный костный материал, необязательно, может быть удален из образованной . Образованную затем, по меньшей мере, частично заполняют материалом для регенерации костей, как описано здесь. Материал для регенерации костей, заполняющий , может вызвать образование нового костного материала внутри , при этом плотность вновь образованного костного материала выше, чем плотность дегенерированного нативного костного материала, который был вычищен для образования в кости.
Увеличение BMD может быть обнаружено с помощью сравнения результатов оценки BMD в локализованном участке кости до удаления дегенерированного нативного костного материала и после образования нового костного материала внутри образованной . Например, при использовании DEXA является предпочтительной величина Т-балла, характерного для прочности образованного костного материала внутри , по меньшей мере, на 0,5 единиц большая значения Т-балла дегенерированного нативного костного материала до проведения расчистки в целях образования . В других вариантах осуществления данного изобретения Т-балл может быть увеличен на, по меньшей мере, 0,75 единиц, на, по меньшей мере, 1,0 единицу, на, по меньшей мере, 1,25 единиц, на, по меньшей мере, 1,5 единиц, на, по меньшей мере, 1,75 единиц, на, по меньшей мере, 2,0 единиц, на, по меньшей мере, 2,25 единиц, на, по меньшей мере, 2,5 единиц, на, по меньшей мере, 2,75 единиц, на, по меньшей мере, 3,0 единицы. В других вариантах осуществления данного изобретения величина Т-балла дегенерированной нативной кости до образования в локализованном участке кости, в частности, может лежать в диапазоне, свидетельствующем о наличии остеопении или остеопороза, а увеличение BMD может являться достаточным для того, чтобы локализованный участкой кости более не характеризовался в качестве подверженного остеопении или остеопорозу. Например, до образования BMD в локализованном участке кости может составлять менее -1,0, менее -1,5, менее -2,0, менее -2,5, менее -3,0, менее -3,5, менее -4,0. В данных вариантах осуществления изобретения BMD может быть снижена, так что величина Т-балла находится, по меньшей мере, на минимальном уровне. Например, BMD может быть снижена, при этом величина Т-балла равна более -1,0 или, по меньшей мере, -0,75, по меньшей мере, -0,5, по меньшей мере, -0,25, по меньшей мере, 0, по меньшей мере, 0,25, по меньшей мере, 0,5, по меньшей мере, 0,75, по меньшей мере, 1,0. В других вариантах осуществления данного изобретения BMD в локализованном участке кости может быть увеличена, так что величина Т-балла в локализованном участке кости может лежать в диапазоне, подтверждающим снижение BMD до приемлемого нормального диапазона. Например, величина Т-балла может лежать в диапазоне от более -1 до около 2,0, от около -0,5 до около 2,0, от около 0 до около 2,0, от около -1,0 до около 1,0, от около -0,5 до около 1,0, от около -0,5 до около 0,5 или от около 0 до около 1,0. В определенных вариантах осуществления данного изобретения величина Т-балла нативного костного материала до или при расчистве для образования может составлять менее -1,0, при этом сформированный костный материал в образованной может обладать величиной Т-балла от, по меньшей мере, -0,5 до, по меньшей мере, 0. Это означает, что локализованный участок кости до проведения лечения может рассматриваться как менее подверженный остеопении, и что локализованный участок кости после образования новой кости в может рассматриваться в качестве обладающего BMD, по сути, идентичной нормальной BMD у человека того же пола и расы в том же возрасте пиковой BMD. Как описано выше, увеличение BMD может являться достаточным для подтверждения связанного улучшения BMD в локализованном участке.
Кроме способности вызвать образование новых естественных костей, обладающих нормальной плотностью, данное изобретение позволяет поддерживать улучшение BMD в течение продолжительного периода времени. Как описано выше, было неожиданным обнаружить, в соответствии с данным изобретением, что вновь сформированный костный материал у пациента с остеопорозом не обладает остеопорозным качеством, но, по сути, обладает качеством, ожидаемым у пациента того же пола и расы в возрасте достижения BMD своего пика. Таким образом, было обнаружено, что способы данного изобретения полезны для полного восстановления качества костей в локализованном участке, подвергающемся лечению, до достижения пикового состояния (или нормального состояния). Более того, на данное восстановление в локализованном участке кости, как представляется, не влияет общий остеопорозный статус пациента. Другими словами, улучшенная BMD не является временным явлением, таким что вновь образованный костный материал быстро дегенерирует до достижения им остеопорозного состояния, связанного с общим статусом пациента. С другой стороны, вновь образованный костный материал, как представляется, обладает всеми характеристиками, связанными с восстановлением в плане того, что вновь образованный костный материал обнаруживает естественное снижение BMD, как это продемонстрировано на Фиг. 1. Например, как это видно на Фиг. 1, бедро белой женщины в возрасте 70 лет, подверженной типичному снижению BMD, может обладать BMD около 775 мг/см2. После лечения в соответствии с настоящим изобретением локализованный участок бедренной кости может быть восстановлен до достижения нормального уровня BMD - например, около 950 мг/см2 (или типичной BMD в возрасте 30 лет). Спустя 10 лет дополнительного типичного снижения BMD тот же пациент, как ожидается, обладает средней BMD около 700 мг/см2 (то есть типичным снижением BMD, происходящим в возрасте между 70 и 80 годами). Тем не менее, ожидается, что костный материал в локализованном участке бедра, подвергающийся лечению в соответствии с данным изобретением, будет обладать BMD около 930 мг/см2 (то есть типичным снижением BMD, происходящим в возрасте между 30 и 40 годами). Конечно, является очевидным, что вышеупомянутое является лишь примерной характеристикой, основанной на средних значениях, и что ожидается, что непосредственные значения у пациентов могут варьироваться. Таким образом, подтверждается, что способы данного изобретения не являются временным решением, но способны обеспечивать долговременные увеличения BMD, поскольку костный материал, образованный с помощью способов данного изобретения, обладает эффектом восстановления до достижения пикового состояния и затем сохраняется в течение типичного, естественного снижения плотности, сопутствующего старению (то есть не снижается в ускоренном темпе до достижения системного остеопорозного состояния у пациента).
В свете данной характеристики изобретения, определенные варианты осуществления данного изобретения могут подразумевать поддержание увеличенной BMD в течение определенного периода времени. Например, увеличение BMD в локализованном участке кости может поддерживаться в течение времени, равного, по меньшей мере, 6 месяцев, по меньшей мере 1 году, по меньшей мере, 18 месяцев, по меньшей мере, 2 годам, по меньшей мере, 3 годам, по меньшей мере, 4 годам, по меньшей мере, 5 годам или даже дольше. Измерение времени может осуществляться от момента формирования нового костного материала в образованной . Предпочтительно, поддержание увеличенной BMD включает поддержание значения Т-балла более 1,0, более -0,5, более 0 или более 0,5. В других вариантах осуществления данного изобретения поддержание увеличенной BMD включает поддержание значения Т-балла, лежащего в диапазоне более от -1,0 до 1,0, от -0,5 до 1,0 или от -0,5 до около 0,5. Таким же образом, данное увеличение может быть охарактеризовано как процентное увеличение относительно кости, не подвергнутой лечению. Таким образом, кость, подвергаемая лечению, может обладать увеличенной BMD в течение любых периодов времени, указанных выше, при этом данное увеличение BMD может быть, по меньшей мере, на 10% больше, по меньшей мере, на 15% больше, по меньшей мере, на 20% больше, по меньшей мере, на 25% больше, по меньшей мере, на 30% больше, по меньшей мере, на 35% больше, по меньшей мере, на 40% больше, по меньшей мере, на 45% больше, по меньшей мере, на 50% больше, по меньшей мере, на 60% больше, по меньшей мере, на 70% больше, по меньшей мере, на 80% больше, по меньшей мере, на 90% больше, чем BMD не подвергшейся лечению кости у того же субъекта.
Данные способы увеличения BMD, кроме того, обладают преимуществом, заключающимся в том, что увеличение BMD в локализованном участке кости может осуществляться вне пределов , созданной в кости. Как видно на Фиг. 2а и Фиг. 2b, костный материал является по своей природе пористым и при этом состоит из наборов связанных сетей каркасообразующего материала, образованных костными клетками. В здоровой кости данная сеть является плотно сформированной для обеспечения плотного прочного каркасообразующего материала. В остеопорозной кости данная сеть начинает деградировать, каркас истончается, слабеет и даже разваливается на части, а пористость кости увеличивается. Не желая быть связанными теорией, считают, что в связи с данной природой остеопорозной кости, заполнение образованной в кости в соответствии с настоящим изобретением может обеспечивать заполнение материалом для регенерации костей частей кости в зонах, прилегающих к образованной . Таким образом, в то время как новый нормальный костный материал формируется внутри образованной одновременно с резорбцией организмом материала для регенерации костей, данный новый нормальный костный материал также образуется в зонах кости, прилегающих к образованной в результате распространения материала для регенерации костей за пределы заполненной . Более того, данное образование нового здорового костного материала вне образованной может возникать в результате возросшей биологической активности, затрагивающей факторы роста и цитокины в данном месте, что ускоряет биологическую активность вне пределов . В некоторых вариантах осуществления это даже может приводить к созданию градиентного эффекта, при котором плотность костного материала в локализованном участке кости, подвергающейся лечению в соответствии с данным изобретением, находится на низком уровне вне и вне любого места, в которое может проникать материал для регенерации костей, а плотность костного материала постепенно увеличивается при приближении к зоне образованной . Градиентный эффект, таким образом, может быть выявлен, например, в следующем примере остеопорозной кости: костный материал непосредственно в той зоне, где была образована , может обладать нормальной или повышенной плотностью (например, Т-баллом от около 0 до 1); костный материал непосредственно прилегающий к зоне образованной может также обладать, по сути, нормальной плотностью, хотя и меньшей по сравнению с внутренней зоной, где была образована (например, при Т-балле от около -0,5 до 0,5); костный материал где-то далее от образованной может обладать увеличенной плотностью, хотя и меньшей, чем костный материал непосредственно рядом с образованной пустотой (например, Т-баллом от около -2 до -1); а костный материал, расположенный еще дальше от образованной , может обладать первоначальной, свойственной остеопорозу плотностью (например, Т-баллом менее -2,5). Конечно, упомянутое выше является исключительно примерным описанием градиентного эффекта, при этом реальные величины Т-балла и расширение степени влияния относительно эффективной дистанции от образованной могут варьироваться в зависимости от непосредственной плотности кости в течение времени проведения процедуры, типа используемого материала для регенерации костей и усилие, при котором материал для регенерации костей распределяется в образованной и, таким образом, может распространяться за ее границы. Это далее иллюстрируется на Фиг. 8, которая демонстрирует 13-недельный макроскопический образец проксимального отдела плечевой кости собаки после ввода имплантата, образованного из материала для регенерации костей в соответствии с настоящим изобретением. Данная фигура иллюстрирует образование плотной, губчатой кости в месте размещения имплантата и выхода нового костного материала за пределы границ первоначального повреждения, что отмечено пунктирной линией.
В других вариантах осуществления данного изобретения способы изобретения могут быть охарактеризованы по отношению к определенному профилю BMD, выявленному в локализованном участке кости. Как указано выше, было обнаружено, что способы данного изобретения не только обеспечивают восстановление вновь образованного костного материала вплоть до достижения нормальной плотности, но также способны вызвать значительное увеличение плотности в локализованном участке кости до достижения по сути нормальной плотности. Это может быть охарактеризовано как ремоделирование кости в локализованном участке в соответствии с определенным профилем плотности.
В некоторых вариантах осуществления, данные способы создания определенного профиля BMD в локализованных участках кости могут включать образование в локализованном участке кости с помощью расчистки дегенерированного костного материала в данном участке и, необязательно, удаления содержимого вычищенного дегенерированного костного материала. Несмотря на то, что удаление костного материала из в течение или после образование не является обязательным, в некоторых вариантах осуществления данного изобретения может являться желательным частичное или полное удаление дегенерированного костного материала из для максимизации количества материала для регенерации костей, которое может быть помещено в . В соответствии с этим после образования данные способы могут далее включать, по меньшей мере, частичное заполнение образованной материалом для регенерации костей, так что внутри данной образуется новый костный материал с течением времени.
Одновременно с образованием нового костного материала в , часть всего материала для регенерации костей может быть ресорбирована организмом. В частности, может развиваться рост новой кости, в частности, вне или внутри образованной в степени по сути идентичной степени резорбции организмом материала для регенерации костей.
Важным является то, что вновь сформированный костный материал в образованной может быть точно охарактеризован как естественный костный материал (по отношению к пациенту), так, что образование костного материал возникает в результате инфлюкса остеоцитов у проходящего лечение пациента и он не является аллогенной или экзогенной костью. Таким образом, не существует малой или полной вероятности провоцирования иммунного ответа материалом для регенерации костей, что может ограничить эффективность лечения, связанного с замещением костей.
Что касается определенного профиля BMD, последующие оценки BMD, осуществляемые в течение времени, такие как последующая DEXA, могут обеспечить получение замедленного профиля BMD в локализованном участке кости, возникающего в результате имплантации материала для регенерации костей. Профиль BMD, полученный в соответствии с настоящим изобретением, является, в частности, неожиданным в связи с тем, что использование материала для регенерации костей в хирургически созданной вызывает изменение в локализованном участке кости, так что BMD первоначально достигает своих пиков значительно чаще, чем нормальная кость, и затем ремоделируется с течением времени с образованием нового костного материала, такого, что плотность локализованного участка кости, подвергающейся лечению в соответствии с настоящим изобретением, достигает практически нормальных значений. Природа профиля BMD, достигнутого согласно некоторым вариантам осуществления настоящего изобретения, показана на Фиг. 9, где BMD в виде Т-балла, полученного с помощью DEXA, приведена в виде временной функции, при этом значение времени 0 соответствует времени образования и
имплантации материала для регенерации костей. Фиг. 9 иллюстрирует профиль, при этом локальная BMD кости, подвергающейся лечению в соответствии с данным изобретением, такова, что кость рассматривается в качестве остеопенической или остеопорозной (то есть обладающей значением Т-балла менее -1 или менее -2,5). Прерывистая линия, показанная перед значением времени 0 означает, что непосредственная BMD, которая определяется Т-баллом, может обладать любым значением ниже установленного предела (например, менее -1, менее около -2,5 и так далее). При замещении (при нулевом значении времени) дегенерированной кости в локализованном участке материалом для регенерации костей BMD в локализованном участке начинает быстро увеличиваться, достигая максимальной плотности. Как показано на связанном с этим графике на Фиг. 9, максимальная плотность, соответствующая значениям Т-балла более около 5, достигается в течение времени от около 1 недели до около 13 недель. Непрерывная линия на Фиг. 9 иллюстрирует данное быстрое увеличение BMD, а пунктирная линия со значениями Т-балла более 5 показывает, что максимальный Т-балл может достигать значений более 5 и, как правило, в течение времени, ограниченного пунктирной линией. В определенных вариантах осуществления данного изобретения максимальное достигаемое значение Т-балла в соответствии с определенным профилем BMD равно, по меньшей мере, 2,0, по меньшей мере, 3,0, по меньшей мере, 4,0, по меньшей мере, 5,0, по меньшей мере, 6,0, по меньшей мере, 7,0, по меньшей мере, 8,0, по меньшей мере, 9,0 или, по меньшей мере. 10,0. Время достижения максимальной плотности (то есть максимального значения Т-балла) после проведения имплантации может лежать в диапазоне от около 1 недели до около 6 недель, от около 1 недели до около 10 недель, от около 1 недели до около 13 недель, от около 1 недели до около 18 недель, от около 2 недель до около 10 недель, от около 2 недель до около 13 недель, от около 2 недель до около 18 недель, от около 3 недель до около 10 недель, от около 3 недель до около 13 недель, от около 3 недель до около 18 недель, от около 4 недель до около 10 недель, от около 4 недель до около 13 недель, от около 4 недель до около 18 недель, от около 6 недель до около 10 недель, от около 6 недель до около 13 недель, от около 6 недель до около 18 недель. После достижения максимальной плотности, плотность локализованного участка кости начинает снижаться в течение времени до около 6 месяцев, до около 9 месяцев, до около 13 месяцев, до около 18 месяцев, до около 24 месяцев, от около 6 недель до около 24 месяцев, от около 13 недель до около 18 месяцев или от около 18 недель до около 12 месяцев. Соответственно, BMD локализованного участка кости стабилизируется в рамках, по сути, нормального диапазона от около -1,0 до около 7,0, от около -1,0 до около 0,1, от около -1,0 до около 0,5, от около -1,0 до около 0, от около -0,5 до около 2,0, от около -0,5 до около 1,5, от около -0,5 до около 1,0, от около -0,5 до около 0,5, от около 0 до около 2,0, от около 0 до около 1,5, от около 0 до около 1,0.Учитывая вышеприведенные значения, другие графики, аналогичные графику на Фиг. 9, могут быть подготовлены для получения репрезентативных профилей BMD, охватываемых данным изобретением, отличающихся только максимально достигаемым значением BMD и/или времени достижения максимального значения BMD и/или времени после достижения максимального значения BMD вплоть до снижения значения BMD до, по сути, нормального диапазона. Конкретные варианты профилей BMD, достигнутые у подопытных субъектов, описаны в Примерах, приведенных ниже.
В других вариантах осуществления данного изобретения, BMD может по существу быть поддерживаемым таким образом, что определенный профиль BMD может быть достигнут в течение более длительного периода времени. Другими словами, BMD, соответствующая величине Т-балла от около -1,0 до около 2,0, от около -1,0 до около 1,0, от около -1,0 до около 0,5, от около -1,0 до около 0, от около -0,5 до около 2,0, от около -0,5 до около 1,5, от около -0,5 до около 1,0, от около -0,5 до около 0,5, от около 0 до около 2,0, от около 0 до около 1,5 или от около 0 до около 1,0 может поддерживаться в течение одного дополнительного года или более (то есть профиль BMD в локализованном участке кости может быть таким, что BMD, определенное с помощью значения Т-балла, находящегося в определенных границах, может быть достигнуто и поддерживаемо в течение, по меньшей мере, 1 года, по меньшей мере, 2 лет, по меньшей мере, 3 лет, по меньшей мере, 4 лет, по меньшей мере, 5 лет или даже более).
В других способах настоящее изобретение может быть охарактеризовано в отношении эффекта, описанного выше, касающегося ремоделирования локализованного участка дегенеративной кости до, по сути, идентичного нормальной кости. В определенных вариантах осуществления данное изобретение, в частности, может быть направлено на способы ремоделирования локализованного участка дегенеративной кости, включающие следующие этапы: образование в локализованном участке кости с помощью расчистки дегенеративного костного материала в участке и, необязательно, удаления содержимого дегенеративного костного материала; и, по меньшей мере, частичное заполнение образованной материалом для регенерации костей, способствуя, таким образом, росту нового костного материала в образованной . В частности, ремоделирование локализованного участка кости может быть подтверждено способностью вызывать рост нового, естественного костного материала в участке кости, являющегося до этого остеопеническим или остеопорозным (то есть костью, которая рассматривалась в качестве дегенерированной или, иными словами, рассматривалась в качестве результата заболевания и/или низкого качества, прочности и/или плотности).
В определенных вариантах осуществления данного изобретения костный материал в локализованном участке, подвергающемся лечению в соответствии с данным изобретением (то есть до образования ), обладает значением Т-балла менее -1,0, что говорит о деградации кости, превосходящей то, что, как правило, рассматривается в качестве нормального уровня, при этом новый костный материал, присутствующий после ремоделирования, обладает значением Т-балла более -1,0, что говорит о том, что кость в локализованном участке была ремоделирована и, практически идентична нормальной кости. В таких вариантах осуществления данного изобретения кость может рассматриваться в качестве ремоделированной в локализованном участке, так как участок кости, который был эффективно изменен таким образом, что она более не рассматривается в качестве дегенерированной кости, остеопенической кости, остеопорозной кости и им подобной, но, скорее, может рассматриваться в качестве находящейся в состоянии, которое, по сути, аналогично нормальной плотности у человека того же пола и расы при достижении BMD своего пика (то есть нормальной кости). Другими словами, данная кость ремоделирована из естественной кости с низкой плотностью до естественной кости с нормальной плотностью.
До настоящего изобретения данный эффект не являлся ожидаемым. Остеопороз (то есть значительное снижение BMD), как правило, рассматривается в качестве системного состояния. Несмотря на то, что непосредственное значение Т-балла может варьироваться от одного участка до другого у того же пациента, в целом, в тех случаях, когда имеет место остеопороз, данное состояние сохраняется в организме (например, при значении Т-балла дистального отдела лучевой кости -2,8 по сравнению со значением Т-балл бедра -3). Как описано выше, было обнаружено в соответствии с настоящим изобретением, что, несмотря на то, что остеопороз прогрессирует системно, является возможным локальное восстановление качества костей организма. Другими словами, локализованный участок кости может быть ремоделирован с переходом от остеопорозного к нормальному состоянию. Это является неожиданным, так как остеопороз, как считается, возникает в результате сниженной способности организма образовывать новые костные клетки, так что скорость резорбции костных клеток превосходит скорость образования новых клеток. Можно представить, что образованная кость, растущая в месте повреждения будет попросту являться продолжением окружающей кости - то есть кость низкого качества породит кость низкого качества. Настоящее изобретение демонстрирует, что верно противоположное. С помощью систематического удаления определенных объемов костного материала в локализованных участках кости и замещения данного материала материалом для регенерации костей, как описано здесь, общий процесс приводит в движение регенеративный процесс, при этом инфлюкс новых костных клеток вызывает образование нового естественного костного материала, который не является продолжением дегенеративной кости в окружающем участке, но является костным материалом по сути идентичным нормальной кости нормальной плотности.
Данное ремоделирование графически проиллюстрировано на Фиг. 10, на которой оценивается снижение BMD в локализованном участке кости белой женщины. Как видно здесь, BMD в локализованном участке снижается от нормального диапазона в возрасте около 30, при этом степень снижения увеличивается около времени наступления менопаузы и затем выравнивается, достигая менее резкой степени снижения. Точка на графике, соответствующая возрасту 70 лет, соответствует времени проведения процедуры в соответствии с настоящим изобретением. BMD в локализованном участке значительно увеличивается и восстанавливается до нормального уровня (то есть примерно на уровне плотности в возрасте 30 лет). Начиная с этого времени, BMD нового костного материала в локализованном участке продолжает естественным образом снижаться в связи со старением. Таким образом, локализованный участок кости был эффективно ремоделирован от остепорозного состояния до нормального состояния.
Конкретные значения, отмеченные на Фиг. 10, являются репрезентативными с учетом того, что непосредственные значения Т-балла могут отличаться от пациента к пациенту. Общий эффект ремоделирования, тем не менее, ожидается стойким от пациента к пациенту. Другими словами, несмотря на то, что конкретные значения BMD могут быть несколько большими или меньшими тех, которые приведены на фигуре, ремоделирование будет являться стойким в следующих отношениях: кость будет обладать плотностью, снижающейся до достижения точки, соответствующей остеопеническому или остеопорозному состоянию; после имплантации материала для регенерации костей в соответствии со способами данного изобретения будет значительное увеличение BMD, превосходящей, по сути, нормальный диапазон значений; BMD снизится до, по сути, нормального диапазона; BMD будет снижаться в степени, в целом, характерной для здорового костного материала. Важным является то, что при повторном достижении степени нормального снижения после имплантации, данное снижение начинается с точки, в которой BMD, как правило, присуще нормальному здоровому человеку в возрасте пика BMD. Таким образом, несмотря на то, что BMD продолжает снижаться, ее основа была изменена до нормального уровня плотности, а не уровня, характерного для остеопении или остепороза. Это, в частности, важно в тех случаях, когда процедуры данного изобретения выполняют у женщин с уже произошедшей менопаузой, у которых быстрое снижение BMD, связанное с менопаузой, не будет способно затронуть вновь образованные, плотные кости. В зависимости от возраста пациента-женщины во время проведения лечения и на протяжении жизни человека восстановление природы кости в локализованном участке может эффективно изменять структуру в локализованном участке, так что локализованный участок кости никогда не достигнет остеопенического или остеопорозного состояния снова в течение всей жизни пациента после проведения лечения. Данная способность ремоделировать остеопенический и остеопорозный костный материал с достижением по сути структуры, аналогичной структуре нормального костного материала, далее иллюстрируется в Примерах, приведенных ниже.
Наряду с ремоделированием участка дегенеративной кости, определяемого образованной пустотой, данное изобретение также может приводить к ремоделированию дегенеративного костного материала по сути вблизи от образованной . Как описано выше в отношении Фиг. 8, размещение материала для регенерации костей в образованной может вести к образованию градиентного эффекта, при этом не только формируется новый костный материал в , которая была заполнена материалом для регенерации костей, но также формирование нового костного материала в участке кости, смежном с образованной, заполненной пустотой. Таким же образом данное изобретение может обеспечивать ремоделирование дегенеративного костного материала в локализованном участке кости с тем, что костный материал, обладающий значением Т-балла, лежащим вописанном диапазоне, может быть сформирован в участке кости, прилегающем к образованной . Таким образом, дегенеративный костный материал в локализованном участке кости, который не был расчищен и/или удален для образования , также может подвергаться ремоделированию для достижения по сути нормального состояния. В частности, вновь сформированный костный материал может быть собран в структуру таким образом, что Т-балл костного материала может увеличиваться от участка вокруг до участка внутри .
Также, как уже описано выше, локализованный участок дегенерированной кости, подвергающейся ремоделированию для достижения практически идентичного нормальной кости состояния, предпочтительно поддерживает характеристики ремоделированного состояния в течение длительного периода времени. Например, ремоделированный локализованный участок кости может оставаться по сути идентичным нормальной кости в течение, по меньшей мере, 1 года, по меньшей мере, 2 лет, по меньшей мере, 3 лет, по меньшей мере, 4 лет, по меньшей мере, 5 лет или даже дольше.
Данное изобретение может использоваться наряду с существующими хирургическими процедурами, такими как кифопластика или вертебропластика. В отличие от данных существующих процедур используемые способы в соответствии с данным изобретением будут выполняться у пациентов, которые в настоящее время не страдают переломом позвонка или другими ослабляющими позвонки состояниями. Скорее настоящие способы могут быть охарактеризованы, как выполняемые для профилактики (то есть в целях предотвращения будущего перелома дегенерированной кости). В частности, что касается позвонков, хирургический способ может выполняться в отношении позвонка, не являющегося сломанным, однако используемый хирургический способ может быть аналогичен хирургическому способу, используемому в традиционной кифопластике. В данных вариантах осуществления изобретения способы данного изобретения могут быть здесь описаны иначе и быть, в частности, выполнены в отношении одного или нескольких позвонков у пациента.
В других вариантах осуществления данное изобретение может быть выполнено в отношении позвонка, уже являющегося сломанным. Вместо выполнения традиционной кифопластики, которая, как правило, включает заполнения сломанного участка цементным материалом, таким как полиметилметакрилат (РММА), настоящее изобретение может обеспечивать расширение или увеличение перелома, если это необходимо, для образования внутри позвонка и заполнения материалом для регенерации костей. В определенных вариантах осуществления данный позвонок, подвергающийся лечению, в соответствии с данным изобретением является остеопеническим или остеопорозным.
Таким образом, в определенных вариантах осуществления данное изобретение может быть описано как обеспечивающее способ восстановления высоты тела позвонка или корректировки угловой деформации у сломанного позвонка (в частности, сломанного, остеопенического или остеопорозного позвонка) путем стимулирования роста нового костного материала, который, по сути, идентичен нормальной кости. В частности, данный способ может включать образование в участке перелома с помощью механической расчистки поврежденного или дегенерированного костного материала внутри и вокруг перелома и, необязательно, удаления содержимого расчищенного костного материала. Данный способ далее может включать, по меньшей мере, частичное заполнение образованной материалом для регенерации костей, так что новый костный материал образуется внутри с течением времени. Предпочтительно, новый костный материал, который образуется, обладает значением Т-балла, соответствующим тому, что новый костный материал, по сути, идентичен нормальной кости. В определенных вариантах осуществления данного изобретения величина Т-балла нового костного материала может составлять более -1, по меньшей мере, -0,5, по меньшей мере, 0, по меньшей мере, 0,5 или, по меньшей мере, 1,0 (или другим путем находится в рамках нормального диапазона, как описано здесь). Более того, данное изобретение обеспечивает преимущество, заключающееся в том, что новый костный материал может оставаться, по сути, идентичным нормальной кости в течение времени, равного, по меньшей мере, 1 году (или более, как описано здесь). Данное время может быть измерено начиная со времени образования нового костного материала в участке кости, где была образована и заполнена материалом для регенерации костей.
Несмотря на то, что установлено, что настоящее изобретение обеспечивает определенные преимущества по сравнению с другими известными способами и материалами для лечения остеопороза и/или остеопении, настоящее изобретение не должно обязательно выполняться с исключением остальных видов лечения. В частности, настоящие способы замещения дегенерированного костного материала вновь образованным костным материалом, являющимся нативным для пациента и, по сути, нормальным в отношении качества кости, могут быть использованы в сочетании с фармацевтическим лечением, известным из уровня техники в качестве полезного для лечения остеопороза и/или остеопении. Например, лечение пациентов в соответствии с данным изобретением может проводиться в то время, когда пациент одновременно получает фармацевтическое лечение, включая гормональную терапию (например, эстроген, SERM, кальцитонин и рекомбинанты, такие как rPTH), бифосфонаты и антитела (например, деносумаб). Данные виды фармацевтического лечения могут проводиться до, одновременно или после лечения в соответствии с настоящим изобретением. В частности, проведение данных видов лечения может быть приостановлено на определенный период времени до выполнения способов данного изобретения. Таким же образом, данные виды лечения могут быть начаты в течение определенного периода времени после выполнения способа данного изобретения.
В другом аспекте настоящее изобретение также предусматривает материал, который может быть использован в способах для замещения дегенерированной кости, как описано здесь. В частности, различные материалы могут быть собраны в форме набора. Таким образом, способы изобретения или определенные этапы этих способов могут выполняться с использованием инструментов из набора, включающего различные компоненты. Примерные материалы, которые могут быть предусмотрены в наборе в соответствии с данным изобретением, описаны ниже.
Набор в соответствии с данным изобретением, предпочтительно, должен включать инструмент для сверления, который включает сверло и/или долото для сверления, такое как канюлированное долото для сверления. Например, может быть включено канюлированное OD сверло диаметром 5,3 мм. Набор также может включать одну или несколько направляющих проволок, шприцов, инструментов для доставки материала для регенерации костей в , такие как инъекционная игла большого размера, рабочая канюля, отсасывающее устройство, аспирирующее устройство, устройство для работы с тампонами, кюретка, устройство для проведения рассверловки и средства для изгибания инструмента (такого как игла или тампон) на определенный угол. В некоторых вариантах осуществления данного изобретения набор может включать одно или несколько устройств для работы с тампонами (например, санирующий зонд), обладающих головкой определенной формы. В других вариантах осуществления данного изобретения набор может включать устройство для проведения рассверловки, такое как X-REAM™ Percutaneous Expandable Reamer (поставляемый Wright Medical Technology, Inc., Arlington, Tenn). или аналогичный инструмент подходящих размеров для использования в соответствии с описанными здесь способами. Например, может использоваться любое in situ расширяющееся устройство, подходящее для санации кости или хирургического создания повреждения. В определенных вариантах осуществления данного изобретения набор также может включать количество материала для регенерации костей, подходящее для заполнения в локализованном участке кости.
Любые материалы, полезные для осуществления санации кости, могут быть включены в набор в соответствии с данным изобретением. Например, в добавление к кюреткам, рашпилям, трефинам и им подобным, возможно использовать расширяющееся устройство для создания свободного пространства (с помощью расширения с применением баллона, мелкоячеистой ткани, сетки, гибкой проволоки, гибких и/или перфорированных трубок, расширяемой метелки, вращающейся проволоки, расширяющегося лезвия, нерасширяющегося гибкого лезвия или других аналогичных устройств). Все вышеприведенное может иметь ручной или механический привод. Они могут быть ограничены (например, в виде лезвия, просунутого в отверстие трубки) или неограничены (например, в виде лезвия, деформированного через отверстие в трубке).
Определенные примеры инструментов, которые могут быть полезны при выполнении вариантов осуществления настоящего изобретения и, таким образом, могут быть включены в набор в соответствии с данным изобретением, приведены на Фиг. 11-19. На Фиг. 11 изображен протектор тканей, который используется для обеспечения безопасного прохождения для других инструментов (например, инструмента для сверления) с внешней стороны тела внутрь путем защиты окружающих мягких тканей от повреждения. Протектор тканей НО включает рукоятку 111 и удлиненный корпус 112 с открытым каналом 113, находящемся в нем. На Фиг. 12 изображен канюлированный обтуратор, который может быть использован для отцентрированного размещения направляющей проволоки (и может быть проведен через внутреннюю часть протектора тканей). Обтуратор 120 включает расширенную головку 121, удлиненный корпус 122 и открытый канал 123, находящийся в нем. На фиг.13 изображена секция режущей головки направляющей проволоки, которая обеспечивает врезание внутрь кости с одновременным сохранением расположения in vivo. Направляющая проволока 130 включает корпус 131 (показана часть) и режущую головку 132, являющуюся достаточной для врезания в кость без образования значительного просверленного канала.
На Фиг. 14 изображено сверло, которое используется для создания канала или туннеля определенной формы (например, с диаметром 5,3 мм) в кости. Сверло 140 включает корпус 141 и режущую головку 142. На Фиг. 15 изображена гибкая рабочая канюля. Функция рабочей канюли заключается в обеспечении безопасного прохода дальнейших рабрасчих инструментов (например, санационных инструментов и игл шприцов) во внутреннюю часть кости с одновременной защитой окружающих тканей. Изображенная канюля 150 включает головку 151, обладающую подходящим размером для прикрепления других устройств, корпусом 152, режущей головкой 153, и открытым каналом 154, расположенном в ней. На Фиг. 16 изображен обтуратор, который может быть использован с канюлей, обтуратор 160 включает увеличенную головку 161 и вытянутый корпус 16 и может включать центральный канал (не показан). На Фиг. 17 изображен санирующий зонд, который вставляют в кость для расчистки дегенерированного костного материала и образования внутри кости. Зонд 170 включает рукоятку 171, продолговатый корпус 172, головку 173 (которая может иметь определенный размер или форму для расчистки костного материала) и изогнутую часть 174. Присутствие изогнутой части может, в частности, быть полезным для позиционирования головки 173 для образования желаемой формы и объема. Изгиб части 173 может составлять угол по отношению к корпусу 172, равный от около 5° до около 90°, от около 10° до около 75°, от около 10° до около 60°, от около 15° до около 50°, от около 15° до около 45°. На Фиг. 18 изображено отсасывающее/ирригирующее устройство 180, которое включает продолговатый корпус 181 с открытым каналом 182, проходящим в нем. Данное устройство также включает основание 183 для подключения ирригационного компонента (корпуса шприца 184, как изображено) и отсасывающего компонента (разъема 185, как изображено), который может быть подключен к источнику вакуума (не показан). Данное устройство далее включает контрольный вентиль 186 для контроля степени отсасывания и/или ирригации через канал 182. На Фиг. 19 изображена другая рабочая канюля (полая рабочая канюля 190), которая включает корпус 191 с проходящим по нему каналом 192.
Набор в соответствии с данным изобретением может включать одну или несколько комбинаций изображенных инструментов, или другие инструменты, которые могут быть полезны при выполнении способа в соответствии с данным изобретением. В определенных вариантах осуществления данного изобретения набор включает все инструменты и материал для регенерации костей, необходимые для выполнения остеосупплементарной процедуры. Он может включать инструменты, необходимые для создания кожного надреза, создания в кости, санации, смешивания материала для регенерации костей и доставки материала для регенерации костей. Различные комбинации следующих компонентов, в частности, могут быть включены в остеосупплементарный набор в соответствии с данным изобретением: скальпель, протектор тканей, канюлированный обтуратор, направляющая проволока, сверло, рабочая канюля, санирующий зонд, отсасывающее/ирригирующее устройство, материалы для регенерации костей (включая твердые и жидкие компоненты для образования текучего материала перед осуществлением имплантации в образованную , предпочтительно с помощью инъекции), аппарат для смешивания (например, смесительную камеру), шприц и иглу для доставки (или другие инструменты, полезные для доставки материала для регенерации костей в образованную ).
В некоторых вариантах осуществления данного изобретения набор может содержать только минимальное количество компонентов, необходимых для осуществления изобретения. Например набор может минимально содержать санирующий зонд (например, зонд особой изогнутой формы, такой как изогнутой на угол в описанных здесь диапазонах) и/или сверл для образования входного канала определенного размера и/или материалы для регенерации костей. В других вариантах осуществления данного изобретения канюлированный обтуратор также может включаться. В других вариантах осуществления данного изобретения может включаться рабочая канюля. В других вариантах осуществления данного изобретения может включаться отсасывающее/ирригирующее устройство. В других вариантах осуществления данного изобретения может включаться протектор тканей. В других вариантах осуществления данного изобретения направляющая проволока также может включаться. В других вариантах осуществления данного изобретения может включаться аппарат для смешивания. В другом варианте осуществления данного изобретения могут включаться шприц и игла для доставки. Другие инструменты также могут включаться в набор в соответствии с настоящим изобретением, как понятно специалисту в данной области с учетом настоящего описания.
В добавление к любому из описанных выше компонентов, набор в соответствии с данным изобретением может включать набор инструкций об использовании компонентов набора для лечения пациента, находящегося в состоянии, связанном с дегенерацией костей. Например, набор инструкций может включать инструкции, связанные с использованием скальпеля для обеспечения доступа к подвергающейся лечению кости, связанные с использованием протектора тканей в месте надреза для защиты окружающей ткани, связанные с использованием направляющей проволоки или направляющей спицы для образования первоначальной точки входа в кость, использованием сверла для образования канала во внутренней части кости, использованием санационного инструмента для расчистки дегенерированного костного материала, использованием отсасывающего инструмента для удаления вычищенного костного материала, смешиванием материала для регенерации костей (если необходимо), использованием шприца для инъецирования материала для регенерации костей в образованную , использованием устройства для ирригации для расчистки участка ткани и использования средств для закрытия надреза. Такие же инструкции могут быть включены в отношении любой комбинации инструментов, включенной в определенный набор. Далее, данные инструкции могут быть в любой подходящей форме (например, в письменной, такой как руководство, пояснительная статья, один или несколько страниц с записями и так далее) или на любом цифровом носителе (таком как CD, DVD, flash-накопитель, карта памяти и так далее).
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Настоящее изобретение описывается следующими примерами, которые приведены для иллюстрации настоящего изобретения и обеспечения полноты описания и которые не должны рассматриваться в качестве ограничивающих его.
ПРИМЕР 1
Резорбционные характеристики трехфазного материала для регенерации костей
Усовершенствованная (ускоренная) модель, иллюстрирующая резорбционные характеристики трехфазного материала для регенерации костей была воспроизведена с помощью заранее подготовленных и взвешенных кубиков материала для регенерации костей размером 4,8 мм × 3,2 мм, коммерчески доступного под торговым названием PRO-DENSE®. Данное испытание было предназначено для иллюстрации изменений в материале для регенерации костей в течение времени для осуществления контролируемого роста нового костного материала. Ускоренная in vitro модель является приблизительно в шесть раз более быстрой, чем резорбция, наблюдаемая in vivo в модели с собаками, при этом степень резорбции in vitro модели является еще менее продолжительной по сравнению с человеческими моделями.
Для начала оценки кубики были погружены в дистиллированную воду. Для ежедневного испытания кубики извлекали из воды, высушивали и взвешивали для оценки оставшейся процентной массы. Кубики помещали в свежие аликвоты дистиллированной воды после проведения измерений. Для микроскопического анализа кубики были выложены, выровнены и проанализированы с помощью сканирующего электронного микроскопа (SEM) при 35-кратном увеличении.
Первоначальное состояние материала для регенерации костей показано на Фиг. 7а. На Фиг. 7b показаны кубики спустя 4 дня in vitro (которые, как ожидается, они являются соответствующими состоянию спустя около 24 дней in vivo). Присутствует первоначальное появление раствора сульфата кальция на поверхности кубика, достигающего внешнего слоя тонких кристаллов брушита и крупных гранул TCP (белого цвета на снимках SEM). Брушит формирует диффузионный барьер, который замедляет скорость растворения CaSO4. Спустя 8 дней in vitro (приблизительно 48 дней in vivo) наблюдается процесс растворения, как это видно на Фиг. 7 с, при этом видно, что кристаллы брушита на внешней стороне кубиков (те, которые были затронуты в первую очередь) стали менее плотными, что говорит о том, что брушит также подвергается растворению. На Фиг. 7d изображен кубик спустя 12 дней in vitro (приблизительно 72 дня in vivo), при этом видно, что относительно плотный участок брушита, окружающий незатронутую часть кубика, движется по направлению внутрь при продолжении растворения. Наконец, на Фиг. 7е изображен законченный раствор сульфата кальция с образованием TCP гранулами равномерно распределенного каркаса после того, как была растворена большая часть CaSO4 и брушита. Является вероятным, что некоторая часть брушита остается присоединенной к TCP и удерживает гранулы вместе.
ПРИМЕР 2
Сравнительная резистентность в отношении переломов остеопорозной кости до и после образования и заполнения материалом для регенерации костей
Для оценки воздействия на чувствительность к переломам непосредственно после проведения процедуры в соответствии с данным изобретением выполняли исследования на трупах с использованием десяти совпадающих пар остеопенических и остеопорозных проксимальных бедренных костей. Выполняли первоначальную DEXA шейки бедра и зоны Варда, а Т-баллы всех испытуемых костей были менее или равны -2,0, что говорило об остеопеническом или остеопорозном состоянии костного материала во время проведения исследования. Совпадающими парами были левые и правые бедренные кости того же трупа. В каждом тесте создавали повреждение в одной бедренной кости и заполняли его трансплантируемым материалом PRO-DENSE®. Рентгеновские снимки на Фиг. 20 и Фиг. 21 изображают соответственно введение санирующего зонда, используемого при создании в проксимальной бедренной кости и размещение трансплантируемого материала на месте заполнения образованной (темная зона). Противоположная бедренная кость была оставлена неповрежденной для использования в качестве контроля. Спустя время, необходимое для застывания трансплантируемого материала, каждая прокисмальная бедренная кость в паре была подвергнута сжатию при 20 мм/сек вплоть до достижения разламывания.
Результаты тестов показали отсутствие значительного различия в пиковой нагрузке между проксимальной бедренной костью, подвергнутой лечению в соответствии с данным изобретением, и контрольной (неповрежденной) бедренной костью. Средняя пиковая нагрузка, наблюдаемая среди десяти пар совпадающих трупных бедренных костей, показана на графике на Фиг. 22. Как видно из него, все проксимальные бедренные кости были сломаны при пиковой нагрузке около 8,000 Н. Таким образом, данные тесты говорят об отсутствии клинического риска, связанного с сокращенной прочностью проксимальной бедренной кости, подвергнутой процедуре в соответствии с настоящим изобретением при образовании и ее заполнении материалом для регенерации костей. В частности, отсутствовал увеличенный риск перелома, связанный со способами данного изобретения непосредственно после выполнения процедуры, даже при отсутствии любых дополнительных поддерживающих материалов, таких как спица, вставки или им подобные.
ПРИМЕР 3
Исследование на собаках In Vivo с использованием материала для регенерации костей в большой продольной модели проксимального отдела плечевой кости предельного размера
Исследование выполняли для оценки 13 и 16-недельных результатов in vivo материалов для регенерации костей в продольной модели проксимального отдела плечевой кости собак предельного размера. Биологический ответ, конкретно образование новой кости, дегенерация имплантата и биосовместимость были качественно оценены с помощью рентгеновских снимков и гистологических снимков.
В данном исследовании 16 собак со сформированным скелетом получали двусторонние продольные цилиндрические повреждения (13 мм OD × 50 мм) в проксимальной плечевой кости. Все субъекты получали заместительные кубики костного имплантата OSTEOSET® из сульфата кальция (Wiight Medical Technology, Inc., Arlington Tenn.) для одного или двух повреждений. Противоположные повреждения лечили либо с помощью инъекции болюса текучего имплантационного материала PRO-DENSE® или кубиков материала PRO-DENSE®, каждый из которых является коммерчески доступным. Половина каждой экспериментальной группы прошла оценку после 13 недель, а другая половина - после 26 недель. Дополнительные 10 плечевых костей были получены от пяти не прошедших операцию собак в целях получения сравнительных данных в отношении нормальной кости, взятой из того же места. Все образцы были протестированы на предмет сопротивления на сжатие и гистоморфологии.
Ограниченный черепной подход к большому бугорку левой и правой плечевой кости выполняли у каждого субъекта с помощью надреза и сокращения ключичноплечевой мышцы. Использовали сверление и рассверловку для создания повреждения, размер которого указан выше, в каждом тестовом участке. Образованные повреждения затем заполняли одним из тестовых материалов, альтернативными материалами между левой и правой сторонами для произвольности места повреждения для каждого используемого материала. Кубики затем плотно набивали в каждое повреждение с помощью хирургических щипцов. Инъецируемый болюс готовили с помощью комбинирования жидких и порошкообразных компонентов в вакуумном аппарате для смешивания костного цемента (Summit Medical; Gloucestershire, UK). После смешивания в течение 30 секунд при 20-23 Hg вакууме материал был помещен в шприц объемом 20 см3, а болюс (объемом приблизительно 6 см3) был доставлен в место повреждения с помощью канальной иглы Джамшиди 11 Гаудж объемом 6 см3 с использованием методики заполнения материалом. Раны затем закрыли.
Выполняли биомеханическое тестирование для определения предельной силы сжатия и модуля упругости вновь образованной кости с помощью образцов для механического тестирования, полученных из тестовых участков субъектов. Тестирование выполняли на сервогидравлической механической испытательной системе Instron Model 8874, оборудованной 1 кН - динамометрическим элементом производства компании Dynacell и испытательным программным обеспечением производства компании Bluehill Materials (система, динамометрический элемент и программное обеспечение производства Instron Corp., Canton, MA). Компрессионный пресс (Wyoming Test Fixtures, Inc., Laramie, Wyoming, серийный номер. WTF-SP-9), совместимый с ASTM D695, модифицировали таким образом, что округлый наконечник был удален, а нагрузочный стержень ввинчивался в привод испытательной рамы. Выполняли также тестирование для оценки количества нового костного материала, образующегося в каждом тестовом образце. Непосредственно перед проведением тестирования были определены длина и диаметр при половине длины каждого образца (+/- 0,01 мм).
Образцы подвергли испытаниям свободным ненаправленным давлением при 0.5 мм/мин до явного разрушения образцов при существенном падении кривой нагрузки или достижения разрушения 30% образцов. Предельное сопротивление на сжатие и модуль упругости образцов были вычислены с помощью полученных кривых нагрузки с использованием ПО. В девяти механических образцах, полученных от пяти дополнительных собак, были образованы с последующим проведением тестирования таким же образом для использования в качестве сравнительных образцов «нормальной кости».
Диаграммы нагрузка/деформация были получены для каждого образца с использованием испытательного ПО Bluehill Materials, при этом предельные силы сжатия были определены в качестве усилия, при котором диаграммы нагрузка/деформация имели нулевой наклон. Предельное сопротивление на сжатие (МПа) и модуль эластичности, Е (МПа) образцов показаны ниже в Таблице 1. Включены образцы, в которых материал OSTEOSET® был использован в двух отдельных тестах и средние значения, полученные в каждом тесте (I и II). Значение нормальной кости включены для сравнения. Таблица 2 таким же образом показывает возникновения перелома в материале новой и остаточной кости спустя 13 и 26 недель. Данные средние значения были определены с помощью стандартной методики подсчета точек.
Как видно из приведенных выше данных, текучий материал PRO-DENSE® обладал воздействием на образование и минерализацию костей спустя 13 недель, превосходящим воздействие, видимое у нормальной кости (5.29 МПа против 1.38 МПа). Данное явление снижалось в точке после 26 недель, где средние значения сопротивления на сжатие и модуля эластичности более близко сопадали с этими же показателями нормальной кости. Данное явление ремоделирования с возвратом к плотности нормальной кости совпадает со значениями плотности в Таблице 2, где участок перелома кости в 13-недельных тестах текучего материала PRO-DENSE® был значительно выше, чем плотность нормальной кости, однако значения в отношении текучего материала PRO-DENSE® были более близкими к плотности нормальной кости спустя 26 недель. Данные открытия соответствовали высоким уровням радиоплотности, наблюдаемым на 13-недельных рентгеновских снимках образцов, подвергнутых лечению с использованием текучего материала PRO-DENSE®. Образцы, подвергнутые лечению материалом PRO-DENSE® в форме кубиков, не демонстрировали того же уровня образования костей, наблюдаемого у повреждений, подвергнутых лечению текучим материалом. Важно отметить, тем не менее, что материал в кубиках все же приводил к образование костей со свойствами, по сути, аналогичными и превосходящими свойства, наблюдаемые у образцов нормальной кости в точках, соответствующих 13 и 26 неделям.
Средние значения механических свойств повреждений, подвергнутых лечению кубиками OSTEOSET®, были ниже, чем те же значения нормальной кости; тем не менее, данные различия не были определены как статистически значимые. Следует также отметить, что относительно высокая степень стандартных отклонений, как следует из приведенного выше, является очень частой при проведении данного вида механического тестирования.
ПРИМЕР 4
Формирование нового плотного костного материала в образованной , заполненной материалом для регенерации костей
Для оценки формирования новой кости у пациента, страдающего остеопорозом подвергали лечению левую бедренную кость 80-летней женщины в соответствии с настоящим изобретением. В частности, была образована в проксимальной части бедренной кости и заполнена трансплантационным материалом PRO-DENSE®. На Фиг. 23 приводится рентгеновский снимок проксимальной части бедренной кости до инъецирования трансплантата, а на Фиг. 24 приводится изображение, полученное с помощью компьютерной томографии, того же участка проксимальной части бедренной кости до инъецирования. На Фиг. 25 приводится рентгеновский снимок проксимальной части бедренной кости во время операции, показывающий размещение трансплантационного материала в проксимальной части бедренной кости.
Приведенная ниже таблица включает величины Т-балла и Z-балла левой бедренной кости до проведения процедуры Данная таблица далее включает те же значения правой бедренной кости (не подвергавшейся лечению) для использования в целях сравнения.
После проведения операции данного пациента оценивали с множественными интервалами времени для определения изменений плотности в локализованном участке кости, подвергнутой лечению в соответствии с данным изобретением, и изменений с течением времени по сравнению с контролем. В Таблице 4 ниже приведены тестовые значения спустя одну неделю после лечения. Как видно, подвергнутая лечению бедренная кость уже обнаруживает значительные улучшения в плотности, в то время как контрольная бедренная кость обладает характерными для остеопороза значениями, схожими со значениями до проведения лечения.
На Фиг. 26 приведен рентгеновский снимок подвергнутой лечению левой бедренной кости спустя 6 недель после лечения. Как видно, трансплантат начинает ресорбироваться организмом с одновременным ремоделированием кости в локализованном участке. В Таблице 5 приведены тестовые значения, полученные на основе DEXA, спустя 6 недель после лечения.
На Фиг. 27 приведено изображение подвергнутой лечению левой бедренной кости спустя 12 недель после лечения, полученное с помощью компьютерной томографии. Присутствие трансплантатного материала (массы светлого цвета) является подтверждением о говорит о дальнейшем осуществлении резорбции. В Таблице 6 приведены полученные с помощью DEXA значения спустя 12 недель после лечения, а в Таблице 7 приведены полученные с помощью DEXA значения спустя 18 недель после лечения.
ПРИМЕР 5
Увеличение BMD в локализованных участках остеопорозной кости после образования и заполнения материалом для регенерации костей
На Фиг. 28 приведено изображение подвергнутой лечению левой бедренной кости спустя 24 недели после лечения, полученное с помощью компьютерной томографии. Присутствие трансплантационного материала (масса, окрашенная светлым цветом) значительно снижено с одновременным продолжением резорбции трансплантационного материала и замены плотным костным материалом. В Таблице 8 придены значения, полученные с помощью DEXA, спустя 24 недели после лечения, а в Таблице 9 приведены значения, полученные с помощью DEXA, спустя 12 месяцев после лечения.
Испытание выполняли на 12 пациентах-людях, каждый из которых был признан страдающим остеопорозом согласно определению Всемирной Организации Здравоохранения (ВОЗ). У каждого пациента одна бедренная кость была подвергнута лечению в соответствии с настоящим изобретением, при этом противоположная сторона оставалась не подвергнутой лечению в целях сравнения.
Сначала для получения базовой линии измеряли BMD обоих бедер с помощью DEXA. Далее, в испытуемом участке одного бедра каждого пациента образовывали в проксимальной части бедренной кости с помощью удаления части остеопорозной кости, при этом данную заполняли трансплантационным материалом PRO-DENSE®, аналогично методике, приведенной в Примере 4. Пациенты занимались обычными повседневными делами, при этом последующие сканирования выполняли спустя 1, 6, 12, 18, 24, 52, 78 и 104 недели. Следует обратить внимание, что каждый из 12 пациентов прошел оценку в срок до 24 недель, восемь пациентов были оценены в срок до 52 недель, три пациента были оценены в срок до 78 недель и два пациента были оценены спустя 104 недели.
В каждом последующем обследовании (а также при измерении базовой линии) фиксировали величины Т-балла шейки бедра и всего бедра каждого пациента, полученные с помощью DEXA. Как видно на Фиг. 29, величины Т-балла шейки бедра всех пациентов составляли менее -2 относительно базовой линии; тем не менее, каждый пациент демонстрировал значительное увеличение величины Т-балла на отметке, соответствующей одной неделе (в диапазоне от около 1 до почти 6). После данного первоначального увеличения Т-балл каждого пациента постепенно возвращался в нормальный диапазон, характерный для здоровой кости (по сравнению со средним человеком в возрасте 30 лет). В течение всего лишь 12 недель несколько пациентов обнаруживали снижение Т-балла, достигающего или находящегося чуть ниже нуля. Даже у пациентов, обследованных спустя 104 недели, Т-балл продолжал сохраняться на практически нормальном уровне (хотя и ниже нуля). Аналогичные тенденции были обнаружены относительно Т-баллов бедра в целом, как видно на Фиг. 30. Несмотря на то, что быстрое увеличение Т-балла не являлось таким же значительным, как в случае шейки бедра, первоначальное увеличение являлось приблизительно пропорциональным (то есть у каждого пациента наблюдалось увеличение от около 3 пунктов и более спустя одну неделю после прохождения процедуры). Т-баллы всего бедра так же снижались в течение времени исследования; тем не менее, итоговый балл каждого пациента отражает ремоделирование вплоть до значительно улучшенного состояния по сравнению с баллом базовой линии. Даже большие улучшения были обнаружены в зоне Варда бедер, подвергнутых лечению. Как видно на Фиг. 31, в течение одной недели Т-баллы большинства пациентов возрастали, достигая диапазона от 5 до 17. Методики данного изобретения в данном участке бедра прошедших лечение пациентов таким же образом приводили к ремоделированию кости вплоть до достижения нормального качества (то есть значений Т-балла более нуля у этих пациентов).
Эффективное, значительное увеличение качества костей в подвергнутом лечению участке после прохождения процедуры замещения в соответствии с данным изобретением далее приведено на Фиг. 32, иллюстрирующей среднее улучшение BMD шейки бедра у пациентов с различными интервалами времени. Наряду с Т-баллами (значения которых демонстрируют абсолютное изменение качества костей от остеопорозной до нормальной кости), сравнительные средение изменения, показанные на Фиг. 32 подтверждают, что процедуры данного изобретения обеспечивают ремоделирование базовой костной структуры участка, подвергающегося лечению, с помощью удаления кости с низкой BMD и обеспечения роста новой кости, обладающей значительно более высокой BMD. Как видно на Фиг. 32, в течение одной недели после прохождения процедуры данного изобретения BMD возросла по сравнению с контролем (являющимся средней BMD противоположного, не подвергнутого лечению бедра каждого пациента) приблизительно на 150%. Соответственно, в течение времени до около 24 недель связанное с этим увеличение BMD шейки бедра демонстрирует относительно быстрое ремоделирование в сторону BMD нормальной кости (BMD на 120% большего, чем контроль спустя 6 недель, на 96% большего, чем контроль спустя 12 недель и на 74% большего, чем контроль спустя 24 недели). Начиная от этой точки, BMD медленно снижалась более плавно. В оценке, проведенной спустя два года, два пациента, остававшиеся в данном исследовании, все еще демонстрировали среднее увеличение BMD шейки бедра на 35%) по сравнению с контролем.
Аналогичные результаты приведены на Фиг. 33, которая демонстрирует среднее улучшение BMD в целом среди группы пациентов с различными интервалами. Как видно здесь, в течение одной недели после прохождения процедуры данного изобретения BMD была увеличено по сравнению с контролем (являющимся средней BMD противоположного, не подвергнутого лечению бедра каждого пациента) приблизительно на 68%. Соответственно, в течение времени до около 24 недель связанное с этим увеличение BMD бедра в целом демонстрирует относительно быстрое ремоделирование в сторону BMD нормальной кости (BMD на 54% большего, чем контроль спустя 6 недель, на 45% большего, чем контроль спустя 12 недель и на 36% большего, чем контроль спустя 24 недели). Начиная от этой точки, BMD медленно снижалась более плавно. В оценке, проведенной спустя два года, два пациента, остававшиеся в данном исследовании, все еще демонстрировали среднее увеличение BMD бедра в целом на 18% по сравнению с контролем. В связи с данным увеличением BMD в течение периода проведения исследования, ожидается, что подвергнутый лечению участок кости будет обладать увеличенным сопротивлением на сжатие (как подтверждено в исследовании на собаках, описанном выше) и будет обладать большим сопротивлением к переломам в связи с увеличенной BMD и сопротивлением на сжатие. Значительных изменений в измерениях BMD не подвергнутых лечению сторон относительно базовой линии не наблюдалось (несмотря на то, что Фиг. 33 говорит о постепенном снижении BMD бедра в целом на не подвергнутых лечению сторонах после 20 недель).
Таким же образом, наблюдались даже большие результаты в отношении увеличения BMD зоны Варда, как показано на Фиг. 34. В течение одной недели после лечения в соответствии с данным изобретением средняя BMD возросла на 400%. Постепенно снижение наблюдалось с течением времени - на 355% большее BMD спустя 6 недель, на 295% большее BMD спустя 12 недель и на 220% большее BMD спустя 24 недели. Спустя от 52 недель после лечения до 104 недель после лечения BMD подвергнуты лечению бедер в зоне Варда была на от около 140% до около 200% большей, чем BMD контрольного бедра.
Многие модификации и другие варианты осуществления данного изобретения будут явными для специалиста в области, к которой принадлежит данное изобретение, на основе приведенного выше описания и связанных с ним фигур. Таким образом, должно являться очевидным, что данное изобретение не ограничивается описанным и что модификации и другие варианты осуществления данного изобретения включаются в область, охватываемую приложенной Формулой Изобретения. Несмотря на использование здесь определенных терминов, данные термины используются только в общем и описательном смыслах, но не в ограничивающих целях.
Claims (12)
1. Способ лечения пациента, страдающего дегенеративным костным заболеванием, которое может быть охарактеризовано потерей минеральной плотности костей (BMD), при этом дегенеративное костное заболевание представляет собой остеопению или остеопороз, включающий:
образование пустоты в локализованном участке неповрежденной кости у пациента, у которого было диагностировано дегенеративное костное заболевание, с помощью очистки дегенерированного костного материала и необязательно удаления части дегенерированного костного материала локализованного участка кости, являющейся неповрежденной до этапа образования пустоты; и
по меньшей мере частичное заполнение образованной пустоты материалом для регенерации костей, содержащим фосфат кальция, деминерализованный костный матрикс (DBM) или их комбинацию, способным быть резорбируемым и вызывать формирование костной ткани, обеспечивающим образование нового недегенерированного костного материала по всему объему по меньшей мере части пустоты, которая заполнена материалом для регенерации костей, при этом материал для регенерации костей является текучим при заполнении образованной пустоты.
2. Способ по п. 1, отличающийся тем, что материал для регенерации костей включает остеоиндуктивный материал, остеокондуктивный материал, остеогенный материал, материал, способствующий образованию костной ткани, антиостеопорозный материал или остеофильный материал.
3. Способ по п. 1, отличающийся тем, что материал для регенерации костей включает материал, обладающий мультифазным профилем резорбции in vivo.
4. Способ по п. 1, отличающийся тем, что материал для регенерации костей включает материал, обладающий двухфазным профилем резорбции in vivo.
5. Способ по п. 1, отличающийся тем, что материал для регенерации костей включает материал, обладающий трехфазным профилем резорбции in vivo.
6. Способ по п. 1, отличающийся тем, что кость для образования пустоты выбрана из группы, состоящей из тазобедренного сустава, бедренной кости, позвонков, лучевой кости, локтевой кости, плечевой кости, большой берцовой кости и малоберцовой кости.
7. Способ по п. 1, отличающийся тем, что материал для регенерации костей отверждается in vivo.
8. Способ по п. 1, отличающийся тем, что вновь образованный недегенеративный костный материал обладает BMD, которая, по сути, идентична нормальной кости.
10. Способ по п. 1, отличающийся тем, что BMD локализованного участка кости увеличена таким образом, что значение Т-балла вновь образованного недегенерированного костного материала, полученное с помощью двухэнергетической рентгеновской абсорбциометрии (DEXA), превосходит значение Т-балла дегенерированного костного материала до образования пустоты.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36117710P | 2010-07-02 | 2010-07-02 | |
US61/361,177 | 2010-07-02 | ||
TW100122879 | 2011-06-29 | ||
TW100122879A TWI579007B (zh) | 2010-07-02 | 2011-06-29 | 骨再生材料之用途 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013104512/15A Division RU2578032C2 (ru) | 2010-07-02 | 2011-06-30 | Способы лечения дегенеративных состояний костей |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2668372C1 true RU2668372C1 (ru) | 2018-09-28 |
Family
ID=46755961
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016104128A RU2668372C1 (ru) | 2010-07-02 | 2011-06-30 | Способы лечения дегенеративных состояний костей |
RU2013104512/15A RU2578032C2 (ru) | 2010-07-02 | 2011-06-30 | Способы лечения дегенеративных состояний костей |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013104512/15A RU2578032C2 (ru) | 2010-07-02 | 2011-06-30 | Способы лечения дегенеративных состояний костей |
Country Status (17)
Country | Link |
---|---|
US (3) | US9550010B2 (ru) |
EP (3) | EP2987507B1 (ru) |
JP (3) | JP5838204B2 (ru) |
KR (5) | KR101910785B1 (ru) |
CN (2) | CN103379923B (ru) |
AU (1) | AU2011272815B2 (ru) |
BR (1) | BR112012033495B1 (ru) |
CA (1) | CA2803373C (ru) |
DK (2) | DK2987507T3 (ru) |
ES (2) | ES2654654T3 (ru) |
HK (1) | HK1221917A1 (ru) |
IL (2) | IL223760A (ru) |
MX (1) | MX337835B (ru) |
RU (2) | RU2668372C1 (ru) |
TW (1) | TWI579007B (ru) |
WO (1) | WO2012003326A1 (ru) |
ZA (1) | ZA201300424B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2757959C1 (ru) * | 2021-02-05 | 2021-10-25 | Общество с ограниченной ответственностью «Научно-производственная компания «СИНТЕЛ» | Способ профилактики переломов длинных трубчатых костей при остеопорозе |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579007B (zh) | 2010-07-02 | 2017-04-21 | 艾格諾福斯保健公司 | 骨再生材料之用途 |
FR2993183B1 (fr) * | 2012-07-13 | 2014-10-31 | Rv Finances | Composition de substitut osseux injectable |
TWI414326B (zh) * | 2012-08-28 | 2013-11-11 | Far Eastern Memorial Hospital | 具有骨誘導能力之骨水泥 |
TWI414327B (zh) * | 2012-08-28 | 2013-11-11 | Far Eastern Memorial Hospital | 複合性骨水泥 |
US10729490B2 (en) | 2012-10-25 | 2020-08-04 | Medtronic Holding Company Sàrl | Electrosurgical mapping tools and methods |
US10499932B2 (en) | 2013-03-08 | 2019-12-10 | Arthrex, Inc. | Expandable reamer |
EP3692906B1 (en) | 2013-03-15 | 2024-01-10 | Medtronic Holding Company Sàrl | A system for treating tissue |
US10039513B2 (en) | 2014-07-21 | 2018-08-07 | Zebra Medical Vision Ltd. | Systems and methods for emulating DEXA scores based on CT images |
US10588589B2 (en) | 2014-07-21 | 2020-03-17 | Zebra Medical Vision Ltd. | Systems and methods for prediction of osteoporotic fracture risk |
US10238507B2 (en) | 2015-01-12 | 2019-03-26 | Surgentec, Llc | Bone graft delivery system and method for using same |
CN104784752A (zh) * | 2015-04-22 | 2015-07-22 | 山东明德生物医学工程有限公司 | 一种具有抗氧化特性的可注射性骨水泥及其制备方法和用途 |
US10765453B2 (en) | 2017-04-18 | 2020-09-08 | Texas Scottish Rite Hospital For Children | Device and method for treating osteonecrosis |
US10758253B2 (en) | 2017-04-18 | 2020-09-01 | Texas Scottish Rite Hospital For Children | Device and method for treating osteonecrosis |
US10945658B2 (en) | 2017-04-19 | 2021-03-16 | Worcester Polytechnic Institute | Systems and methods for early detection of fracture healing |
US10456145B2 (en) | 2017-05-16 | 2019-10-29 | Arthrex, Inc. | Expandable reamers |
WO2018218084A2 (en) * | 2017-05-26 | 2018-11-29 | Pan Medical Us Corporation | Kyphoplasty device and method |
RU2643337C1 (ru) * | 2017-06-06 | 2018-01-31 | Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) | Резорбируемый рентгеноконтрастный кальций-фосфатный цемент для костной пластики |
US12102367B2 (en) | 2017-06-14 | 2024-10-01 | Osteoagra Llc | Method, composition, and apparatus for stabilization of vertebral bodies |
WO2018232100A1 (en) * | 2017-06-14 | 2018-12-20 | Osteoagra Llc | Stabilization of vertebral bodies with bone particle slurry |
CN107115560B (zh) * | 2017-06-15 | 2020-08-28 | 中南大学湘雅三医院 | 抗菌仿生多孔钛植入体及其制备方法和应用 |
US10779870B2 (en) * | 2017-10-16 | 2020-09-22 | Medtronic Holding Company Sarl | Curved inflatable bone tamp with variable wall thickness |
US10687828B2 (en) | 2018-04-13 | 2020-06-23 | Surgentec, Llc | Bone graft delivery system and method for using same |
US11116647B2 (en) | 2018-04-13 | 2021-09-14 | Surgentec, Llc | Bone graft delivery system and method for using same |
KR102095485B1 (ko) * | 2019-07-25 | 2020-03-31 | 주식회사 메디팹 | 인산칼슘 하이드로겔 조성물을 포함하는 골다공증 모델 및 이의 용도 |
CN110974342B (zh) * | 2019-12-09 | 2022-10-25 | 李联辉 | 一种具有麻醉功能的手摇骨钻 |
EP4185343A1 (en) * | 2020-07-21 | 2023-05-31 | Shankar Rajeswaran M.D. LLC | System and method for treatment of bone |
CN215663937U (zh) * | 2021-04-02 | 2022-01-28 | 东莞市蓝豚运动用品有限公司 | 潜水面镜 |
CN115227879B (zh) * | 2022-09-15 | 2023-01-06 | 北京天星博迈迪医疗器械有限公司 | 一种用于可降解关节球囊的组合物及其应用、一种可降解关节球囊及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537589B1 (en) * | 2000-04-03 | 2003-03-25 | Kyung Won Medical Co., Ltd. | Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material |
WO2007030616A2 (en) * | 2005-09-09 | 2007-03-15 | Wright Medical Technology, Inc. | Composite bone graft substitute cement and articles produced therefrom |
US20090149954A1 (en) * | 2007-12-07 | 2009-06-11 | Xianbo Hu | Bone substitute |
Family Cites Families (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL45585C (ru) | 1936-05-28 | 1900-01-01 | ||
US2170111A (en) | 1936-05-28 | 1939-08-22 | Rohm & Haas | Manufacture of amines |
US2229024A (en) | 1939-05-23 | 1941-01-21 | Rohm & Haas | Aromatic ether of polyalkoxyalkylalkylene polyamines and process for obtaining them |
US2616789A (en) | 1951-03-19 | 1952-11-04 | Certain Teed Prod Corp | Method of producing gypsum plaster |
US2826532A (en) | 1952-04-15 | 1958-03-11 | Gen Aniline & Film Corp | Process of stabilizing polyvinyl pyrrolidone-iodine compositions |
US2900305A (en) | 1952-04-15 | 1959-08-18 | Gen Aniline & Film Corp | Preparation of iodine polyvinylpyrrolidone adducts |
BE615889A (ru) | 1952-04-15 | 1900-01-01 | ||
US2710277A (en) | 1952-04-23 | 1955-06-07 | West Laboratories Inc | Iodine phosphate ester compositions |
US2730101A (en) | 1954-02-23 | 1956-01-10 | Roy D Hoffman | Teat bistoury with expansible cutter knives |
US2816552A (en) | 1954-06-29 | 1957-12-17 | Roy D Hoffman | Teat bistoury with improved cutter blade adjusting means |
US2977315A (en) | 1956-09-12 | 1961-03-28 | Lazarus Lab Inc | Water soluble iodine-phosphoric-acidsynthetic detergent composition |
US3030951A (en) | 1959-04-10 | 1962-04-24 | Michael P Mandarino | Methods and materials for orthopedic surgery |
US3181533A (en) | 1962-01-15 | 1965-05-04 | William C Heath | Surgical snare |
US3228828A (en) | 1963-02-15 | 1966-01-11 | Standard Naphthalene Products | Insecticide composition comprising naphthalene and paraffinic hydrocarbon |
US3320957A (en) | 1964-05-21 | 1967-05-23 | Sokolik Edward | Surgical instrument |
US3557794A (en) | 1968-07-30 | 1971-01-26 | Us Air Force | Arterial dilation device |
US3573947A (en) | 1968-08-19 | 1971-04-06 | United States Gypsum Co | Accelerator for gypsum plaster |
SU557755A3 (ru) | 1968-08-19 | 1977-05-05 | Янссен Фармасьютика Н.В. (Фирма) | Способ получени производных имидазола |
US3670732A (en) | 1970-05-11 | 1972-06-20 | Ralph R Robinson | Vacuum curette |
US3702611A (en) | 1971-06-23 | 1972-11-14 | Meyer Fishbein | Surgical expansive reamer for hip socket |
US3875595A (en) | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US3938530A (en) | 1974-11-15 | 1976-02-17 | Santomieri Louis | Catheter |
US4357937A (en) * | 1981-06-26 | 1982-11-09 | Burrell Jr Lawrence M | Medical irrigation device |
US4440750A (en) | 1982-02-12 | 1984-04-03 | Collagen Corporation | Osteogenic composition and method |
DE3309918C2 (de) * | 1982-03-29 | 1994-09-01 | Barry Oliver Weightman | Saug- und Spülvorrichtung |
US4596243A (en) | 1983-05-25 | 1986-06-24 | Bray Robert S | Surgical methods and apparatus for bone removal |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
USRE33258E (en) | 1984-07-23 | 1990-07-10 | Surgical Dynamics Inc. | Irrigating, cutting and aspirating system for percutaneous surgery |
US4755184A (en) | 1986-01-09 | 1988-07-05 | Mark Silverberg | Bone augmentation implant |
JPS62268562A (ja) * | 1986-05-15 | 1987-11-21 | 三菱マテリアル株式会社 | 骨粗鬆症治療用充てん材 |
US4751922A (en) | 1986-06-27 | 1988-06-21 | Dipietropolo Al | Flexible medullary reamer |
US4743229A (en) | 1986-09-29 | 1988-05-10 | Collagen Corporation | Collagen/mineral mixing device and method |
US5085861A (en) | 1987-03-12 | 1992-02-04 | The Beth Israel Hospital Association | Bioerodable implant composition comprising crosslinked biodegradable polyesters |
US5047031A (en) | 1988-04-20 | 1991-09-10 | Norian Corporation | In situ calcium phosphate minerals method |
US5178845A (en) | 1988-04-20 | 1993-01-12 | Norian Corporation | Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite |
US6005162A (en) | 1988-04-20 | 1999-12-21 | Norian Corporation | Methods of repairing bone |
US5053212A (en) | 1988-04-20 | 1991-10-01 | Norian Corporation | Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite |
US4880610A (en) | 1988-04-20 | 1989-11-14 | Norian Corporation | In situ calcium phosphate minerals--method and composition |
US5129905A (en) | 1988-04-20 | 1992-07-14 | Norian Corporation | Methods for in situ prepared calcium phosphate minerals |
US4919153A (en) * | 1988-10-11 | 1990-04-24 | Origin Medsystems, Inc. | Method and apparatus for removing pre-placed prosthetic joints and preparing for their replacement |
US4961740B1 (en) | 1988-10-17 | 1997-01-14 | Surgical Dynamics Inc | V-thread fusion cage and method of fusing a bone joint |
US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US5015255A (en) | 1989-05-10 | 1991-05-14 | Spine-Tech, Inc. | Spinal stabilization method |
CA2007210C (en) | 1989-05-10 | 1996-07-09 | Stephen D. Kuslich | Intervertebral reamer |
CH678804A5 (ru) | 1989-06-14 | 1991-11-15 | Synthes Ag | |
US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
US5071424A (en) | 1989-08-18 | 1991-12-10 | Evi Corporation | Catheter atherotome |
US5156610A (en) | 1989-08-18 | 1992-10-20 | Evi Corporation | Catheter atherotome |
US5055104A (en) | 1989-11-06 | 1991-10-08 | Surgical Dynamics, Inc. | Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach |
US5059193A (en) | 1989-11-20 | 1991-10-22 | Spine-Tech, Inc. | Expandable spinal implant and surgical method |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5158564A (en) | 1990-02-14 | 1992-10-27 | Angiomed Ag | Atherectomy apparatus |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
US5125910A (en) * | 1991-02-19 | 1992-06-30 | Dexide, Inc. | Surgical endoscopic suction/irrigation cannula assembly |
US5782971B1 (en) | 1991-06-28 | 1999-09-21 | Norian Corp | Calcium phosphate cements comprising amorophous calcium phosphate |
US5242461A (en) | 1991-07-22 | 1993-09-07 | Dow Corning Wright | Variable diameter rotating recanalization catheter and surgical method |
SG46603A1 (en) | 1991-08-30 | 1998-02-20 | Canon Kk | Head positioning device |
FR2685190B1 (fr) | 1991-12-23 | 1998-08-07 | Jean Marie Lefebvre | Dispositif rotatif d'atherectomie ou de thrombectomie a developpement transversal centrifuge. |
US5263953A (en) | 1991-12-31 | 1993-11-23 | Spine-Tech, Inc. | Apparatus and system for fusing bone joints |
US5224488A (en) | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
DE69420947T2 (de) | 1993-02-10 | 2000-05-18 | Sulzer Spine Tech Inc | Werkzeugsatz zur stabilisierung der wirbelsäule |
US5348555A (en) * | 1993-04-26 | 1994-09-20 | Zinnanti William J | Endoscopic suction, irrigation and cautery instrument |
US5449357A (en) * | 1993-04-26 | 1995-09-12 | Zinnanti; William J. | Endoscopic suction, irrigation and cautery instrument |
FR2705235B1 (fr) | 1993-05-13 | 1995-07-13 | Inoteb | Utilisation de particules d'un sel de calcium biocompatible et biorésorbable comme ingrédient actif dans la préparation d'un médicament destiné au traitement local des maladies déminéralisantes de l'os. |
US5431671A (en) | 1993-05-28 | 1995-07-11 | Nallakrishnan; Ravi | Surgical knife with retractable and angularly adjustable blade |
US5423850A (en) | 1993-10-01 | 1995-06-13 | Berger; J. Lee | Balloon compressor for internal fixation of bone fractures |
DE69535492T2 (de) | 1994-01-26 | 2007-09-06 | Kyphon Inc., Sunnyvale | Verbesserte aufblasbare Vorrichtung zur Verwendung in chirurgischen Methoden zur Fixierung von Knochen |
CA2180556C (en) | 1994-01-26 | 2007-08-07 | Mark A. Reiley | Improved inflatable device for use in surgical protocol relating to fixation of bone |
US6241734B1 (en) * | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
US6248110B1 (en) | 1994-01-26 | 2001-06-19 | Kyphon, Inc. | Systems and methods for treating fractured or diseased bone using expandable bodies |
US5508342A (en) | 1994-02-01 | 1996-04-16 | The United States Of America As Represented By The Secretary Of Commerce | Polymeric amorphous calcium phosphate compositions |
GB9407135D0 (en) * | 1994-04-11 | 1994-06-01 | Aberdeen University And Plasma | Treatment of osteoporosis |
US5888220A (en) | 1994-05-06 | 1999-03-30 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US6248131B1 (en) | 1994-05-06 | 2001-06-19 | Advanced Bio Surfaces, Inc. | Articulating joint repair |
US5556429A (en) | 1994-05-06 | 1996-09-17 | Advanced Bio Surfaces, Inc. | Joint resurfacing system |
US6140452A (en) | 1994-05-06 | 2000-10-31 | Advanced Bio Surfaces, Inc. | Biomaterial for in situ tissue repair |
WO1995031947A1 (en) | 1994-05-23 | 1995-11-30 | Spine-Tech, Inc. | Intervertebral fusion implant |
US5554163A (en) | 1995-04-27 | 1996-09-10 | Shturman Cardiology Systems, Inc. | Atherectomy device |
US5693011A (en) | 1995-04-27 | 1997-12-02 | Surgical Dynamics, Inc. | Surgical suction cutting instrument |
US6238391B1 (en) | 1995-06-07 | 2001-05-29 | Arthrocare Corporation | Systems for tissue resection, ablation and aspiration |
US6071284A (en) | 1995-10-30 | 2000-06-06 | Biomedical Enterprises, Inc. | Materials collection system and uses thereof |
US5709683A (en) | 1995-12-19 | 1998-01-20 | Spine-Tech, Inc. | Interbody bone implant having conjoining stabilization features for bony fusion |
US5695513A (en) | 1996-03-01 | 1997-12-09 | Metagen, Llc | Flexible cutting tool and methods for its use |
US5725478A (en) * | 1996-03-14 | 1998-03-10 | Saad; Saad A. | Methods and apparatus for providing suction and/or irrigation in a rigid endoscope while maintaining visual contact with a target area through the endoscope |
US5720749A (en) | 1996-03-18 | 1998-02-24 | Snap-On Technologies, Inc. | Integral reamer apparatus with guide counterbores in female press-fitted parts |
WO1997038635A1 (en) | 1996-04-12 | 1997-10-23 | Surgical Dynamics, Inc. | Surgical cutting device removably connected to a rotary drive element |
US5833628A (en) | 1996-04-24 | 1998-11-10 | Yuan; Hansen | Graduated bone graft harvester |
EP0925033B1 (en) | 1996-07-18 | 2004-02-25 | Implant Innovations, Inc. | Power-driven osteotome tools for compaction of bone tissue |
DE69734473T2 (de) | 1996-12-13 | 2006-07-20 | Norian Corp., Cupertino | Vorrichtungen zum speichern und mischen von zementen |
DE19652608C1 (de) | 1996-12-18 | 1998-08-27 | Eska Implants Gmbh & Co | Prophylaxe-Implantat gegen Frakturen osteoporotisch befallener Knochensegmente |
US5843103A (en) | 1997-03-06 | 1998-12-01 | Scimed Life Systems, Inc. | Shaped wire rotational atherectomy device |
NZ513470A (en) * | 1997-06-09 | 2003-01-31 | Kyphon Inc | Device for deployment into an interior body using expandable bodies attached to first and second catheter tubes |
US5972015A (en) | 1997-08-15 | 1999-10-26 | Kyphon Inc. | Expandable, asymetric structures for deployment in interior body regions |
US5928239A (en) | 1998-03-16 | 1999-07-27 | University Of Washington | Percutaneous surgical cavitation device and method |
US6440138B1 (en) | 1998-04-06 | 2002-08-27 | Kyphon Inc. | Structures and methods for creating cavities in interior body regions |
US6296639B1 (en) | 1999-02-12 | 2001-10-02 | Novacept | Apparatuses and methods for interstitial tissue removal |
US6022362A (en) | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
RU2147885C1 (ru) * | 1999-02-09 | 2000-04-27 | Чернов Юрий Николаевич | Способ лечения остеопороза |
US7371408B1 (en) | 1999-06-07 | 2008-05-13 | Wright Medical Technology, Inc. | Bone graft substitute composition |
US6224604B1 (en) | 1999-07-30 | 2001-05-01 | Loubert Suddaby | Expandable orthopedic drill for vertebral interbody fusion techniques |
CA2287112C (en) | 1999-09-02 | 2008-02-19 | Kieran Murphy | Method and apparatus for strengthening vertebral bodies |
EP1155704A1 (en) | 2000-01-13 | 2001-11-21 | Chih-I Lin | Orthopedic filling material and method of use thereof |
US6383188B2 (en) | 2000-02-15 | 2002-05-07 | The Spineology Group Llc | Expandable reamer |
US6790210B1 (en) | 2000-02-16 | 2004-09-14 | Trans1, Inc. | Methods and apparatus for forming curved axial bores through spinal vertebrae |
US6425923B1 (en) | 2000-03-07 | 2002-07-30 | Zimmer, Inc. | Contourable polymer filled implant |
ES2262642T3 (es) * | 2000-04-05 | 2006-12-01 | Kyphon Inc. | Dispositivo para el tratamiento de huesos fracturados y/o enfermos. |
US6851430B2 (en) * | 2000-05-01 | 2005-02-08 | Paul M. Tsou | Method and apparatus for endoscopic spinal surgery |
US7114501B2 (en) | 2000-08-14 | 2006-10-03 | Spine Wave, Inc. | Transverse cavity device and method |
US6679886B2 (en) * | 2000-09-01 | 2004-01-20 | Synthes (Usa) | Tools and methods for creating cavities in bone |
US6364853B1 (en) * | 2000-09-11 | 2002-04-02 | Scion International, Inc. | Irrigation and suction valve and method therefor |
US6613018B2 (en) * | 2001-02-20 | 2003-09-02 | Vita Licensing, Inc. | System and kit for delivery of restorative materials |
US6949251B2 (en) | 2001-03-02 | 2005-09-27 | Stryker Corporation | Porous β-tricalcium phosphate granules for regeneration of bone tissue |
US6746451B2 (en) | 2001-06-01 | 2004-06-08 | Lance M. Middleton | Tissue cavitation device and method |
TWI267378B (en) | 2001-06-08 | 2006-12-01 | Wyeth Corp | Calcium phosphate delivery vehicles for osteoinductive proteins |
US6814734B2 (en) | 2001-06-18 | 2004-11-09 | Sdgi Holdings, Inc, | Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion |
KR20040051581A (ko) * | 2001-07-20 | 2004-06-18 | 스파인올로지, 인크. | 팽창성 다공성 메쉬 백 장치 및 뼈 수술에 있어서의 상기장치의 사용 |
US6679890B2 (en) | 2001-08-28 | 2004-01-20 | Joseph Y. Margulies | Method and apparatus for augmentation of the femoral neck |
US7371409B2 (en) | 2001-09-06 | 2008-05-13 | Wright Medical Technology, Inc. | Bone graft substitute composition |
AU2002327007B2 (en) | 2001-09-21 | 2005-10-20 | Stryker Corporation | Pore-forming agents for orthopedic cements |
US6827720B2 (en) | 2002-01-15 | 2004-12-07 | Alejandro Leali | System and method for treating osteonecrosis |
US20030135214A1 (en) | 2002-01-15 | 2003-07-17 | Fetto Joseph F. | System, device, composition and method for treating and preventing avascular or osteonecrosis |
JP4814477B2 (ja) * | 2002-05-14 | 2011-11-16 | 独立行政法人科学技術振興機構 | 骨増生剤および骨粗鬆症治療薬 |
US7229971B2 (en) | 2002-03-11 | 2007-06-12 | Japan Science And Technology Agency | Regulation of biodegradability of composite biomaterials |
EP1489998B1 (en) | 2002-03-29 | 2010-12-08 | Wright Medical Technology, Inc. | Bone graft substitute composition |
US6652887B1 (en) | 2002-06-24 | 2003-11-25 | Wright Medical Technology, Inc. | Bone graft substitute composition |
US7291179B2 (en) | 2002-06-24 | 2007-11-06 | Wright Medical Technology, Inc. | Bone graft substitute composition |
KR200306716Y1 (ko) | 2002-11-29 | 2003-03-11 | (주)오티스바이오텍 | 척추시술장치 |
US7507257B2 (en) | 2003-02-04 | 2009-03-24 | Wright Medical Technology, Inc. | Injectable resorbable bone graft material, powder for forming same and methods relating thereto for treating bone defects |
US7261718B2 (en) | 2003-09-11 | 2007-08-28 | Skeletal Kinetics Llc | Use of vibration with polymeric bone cements |
US7261717B2 (en) | 2003-09-11 | 2007-08-28 | Skeletal Kinetics Llc | Methods and devices for delivering orthopedic cements to a target bone site |
US7419680B2 (en) | 2003-10-01 | 2008-09-02 | New York University | Calcium phosphate-based materials containing zinc, magnesium, fluoride and carbonate |
SE0302983D0 (sv) | 2003-11-11 | 2003-11-11 | Bone Support Ab | Anordning för att förse spongiöst ben med benersättnings- och/eller benförstärkningsmaterial och förfarande i samband därmed |
US7534264B2 (en) | 2004-01-28 | 2009-05-19 | Ultradent Products, Inc. | Delivery system for bone growth promoting material |
US7351280B2 (en) * | 2004-02-10 | 2008-04-01 | New York University | Macroporous, resorbable and injectible calcium phosphate-based cements (MCPC) for bone repair, augmentation, regeneration, and osteoporosis treatment |
US20050244451A1 (en) | 2004-05-03 | 2005-11-03 | Robert Diaz | Method and device for reducing susceptibility to fractures in vertebral bodies |
US20050244499A1 (en) | 2004-05-03 | 2005-11-03 | Robert Diaz | Method and device for reducing susceptibility to fractures in long bones |
US20080132899A1 (en) | 2004-05-17 | 2008-06-05 | Shadduck John H | Composite implant and method for treating bone abnormalities |
US7621952B2 (en) | 2004-06-07 | 2009-11-24 | Dfine, Inc. | Implants and methods for treating bone |
US20060085081A1 (en) | 2004-06-07 | 2006-04-20 | Shadduck John H | Implants and methods for treating bone |
US20060085009A1 (en) | 2004-08-09 | 2006-04-20 | Csaba Truckai | Implants and methods for treating bone |
US20060106459A1 (en) | 2004-08-30 | 2006-05-18 | Csaba Truckai | Bone treatment systems and methods |
US20060229628A1 (en) | 2004-10-02 | 2006-10-12 | Csaba Truckai | Biomedical treatment systems and methods |
US7250550B2 (en) | 2004-10-22 | 2007-07-31 | Wright Medical Technology, Inc. | Synthetic bone substitute material |
US8048083B2 (en) | 2004-11-05 | 2011-11-01 | Dfine, Inc. | Bone treatment systems and methods |
US7682378B2 (en) | 2004-11-10 | 2010-03-23 | Dfine, Inc. | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
US20060100706A1 (en) | 2004-11-10 | 2006-05-11 | Shadduck John H | Stent systems and methods for spine treatment |
US8562607B2 (en) | 2004-11-19 | 2013-10-22 | Dfine, Inc. | Bone treatment systems and methods |
US7717918B2 (en) | 2004-12-06 | 2010-05-18 | Dfine, Inc. | Bone treatment systems and methods |
US7722620B2 (en) | 2004-12-06 | 2010-05-25 | Dfine, Inc. | Bone treatment systems and methods |
GB0502493D0 (en) | 2005-02-07 | 2005-03-16 | Orthogem Ltd | Bone cement |
US8747406B2 (en) * | 2005-02-21 | 2014-06-10 | Wright Medical Technology, Inc. | Instruments for osteolysis repair |
US20070118144A1 (en) | 2005-09-01 | 2007-05-24 | Csaba Truckai | Systems for sensing retrograde flows of bone fill material |
TWI327071B (en) * | 2005-09-09 | 2010-07-11 | Wright Medical Tech Inc | Composite bone graft substitute cement and articles produced therefrom |
US8062298B2 (en) * | 2005-10-15 | 2011-11-22 | Baxano, Inc. | Flexible tissue removal devices and methods |
EP1948218B1 (en) * | 2005-10-17 | 2015-04-15 | University of the Witwatersrand, Johannesburg | Osteogenic device for inducing bone formation in clinical contexts |
CN101309708B (zh) * | 2005-11-15 | 2013-06-05 | 罗伯特·马泰斯·斯蒂夫腾 | 骨修复材料 |
US7833270B2 (en) * | 2006-05-05 | 2010-11-16 | Warsaw Orthopedic, Inc | Implant depots to deliver growth factors to treat osteoporotic bone |
US20070288042A1 (en) * | 2006-06-07 | 2007-12-13 | Serbousek Jon C | Flexible debridement device |
US20080114364A1 (en) | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
CN100531805C (zh) * | 2006-11-29 | 2009-08-26 | 华南理工大学 | 一种可注射自固化磷酸钙骨修复材料及其制备方法 |
US8926623B2 (en) | 2007-01-12 | 2015-01-06 | Warsaw Orthopedic, Inc. | System and method for forming porous bone filling material |
US8268010B2 (en) | 2007-01-12 | 2012-09-18 | Warsaw Orthopedic, Inc. | System and method for forming bone filling materials with microparticles |
US8840618B2 (en) | 2007-01-12 | 2014-09-23 | Warsaw Orthopedic, Inc. | System and method for pressure mixing bone filling material |
IL181211A0 (en) | 2007-02-07 | 2007-07-04 | Nmb Medical Applic Ltd | Device and methods for strengthening long bones |
WO2008128342A1 (en) * | 2007-04-18 | 2008-10-30 | Mcgill University | Composition for enhancing bone formation |
US20080300603A1 (en) | 2007-06-04 | 2008-12-04 | Ao Technology Ag | Method for placement of bone cement into pre-selected bone regions |
US20080317807A1 (en) | 2007-06-22 | 2008-12-25 | The University Of Hong Kong | Strontium fortified calcium nano-and microparticle compositions and methods of making and using thereof |
KR20090016085A (ko) * | 2007-08-10 | 2009-02-13 | 최봉섭 | 조직 수복용 재료 |
US8057472B2 (en) | 2007-10-30 | 2011-11-15 | Ellipse Technologies, Inc. | Skeletal manipulation method |
KR101815321B1 (ko) * | 2008-04-15 | 2018-01-05 | 라이프 사이언스 엔터프라이즈 | 칼슘 포스페이트 혼합 골 시멘트를 이용한 척추의 최소 침습적 치료방법 |
CN102123671B (zh) * | 2008-05-23 | 2016-01-13 | 脊柱诊察公司 | 用于治疗脊椎狭窄的方法和装置 |
US20100094306A1 (en) | 2008-10-13 | 2010-04-15 | Arvin Chang | Spinal distraction system |
TWI579007B (zh) | 2010-07-02 | 2017-04-21 | 艾格諾福斯保健公司 | 骨再生材料之用途 |
-
2011
- 2011-06-29 TW TW100122879A patent/TWI579007B/zh active
- 2011-06-30 CA CA2803373A patent/CA2803373C/en active Active
- 2011-06-30 CN CN201180038621.3A patent/CN103379923B/zh active Active
- 2011-06-30 BR BR112012033495-6A patent/BR112012033495B1/pt active IP Right Grant
- 2011-06-30 KR KR1020187025857A patent/KR101910785B1/ko active IP Right Grant
- 2011-06-30 KR KR1020157015910A patent/KR20150080627A/ko not_active Application Discontinuation
- 2011-06-30 KR KR1020177012161A patent/KR20170053737A/ko not_active Application Discontinuation
- 2011-06-30 EP EP15187629.9A patent/EP2987507B1/en active Active
- 2011-06-30 RU RU2016104128A patent/RU2668372C1/ru active
- 2011-06-30 ES ES11734215.4T patent/ES2654654T3/es active Active
- 2011-06-30 WO PCT/US2011/042607 patent/WO2012003326A1/en active Application Filing
- 2011-06-30 US US13/173,701 patent/US9550010B2/en active Active
- 2011-06-30 DK DK15187629.9T patent/DK2987507T3/da active
- 2011-06-30 RU RU2013104512/15A patent/RU2578032C2/ru active
- 2011-06-30 JP JP2013518715A patent/JP5838204B2/ja active Active
- 2011-06-30 KR KR1020167034240A patent/KR101898795B1/ko active IP Right Grant
- 2011-06-30 ES ES15187629T patent/ES2943021T3/es active Active
- 2011-06-30 CN CN201610089979.3A patent/CN105816913B/zh active Active
- 2011-06-30 EP EP23150116.4A patent/EP4186534A1/en active Pending
- 2011-06-30 KR KR1020137002739A patent/KR20130043176A/ko active Application Filing
- 2011-06-30 MX MX2013000205A patent/MX337835B/es active IP Right Grant
- 2011-06-30 AU AU2011272815A patent/AU2011272815B2/en active Active
- 2011-06-30 EP EP11734215.4A patent/EP2588154B1/en active Active
- 2011-06-30 DK DK11734215.4T patent/DK2588154T3/da active
-
2012
- 2012-12-20 IL IL223760A patent/IL223760A/en active IP Right Grant
-
2013
- 2013-01-16 ZA ZA2013/00424A patent/ZA201300424B/en unknown
-
2015
- 2015-07-09 JP JP2015137638A patent/JP6448489B2/ja active Active
-
2016
- 2016-08-23 HK HK16110008.1A patent/HK1221917A1/zh unknown
- 2016-10-17 US US15/294,954 patent/US20170027591A1/en not_active Abandoned
-
2017
- 2017-06-11 IL IL252806A patent/IL252806B/en active IP Right Grant
- 2017-07-06 JP JP2017132682A patent/JP6574816B2/ja active Active
-
2021
- 2021-04-29 US US17/244,910 patent/US20210244422A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6537589B1 (en) * | 2000-04-03 | 2003-03-25 | Kyung Won Medical Co., Ltd. | Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material |
WO2007030616A2 (en) * | 2005-09-09 | 2007-03-15 | Wright Medical Technology, Inc. | Composite bone graft substitute cement and articles produced therefrom |
US20090149954A1 (en) * | 2007-12-07 | 2009-06-11 | Xianbo Hu | Bone substitute |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2757959C1 (ru) * | 2021-02-05 | 2021-10-25 | Общество с ограниченной ответственностью «Научно-производственная компания «СИНТЕЛ» | Способ профилактики переломов длинных трубчатых костей при остеопорозе |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2668372C1 (ru) | Способы лечения дегенеративных состояний костей | |
KR101420100B1 (ko) | 다목적 생체재료 조성물 | |
US20120283833A1 (en) | Articular cartilage treatment method | |
Hu et al. | Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model | |
AU2015200464B2 (en) | Composition comprising calcium phosphate and sulfate powders and tri - calcium phosphate particles used in the treatment of degenerative bone conditions | |
US20240180625A1 (en) | Image guided delivery of compositions and related methods | |
Mehrvar | Development of Novel Adhesives for Sternal and Radial Fixation | |
Klein | Bone augmentation for cancellous bone using variable injectable composites as biomimetic agents |