RU2627853C1 - Каучуковая композиция для использования в протекторе шины - Google Patents

Каучуковая композиция для использования в протекторе шины Download PDF

Info

Publication number
RU2627853C1
RU2627853C1 RU2016142148A RU2016142148A RU2627853C1 RU 2627853 C1 RU2627853 C1 RU 2627853C1 RU 2016142148 A RU2016142148 A RU 2016142148A RU 2016142148 A RU2016142148 A RU 2016142148A RU 2627853 C1 RU2627853 C1 RU 2627853C1
Authority
RU
Russia
Prior art keywords
rubber
weight
diene rubber
silica
parts
Prior art date
Application number
RU2016142148A
Other languages
English (en)
Inventor
Кейсуке МАЕДЗИМА
Original Assignee
Дзе Йокогама Раббер Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Йокогама Раббер Ко., Лтд. filed Critical Дзе Йокогама Раббер Ко., Лтд.
Application granted granted Critical
Publication of RU2627853C1 publication Critical patent/RU2627853C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к каучуковой композиции для использования в протекторе шины. Каучуковая композиция содержит: на 100 мас.ч. диенового каучука, содержащего 40% мас. или более бутадиенового каучука и бутадиен-стирольного каучука, от 80 до 150 мас.ч. кремнезема, имеющего удельную площадь поверхности по ЦТАБ от 150 до 250 м2/г, силановое соединение, содержащее длинноцепочечную алкильную группу, в количестве от 1 до 10% мас. от количества кремнезема. Стирольный компонент в диеновом каучуке составляет от 15 до 20% мас., а винильный компонент в диеновом каучуке составляет от 18 до 28% мас. Средняя температура стеклования диенового каучука составляет -55°C или ниже. Изобретение позволяет улучшить характеристики на льду, характеристики на мокром покрытии и износостойкость до или сверх традиционных уровней. 4 з.п. ф-лы, 1 ил., 3 табл.

Description

Область техники
[0001]
Настоящее изобретение относится к каучуковой композиции для использования в протекторе шины, которая улучшает характеристики на льду, характеристики на мокром покрытии и износостойкость.
Предпосылки создания изобретения
[0002]
Для достижения высокой степени равновесия между характеристиками на льду, характеристиками на мокром покрытии и износостойкостью требуются пневматические шины для использования на обледеневших и заснеженных дорогах (нешипованные шины) и всесезонные шины.
[0003]
Для улучшения характеристик на льду улучшают характеристики сцепления посредством увеличения силы сцепления с обледеневшими и заснеженными дорожными покрытиями при помощи пластичного поддержания твердости протекторной резины даже при низких температурах. Для обеспечения пластичности в условиях низких температур применяются каучуковые компоненты, имеющие низкую температуру стеклования (Tg).
[0004]
В то же время для улучшения ходовых характеристик на мокрых дорожных покрытиях, не покрытых снегом или льдом, требуются высокие характеристики сцепления на мокром покрытии. Поэтому, как правило, применяется смешивание бутадиен-стирольного каучука, имеющего высокую Tg, и/или кремнезема. Однако при введении в смесь бутадиен-стирольного каучука, имеющего высокую Tg, температура стеклования всей каучуковой композиции возрастает, что приводит к проблеме, связанной с негативным воздействием на силу сцепления с обледеневшими и заснеженными дорожными покрытиями вследствие увеличения твердости резины при низких температурах. Кроме того, кремнезем вызывает проблему, состоящую в невозможности получения достаточной износостойкости, поскольку характеристики жесткости у каучука хуже, чем у углеродной сажи.
[0005]
В патентном документе 1 предлагается улучшить характеристики сцепления на обледеневших и заснеженных дорожных покрытиях и на мокрых дорожных покрытиях посредством введения в смесь кремнезема, имеющего удельную площадь поверхности по ЦТАБ от 80 до 170 м2/г, и модифицированной ароматическими группами терпеновой смолы, исключая терпенфенолоформальдегидные смолы в диеновом каучуке, содержащем бутадиен-стирольный каучук, модифицированный концевыми группами, и бутадиеновый каучук, причем Tg бутадиенового каучука составляет от -55 до -70 °C.
[0006]
Однако для того, чтобы удовлетворить запросы потребителей, требующих обеспечить характеристики на льду, характеристики на мокром покрытии и износостойкость на еще более высоком уровне, необходимо дополнительное улучшение.
Список цитированной литературы
Патентная литература
[0007]
Патентный документ 1: патент Японии № 4883172B
Изложение сущности изобретения
Техническая проблема
[0008]
Целью настоящего изобретения является обеспечение каучуковой композиции для использования в протекторе шины, которая улучшает характеристики на льду, характеристики на мокром покрытии и износостойкость до или сверх традиционных уровней.
Решение проблемы
[0009]
Каучуковая композиция для использования в протекторе шины настоящего изобретения, которая достигает описанной выше цели, содержащая: на 100 частей по массе диенового каучука, содержащего 40% мас. или более бутадиенового каучука и бутадиен-стирольного каучука, от 80 до 150 частей по массе кремнезема, имеющего удельную площадь поверхности по ЦТАБ от 150 до 250 м2/г, и силановое соединение, содержащее длинноцепочечную алкильную группу, в количестве от 1 до 10% мас. от количества кремнезема; причем стирольный компонент в диеновом каучуке составляет от 15 до 20% мас., а винильный компонент в диеновом каучуке составляет от 18 до 28% мас.; и причем средняя температура стеклования диенового каучука составляет -55°C или ниже.
Преимущественные эффекты изобретения
[0010]
Каучуковая композиция для использования в протекторе шины настоящего изобретения позволяет улучшить характеристики на льду, характеристики на мокром покрытии и износостойкость до или сверх традиционных уровней, поскольку в каучуковой композиции, в которой кремнезем и силановое соединение, содержащее длинноцепочечную алкильную группу, смешаны в составе диенового каучука, содержащего бутадиеновый каучук и бутадиен-стирольный каучук, количества стирольного компонента и винильного компонента в диеновом каучуке заданы равными заранее установленным количествам, а средняя температура стеклования задана равной заранее установленной температуре.
[0011]
По меньшей мере часть бутадиенового каучука представляет собой предпочтительно предварительно смешанный бутадиеновый каучук, в котором от 60 до 80% мас. высокомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 500 000 до 1 000 000, и от 20 до 40% мас. низкомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 6000 до 60 000, смешивают в растворителе, тем самым дополнительно улучшая износостойкость.
[0012]
Кроме того, характеристики на мокром покрытии дополнительно улучшаются тем, что на 100 частей по массе диенового каучука предпочтительно содержится от 3 до 20 частей по массе модифицированной ароматическими группами терпеновой смолы, исключая терпенфенолоформальдегидную смолу.
[0013]
Кроме того, силановое соединение, содержащее длинноцепочечную алкильную группу, представляет собой предпочтительно алкилтриэтоксисилан, имеющий алкильную группу, содержащую от 7 до 20 атомов углерода. Диеновый каучук может дополнительно содержать натуральный каучук. Удельная площадь поверхности по ЦТАБ кремнезема более предпочтительно задана равной от 180 до 250 м2/г.
Краткое описание рисунков
[0014]
На ФИГ. 1 представлен вид в частичном поперечном разрезе в меридиональном направлении шины, изображающий пример варианта осуществления пневматической шины, в котором применяется каучуковая композиция для использования в протекторе шины настоящего изобретения.
Описание вариантов осуществления
[0015]
На ФИГ. 1 изображен пример варианта осуществления пневматической шины, в котором применяется каучуковая композиция для использования в протекторе шины. Пневматическая шина включает в себя участок 1 протектора, участки 2 боковой стенки и участки 3 борта шины.
[0016]
На ФИГ. 1 в пневматической шине два слоя каркасного слоя 4, образованного посредством размещения армирующих кордов, которые проходят в радиальном направлении шины, в направлении вдоль окружности шины с заданным шагом, и встраивания армирующих кордов в резиновый слой, расположены проходящими между левым и правым участками 3 борта шины. Оба конца каркасного слоя 4 выполнены так, чтобы создать прослойку из вкладыша 6 борта вокруг сердечника 5 борта, который встроен в участки 3 борта шины, и отогнуты назад в осевом направлении шины изнутри наружу. Гермослой 7 расположен внутри каркасного слоя 4. Два слоя брекерного слоя 8, образованного посредством размещения армирующих кордов, которые проходят наклонно в направлении вдоль окружности шины, в осевом направлении шины с заданным шагом, и встраивания этих армирующих кордов в резиновый слой, расположены на внешней продольной стороне каркасного слоя 4 участка 1 протектора. Армирующие корды двух слоев брекерного слоя 8 пересекаются с образованием межслойного перехода, так что направления наклона относительно направления вдоль окружности шины противоположны друг другу. Защитный слой 9 брекера расположен на внешней продольной стороне брекерного слоя 8. Участок 1 протектора образован из резинового слоя 12 протектора на внешней продольной стороне защитного слоя 9 брекера. Резиновый слой 12 протектора предпочтительно состоит из каучуковой композиции для использования в протекторе шины настоящего изобретения. Боковой резиновый слой 13 расположен снаружи от каркасного слоя 4 в каждом участке 2 боковой стенки, а резиновый слой 14 бортовой ленты обеспечен снаружи от участка каркасного слоя 4, который отогнут назад вокруг каждого из участков 3 борта шины. Следует отметить, что нешипованная шина не ограничивается вариантом осуществления пневматической шины, изображенной на ФИГ. 1 в качестве примера.
[0017]
Каучуковая композиция для использования в протекторе шины настоящего изобретения имеет каучуковый компонент, образованный диеновым каучуком. Кроме того, диеновый каучук содержит в качестве основных компонентов бутадиеновый каучук и бутадиен-стирольный каучук. Иначе говоря, общее количество бутадиенового каучука и бутадиен-стирольного каучука составляет 50% мас. или более, предпочтительно от 50 до 100% мас. и более предпочтительно от 90 до 100% мас. на 100% мас. диенового каучука. Благодаря использованию бутадиенового каучука и бутадиен-стирольного каучука в качестве основных компонентов можно дополнительно улучшить характеристики на льду и характеристики на мокром покрытии.
[0018]
Содержание бутадиенового каучука составляет 40% мас. или более, предпочтительно от 40 до 60% мас. и более предпочтительно от 40 до 50% мас. на 100% мас. диенового каучука. Благодаря тому, что содержание бутадиенового каучука задается равным 40% мас. или более, можно дополнительно улучшить характеристики на льду и износостойкость.
[0019]
Тип бутадиенового каучука не имеет конкретных ограничений, и можно применять бутадиеновые каучуки, которые, как правило, применяются в каучуковых композициях для использования в шинах. Примером подходящего бутадиенового каучука является предварительно смешанный бутадиеновый каучук, и по меньшей мере часть бутадиенового каучука предпочтительно является предварительно смешанным бутадиеновым каучуком. Предварительно смешанный бутадиеновый каучук представляет собой бутадиеновый каучук, в котором от 60 до 80% мас. высокомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 500 000 до 1 000 000, и от 20 до 40% мас. низкомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 6000 до 60 000, смешивают в растворителе. Посредством введения в смесь предварительно смешанного бутадиенового каучука может быть улучшена диспергируемость кремнезема в каучуковой композиции и могут быть улучшены характеристики на мокром покрытии и износостойкость. Необходимо отметить, что растворитель не имеет конкретных ограничений при условии, что растворитель способен растворять высокомолекулярный полибутадиен. Его предпочтительным примером является циклогексан. Кроме того, средневесовую молекулярную массу полибутадиена измеряют при помощи гель-проникающей хроматографии (ГПХ) на основе калибровки с использованием полистирольных стандартов.
[0020]
Содержание бутадиен-стирольного каучука составляет 60% мас. или менее, предпочтительно от 40 до 60% мас. и более предпочтительно от 50 до 60% мас. на 100% мас. диенового каучука. Благодаря тому, что содержание бутадиен-стирольного каучука задается равным 60% мас. или менее, можно дополнительно улучшить характеристики на льду и износостойкость.
[0021]
Тип бутадиен-стирольного каучука не имеет конкретных ограничений, и могут применяться бутадиен-стирольные каучуки, получаемые полимеризацией в растворе, бутадиен-стирольные каучуки, получаемые полимеризацией в эмульсии, и модифицированные бутадиен-стирольные каучуки, образованные посредством введения функциональной группы в эти бутадиен-стирольные каучуки, которые, как правило, применяются в каучуковых композициях для использования в шинах. Кроме того, доступны различные бутадиен-стирольные каучуковые продукты, имеющие разное содержание стирола и винила. Бутадиен-стирольный каучук может быть выбран из них надлежащим образом, чтобы количества стирольного компонента и винильного компонента в диеновом каучуке были отрегулированы описанным ниже способом.
[0022]
В настоящем изобретении в смесь может быть введен другой диеновый каучук помимо бутадиенового каучука и бутадиен-стирольного каучука. Примеры другого диенового каучука включают в себя натуральные каучуки, изопреновые каучуки, различные бутилкаучуки и этиленпропилендиеновые каучуки. Среди них предпочтительным является натуральный каучук. Посредством введения в смесь натурального каучука в качестве другого диенового каучука можно поддерживать долговечность и износостойкость. Содержание другого диенового каучука составляет предпочтительно от 0 до 20% мас. и более предпочтительно от 0 до 15% мас. на 100% мас. диенового каучука.
[0023]
В каучуковой композиции для использования в протекторе шины настоящего изобретения диеновый каучук образован из бутадиенового каучука и бутадиен-стирольного каучука и, необязательно, из другого диенового каучука, и необходимо задать количество стирольного компонента в диапазоне от 15 до 20% мас., а количество винильного компонента в диапазоне от 18 до 28% мас. на 100% мас. диенового каучука.
[0024]
Количество стирольного компонента в диеновом каучуке составляет от 15 до 20% мас. и предпочтительно от 17 до 20% мас. При количестве стирольного компонента менее чем 15% мас. характеристики на мокром покрытии имеют тенденцию к ухудшению. Кроме того, при количестве стирольного компонента более чем 20% мас. характеристики на снегу и на льду имеют тенденцию к ухудшению. Стирольный компонент в диеновом каучуке получают из стирольных сегментов бутадиен-стирольного каучука.
[0025]
Количество винильного компонента в диеновом каучуке составляет от 18 до 28% мас. и предпочтительно от 24 до 28% мас. При количестве винильного компонента менее чем 18% мас. характеристики на снегу и на льду имеют тенденцию к ухудшению. Кроме того, при количестве винильного компонента более чем 28% мас. характеристики на мокром покрытии имеют тенденцию к ухудшению. Винильный компонент в диеновом каучуке получают из винильных фрагментов бутадиен-стирольного каучука, винильных фрагментов бутадиенового каучука и винильных фрагментов другого диенового каучука, который необязательно вводят в смесь, и количество винильного компонента в диеновом каучуке представляет собой общее количество этих винильных фрагментов.
[0026]
В настоящем изобретении средняя температура стеклования диенового каучука, образованного из бутадиенового каучука, бутадиен-стирольного каучука и необязательного другого диенового каучука, составляет от -55°C или ниже и предпочтительно от -65°C до -55°C. Благодаря тому, что средняя температура стеклования диенового каучука задана равной -55°C или ниже, можно достичь превосходных характеристик на льду посредством поддержания пластичности и/или гибкости каучукового соединения в условиях низких температур для повышения силы сцепления с обледеневшими поверхностями. Необходимо отметить, что для температуры стеклования (Tg) диенового каучука посредством дифференциальной сканирующей калориметрии (DSC) получена термогравиметрическая кривая при скорости роста температуры 20°C/минуту, и температура в средней точке переходной области определена в качестве температуры стеклования. При диеновом каучуке, представляющем собой маслонаполненный продукт, температура стеклования представляет собой температуру стеклования диенового каучука, не содержащего компонента маслонаполнения (масла). Кроме того, средняя температура стеклования может быть определена посредством умножения массовых долей диеновых каучуков на соответствующие температуры стеклования диеновых каучуков и последующего суммирования полученных значений (взвешенное среднее значение температур стеклования). Необходимо отметить, что общее число массовых долей диеновых каучуков составляет 1.
[0027]
Каучуковая композиция для использования в протекторе шины настоящего изобретения содержит от 80 до 150 частей по массе кремнезема, имеющего удельную площадь поверхности по ЦТАБ от 150 до 250 м2/г на 100 частей по массе диенового каучука, описанного выше. Благодаря введению в смесь кремнезема можно дополнительно улучшить характеристики на льду и характеристики на мокром покрытии.
[0028]
Удельная площадь поверхности по ЦТАБ кремнезема составляет от 150 до 250 м2/г, предпочтительно от 180 до 250 м2/г и более предпочтительно от 190 до 230 м2/г. При удельной площади поверхности по ЦТАБ менее чем 150 м2/г достаточные характеристики на мокром покрытии не могут быть достигнуты и износостойкость ухудшается. Кроме того, при удельной площади поверхности по ЦТАБ более чем 250 м2/г ухудшается смешиваемость/пригодность для переработки кремнезема. Удельная площадь поверхности по ЦТАБ кремнезема представляет собой значение, измеренное в соответствии со стандартом ISO 5794.
[0029]
В настоящем изобретении введенное в смесь количество кремнезема составляет от 80 до 150 частей по массе, предпочтительно от 90 до 130 частей по массе и более предпочтительно от 100 до 120 частей по массе на 100 частей по массе диенового каучука. При введенном в смесь количестве кремнезема менее чем 80 частей по массе достаточный эффект улучшения характеристик на льду и характеристик на мокром покрытии не может быть достигнут и теплообразование возрастает. Кроме того, при введенном в смесь количестве кремнезема более чем 150 частей по массе характеристики на льду и износостойкость ухудшаются, тогда как теплообразование возрастает.
[0030]
В настоящем изобретении силановый связывающий агент предпочтительно вводят в смесь вместе с кремнеземом. Благодаря введению в смесь силанового связывающего агента диспергируемость кремнезема в диеновом каучуке улучшается, тем самым обеспечивая дополнительные эффекты улучшения характеристик на льду и характеристик на мокром покрытии.
[0031]
Тип силанового связывающего агента не имеет конкретных ограничений при условии, что это силановый связывающий агент, который может использоваться в каучуковых композициях, содержащих кремнезем. Его примеры включают в себя серосодержащие силановые связывающие агенты, такие как бис(3-триэтоксисилилпропил)тетрасульфид, бис(3-триэтоксисилилпропил)дисульфид, 3-триметоксисилилпропил бензотиазол тетрасульфид, γ-меркаптопропил триэтоксисилан и 3-октаноилтиопропил триэтоксисилан.
[0032]
Введенное в смесь количество силанового связывающего агента составляет предпочтительно от 3 до 15% мас. и более предпочтительно от 5 до 10% мас. относительно массы кремнезема. При количестве введенного в смесь силанового связывающего агента менее чем 3% мас. от количества введенного в смесь кремнезема диспергируемость кремнезема не может быть в достаточной степени улучшена. При количестве введенного в смесь силанового связывающего агента более чем 15% мас. от количества введенного в смесь кремнезема силановый связывающий агент конденсируется самостоятельно и требуемая твердость и/или прочность каучуковой композиции не может быть достигнута.
[0033]
Благодаря введению в смесь силанового соединения, содержащего длинноцепочечную алкильную группу, каучуковая композиция для использования в протекторе шины настоящего изобретения подавляет агрегацию кремнезема и возрастание вязкости каучуковой композиции, тем самым дополнительно улучшая характеристики на льду, характеристики на мокром покрытии и износостойкость.
[0034]
Силановое соединение, содержащее длинноцепочечную алкильную группу, представляет собой предпочтительно алкилтриэтоксисилан, имеющий алкильную группу, содержащую от 7 до 20 атомов углерода. Примеры алкильной группы, содержащей от 7 до 20 атомов углерода, включают в себя гептильную группу, октильную группу, нонильную группу, децильную группу, ундецильную группу, додецильную группу, тридецильную группу, тетрадецильную группу, пентадецильную группу, гексадецильную группу, гептадецильную группу, октадецильную группу, нонадецильную группу и икозильную группу. Среди них, с точки зрения смешиваемости с диеновым каучуком, предпочтительной является алкильная группа, содержащая от 8 до 10 атомов углерода, а октильная группа или нонильная группа еще более предпочтительны.
[0035]
Силановое соединение, содержащее длинноцепочечную алкильную группу, содержится в количестве от 1 до 10% мас. и более предпочтительно от 3 до 8% мас. относительно массы кремнезема. При введенном в смесь количестве силанового соединения, содержащего длинноцепочечную алкильную группу, менее чем 1% мас. характеристики на льду и износостойкость ухудшаются, тогда как теплообразование возрастает. Кроме того, при введенном в смесь количестве силанового соединения, содержащего длинноцепочечную алкильную группу, более чем 10% мас. характеристики на мокром покрытии и износостойкость ухудшаются.
[0036]
Каучуковая композиция для использования в протекторе шины настоящего изобретения может содержать модифицированную ароматическими группами терпеновую смолу, исключая терпенфенолоформальдегидную смолу, на 100 частей по массе диенового каучука. Благодаря введению в смесь модифицированной ароматическими группами терпеновой смолы можно улучшить характеристики на мокром покрытии и износостойкость. Однако при введении в смесь только терпенфенолоформальдегидной смолы характеристики на льду ухудшаются, поскольку гибкость в условиях низких температур снижается. Модифицированную ароматическими группами терпеновую смолу получают посредством полимеризации терпена и ароматического соединения, которое не включает в себя фенол. Примеры терпена включают в себя α-пинен, β-пинен, дипентен и лимонен. Примеры ароматического соединения включают в себя стирол, α-метилстирол, винилтоуол и инден. Такие модифицированные ароматическими группами терпеновые смолы улучшают характеристики на мокром покрытии вследствие превосходной смешиваемости с диеновым каучуком.
[0037]
Введенное в смесь количество модифицированной ароматическими группами терпеновой смолы составляет от 3 до 20 частей по массе и предпочтительно от 5 до 20 частей по массе на 100 частей по массе диенового каучука. При введенном в смесь количестве модифицированной ароматическими группами терпеновой смолы менее чем 3 части по массе характеристики на мокром покрытии не могут быть в достаточной степени улучшены. Кроме того, при введенном в смесь количестве модифицированной ароматическими группами терпеновой смолы более чем 20 частей по массе характеристики на мокром покрытии могут быть улучшены, но характеристики на льду и на снегу ухудшаются, что не является предпочтительным.
[0038]
Каучуковая композиция для использования в протекторе шины может также содержать другой армирующий наполнитель, отличный от кремнезема. Примеры другого армирующего наполнителя включают в себя углеродную сажу, глину, слюду, тальк, карбонат кальция, гидроокись алюминия, окись алюминия и окись титана. Среди них предпочтительной является углеродная сажа.
[0039]
Благодаря введению в смесь углеродной сажи можно улучшить твердость, прочность и износостойкость каучуковой композиции. Введенное в смесь количество углеродной сажи составляет предпочтительно от 5 до 40 частей по массе и более предпочтительно от 5 до 20 частей по массе на 100 частей по массе диенового каучука.
[0040]
Каучуковая композиция для использования в протекторе шины может также содержать различные компаундирующие агенты, которые обычно применяются в каучуковых композициях для использования в протекторах шин. Их примеры включают в себя вулканизирующие или сшивающие агенты, ускорители вулканизации, реагенты, предотвращающие старение, пластификаторы, технологические добавки, жидкие полимеры и термоотверждающиеся смолы. Эти компаундирующие агенты могут быть замешаны обычным способом для получения каучуковой композиции, которая может затем использоваться для вулканизации или сшивания. Эти компаундирующие агенты могут быть введены в смесь в традиционно используемых типичных количествах при условии, что это не препятствует целям настоящего изобретения. Каучуковая композиция для использования в протекторе шины может быть получена посредством замеса и смешивания описанных выше компонентов при помощи широко известной месильной машины, такой как смеситель Бенбери, меситель, валковый смеситель и т.п.
[0041]
Настоящее изобретение дополнительно описано ниже при помощи примеров. Однако объем настоящего изобретения не ограничивается этими примерами.
Примеры
[0042]
Шестнадцать типов каучуковых композиций для использования в протекторах шин (рабочие примеры 1-8 и сравнительные примеры 1-8) были подготовлены в соответствии с рецептурами, приведенными в таблицах 1 и 2, с компаундирующими агентами, приведенными в таблице 3 и используемыми в качестве общих компонентов. Компоненты, за исключением серы и ускорителей вулканизации, замешивались в закрытом смесителе Бенбери 1.7 L в течение 5 минут. После этого смесь экструдировали в качестве маточной смеси и охлаждали при комнатной температуре. Маточную смесь снова помещали в закрытый смеситель Бенбери 1.7 L, а серу и ускорители вулканизации после этого добавляли к маточной смеси и перемешивали для получения каучуковой композиции для использования в протекторе шины.
[0043]
Необходимо отметить, что в строках «Бутадиен-стирольный каучук (SBR)» в таблицах 1 и 2 чистое введенное в смесь количество SBR, за исключением количества компонента маслонаполнения, указано в скобках в дополнение к введенному в смесь количеству продукта. Кроме того, введенные в смесь количества компаундирующих агентов, приведенные в таблице 3, выражены в значениях частей по массе на 100 частей по массе диеновых каучуков в таблицах 1 и 2. Кроме того, количества (% мас.) стирольного компонента и винильного компонента на 100% мас. диенового каучука и средняя температура стеклования (Tg) диенового каучука приведены в таблицах 1 и 2.
[0044]
Полученные 16 типов каучуковых композиций были вулканизированы под прессом при 160°C в течение 20 минут в заданной пресс-форме для получения образцов для испытания, образованных из каучуковых композиций для использования в протекторах шин. Для полученных образцов для испытания tg δ при 0°C и tg δ при 60°C характеристики трения на льду (испытание в барабане на льду; μ-блокировка) и износостойкость оценивали описанным ниже способом.
[0045]
Tg δ (0 °C) и tg δ (60 °C)
При помощи вязкоупругого спектрометра производства Toyo Seiki Seisaku-sho, Ltd. значения tg δ при температурах окружающей среды 0°C и 60°C измеряли посредством измерения динамической вязкоупругости полученных образцов для испытания в условиях начальной деформации 10%, амплитуды±2% и частоты 20 Гц. Полученные результаты были выражены в виде индексов при значениях в сравнительном примере 1, выраженных в виде индексов 100. В таблицах 1 и 2 tg δ (0°C) представлен в строках «Характеристики на мокром покрытии», а tg δ (60°C) представлен в строках «Теплообразование». Большие значения характеристик на мокром покрытии указывают на более высокие характеристики на мокром покрытии. Меньшие значения теплообразования указывают на меньшее сопротивление качению и более высокие характеристики потребления топлива.
[0046]
Износостойкость
Величина износа полученного образца для испытания была измерена в соответствии со стандартом JIS K6264 с использованием машины Ламбурна для испытания на износ (производства Iwamoto Seisakusho Co., Ltd.) при следующих условиях: температура=20 °C, нагрузка=15 Н, коэффициент скольжения=50%, время=10 минут. Полученные результаты приведены в строках «Износостойкость» в таблицах 1 и 2 в качестве индексов на основе величины, обратной значению в сравнительном примере 1, выраженному в виде индекса 100. Большие значения индекса указывают на более высокую износостойкость.
[0047]
Характеристики трения на льду (испытание в барабане на льду; μ-блокировка)
Полученный образец для испытания закрепляли на каучуковой подложке в форме колонны с плоским основанием, и коэффициент трения на льду определяли с помощью устройства для испытания трения на льду в барабане при температуре испытаний -1,5 °C, нагрузке 5,5 кг/см2 и скорости вращения барабана 25 км/ч. Полученные результаты приведены в строках «Характеристики на льду» в таблицах 1 и 2 в качестве индексов со значением в сравнительном примере 1, выраженном в виде индекса 100. Большие значения индекса указывают на более высокие характеристики на снегу и на льду.
[0048]
[ТАБЛИЦА 1]
Сравнительный пример 1 Сравнитель
ный пример 2
Сравнитель
ный пример 3
Сравнитель
ный пример 4
Сравнитель
ный пример 5
Сравнитель
ный пример 6
Сравнитель
ный пример 7
Сравнитель
ный пример 8
SBR-1 Часть по массе 82,5
(60)
41,25
(30)
41,25
(30)
41,25
(30)
41,25
(30)
41,25
(30)
48,13
(35)
SBR-2 Часть по массе 82,5
(60)
41,25
(30)
41,25
(30)
41,25
(30)
41,25
(30)
41,25
(30)
48,13
(35)
BR-1 Часть по массе 40 40 40 40 40 40 40 30
Кремнезем-1 Часть по массе 100
Кремнезем-2 Часть по массе 100 100 160 60 100 100 100
Углеродная сажа Часть по массе 5 5 5 5 40 5 5 5
Связывающий агент Часть по массе 9 9 9 14 9 9 9
Алкилсилан Часть по массе 3 3 3 3 3 12 12
Масло Часть по массе 30 30 30 30 30 30 30 30
Количество стирольного компонента в диеновом каучуке % мас. 24 15 20 20 20 20 20 23
Количество винильного компонента в диеновом каучуке % мас. 15 30 22 22 22 22 22 26
Tg диенового каучука °C -55 -56 -55 -55 -55 -55 -55 -46
Характеристики на мокром покрытии Значение индекса 100 96 97 125 89 100 95 107
Теплообразо
вание
Значение индекса 100 94 95 142 154 104 100 102
Характеристики на льду Значение индекса 100 109 112 90 97 92 107 91
Износостойкость Значение индекса 100 97 70 88 112 96 94 87
[0049]
[ТАБЛИЦА 2]
Рабочий пример 1 Рабочий пример 2 Рабочий пример 3 Рабочий пример 4 Рабочий пример 5 Рабочий пример 6 Рабочий пример 7 Рабочий пример 8
SBR-1 Часть по массе 41,25
(30)
34,38
(25)
34,38
(25)
34,38
(25)
41,25
(30)
41,25
(30)
41,25
(30)
SBR-2 Часть по массе 41,25
(30)
41,25
(30)
34,38
(25)
34,38
(25)
34,38
(25)
41,25
(30)
41,25
(30)
41,25
(30)
SBR-3 Часть по массе 37,5
(30)
SBR-4 Часть по массе 10
BR-1 Часть по массе 40 40 40 40 50 40 40
BR-2 Часть по массе 40
NR Часть по массе 10
Кремнезем-2 Часть по массе 100 100 100 100 100 120 120 100
Углеродная сажа Часть по массе 5 5 5 5 5 5 5 5
Связывающий агент Часть по массе 9 9 9 9 9 9 9 9
Алкилсилан Часть по массе 3 3 3 3 3 3 3 3
Терпеновая смола Часть по массе 10
Масло Часть по массе 30 33,75 30 30 30 30 19 20
Количество стирольного компонента в диеновом каучуке % мас. 20 18 19 17 17 20 20 20
Количество винильного компонента в диеновом каучуке % мас. 22 23 19 19 19 22 22 22
Tg диенового каучука °C -55 -58 -59 -60 -65 -55 -55 -55
Характеристики на мокром покрытии Значение индекса 100 100 100 100 100 127 100 116
Теплообразование Значение индекса 97 88 92 90 88 100 97 99
Характеристики на льду Значение индекса 104 105 108 111 115 100 104 100
Износостойкость Значение индекса 100 100 103 108 100 100 110 102
[0050]
Типы сырья, используемого согласно таблицам 1 и 2, описаны ниже.
SBR-1: бутадиен-стирольный каучук, получаемый полимеризацией в растворе, торговое наименование JSR HP755B, производства JSR Corporation; маслонаполненный продукт, содержащий 41% мас. стирольного компонента и 24% мас. винильного компонента и содержащий 37,5 частей по массе компонента маслонаполнения на 100 частей по массе бутадиен-стирольного каучука.
SBR-2: бутадиен-стирольный каучук, получаемый полимеризацией в растворе, торговое наименование BUNA VSL 5025-2, производства LANXESS; маслонаполненный продукт, содержащий 25% мас. стирольного компонента и 50% мас. винильного компонента и содержащий 37,5 частей по массе компонента маслонаполнения на 100 частей по массе бутадиен-стирольного каучука.
SBR-3: бутадиен-стирольный каучук, получаемый полимеризацией в растворе, торговое наименование Tufdene F3420, производства Asahi Kasei Corporation; маслонаполненный продукт, содержащий 36% мас. стирольного компонента и 26% мас. винильного компонента, и содержащий 25 частей по массе компонента маслонаполнения на 100 частей по массе бутадиен-стирольного каучука.
SBR-4: бутадиен-стирольный каучук, получаемый полимеризацией в эмульсии, торговое наименование SBR Nipol 1502, производства Zeon Corporation; немаслонаполненный продукт, содержащий 23,5% мас. стирольного компонента и 11,5% мас. винильного компонента.
BR-1: бутадиеновый каучук, торговое наименование Nipol BR1220, производства Japan Synthetic Rubber Co., Ltd.; содержащий 1% мас. винильного компонента.
BR-2: бутадиеновый каучук, торговое наименование Nipol BRX5000, производства Japan Synthetic Rubber Co., Ltd.; предварительно смешанный бутадиеновый каучук, содержащий 1% мас. винильного компонента; предварительно смешанный продукт, в котором 71% мас. полибутадиена, имеющего средневесовую молекулярную массу 600 000, и 29% мас. полибутадиена, имеющего средневесовую молекулярную массу 50 000, смешивают в растворе циклогексана.
NR: натуральный каучук, торговое наименование SIR20.
Кремнезем-1: кремнезем, торговое наименование Zeosil 1115MP, производства Rhodia Operations; удельная площадь поверхности по ЦТАБ=110 м2/г.
Кремнезем-2: кремнезем, торговое наименование Zeosil Premium 200MP, производства Rhodia Operations; удельная площадь поверхности по ЦТАБ=210 м2/г.
Углеродная сажа: торговое наименование N339, производства Cabot Japan K.K.
Связывающий агент: силановый связывающий агент, торговое наименование Si69, производства Evonik.
Алкилсилан: октилтриэтоксисилан, торговое наименование KBE-3083, производства Shin-Etsu Chemical Co., Ltd.
Терпеновая смола: модифицированная ароматическими группами терпеновая смола; торговое наименование YS Resin TO125, производства Yasuhara Chemical Co., Ltd.
Масло: торговое наименование Extract № 4S, производства Showa Shell Sekiyu K.K.
[0051]
[ТАБЛИЦА 3]
Общие компоненты каучуковых композиций
Оксид цинка 4,0 Частей по массе
Стеариновая кислота 2,0 Частей по массе
Реагент, предотвращающий старение 2,0 Частей по массе
Воск 2,0 Частей по массе
Сера 1,5 Частей по массе
Ускоритель вулканизации 1 1,5 Частей по массе
Ускоритель вулканизации 2 0,3 Частей по массе
[0052]
Типы сырья, используемого согласно таблице 3, представлены ниже.
Оксид цинка: оксид цинка №3, производства Seido Chemical Co., Ltd.
Стеариновая кислота: торговое наименование Beads Stearic Acid YR, производства NOF Corp.
Реагент, предотвращающий старение: торговое наименование 6PPD, производства Flexsys.
Воск: парафиновый воск, производства Ouchi Shinko Chemical Industrial Co., Ltd.
Сера: промасленная сера, производства Hosoi Chemical Industry Co., Ltd.
Ускоритель вулканизации 1: торговое наименование Sanceller CM-G, производства Sanshin Chemical Industry Co., Ltd.
Ускоритель вулканизации 2: торговое наименование Perkacit DPG grs, производства Flexsys.
[0053]
Как видно из таблицы 2, было подтверждено, что каучуковые композиции для использования в протекторах шин из рабочих примеров 1-8 достигают превосходных характеристик на льду, характеристик на мокром покрытии и износостойкости. Было также подтверждено, что каучуковые композиции из рабочих примеров 1-8 демонстрируют низкое теплообразование и превосходное низкое сопротивление качению.
[0054]
Как видно из таблицы 1, каучуковая композиция из сравнительного примера 2 вызвала ухудшение характеристик на мокром покрытии, поскольку количество винильного компонента в диеновом каучуке было более чем 28% мас. из-за того, что в композиции содержался только SBR-2.
[0055]
В случае каучуковой композиции из сравнительного примера 3 характеристики на мокром покрытии и износостойкость были ухудшены, поскольку удельная площадь поверхности по ЦТАБ кремнезема-1 была менее чем 150 м2/г.
[0056]
В случае каучуковой композиции из сравнительного примера 4 характеристики на льду и износостойкость были ухудшены, поскольку введенное в смесь количество кремнезема было более чем 150 частей по массе. Кроме того, каучуковая композиция из сравнительного примера 4 продемонстрировала большее теплообразование и ухудшенное сопротивление качению.
[0057]
В случае каучуковой композиции из сравнительного примера 5 характеристики на мокром покрытии и характеристики на льду были ухудшены, поскольку введенное в смесь количество кремнезема было менее чем 80 частей по массе. Кроме того, каучуковая композиция из сравнительного примера 5 продемонстрировала большее теплообразование и ухудшенное сопротивление качению.
[0058]
В случае каучуковой композиции из сравнительного примера 6 характеристики на льду и износостойкость были ухудшены, поскольку алкилсилан (силановое соединение, содержащее длинноцепочечную алкильную группу) не содержался в композиции.
[0059]
В случае каучуковой композиции из сравнительного примера 7 характеристики на мокром покрытии и износостойкость были ухудшены, поскольку введенное в смесь количество алкилсилана (силанового соединения, содержащего длинноцепочечную алкильную группу) было более чем 10% мас. от количества кремнезема.
[0060]
В случае каучуковой композиции из сравнительного примера 8 характеристики на льду и износостойкость были ухудшены, поскольку введенное в смесь количество бутадиенового каучука было менее чем 40% мас., а стирольного компонента в диеновом каучуке было более чем 20% мас.
Перечень справочных обозначений
[0061]
1 - участок протектора
12 - резиновый слой протектора

Claims (11)

1. Каучуковая композиция для использования в протекторе шины, содержащая:
на 100 частей по массе диенового каучука, содержащего 40% мас. или более бутадиенового каучука и бутадиен-стирольного каучука,
от 80 до 150 частей по массе кремнезема, имеющего удельную площадь поверхности по ЦТАБ от 150 до 250 м2/г, и
силановое соединение, содержащее длинноцепочечную алкильную группу, в количестве от 1 до 10% мас. от количества кремнезема;
причем силановое соединение, содержащее длинноцепочечную алкильную группу, представляет собой алкилтриэтоксисилан, имеющий алкильную группу, содержащую от 7 до 20 атомов углерода;
стирольный компонент в диеновом каучуке составляет от 15 до 20% мас., а винильный компонент в диеновом каучуке составляет от 18 до 28% мас.; и
средняя температура стеклования диенового каучука составляет -55°C или ниже.
2. Каучуковая композиция для использования в протекторе шины по п. 1, в которой по меньшей мере часть бутадиенового каучука представляет собой предварительно смешанный бутадиеновый каучук, в котором от 60 до 80% мас. высокомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 500000 до 1000000, и от 20 до 40% мас. низкомолекулярного полибутадиена, имеющего средневесовую молекулярную массу от 6000 до 60000, смешивают в растворителе.
3. Каучуковая композиция для использования в протекторе шины по п. 1 или 2, дополнительно содержащая от 3 до 20 частей по массе модифицированной ароматическими группами терпеновой смолы, исключая терпенфенолоформальдегидную смолу, на 100 частей по массе диенового каучука.
4. Каучуковая композиция для использования в протекторе шины по любому из пп. 1-3, в которой диеновый каучук дополнительно содержит натуральный каучук.
5. Каучуковая композиция для использования в протекторе шины по любому из пп. 1-4, в которой удельная площадь поверхности по ЦТАБ кремнезема составляет от 180 до 250 м2/г.
RU2016142148A 2014-04-03 2015-04-03 Каучуковая композиция для использования в протекторе шины RU2627853C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-076804 2014-04-03
JP2014076804A JP5888361B2 (ja) 2014-04-03 2014-04-03 タイヤトレッド用ゴム組成物
PCT/JP2015/060597 WO2015152398A1 (ja) 2014-04-03 2015-04-03 タイヤトレッド用ゴム組成物

Publications (1)

Publication Number Publication Date
RU2627853C1 true RU2627853C1 (ru) 2017-08-14

Family

ID=54240705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016142148A RU2627853C1 (ru) 2014-04-03 2015-04-03 Каучуковая композиция для использования в протекторе шины

Country Status (7)

Country Link
US (1) US11104782B2 (ru)
JP (1) JP5888361B2 (ru)
KR (1) KR101695407B1 (ru)
CN (1) CN106164158B (ru)
DE (1) DE112015001678B4 (ru)
RU (1) RU2627853C1 (ru)
WO (1) WO2015152398A1 (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064952B2 (ja) 2014-08-27 2017-01-25 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP6679877B2 (ja) * 2015-10-15 2020-04-15 横浜ゴム株式会社 タイヤ用ゴム組成物
JP6597159B2 (ja) * 2015-10-15 2019-10-30 横浜ゴム株式会社 冬用タイヤ用ゴム組成物
CN108698442B (zh) * 2015-12-31 2021-06-25 米其林集团总公司 具有低tg橡胶的轮胎面
JP6172307B1 (ja) * 2016-02-04 2017-08-02 横浜ゴム株式会社 タイヤ用ゴム組成物
JP6852291B2 (ja) * 2016-07-01 2021-03-31 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
US10301459B2 (en) * 2016-07-19 2019-05-28 The Goodyear Tire & Rubber Company Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
JP6240731B1 (ja) 2016-09-30 2017-11-29 住友ゴム工業株式会社 スタッドレスタイヤ用キャップトレッドゴム組成物
US10385192B2 (en) * 2016-12-13 2019-08-20 The Goodyear Tire & Rubber Company Tire with tread for low temperature performance and wet traction
US10364342B2 (en) 2017-03-22 2019-07-30 The Goodyear Tire & Rubber Company Tire having tread for low temperature performance and wet traction
JP6228335B1 (ja) 2017-04-13 2017-11-08 住友ゴム工業株式会社 スタッドレスタイヤ用キャップトレッドゴム組成物
JP6969243B2 (ja) * 2017-09-13 2021-11-24 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7103574B2 (ja) * 2017-12-06 2022-07-20 株式会社ブリヂストン ゴム組成物及びタイヤ
JP7110607B2 (ja) * 2018-02-02 2022-08-02 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7110608B2 (ja) * 2018-02-02 2022-08-02 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6624216B2 (ja) * 2018-02-05 2019-12-25 横浜ゴム株式会社 空気入りタイヤ
KR102084129B1 (ko) * 2018-03-29 2020-03-03 한국타이어앤테크놀로지 주식회사 타이어 트레드용 고무 조성물 및 이를 포함하는 타이어
KR102063713B1 (ko) 2018-05-21 2020-01-08 한국타이어앤테크놀로지 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
JP6687069B2 (ja) * 2018-08-20 2020-04-22 横浜ゴム株式会社 空気入りタイヤ
JP7215104B2 (ja) * 2018-11-21 2023-01-31 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
EP3956155A1 (en) * 2019-04-18 2022-02-23 Compagnie Generale Des Etablissements Michelin Tire tread having improved rolling resistance and wear
US11512188B2 (en) * 2019-06-19 2022-11-29 Jtekt Corporation Sealing member
KR102162967B1 (ko) 2019-08-01 2020-10-07 한국타이어앤테크놀로지 주식회사 타이어 트레드용 고무 조성물 및 이를 이용하여 제조한 타이어
US11884823B2 (en) 2019-12-16 2024-01-30 The Goodyear Tire & Rubber Company Pneumatic tire
JP7372567B1 (ja) * 2022-08-15 2023-11-01 横浜ゴム株式会社 タイヤ用ゴム組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049035A (ja) * 1999-08-16 2001-02-20 Sumitomo Rubber Ind Ltd タイヤ用トレッドゴム組成物
JP2003221402A (ja) * 2001-11-06 2003-08-05 Tokuyama Corp シリカ充填ゴムの製造方法
RU2001129508A (ru) * 2000-02-02 2003-08-20 Сосьете Де Текноложи Мишлен Протектор пневматической шины, включающий получаемый в эмульсии сополимер стирола и бутадиена
RU2004130443A (ru) * 2002-03-13 2005-07-10 Эксонмобил Кемикэл Пейтентс Инк. (Us) Износостойкие эластомерные композиции

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858776A (en) * 1973-02-22 1975-01-07 Southwire Co Method and apparatus for recovering insulation and conductor from scrap insulated wire
US5959039A (en) * 1995-06-30 1999-09-28 Bridgestone Corporation Rubber composition having both high and low molecular weight polymer components, for use in tires
US5914364A (en) * 1996-03-11 1999-06-22 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
US5780538A (en) * 1996-03-11 1998-07-14 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
US6221943B1 (en) 1997-07-11 2001-04-24 Bridgestone Corporation Processability of silica-filled rubber stocks
DE69903460T2 (de) * 1998-07-22 2003-08-07 Technologie Michelin Clermont Haftvermittlerzusammensetzung (weisser füllstoff/dienrubber) die ein alkoxysilanpolysulfid, ein enamin und ein guanidinderivat enthält
FR2804121A1 (fr) * 2000-01-24 2001-07-27 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant une charge blanche renforcante et un systeme de couplage ( charge blanche/elastomere)
RU2250834C2 (ru) * 2000-02-02 2005-04-27 Сосьете Де Текноложи Мишлен Протектор пневматической шины, включающий получаемый в эмульсии сополимер стирола и бутадиена
WO2001079966A2 (en) * 2000-04-14 2001-10-25 American Express Travel Related Services Company, Inc. A system and method for using loyalty points
JP2004513201A (ja) * 2000-10-30 2004-04-30 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 雪および/または氷路におけるタイヤのグリップの改良方法、および冬期用タイヤ
DE60236090D1 (de) * 2001-06-28 2010-06-02 Michelin Soc Tech Iedriger spezifischer oberfläche
WO2003016387A1 (fr) * 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
JP3863866B2 (ja) * 2003-07-01 2006-12-27 日立電線株式会社 光ファイバの接続部及び光ファイバ接続器
EP2261282A3 (en) * 2003-11-28 2012-03-21 Sumitomo Rubber Industries, Ltd. Rubber composition for a tire and tire using the same
JP2007302813A (ja) * 2006-05-12 2007-11-22 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2009029961A (ja) * 2007-07-27 2009-02-12 Yokohama Rubber Co Ltd:The ゴム組成物用マスターバッチおよびその製造方法
JP5619141B2 (ja) * 2009-04-29 2014-11-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 大型車両タイヤのためのトレッド
JP4883172B2 (ja) 2009-12-10 2012-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2011184546A (ja) * 2010-03-08 2011-09-22 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及び空気入りタイヤ
US20110245371A1 (en) 2010-03-31 2011-10-06 Claude Schweitzer Pneumatic tire with rubber component containing alkylalkoxysilane and silicone resin
US9309387B2 (en) * 2010-09-13 2016-04-12 The Yokohama Rubber Co., Ltd. Rubber composition for tires and pneumatic tire
JP5097862B1 (ja) * 2011-05-25 2012-12-12 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5650690B2 (ja) 2012-06-12 2015-01-07 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049035A (ja) * 1999-08-16 2001-02-20 Sumitomo Rubber Ind Ltd タイヤ用トレッドゴム組成物
RU2001129508A (ru) * 2000-02-02 2003-08-20 Сосьете Де Текноложи Мишлен Протектор пневматической шины, включающий получаемый в эмульсии сополимер стирола и бутадиена
JP2003221402A (ja) * 2001-11-06 2003-08-05 Tokuyama Corp シリカ充填ゴムの製造方法
RU2004130443A (ru) * 2002-03-13 2005-07-10 Эксонмобил Кемикэл Пейтентс Инк. (Us) Износостойкие эластомерные композиции

Also Published As

Publication number Publication date
DE112015001678T5 (de) 2016-12-22
CN106164158A (zh) 2016-11-23
JP5888361B2 (ja) 2016-03-22
US11104782B2 (en) 2021-08-31
WO2015152398A1 (ja) 2015-10-08
CN106164158B (zh) 2018-04-10
JP2015196814A (ja) 2015-11-09
KR20160096219A (ko) 2016-08-12
KR101695407B1 (ko) 2017-01-11
DE112015001678B4 (de) 2019-07-11
DE112015001678T9 (de) 2018-01-11
US20170174876A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
RU2627853C1 (ru) Каучуковая композиция для использования в протекторе шины
US8759439B2 (en) Tire tread rubber composition
US10087313B2 (en) Rubber composition for tire treads
US9284439B2 (en) Tire rubber composite and pneumatic tire
US9260600B2 (en) Rubber composition for use in tires
KR101710569B1 (ko) 타이어 트레드용 고무 조성물
US9556331B2 (en) Rubber composition containing pre-hydrophobated silica with zinc salt fatty acid processing aid and tire with tread
WO2017204354A1 (ja) 空気入りタイヤ
US20200001651A1 (en) Pneumatic Tire
US10808107B2 (en) Rubber composition for tire
JP6540263B2 (ja) ゴム組成物
CN116685474A (zh) 橡胶组合物和充气轮胎
JP6795098B2 (ja) 空気入りタイヤ
CN108602988B (zh) 轮胎用橡胶组合物
JP2013023640A (ja) タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
EP4019274A1 (en) Pneumatic tire
JP2018131560A (ja) タイヤ用ゴム組成物
JP2009084482A (ja) タイヤトレッド用ゴム組成物