RU2627659C2 - Фторпиколиноилфториды и способы их получения - Google Patents

Фторпиколиноилфториды и способы их получения Download PDF

Info

Publication number
RU2627659C2
RU2627659C2 RU2015106018A RU2015106018A RU2627659C2 RU 2627659 C2 RU2627659 C2 RU 2627659C2 RU 2015106018 A RU2015106018 A RU 2015106018A RU 2015106018 A RU2015106018 A RU 2015106018A RU 2627659 C2 RU2627659 C2 RU 2627659C2
Authority
RU
Russia
Prior art keywords
alkyl
formula
alkoxy
group
halogen
Prior art date
Application number
RU2015106018A
Other languages
English (en)
Other versions
RU2015106018A (ru
Inventor
Джеймс М. Ренга
Ян ЧЭН
Джосек М. МУХУХИ
Дэвид Е. ПОДХОРЕС
Гари А. РОТ
Скотт П. ВЕСТ
Грегори Т. УАЙТЕКЕР
Юаньмин Чжу
Original Assignee
ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи filed Critical ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Publication of RU2015106018A publication Critical patent/RU2015106018A/ru
Application granted granted Critical
Publication of RU2627659C2 publication Critical patent/RU2627659C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/55Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • C07D213/807Processes of preparation by oxidation of pyridines or condensed pyridines

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к соединениям формулы I:
Figure 00000059
,
в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; m представляет собой 0, 1, 2 или 3 и n представляет собой 0, 1, 2, 3 или 4; в которой сумма m и n представляет собой от 1 до 4, и способам их получения. 3 н. и 26 з.п. ф-лы, 19 пр.

Description

ПРИТЯЗАНИЕ НА ПРИОРИТЕТ
Данная заявка испрашивает приоритет к предварительной заявке на патент США № 61/675229, озаглавленной «Фторпиколиноилфториды и способы их получения», поданной 24 июля 2012 года. Вышеуказанная заявка включена в настоящее описание в полном объеме посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения 5-фтор-6-арил-пиколиноилфторидов из хлорпиколиноилхлоридов.
УРОВЕНЬ ТЕХНИКИ
Патент США 6297197 B1 описывает, в частности, определенные соединения 6-(алкокси или арилокси)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Патенты США 6784137 В2 и 7314849 В2 описывают, в частности, определенные соединения 6-(арил)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Патент США 7432227 В2 описывает, в частности, определенные соединения 6-(алкил)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Каждый из данных патентов описывает получение исходных материалов 4-амино-3-хлор-5-фторпиколината с помощью фторирования соответствующих 5-незамещенных пиридинов 1-(хлорметил)-4-фтор-1,4-диазониабицикло[2.2.2]октана бис (тетрафторборатом). Было бы предпочтительно обеспечить более прямые и эффективные способы получения 4-амино-5-фтор-3-галогено-6-(замещенных)пиколинатов и родственных соединений, например, с помощью использования реагентов и/или химических интермедиатов, которые обеспечивают сокращение времени и экономическую эффективность.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы I:
Figure 00000001
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 1, 2, 3 или 4;
в которой сумма m и n представляет собой менее или равную 4;
который включает фторирование соединения Формулы А:
Figure 00000002
,
в которой R, m и n представляют собой, как определено выше;
источником фторид-иона для получения соединения Формулы I.
Фторпиколиноилфториды, представленные в настоящем описании, могут быть получены из хлорпиколиноилхлоридов, как показано на Схеме 1 ниже.
Figure 00000003
На Схеме 1 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил.
В других вариантах осуществления в настоящем описании обеспечивают способ получения фтор-6-арил-пиколиноилфторидов из хлор-6-арил-пиколиноиловой кислоты хлоридов, как показано на Схеме 2 ниже.
Figure 00000004
На Схеме 2 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил. «Ar» представляет собой арильную группу.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы I:
Figure 00000005
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 1, 2, 3 или 4;
в которой сумма m и n представляет собой менее или равную 4;
который включает фторирование соединения Формулы А:
Figure 00000006
,
в которой R, m и n представляют собой, как определено выше;
источником фторид-иона для получения соединения Формулы I.
В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения соединения Формулы I, в которой m представляет собой 0. В других вариантах осуществления m представляет собой 1.
В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения соединения Формулы I, в которой n представляет собой 1, 2 или 3. В некоторых вариантах осуществления n представляет собой 2 или 3. В других вариантах осуществления n представляет собой 2. В других вариантах осуществления n представляет собой 3.
В некоторых вариантах осуществления соединение Формулы I представляет собой:
Figure 00000007
,
в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1, 2 или 3.
В некоторых вариантах осуществления соединение Формулы I представляет собой:
Figure 00000008
,
в которой R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси.
В некоторых вариантах осуществления способ включает катализатор, выбранный из краун-эфира, галогенида фосфония, полиэфира, соли фосфазения и галогенида тетра-замещенного аммония. В некоторых вариантах осуществления катализатор представляет собой краун-эфир. В одном варианте осуществления краун-эфир представляет собой 18-краун-6.
В некоторых вариантах осуществления источник фторид-иона представляет собой фторид металла. В некоторых вариантах осуществления фторид металла выбран из фторида натрия, фторида калия и фторида цезия. В одном варианте осуществления фторид металла представляет собой фторид калия.
В некоторых вариантах осуществления способ включает растворитель. В некоторых вариантах осуществления растворитель выбран из алкилнитрила или алкилсульфона. В некоторых вариантах осуществления растворитель представляет собой ацетонитрил или сульфолан.
В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения формулы:
Figure 00000009
,
в которой
R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1 или 2;
который включает взаимодействие соединения Формулы А:
Figure 00000010
,
в которой R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1 или 2;
с фторидом калия в присутствии краун-эфира и растворителя.
В одном варианте осуществления растворитель представляет собой ацетонитрил или сульфолан.
В настоящем описании также обеспечивают соединение Формулы I:
Figure 00000011
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
в которой сумма m и n представляет собой от 1 до 4.
В одном варианте осуществления m представляет собой 0 и n представляет собой 1, 2, 3 или 4.
В другом варианте осуществления соединение представляет собой формулу:
Figure 00000012
.
В другом варианте осуществления соединение представляет собой формулу:
Figure 00000013
,
в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1, 2 или 3. В одном варианте осуществления n представляет собой 1 или 2.
В другом варианте осуществления соединение представляет собой формулу:
Figure 00000014
.
В другом варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы II:
Figure 00000015
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
в которой сумма m и n представляет собой от 1 до 4;
который включает (а) фторирование соединения Формулы А:
Figure 00000016
источником фторид-иона для получения соединения Формулы I
Figure 00000017
,
в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
который дополнительно включает (b) взаимодействие соединения Формулы I с источником R1OH для получения соединения Формулы II.
В другом варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы II:
Figure 00000018
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; незамещенного или замещенного С711арилалкила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
в которой сумма m и n представляет собой от 1 до 4;
который включает (а) фторирование соединения Формулы А:
Figure 00000019
источником фторид-иона для получения соединения Формулы I:
Figure 00000020
,
в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
который дополнительно включает (b) взаимодействие соединения Формулы I с источником R1OH для получения соединения Формулы II.
В некоторых вариантах осуществления реакция стадии (b) дополнительно содержит основание. В некоторых вариантах осуществления основание представляет собой основание триалкиламина, например, триэтиламин.
Фторпиколиноилфториды, представленные в настоящем описании, могут быть получены из хлорпиколиноилхлоридов, как показано на Схеме 1 ниже.
Figure 00000021
На Схеме 1 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил.
В других вариантах осуществления в настоящем описании обеспечивают способ получения фтор-6-арил-пиколиноилфторидов из хлор-6-арил-пиколиноиловой кислоты хлоридов, как показано на Схеме 2 ниже. «Ar» представляет собой арильную группу.
Figure 00000022
На Схеме 2 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил. «Ar» представляет собой арильную группу.
Фторпиколиноилфториды, представленные в настоящем описании, могут быть использованы в качестве интермедиатов при получении пиколинатных кислот и сложных эфиров, которые, в свою очередь, могут быть использованы в качестве интермедиатов при получении 4-амино-5-фтор-3-галоген-6-арил-пиколинатов, таких как 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновая кислота.
Схемы 3 и 4 представляют собой неограничивающие примеры способов, представленных в настоящем описании. Производные карбоновой кислоты или сложного эфира пиколиноилфторидов, представленные в настоящем описании, могут быть получены в соответствии со Схемами 3 и 4 в качестве желаемых продуктов или к дополнительной характеристике пиколиноилфторидов, поскольку в некоторых случаях пиколиноилфториды не являются стабильными при некоторых стандартных способах очистки. В большинстве случаев пиколиноилфториды были охарактеризованы с помощью анализа ГХ/МС и 19F ЯМР без очистки. 4,5,6-Трифторпиколиноилфторид был выделен с помощью дистилляции и был охарактеризован с помощью методов ГХ/МС и ЯМР. Сложные эфиры и карбоновые кислоты, представленные ниже, очищали и охарактеризовывали с помощью методов ГХ/МС и ЯМР.
Figure 00000023
Figure 00000024
Схемы 3 и 4 обеспечивают прямой доступ к ди-, три- и тетра-фторпиколиноилфторидам с хорошими выходами. Предыдущие способы, как показано на Схеме 5, приводили к сложным смесям нежелательных продуктов. Таким образом, способы, обеспеченные в настоящем описании, представляют и улучшают способ доступа к ди-, три- и тетра-фторпиколинатам.
Figure 00000025
Моно-, ди-, три- и тетра-хлорпиколиноилхлорид и/или 6-арил-пиколиноилхлорид исходные материалы, представленные в настоящем описании, являются известными соединениями и/или могут быть получены из известных хлорпиколинатов с помощью использования стандартных методов, известных в данной области техники. См., например, патент США 6784137 В2. Высшие сложные эфиры, включая незамещенные или замещенные С7-C11арилалкильные эфиры, могут быть получены с помощью реакций прямой этерификации или переэтерификации с использованием методов, которые хорошо известны в данной области техники. Примерная схема для получения 6-арил-пиколиноилхлорида показана ниже:
Figure 00000026
Источники фторид-ионов, которые могут быть использованы в способах, представленных в настоящем описании, включают фториды щелочных металлов («М-F»), которые включают фторид натрия (NaF), фторид калия (KF) и фторид цезия (CsF). Также могут быть использованы соли фторида, такие как фторид тетрабутиламмония (n-Bu4NF).
В некоторых вариантах осуществления реакции проводят в растворителе или реакционной среде, такой как ацетонитрил, сульфолан, алкилнитрилы, полиэфиры или алкилсульфоны, включая их смеси. В некоторых вариантах осуществления используемый растворитель представляет собой алкилнитрил или алкилсульфон. В некоторых вариантах осуществления используемый растворитель представляет собой ацетонитрил или сульфолан.
Также могут быть использованы катализаторы, такие как краун-эфиры или агенты фазового переноса, которые, как известно, увеличивают скорость обмена фторида. В некоторых вариантах осуществления катализатор представляет собой краун-эфир, галогенид фосфония, полиэфир, соль фосфазения и галогенид тетра-замещенного аммония. В некоторых вариантах осуществления катализатор представляет собой краун-эфир, например, 18-краун-6.
Температура, при которой проводится реакция, не является определяющей. В некоторых вариантах осуществления температура представляет собой от приблизительно 50°С до приблизительно 200°С и в некоторых вариантах осуществления от приблизительно 80°С до приблизительно 140°С. В зависимости от того, какой растворитель используют в определенной реакции, оптимальная температура будет варьироваться. В общем случае, чем ниже температура, тем медленнее будет протекать реакция. Типичные реакции проводят при интенсивном перемешивании, достаточном для поддержания по существу равномерно диспергированной смеси реагентов.
При проведении реакции ни скорость, ни порядок добавления реагентов не являются определяющими. В некоторых вариантах осуществления растворитель, и фторид щелочного металла, и необязательно катализатор смешивают до добавления пиколиноилхлорида к реакционной смеси. В некоторых вариантах осуществления реакция занимает от приблизительно 2 до приблизительно 100 часов и проводится при атмосферном давлении. В некоторых вариантах осуществления реакцию проводят при давлении включительно до 500 фунт/кв. дюйм.
В то время как точное количество реагентов не является определяющим, в некоторых вариантах осуществления обеспечивают количество фторида щелочного металла, которое будет предоставлять, по меньшей мере, приблизительно эквимолярное количество атомов фтора, основываясь на количестве атомов хлора, которое будет меняться в исходном материале, то есть, по меньшей мере, эквимолярное количество фторида щелочного металла.
Продукты, полученные с помощью любого из способов, представленных в настоящем описании, могут быть восстановлены с помощью стандартных средств, таких как испарение или экстракция, и могут быть очищены с помощью стандартных методик, таких как дистилляция, перекристаллизация или хроматография.
Определения:
Используемые в настоящем описании термины «алкил», «алкенил» и «алкинил», также как производные термины, такие как «алкокси», «ацил», «алкилтио» и «алкилсульфонил», включают в своем объеме с прямой цепью, с разветвленной цепью и циклические фрагменты и включают фрагменты, содержащие от одного до двенадцати атомов углерода. В некоторых вариантах осуществления «алкил», «алкокси», «ацил», «алкилтио» и «алкилсульфонил», каждый, содержат от одного до шести атомов углерода или альтернативно от одного до четырех атомов углерода. В некоторых вариантах осуществления «алкенил» и «алкинил», каждый, содержат от двух до шести атомов углерода или альтернативно от двух до четырех атомов углерода.
Если определенно не указано иначе, каждый из «алкила», «алкенила» и «алкинила», также как производных терминов, таких как «алкокси», «ацил», «алкилтио» и «алкилсульфонил», может быть незамещенным или замещенным одним или более заместителями, выбранными из, но не ограничиваясь ими, галогена, гидрокси, С1-C6алкокси, С1-C6алкилтио, С1-C6ацила, формила, циано, арилокси или арила при условии, что заместители являются стерически совместимыми и правила химической связи и энергии деформации соблюдаются. Термины «алкенил» и «алкинил» предназначены включить одну или более ненасыщенных связей.
Используемый в настоящем описании термин «арил» относится к 6-14-членной ароматической карбоциклической группе, например, фенил или нафтил. Арильная группа может быть незамещенной или замещенной одним или более заместителями, независимо выбранными из галогена, нитро, циано, С1-C6алкила, С1-C6алкокси, галогенированного С1-C6алкила, галогенированного С1-C6алкокси, С1-C6алкилтио, C(О)OС1-C6алкила, или где два соседних заместителя взяты вместе, как -O(CH2)nO-, в которой n представляет собой 1 или 2.
Используемый в настоящем описании термин «арилалкил» относится к фенилу, замещенному алкильной группой, содержащему всего от 7 до 11 атомов углерода, такому как бензил (-CH2C6H5), 2-метилнафтил (-CH2C10H7) и 1- или 2-фенэтил (-CH2CH2C6H5 или -CH(CH3)C6H5). Фенильная группа сама по себе может быть незамещенной или замещенной одним или более заместителями, независимо выбранными из галогена, нитро, циано, С1-C6алкила, С1-C6алкокси, галогенированного С1-C6алкила, галогенированного С1-C6алкокси, С1-C6алкилтио, C(О)OС1-C6алкила, или где два соседних заместителя взяты вместе, как -O(CH2)nO-, в которой n представляет собой 1 или 2, при условии, что заместители являются стерически совместимыми и правила химической связи и энергии деформации соблюдаются.
6-арильные группы, представленные в настоящем описании, могут быть замещены от 1 до 4 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси или C1-C4галогеналкокси. В некоторых вариантах осуществления схема замещения выбрана из 4-замещенного фенила, 2,4-дизамещенного фенила, 2,3,4-тризамещенного фенила, 2,4,5-тризамещенного фенила и 2,3,4,6-тетразамещенного фенила.
Если не указано иначе, термин «галоген», также как производные термины, такие как «гало», относится к фтору, хлору, брому и йоду.
ПРИМЕРЫ
Пример 1: 4,5,6-трифторпиколиноилфторид
Figure 00000027
1-литровую трехгорлую круглодонную колбу продували N2 и снабжали конденсатором/барботером N2, механической мешалкой и пробкой. В реактор добавляли безводный CsF (172 г, 1,13 моль), сухой ацетонитрил (400 мл), 18-краун-6 (6,0 г, 0,023 моль) и 4,5,6-трихлорпиколиноилхлорид (55 г, 0,23 моль). Смесь нагревали с обратным холодильником и выдерживали в течение 20 ч. Суспензию охлаждали до комнатной температуры и соли отфильтровывали под давлением N2. Отфильтрованный осадок соли промывали сухим ацетонитрилом (100 мл) с получением янтарной жидкости (372 г). Трехгорлую продуваемую N2 круглодонную колбу емкостью 250 мл с термокарманом снабжали двумя пробками, магнитной мешалкой и дистилляционной колонной с вакуумной рубашкой Vigruex (15 см × 1 см) с коллектором фракций, подключенным к барботеру N2. В сосуд добавляли 140 г раствора ацетонитрила сверху. Дистилляционный сосуд нагревали до 82-85°С, в то время как прозрачный бесцветный дистиллят (ацетонитрил) собирали сверху при 80-83°С. Когда температура кубового остатка дистилляции начинала расти и температура головного погона начинала падать, дистилляцию прекращали и оставляли охлаждаться до комнатной температуры в атмосфере N2. Кубовый остаток дистилляции быстро переносили в продуваемую N2 двухгорлую 25 мл круглодонную колбу. Колбу снабжали термометром, магнитной мешалкой и устанавливали такую же дистилляцию, описанную выше. Данная система дистилляции могла продуваться вакуумом или N2. Устанавливали вакуум (приблизительно 70 мм рт.ст.) и затем начинали нагревание дистилляционного сосуда. Продукт собирали в виде прозрачной бесцветной жидкости (6,7 г, т. кип. 55-60°C при 55-60 мм рт.ст.). Процентный состав площади ГХ показал, что материал имеет 99,1% чистоту: 1H ЯМР (CDCl3, 400 МГц, ч./млн) δ 8,08 (ддд, J=8,4, 4,4, 0,4 Гц); 13C ЯМР (101 МГц, CDCl3, ч./млн) δ 157,71 (дт, J=269,0, 6,5 Гц), 152,96 (дд, J=246,1, 13,4 Гц), 152,49 (д, J=348,6 Гц), 138,69 (ддд, J=275,3, 30,2, 12,9 Гц), 135,44 (дддд, J=74,6, 15,1, 7,8 Гц), 117,00 (дт, 18,2, 4,2 Гц); МС (ГХ, 70 эВ электронный удар) 179 (М+, 100%), 160 (8%), 151 (100%), 132 (80%), 82 (63%).
В другом эксперименте, как описано выше, после фильтрования и промывания отфильтрованного осадка соли получали 366 г янтарного раствора. Процентный состав площади ГХ показал, что смесь представляла собой 86,4% 4,5,6-трифторпиколиноилфторида и 13,6% 18-краун-6. Метод внутреннего стандарта при анализе ГХ был разработан с использованием диметилфталата в качестве внутреннего стандарта и материала, полученного выше, в качестве чистого компонента. ГХ-анализ янтарного раствора показал, что он представлял собой 9,8% масс. продукта, что коррелировало с выходом 89%.
Пример 2: 4,5,6-трифторпиколиновая кислота
Figure 00000028
4,5,6-трифторпиколиноилфторид (300 мг) оставляли на воздухе в течение шести дней, обеспечивая карбоновую кислоту (250 мг) в виде белого твердого вещества: т. пл. 81-82°С; 1H ЯМР (400 МГц, ацетон-d6) δ 8,07 (дд, J=9,2, 4,8 Гц); 13C ЯМР (101 МГц, ацетон-d6) δ 163,4 (д, J=3,2 Гц), 158,6 (ддд, J=263,8, 9,0, 5,8 Гц), 152,9 (ддд, J=237,2, 12,1, 4,7 Гц), 142,2 (м), 138,2 (ддд, J=267,2, 31,4, 13,5 Гц), 115,2 (дд, J=17,6, 5,2 Гц); МС (ГХ, 70 эВ ЭУ) 177 (М+, 1%), 160 (5%), 133 (100%), 132 (40%), 106 (40%), 82 (30%).
Пример 3: Изопропил-3,4,5,6-тетрафторпиколинат
Figure 00000029
Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 3,4,5,6-тетрахлорпиколиноилхлорид (1,117 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (1,859 г, 32 ммоль) и сульфолан (предварительно высушенный, 15 г). Смесь нагревали до 130°С на нагревательном блоке в течение 21 часа. Образец отбирали и анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,4,5,6-тетрафторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=197 (М+, 91%), 169 (100%), 150 (51%), 100 (100%). 19F ЯМР (376 МГц, CD3CN) δ 26,57 (д, J=38,1 Гц), -81,71 (дд, J=44,1, 24,4 Гц), -133,00 или -134,26 (м), -136,54 или -136,69 (м), -145,62 или -145,77 (м).
Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 3,4,5,6-тетрафторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение ночи, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,454 г (48% выход, 96% чистота ГХ, 93% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,4,5,6-тетрафторпиколината: 70 эВ ЭУМС (ГХ) m/z=196 (31%), 178 (100%), 150 (45%), 100 (26%), 43 (34%). 1H ЯМР (400 МГц, CDCl3) δ 5,32 (гепт., J=6,3 Гц, 1H), 1,42 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 159,81 или 159,74 (м), 149,22 или 148,78 (м), 148,04 или 147,86 (м), 146,49 или 146,10 (м), 145,65 или 145,47 (м), 138,53 (дд, J=34,3, 11,2 Гц), 135,79 (дд, J=34,4, 11,2 Гц), 129,02 или 128,74 (м), 70,97 (c), 21,60 (c). 19F ЯМР (376 МГц, CDCl3) δ -80,31 или - 80,49 (м), -136,04 или -136,18 (м), -137,10 или -137,25 (м), -149,81 или -149,95 (м).
Альтернативно, вышеуказанную реакцию проводили в ацетонитриле, а не в сульфолане. 100 мл реактор Parr (Hastelloy C конструкция) очищали, высушивали и проверяли на герметичность в атмосфере азота. В сосуд добавляли 3,4,5,6-тетрахлорпиколиноилхлорид (5,587 г, 20 ммоль), 18-краун-6 (0,529 г, 2 ммоль), KF (10,458 г, 180 ммоль) и безводный ацетонитрил (45 г). Всю систему продували азотом. Реакционную смесь перемешивали при 135°С в течение 20 часов и затем оставляли охлаждаться до температуры ниже 45°С. Из системы постепенно выпускали газ. Образец отбирали и анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,4,5,6-тетрафторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=197 (М+, 86%), 169 (98%), 150 (51%), 100 (100%). 19F ЯМР (376 МГц, CD3CN) δ 26,34 (д, J=38,3 Гц), -81,98 (дд, J=44,2, 23,6 Гц), -134,35 или -134,57 (м), -136,94 или -137,09 (м), -146,02 или -146,17 (м).
Безводный 2-пропанол (1,803 г, 30 ммоль) и безводный триэтиламин (2,024 г, 20 ммоль) добавляли по каплям при 5-10°C к раствору 3,4,5,6-тетрафторпиколиноилфторида, полученного выше. Смесь перемешивали при комнатной температуре в течение ночи. Смесь выгружали из сосуда, и соли удаляли с помощью фильтрования, и промывали небольшим количеством ацетонитрила. Растворитель удаляли на роторном испарителе. Неочищенную смесь повторно растворяли в этиловом эфире. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (4/50) в качестве элюента с получением 3,77 г (79% выход, 99% чистота ГХ, 97% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,4,5,6-тетрафторпиколината: 70 эВ ЭУМС (ГХ) m/z=196 (32%), 178 (100%), 150 (49%), 100 (33%), 43 (75%). 1H ЯМР (400 МГц, CDCl3) δ 5,32 (гепт., J=6,3 Гц, 1H), 1,42 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 159,82 или 159,74 (м), 149,22 или 148,85 (м), 148,02 или 147,89 (м), 146,47 или 146,17 (м), 145,63 или 145,47 (м), 138,54 (дд, J=34,3, 11,2 Гц), 135,79 (дд, J=34,3, 11,4 Гц), 129,03 или 128,74 (м), 70,98 (c), 21,61 (c). 19F ЯМР (376 МГц, CDCl3) δ -80,26 или -80,44 (м), -135,99 или -136,13 (м), -137,07 или -137,22 (м), -149,77 или -149,91 (м).
Пример 4: Изопропил-5-фторпиколинат
Figure 00000030
Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 5-хлорпиколиноилхлорид (0,704 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (0,744 г, 12,8 ммоль) и сульфолан (предварительно высушенный, 8 г). Смесь нагревали до 130°С на нагревательном блоке в течение 19 часов. Образец отбирали и анализировали с помощью ГХ. Результаты показали, что реакция не была завершена, поэтому добавляли дополнительное количество KF (0,232 г, 4 ммоль) и смесь нагревали до 130°С в течение дополнительных 22 часов. Образец анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 5-фторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=143 (М+, 100%), 115 (55%), 96 (90%), 76 (46%). 19F ЯМР (376 МГц, CD3CN) δ 16,01 (c), -117,57 (c).
Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 5-фторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение ночи, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,17 г (23% выход, 96% чистота ЖХ) желаемого продукта в виде белого с желтоватым или сероватым оттенком твердого вещества. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-5-фторпиколината: 70 эВ ЭУМС (ГХ) m/z=142 (43%), 124 (100%), 97 (97%), 96 (93%), 43 (59%). 1H ЯМР (400 МГц, CDCl3) δ 8,60 (д, J=2,8 Гц, 1H), 8,18 (дд, J=8,8, 4,4 Гц, 1H), 7,52 (ддд, J=8,7, 7,9, 2,9 Гц, 1H), 5,34 (гепт., J=6,3 Гц, 1H), 1,43 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 163,63 (c), 162,32 (c), 159,71 (c), 144,84 (д, J=3,8 Гц), 138,46 (д, J=24,8 Гц), 126,78 (д, J=5,4 Гц), 123,31 (д, J=18,5 Гц), 69,71 (c), 21,81 (c). 19F ЯМР (376 МГц, CDCl3) δ -120,51.
Пример 5: Изопропил-3,6-дифторпиколинат
Figure 00000031
Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 3,6-дихлорпиколиноилхлорид (0,842 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (1,394 г, 24 ммоль) и сульфолан (предварительно высушенный, 9 г). Смесь нагревали до 130°С на нагревательном блоке в течение 22 часов. Образец отбирали и анализировали с помощью ГХ. Результаты показали, что реакция не была завершена, поэтому добавляли дополнительное количество KF (0,348 г, 6 ммоль) и смесь нагревали до 130°С в течение дополнительных 22 часов. Образец анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,6-дифторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=161 (М+, 73%), 133 (100%), 114 (44%), 64 (60%). 19F ЯМР (376 МГц, CD3CN) δ 26,30 (д, J=36,4 Гц), -70,56 (д, J=25,9 Гц), -119,36 (дд, J=36,4, 26,0 Гц).
Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 3,6-дифторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение 6 часов, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,39 г (48% выход, 99% чистота ГХ, 98% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,6-дифторпиколината: 70 эВ ЭУМС (ГХ) m/z=160 (41%), 142 (100%), 115 (43%), 114 (66%), 64 (31%), 43 (51%). 1H ЯМР (400 МГц, CDCl3) δ 7,69 или 7,63 (м, 1H), 7,16 или 7,12 (м), 5,33 (гепт., J=6,3 Гц, 1H), 1,41 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 161,41 (д, J=6,3 Гц), 158,80 (д, J=1,2 Гц), 158,26 (д, J=4,3 Гц), 156,41 (д, J=1,2 Гц), 155,62 (д, J=4,4 Гц), 134,05 (т, J=13,5 Гц), 131,06 (дд, J=23,9, 8,3 Гц), 114,86 (дд, J=41,7, 5,9 Гц), 70,34 (c), 21,71 (c). 19F ЯМР (376 МГц, CDCl3) δ -69,40 (д, J=26,9 Гц), -122,76 (д, J=27,4 Гц).
Пример 6: Изопропил-4,5-дифтор-6-(4-хлорфенил)пиколинат
Figure 00000032
К раствору 4,5-дихлор-6-(4-хлорфенил)пиколиноилхлорида (2,0 г, 6,23 ммоль) в сульфолане (40 мл, высушенный через 4 Å молекулярные сита, 100 ч./млн H2O) добавляли фторид калия (2,2 г, 37,4 ммоль). Реакционную смесь нагревали при 130°С в течение 24 ч. Реакционную смесь анализировали с помощью ГХ-МС и 19F ЯМР. (Данные для 6-(4-хлорфенил)-4,5-дифторпиколиноилфторида, ГХ-МС: m/z=271, 223; 19F ЯМР (376 МГц, Толуол-d8) δ 17,05 (c), -123,81 (д, J=19,1 Гц), -140,17 (д, J=19,1 Гц)). Реакционную смесь охлаждали до комнатной температуры и добавляли триэтиламин (1,1 мл, 7,8 ммоль) и изопропанол (0,7 мл, 9,4 ммоль). После перемешивания в течение 1,5 ч реакционную смесь разбавляли водой (100 мл) и переносили в делительную воронку. Реакционную смесь экстрагировали метил-трет-бутиловым эфиром (МТБЭ, 2×50 мл). Объединенные органические экстракты промывали водой (3×50 мл) и насыщенным водным раствором NaCl (50 мл) и концентрировали при пониженном давлении с получением коричневого масла. Неочищенный продукт масло очищали с помощью флэш-хроматографии на силикагеле (гексан/этилацетат градиент, 100% гексан → 20% гексан/этилацетат) с получением 0,93 г (48% выход) изопропил-6-(4-хлорфенил)-4,5-дифторпиколината в виде белого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ 8,04-7,98 (м, 2H), 7,90 (дд, J=9,4, 5,3 Гц, 1H), 7,51-7,45 (м, 2H), 5,31 (гепт., J=6,3 Гц, 1H), 1,43 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 162,72 (д, J=3,5 Гц), 158,12 (д, J=12,6 Гц), 155,49 (д, J=12,4 Гц), 149,41 (д, J=11,0 Гц), 147,16 (дд, J=7,9, 1,0 Гц), 146,73 (д, J=10,9 Гц), 136,51 (д, J=0,9 Гц), 130,34 (д, J=6,6 Гц) 128,93 (c), 113,80 (д, J=16,1 Гц), 70,25 (c), 21,85 (c). 19F ЯМР (376 МГц, CDCl3) δ -124,73 (дд, J=17,7, 9,5 Гц), -144,38 (дд, J=17,7, 5,4 Гц). МСНР: вычисл. C16H15F2NO3: 307,10. Найдено: m/z=307 (М+), 221, 206. Т. пл. 73-74°С.
Пример 7: Изопропил-4,5-дифтор-6-фенилпиколинат
Figure 00000033
К раствору 4,5-дихлор-6-фенилпиколиноилхлорида (1,76 г, 6,14 ммоль) в сульфолане (40 мл, высушенный через 4 Å молекулярные сита, ~100 ч./млн H2O) добавляли фторид калия (2,14 г, 36,9 ммоль). Реакционную смесь нагревали при 130°С в течение 24 ч. Реакционную смесь анализировали с помощью ГХ-МС и 19F ЯМР. (Данные для 4,5-дифтор-6-фенилпиколиноилфторида, ГХ-МС: m/z=237, 189; 19F ЯМР (376 МГц, Толуол-d8) δ 17,03 (c), -124,14 (д, J=19,1 Гц), -140,76 (д, J=19,1 Гц)). Реакционную смесь оставляли охлаждаться до комнатной температуры и добавляли триэтиламин (1,1 мл, 7,7 ммоль) и изопропанол (0,7 мл, 9,2 ммоль). После перемешивания в течение 1,5 ч реакционную смесь разбавляли водой (100 мл) и переносили в делительную воронку. Реакционную смесь экстрагировали метил-трет-бутиловым эфиром (МТБЭ, 2×50 мл). Объединенные органические экстракты промывали водой (3×50 мл) и насыщенным NaCl (50 мл) и концентрировали при пониженном давлении с получением коричневого масла. Неочищенный продукт масло очищали с помощью флэш-хроматографии на силикагеле (гексан/этилацетат градиент, 100% гексан → 20% гексан/этилацетат) с получением 1,2 г (70% выход) изопропил-4,5-дифтор-6-фенилпиколината в виде желтого масла. 1Н ЯМР (400 МГц, CDCl3) δ 8,07-7,99 (м, 2H), 7,89 (дд, J=9,4, 5,3 Гц, 1H), 7,56-7,42 (м, 3H), 5,31 (гепт., J=6,3 Гц, 1H), 1,43 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 162,89 (д, J=3,4 Гц), 156,74 (дд, J=264,2, 12,5 Гц), 148,07 (дд, J=268,9, 10,8 Гц), 146,99 (дд, J=309,2, 10,8 Гц), 145,45 (c), 134,12-133,60 (м), 130,20 (c), 129,05 (д, J=5,9 Гц), 128,64 (c), 113,56 (д, J=16,0 Гц), 70,14 (c), 21,86 (c). 19F ЯМР (376 МГц, CDCl3) δ -125,22 (дд, J=17,7, 9,5 Гц), -144,74 (дд, J=17,7, 5,4 Гц). МСНР. Вычисл. C15H13F2NO2: 277,09. Найдено: m/z=277 (М+), 218, 191.
Пример 8: Изопропил-4,5-дифтор-6-(4-метоксифенил)пиколинат
Figure 00000034
К раствору 4,5-дихлор-6-(4-метоксифенил)пиколиноилхлорида (2,5 г, 7,9 ммоль) в сульфолане (40 мл, высушенный через 4 Å молекулярные сита, 100 ч./млн воды) добавляли фторид калия (2,75 г, 47,4 ммоль). Реакционную смесь нагревали при 150°С в течение 24 ч. Добавляли дополнительное количество фторида калия (1,4 г, 24 ммоль) и реакционную смесь нагревали при 150°С в течение дополнительных 24 ч. Реакционную смесь анализировали с помощью ГХ-МС и 19F ЯМР. (Данные для 4,5-дифтор-6-(4-метоксифенил)пиколиноилфторида, ГХ-МС: m/z=267, 224, 176; 19F ЯМР (376 МГц, Толуол) δ 16,94 (c), -124,65 (д, J=19,1 Гц), -141,23 (д, J=19,1 Гц)). Реакционную смесь охлаждали до комнатной температуры и добавляли триэтиламин (1,4 мл, 9,9 ммоль) и изопропанол (0,9 мл, 11,9 ммоль). После перемешивания в течение 1,5 ч реакционную смесь разбавляли водой (125 мл) и переносили в делительную воронку. Реакционную смесь экстрагировали метил-трет-бутиловым эфиром (МТБЭ, 2×75 мл). Объединенные органические экстракты промывали водой (3×75 мл) и насыщенным NaCl (75 мл) и концентрировали при пониженном давлении с получением коричневого масла. Неочищенный продукт масло очищали с помощью флэш-хроматографии на силикагеле (гексан/этилацетат градиент, 100% гексан → 20% гексан/этилацетат) с получением 0,60 г (25% выход) изопропил-4,5-дифтор-6-(4-метоксифенил)пиколината в виде бледно-желтого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ 8,08-8,01 (м, 2Н), 7,82 (дд, J=9,5, 5,2 Гц, 1H), 7,04-6,97 (м, 2Н), 5,30 (гепт., J=6,3 Гц, IH), 3,86 (c, 3H), 1,42 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 162,93 (c), 161,22 (c), 156,68 (дд, J=263,5, 12,7 Гц), 147,70 (дд, J=267,9, 10,9 Гц), 146,61 (дд, J=286,4, 10,5 Гц), 145,18 (c), 130,53 (д, J=6,6 Гц), 126,43, 114,02 (c), 112,77 (д, J=16,1 Гц), 69,99 (c), 55,32 (c), 21,82 (c). 19F ЯМР (376 МГц, CDCl3) δ -125,81 (д, J=17,7 Гц), -145,30 (д, J=19,1 Гц). МСНР. Вычисл. для C16H15F2NO3: 307,10. Найдено: m/z=307 (М+), 221, 206.
Пример 9: Метил-6-(4-хлор-2-фтор-3-метоксифенил)-4,5-дифтор-2-пиридинкарбоксилат
Figure 00000035
Смесь 1,74 г (30 ммоль, 6 экв) KF (высушенный при 115°C продуванием N2 в течение ночи), 1,85 г (5 ммоль) 6-(4-хлор-2-фтор-3-метоксифенил)-4,5-дихлор-2-пиридинкарбонилхлорида и 10 мл сульфолана (высушенный с использованием 4 Å молекулярных сит) нагревали при 130°С в течение 10 ч и затем при комнатной температуре в течение ночи. Анализ ЖХ площади показал незавершенную реакцию (63% продукта, 15% моно-фтор интермедиатов). Смесь нагревали при 130°С в течение дополнительных 7 ч, когда анализ площади ЖХ показал 74% продукта и 4% моно-фтор интермедиатов. После охлаждения до 50°С добавляли 0,24 мл (6 ммоль) MeOH и смесь перемешивали при комнатной температуре в течение ночи. К янтарной смеси добавляли 10 мл H2O по каплям более 20 мин. Первоначально образовывались клейкие твердые вещества, которые, в конечном итоге, рассеивались, чтобы оставить густую коричневато-серую смесь. После перемешивания при комнатной температуре в течение 15 мин подобную грязи смесь отфильтровывали (медленно), промывали 4 мл 1:1 сульфолан/H2O и 2 раза 4 мл H2O с получением 5,44 г коричневого твердого вещества. Твердое вещество высушивали с получением 1,54 г рыжевато-коричневого порошка. ЖХ-анализ внутреннего стандарта показал чистоту 78,4% масс. для выхода 73,0%.
Очистка метил-6-(4-хлор-2-фтор-3-метоксифенил)-4,5-дифтор-2-пиридинкарбоксилата
Материал из предыдущего эксперимента (1,8 г, 67% площади ЖХ) нагревали и растворяли в 15 мл толуола. Данный раствор подвергали флэш-хроматографии на диоксиде кремния (500 г, 70-230 меш) с элюированием толуолом. После того как 10 л толуола пропускали через колонку, продукт наблюдали и собирали в течение следующих 2 л элюента. Фракции толуола, содержащие продукт, концентрировали под вакуумом с получением 647 мг белого твердого вещества, 94% площади чистота с помощью ЖХ-анализа. Данное твердое вещество растворяли в 3 мл ацетонитрила, охлаждали в холодильнике, отфильтровывали и промывали 0,5 мл холодного ацетонитрила с получением 529 мг белого твердого вещества, т. пл. 134-134°C, 97% площади чистота с помощью ЖХ-анализа. ЭУМС m/e (относительная интенсивность) 331 (1Cl, 50), 273 (1Cl, 100), 238 (46), 237 (28), 222 (14), 194 (48); 1H ЯМР (400 МГц, CDCl3) δ 8,05 (дд, J=9, 6 Гц, 1H), 7,35-7,27 (м, 2H), 4,01 (c, 3H), 4,00 (д, J=1 Гц, 3H); 19F ЯМР (376 МГц, 1H д, CDCl3) δ -123,64 (д, J=20 Гц), -128,51 (д, J=31 Гц), -139,59 (дд, J=31,20 Гц); 19F ЯМР (376 МГц, CDCl3) δ -123,64 (дд, J=19, 9 Гц), -128,51 (дд, J=31, 6 Гц), -139,59 (ддд, J=31, 19,6 Гц).
Получение интермедиатов: 6-арил-хлорпиколиноилхлоридов
Пример 10: Изопропил-4,5-дихлор-6-фенилпиколинат
Figure 00000036
В 125 мл трехгорлую круглодонную колбу загружали дигидрат фторида калия (4,52 г, 38,0 ммоль), фенилбороновую кислоту (4,88 г, 40 ммоль), изопропил-4,5,6-трихлорпиколинатный эфир (4,28 г, 16,0 ммоль), MeCN (60 мл) и H2O (20 мл). Полученную суспензию продували N2 в течение 15 мин, затем добавляли бис-трифенилфосфинпалладия (II) хлорид (0,45 г, 0,64 ммоль). Полученную желтую суспензию затем продували в течение 15 мин, затем нагревали до 65-68°С. После 1 ч перемешивания забирали аликвоту (1-2 мкл) и разбавляли MeCN (2 мл). Аликвоту анализировали с помощью ВЭЖХ путем контроля расхода исходного материала изопропил-4,5,6-трихлорпиколинатного эфира. Через 3 ч реакция считалась завершенной. Колбонагреватель удаляли, и смесь охлаждали до температуры окружающей среды, и разбавляли MeCN/EtOAc/H2O (150 мл, 2/2/1). Слои затем разделяли с помощью делительной воронки и к органическому слою добавляли силикагель ≈22 г. Растворитель удаляли под вакуумом и твердое вещество очищали с помощью CombiFlash, используя 220 г колонку. Концентрирование аликвот обеспечивало белое твердое вещество весом 4,07 г (82%). Т. пл.=94-96°С; 1H ЯМР (400 МГц, CDCl3) δ 8,12 (c, 1H, пиридин H), 7,74-7,71 (м, 2H), 7,49-7,46 (м, 3H), 5,31 (г, J=6,4 Гц, 1H), 1,41 (д, J=6,4 Гц, 6H); 13C ЯМР (100,6 МГц, CDCl3) δ 163,1, 158,6, 146,5, 144,3, 137,5, 132,1, 129,6, 129,4, 128,0, 125,0, 70,2, 21,8; МСНР. Вычисл. для C15H13Cl2N2O2: 309,03. Найдено: 309 (М+), 223 (М+ -CO2 iPr), 188, 152, 125.
Пример 11: 4,5-Дихлор-6-фенилпиколиновая кислота
Figure 00000037
В 125 мл 3-горлую круглодонную колбу, снабженную конденсатором, впускным отверстием для азота, верхней мешалкой, термометром и колбонагревателем, загружали изопропил-4,5-дихлор-6-фенилпиколинат (7,0 г, 22,5 ммоль) и изопропиловый спирт (65 мл). Реакционную смесь нагревали до 40°С и добавляли гидроксид калия (85%, 5,1 г, 77,4 ммоль) и воду (5 мл). Твердые вещества осаждались из смеси, и ее становилось трудно перемешивать. Смесь разбавляли водой (250 мл), чтобы растворить большую часть твердых веществ, и перемешивали при комнатной температуре. Концентрированную серную кислоту (5 мл) добавляли по каплям к реакционной смеси для достижения рН ~2, и твердые вещества осаждались из смеси. Твердые вещества выделяли с помощью вакуумного фильтрования и промывали водой (2×100 мл), затем высушивали в вытяжном шкафу. 5,8 г (96% выход) 4,5-дихлор-6-фенилпиколиновой кислоты выделяли в виде белого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ 8,28 (c, 1H), 7,74-7,60 (м, 2H), 7,59-7,45 (м, 3H), 5,98 (уш. c, 1H). 13С ЯМР (101 МГц, CDCl3) δ 162,97, 157,76, 146,26, 144,00, 136,51, 133,84, 130,02, 129,26, 128,38, 124,16. Т. пл. 159-160°С.
Пример 12: 4,5-дихлор-6-фенилпиколиноилхлорид
Figure 00000038
К смеси 4,5-дихлор-6-фенилпиколиновой кислоты (3,00 г, 11,2 ммоль) в толуоле (40 мл) добавляли тионилхлорид (1,22 мл, 16,8 ммоль) и диметилформамид (0,04 мл, 0,6 ммоль). Реакционную смесь нагревали при 80°С в течение 3 ч. ВЭЖХ-анализ аликвоты, обработанной метанолом и диметиламинопиридином, показал полное превращение исходного материала. Реакционную смесь охлаждали до комнатной температуры и затем концентрировали при пониженном давлении с получением белого твердого вещества. Добавляли толуол (40 мл) для растворения твердого вещества, и концентрировали при пониженном давлении, и затем данный процесс проводили второй раз. 4,5-дихлор-6-фенилпиколиноилхлорид выделяли в виде белого твердого вещества (2,84 г, 89% выход). 1H ЯМР (400 МГц, CDCl3) δ 8,14 (c, 1H), 7,83-7,75 (м, 2H), 7,55-7,47 (м, 3H). 13C ЯМР (101 МГц, CDCl3) δ 168,80, 158,88, 146,42, 145,21, 136,79, 134,40, 129,98, 129,61, 128,31, 124,74. МСНР Вычисл. C12H6Cl3NO: 284,95. Найдено: m/z=285 (М+), 250 (М+ -Cl), 222, 187, 152. Т. пл. 106-111°С.
Пример 13: Изопропил-4,5-дихлор-6-(4-метоксифенил)пиколинат
Figure 00000039
В 125 мл трехгорлую круглодонную колбу загружали дигидрат фторида калия (5,65 г, 60,0 ммоль), 4-метоксифенилбороновую кислоту (3,42 г, 22,5 ммоль), изопропил-4,5,6-трихлорпиколинатный эфир (4,00 г , 15,0 ммоль), MeCN (72 мл) и H2O (24 мл). Полученную суспензию продували N2 в течение 15 мин, затем добавляли бис-трифенилфосфинпалладия (II) хлорид (0,42 г, 0,60 ммоль). Полученную желтую суспензию затем продували в течение 15 мин, затем нагревали до 60-62°С. После 1 ч перемешивания забирали аликвоту (1-2 мкл) и разбавляли MeCN (2 мл). Аликвоту анализировали с помощью ВЭЖХ путем контроля расхода исходного изопропил-4,5,6-трихлорпиколинатного эфира. Через 3 ч реакцию считали завершенной. Колбонагреватель удаляли, и смесь охлаждали до температуры окружающей среды, и разбавляли MeCN/PhMe/H2O (100 мл, 4/3/3). Слои затем разделяли и к органическому слою добавляли силикагель ≈22 г. Растворитель удаляли под вакуумом и твердое вещество очищали с помощью CombiFlash с получением белого твердого вещества весом 2,90 г (57%). Т. пл. = 113-116°С; 1H ЯМР (400 МГц, CDCl3) δ 8,07 (c, 1H, пиридин H), 7,74 (дт, J=9,2, 2,8 Гц, 2H), 6,99 (дт, J=8,8, 2,8 Гц, 2H), 5,30 (г, J=6,0 Гц, 1H), 1,41 (д, J=6,0 Гц, 6H); 13C ЯМР (100,6 МГц, CDCl3) δ 163,2, 160,6, 158,1, 146,4, 144,2, 131,7, 131,2, 129,9, 124,4, 113,4, 70,1, 55,3, 21,8; МСНР Вычисл. для C16H15Cl2NO3: 339,04. Найдено: 339 (М+), 253 (М+ -OiPr), 218, 203, 182.
Пример 14: 4,5-Дихлор-6-(4-метоксифенил)пиколиновая кислота
Figure 00000040
К смеси изопропил-4,5-дихлор-6-(4-метоксифенил)пиколината (5,25 г, 15,4 ммоль) в тетрагидрофуране (40 мл) и воде (10 мл) добавляли гидроксид калия (1,26 г, 22,4 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 12 ч. После 1 часа перемешивания твердые вещества осаждались из смеси. К реакционной смеси добавляли HCl (водн.) (2Н, 25 мл) для образования прозрачной двухфазной смеси. Смесь добавляли в воду (75 мл) в делительную воронку и экстрагировали EtOAc (2×75 мл). Объединенные органические слои промывали водой (25 мл) и насыщенным NaCl (50 мл) и затем концентрировали при пониженном давлении с получением 4,57 г (99% выход) 4,5-дихлор-6-(4-метоксифенил)пиколиновой кислоты в виде белого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ 8,23 (c, 1H), 7,72-7,64 (м, 2H), 7,07-6,99 (м, 2H), 3,89 (c, 3H). 13C ЯМР (101 МГц, CDCl3) δ 162,78, 161,05, 157,26, 146,30, 143,76, 133,54, 130,98, 128,72, 123,45, 113,77, 55,48; т. пл. = 164-181°С.
Пример 15: 4,5-Дихлор-6-(4-метоксифенил)пиколиноилхлорид
Figure 00000041
К смеси 4,5-дихлор-6-(4-метоксифенил)пиколиновой кислоты (4,50 г, 15,1 ммоль) в толуоле (40 мл) добавляли тионилхлорид (1,65 мл, 22,6 ммоль) и диметилформамид (0,06 мл, 0,8 ммоль). Реакционную смесь нагревали при 80°С в течение 12 ч. ВЭЖХ-анализ аликвоты, обработанной метанолом и диметиламинопиридином, показал полное превращение исходного материала. Реакционную смесь охлаждали до комнатной температуры и концентрировали при пониженном давлении с получением желтого твердого вещества. Добавляли толуол (40 мл) для растворения твердого вещества, и концентрировали при пониженном давлении, и затем данный процесс проводили второй раз. 4,5-дихлор-6-(4-метоксифенил)пиколиноилхлорид выделяли в виде желтого твердого вещества (4,64 г, 97% выход). 1H ЯМР (400 МГц, CDCl3) δ 8,09 (c, 1H), 7,85-7,77 (м, 2H), 7,06-6,98 (м, 2H). 13C ЯМР (101 МГц, CDCl3) δ 168,91, 161,06, 158,35, 146,26, 145,13, 133,92, 131,35, 129,16, 124,13, 113,70. МСНР. Вычисл. для C13H8Cl3NO2: 314,96. Найдено: m/z=253 (М+ -COCl), 218.
Пример 16: Изопропил-4,5-дихлор-6-(4-хлорфенил)пиколинат
Figure 00000042
В 125 мл трехгорлую круглодонную колбу загружали дигидрат фторида калия (4,52 г, 38,0 ммоль), 4-хлорфенилбороновую кислоту (5,00 г, 32,0 ммоль), изопропил-4,5,6-трихлорпиколинатный эфир (4,28 г , 16,0 ммоль), MeCN (70 мл) и H2O (23 мл). Полученную суспензию продували N2 в течение 15 мин, затем добавляли бис-трифенилфосфинпалладия (II) хлорид (0,45 г, 0,64 ммоль). Полученную желтую суспензию затем продували в течение 15 мин, затем нагревали до 65-68°С. После 1 ч перемешивания забирали аликвоту (1-2 мкл) и разбавляли MeCN (2 мл). Аликвоту анализировали с помощью ВЭЖХ путем контроля расхода исходного изопропил-4,5,6-трихлорпиколинатного эфира. Через 3 ч реакцию считали завершенной. Колбонагреватель удаляли, и смесь охлаждали до температуры окружающей среды, и разбавляли MeCN/PhMe/H2O (80 мл, 2/3/2). Слои затем разделяли и к органическому слою добавляли силикагель ≈22,5 г. Растворитель удаляли под вакуумом и твердое вещество очищали с помощью CombiFlash с получением после концентрирования растворителя белого твердого вещества весом 3,44 г (62%). Т. пл. = 133-135°С; 1H ЯМР (400 МГц, CDCl3) δ 8,13 (c, 1H, пиридин H), 7,69 (дт, J=8,8, 2,0 Гц, 2H), 7,29 (дд, J=8,4, 2,0 Гц, 2H), 5,31 (г, J=6,0 Гц, 1H), 1,41 (д, J=6,0 Гц, 6H, CH3); 13C ЯМР (100,6 МГц, CDCl3) δ 162,9, 157,4, 146,6, 144,5, 135,8, 135,7, 132,0, 131,0, 128,3, 125,2, 70,3, 21,8; МСНР Вычисл. для C15H12Cl3NO2: 342,99. Найдено: 343 (М+), 257 [(М+ -CO2 iPr)], 222, 186, 151.
Пример 17: 4,5-дихлор-6-(4-хлорфенил)пиколиновая кислота
Figure 00000043
В 125 мл 3-горлую круглодонную колбу, снабженную конденсатором, впускным отверстием для азота, верхней мешалкой, термометром и колбонагревателем, загружали изопропил-4,5-дихлор-6-(4-хлорфенил)пиколинат (7,6 г, 22,1 ммоль) и изопропиловый спирт (70 мл). Реакционную смесь нагревали до 40°С и добавляли гидроксид калия (85%, 5,1 г, 77,4 ммоль) и воду (5 мл). Твердые вещества осаждались из смеси, и ее становилось трудно перемешивать. Смесь разбавляли водой (250 мл), чтобы растворить большую часть твердых веществ, и перемешивали при комнатной температуре. Концентрированную HCl (12Н, 5,6 мл) добавляли по каплям к реакционной смеси для достижения рН ~2, и твердые вещества осаждались из смеси. Твердые вещества выделяли с помощью вакуумного фильтрования, промывали водой (2×100 мл) и затем высушивали с получением 7,3 г (108% выход по массе) 4,5-дихлор-6-(4-хлорфенил)пиколиновой кислоты в виде белого твердого вещества. 1H ЯМР (400 МГц, THF/D2O) δ 8,19 (д, J=11,2 Гц, 1H), 7,84-7,73 (м, 2H), 7,50 (дд, J=10,3, 3,5 Гц, 2H). 13C ЯМР (101 МГц, THF/D2O) δ 167,70, 156,03, 152,40, 143,60, 136,49, 134,76, 131,22, 129,24, 128,04, 124,71. Т. пл. 229°С.
Пример 18: 4,5-Дихлор-6-(4-хлорфенил)пиколиноилхлорид
Figure 00000044
К смеси 4,5-дихлор-6-(4-хлорфенил)пиколиновой кислоты (3,00 г, 9,9 ммоль) в толуоле (25 мл) добавляли тионилхлорид (1,08 мл, 14,9 ммоль) и диметилформамид (0,04 мл, 0,5 ммоль). Реакционную смесь нагревали при 80°С в течение 2,5 ч. ВЭЖХ-анализ реакционной смеси, обработанной метанолом и диметиламинопиридином, указал оставшийся исходный материал. Реакционную смесь охлаждали до комнатной температуры и добавляли дополнительное количество тионилхлорида (0,5 мл, 6,9 ммоль) и диметилформамида (0,04 мл, 0,5 ммоль). Реакционную смесь нагревали при 80°С в течение дополнительных 2 ч. Реакционную смесь охлаждали до комнатной температуры и концентрировали при пониженном давлении с получением белого твердого вещества. Добавляли толуол (40 мл) для растворения твердого вещества, и концентрировали при пониженном давлении, и затем данный процесс проводили второй раз. 4,5-Дихлор-6-(4-хлорфенил)пиколиноилхлорид выделяли в виде белого твердого вещества (3,05 г, 96% выход). 1H ЯМР (400 МГц, CDCl3) δ 8,15 (c, 1H), 7,79-7,72 (м, 2H), 7,53-7,46 (м, 2H), 13C ЯМР (101 МГц, CDCl3) δ 168,66, 157,63, 146,48, 145,44, 136,35, 135,10, 134,28, 131,04, 128,63, 124,90. МСНР: вычисл. для C12H5Cl4NO, 320,91. Найдено: m/z=257 (М+ -COCl), 222, 207, 186, 151.
Пример 19: 4,5-Дихлор-6-(4-хлор-2-фтор-3-метоксифенил)пиколиноилхлорид
Figure 00000045
Смесь 33,5 г (95 ммоль) 6-(4-хлор-2-фтор-3-метоксифенил)-4,5-дихлор-2-пиридинкарбоновой кислоты, 10,2 мл (140 ммоль) тионилхлорида, 0,1 мл N,N-диметилформамида (ДМФ) и 200 мл толуола нагревали при 75°С в течение 5 ч. Ход реакции контролировали с помощью превращения хлорангидрида в его метиловый эфир (одну каплю реакционной смеси добавляли к 5 каплям 10% масс. раствора метанола, содержащего 4- (диметиламино)пиридин, быстро нагревая с обратным холодильником, разбавление ацетонитрилом и инъецирование). ЖХ-анализ показал 8% площади оставшейся карбоновой кислоты и 3% площади неидентифицированного точно нижеупомянутого продукта. Добавляли дополнительное количество 5 мл тионилхлорида и 0,1 мл ДМФ и нагревание продолжали в течение дополнительных 2 ч. После перемешивания при комнатной температуре в течение ночи реакционную смесь отфильтровывали для удаления небольшого количества нерастворимого материала. Фильтрат концентрировали под вакуумом, и два раза добавляли толуол, и повторно концентрировали под вакуумом для удаления остаточного количества тионилхлорида. Полученное белое твердое вещество (38,6 г) высушивали в вакуумной печи при 40°С с получением 33,3 г белого твердого вещества, т. пл. 134-136°C. ЖХ-анализ внутреннего стандарта (превращение в его метиловый эфир, как описано выше) показал 98,1% масс. ЭУМС m/е (относительная интенсивность) 369 (4Cl, 80), 332 (3Cl, 38), 304 (3Cl, 82), 269 (2Cl, 100), 254 (2Cl, 30), 226 (2Cl, 73), 191 (30), 156 (46); 1H ЯМР (400 МГц, CDCl3) δ 8,23 (c, 1H), 7,32 (дд, J=8, 2 Гц, 1H), 7,15 (дд, J=8,7 Гц, 1H), 4,02 (дд, J=1 Гц, 3H); 19F ЯМР (376 МГц, 1H д, CDCl3) δ 126,83.
Варианты осуществления, описанные выше, предназначены только в качестве примеров, и специалист в данной области техники распознает или сможет установить, используя не более чем стандартные эксперименты, многочисленные эквиваленты определенных соединений, материалов и методик. Считается, что все такие эквиваленты находятся в объеме изобретения и охватываются прилагаемой формулой изобретения.

Claims (79)

1. Способ получения соединения Формулы I:
Figure 00000046
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 1, 2, 3 или 4;
в которой сумма m и n представляет собой менее или равную 4;
включающий фторирование соединения Формулы А:
Figure 00000047
,
в которой R, m и n представляют собой, как определено выше;
источником фторид-иона для получения соединения Формулы I.
2. Способ по п. 1, в котором m представляет собой 0.
3. Способ по п. 1, в котором n представляет собой 2 или 3.
4. Способ по п. 1, в котором соединение Формулы I представляет собой:
Figure 00000048
,
в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1, 2 или 3.
5. Способ по п. 4, в котором n представляет собой 2.
6. Способ по п. 1, в котором соединение Формулы I представляет собой:
Figure 00000049
,
в которой R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси.
7. Способ по любому одному из пп. 1-6, в котором фторирование соединения Формулы A проводят в присутствии катализатора, в котором катализатор выбран из группы, состоящей из краун-эфира, галогенида фосфония, полиэфира, соли фосфазения и галогенида тетра-замещенного аммония.
8. Способ по п. 7, в котором катализатор представляет собой краун-эфир.
9. Способ по п. 8, в котором краун-эфир представляет собой 18-краун-6.
10. Способ по любому одному из пп. 1-6, в котором источник фторид-иона представляет собой фторид металла.
11. Способ по п. 10, в котором фторид металла выбран из группы, состоящей из фторида натрия, фторида калия и фторида цезия.
12. Способ по п. 11, в котором фторид металла представляет собой фторид калия.
13. Способ по любому одному из пп. 1-6, который включает растворитель, в котором растворитель представляет собой алкилнитрил или алкилсульфон.
14. Способ по п. 13, в котором растворитель представляет собой ацетонитрил или сульфолан.
15. Способ по п. 1 для получения соединения формулы:
Figure 00000050
,
в которой
R представляет собой фтор или фенил, замещенный от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1 или 2;
который включает взаимодействие соединения Формулы А:
Figure 00000051
,
в которой R и n представляют собой, как определено выше;
с фторидом калия в присутствии краун-эфира и растворителя.
16. Способ по п. 15, в котором растворитель представляет собой ацетонитрил или сульфолан.
17. Способ получения соединения Формулы II:
Figure 00000052
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; незамещенного или замещенного С711арилалкила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
в которой сумма m и n представляет собой от 1 до 4;
включающий (а) фторирование соединения Формулы А:
Figure 00000053
источником фторид-иона для получения соединения Формулы I:
Figure 00000054
,
в которой R выбран из группы, состоящей из галогена;
алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
дополнительно включающий (b) взаимодействие соединения Формулы I с источником R1OH для получения соединения Формулы II.
18. Способ по п. 17, в котором R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси.
19. Способ по п. 17 или 18, в котором стадию (b) проводят в присутствии основания.
20. Соединение Формулы I:
Figure 00000055
,
в которой
R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;
m представляет собой 0, 1, 2 или 3; и
n представляет собой 0, 1, 2, 3 или 4;
в которой сумма m и n представляет собой от 1 до 4.
21. Соединение по п. 20, в котором m представляет собой 0 и n представляет собой 1, 2, 3 или 4.
22. Соединение по п. 20 формулы:
Figure 00000056
.
23. Соединение по п. 20 формулы:
Figure 00000057
,
в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и
n представляет собой 1, 2 или 3.
24. Соединение по п. 20, в котором n представляет собой 1 или 2.
25. Соединение по п. 20 формулы:
Figure 00000058
26. Способ по п. 17, в котором источник фторид-иона представляет собой фторид калия и стадия (а) осуществляется в присутствии краун-эфира и растворителя.
27. Способ по п. 26, в котором растворитель представляет собой ацетонитрил или сульфолан.
28. Способ по п. 19, в котором основание представляет собой триалкиламиновое основание.
29. Способ по п. 28, в котором триалкиламиновое основание представляет собой триалкиламин.
RU2015106018A 2012-07-24 2013-07-23 Фторпиколиноилфториды и способы их получения RU2627659C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261675229P 2012-07-24 2012-07-24
US61/675,229 2012-07-24
PCT/US2013/051629 WO2014018506A1 (en) 2012-07-24 2013-07-23 Fluoropicolinoyl fluorides and processes for their preparation

Publications (2)

Publication Number Publication Date
RU2015106018A RU2015106018A (ru) 2016-09-20
RU2627659C2 true RU2627659C2 (ru) 2017-08-09

Family

ID=48998691

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106018A RU2627659C2 (ru) 2012-07-24 2013-07-23 Фторпиколиноилфториды и способы их получения

Country Status (22)

Country Link
US (2) US9045427B2 (ru)
EP (1) EP2877452B1 (ru)
JP (1) JP6062050B2 (ru)
KR (1) KR101946680B1 (ru)
CN (1) CN104583183B (ru)
AR (1) AR092355A1 (ru)
AU (1) AU2013293204B2 (ru)
BR (1) BR112015001445B8 (ru)
CA (1) CA2879518C (ru)
CO (1) CO7200264A2 (ru)
ES (1) ES2641724T3 (ru)
HK (1) HK1210465A1 (ru)
IL (1) IL236817B (ru)
IN (1) IN2015DN01482A (ru)
MX (1) MX351309B (ru)
NZ (1) NZ704104A (ru)
PL (1) PL2877452T3 (ru)
RU (1) RU2627659C2 (ru)
TW (1) TWI586650B (ru)
UY (1) UY34945A (ru)
WO (1) WO2014018506A1 (ru)
ZA (1) ZA201500601B (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201609651A (zh) 2013-11-12 2016-03-16 陶氏農業科學公司 用於氟化化合物之過程(一)
TW201609652A (zh) 2013-11-12 2016-03-16 陶氏農業科學公司 用於氟化化合物之過程(三)
TW201524956A (zh) * 2013-11-12 2015-07-01 Dow Agrosciences Llc 用於氟化化合物之過程(二)
TWI726900B (zh) 2015-08-04 2021-05-11 美商陶氏農業科學公司 用於氟化化合物之過程
CN113233974A (zh) * 2021-04-09 2021-08-10 山东领海生物科技有限公司 一种酰基氟化物的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847442A (en) * 1988-07-18 1989-07-11 Allied-Signal Inc. Process for the preparation of difluorobenzenes
RU2220959C1 (ru) * 2000-01-14 2004-01-10 Дау Агросайенсиз Ллс 4-аминопиколинаты и их применение в качестве гербицидов

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE385883B (sv) * 1972-04-10 1976-07-26 Ciba Geigy Ag Forfarande for framstellning av nya pyridinkarbonsyraestrar
JPS62181257A (ja) * 1986-02-04 1987-08-08 Asahi Glass Co Ltd フルオロピリジン類の製造法
JP2520254B2 (ja) * 1987-04-28 1996-07-31 イハラケミカル工業株式会社 3,4,5−トリフルオロ安息香酸誘導体およびその製造方法
US6297197B1 (en) 2000-01-14 2001-10-02 Dow Agrosciences Llc 4-aminopicolinates and their use as herbicides
JP4608140B2 (ja) * 2000-07-05 2011-01-05 石原産業株式会社 ベンゾイルピリジン誘導体またはその塩、それらを有効成分として含有する殺菌剤、それらの製造方法ならびにそれらを製造するための中間体
AR037228A1 (es) 2001-07-30 2004-11-03 Dow Agrosciences Llc Compuestos del acido 6-(aril o heteroaril)-4-aminopicolinico, composicion herbicida que los comprende y metodo para controlar vegetacion no deseada
JP2003321406A (ja) * 2002-04-30 2003-11-11 Mitsubishi Gas Chem Co Inc 高純度フルオロアルキルベンゼン誘導体及びその製造法
UA82358C2 (ru) 2003-04-02 2008-04-10 Дау Агросайенсиз Ллс 6-алкил или фенил-4-аминопиколинаты, гербицидная композиция, способ борьбы с нежелательной растительностью
ES2535705T3 (es) * 2003-10-31 2015-05-14 Ishihara Sangyo Kaisha, Ltd. Composición bactericida y método de control de la enfermedad de las plantas
JP5059779B2 (ja) 2006-01-13 2012-10-31 ダウ アグロサイエンシィズ エルエルシー 6−(多置換アリール)−4−アミノピコリネートおよび除草剤としてのそれらの使用
TWI529163B (zh) 2011-01-25 2016-04-11 陶氏農業科學公司 用於製備4-胺基-5-氟-3-鹵素-6-(經取代之)吡啶甲酸酯的方法
TWI537252B (zh) 2011-01-25 2016-06-11 陶氏農業科學公司 用於製備4-胺基-5-氟-3-鹵素-6-(經取代之)吡啶甲酸酯的方法(一)
AR091856A1 (es) * 2012-07-24 2015-03-04 Dow Agrosciences Llc Proceso para la preparacion de 4-amino-5-fluor-3-halo-6-(substituido) picolinatos

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847442A (en) * 1988-07-18 1989-07-11 Allied-Signal Inc. Process for the preparation of difluorobenzenes
RU2220959C1 (ru) * 2000-01-14 2004-01-10 Дау Агросайенсиз Ллс 4-аминопиколинаты и их применение в качестве гербицидов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jørn B. Christensen et al. "TFFH as an Excellent Reagent for Acylation of Alcohols, Thiols and Dithiocarbamates", SYNTHESIS, vol.15, 2004, pp.2485-2492, DOI: 10.1055/s-2004-831250. *
Jørn B. Christensen et al. "TFFH as an Excellent Reagent for Acylation of Alcohols, Thiols and Dithiocarbamates", SYNTHESIS, vol.15, 2004, pp.2485-2492, DOI: 10.1055/s-2004-831250. *

Also Published As

Publication number Publication date
US9045427B2 (en) 2015-06-02
MX351309B (es) 2017-10-10
BR112015001445A2 (pt) 2017-07-04
CN104583183B (zh) 2018-05-11
CA2879518A1 (en) 2014-01-30
ES2641724T3 (es) 2017-11-13
JP2015524806A (ja) 2015-08-27
AR092355A1 (es) 2015-04-15
AU2013293204A1 (en) 2015-02-19
NZ704104A (en) 2017-04-28
EP2877452A1 (en) 2015-06-03
TWI586650B (zh) 2017-06-11
RU2015106018A (ru) 2016-09-20
IN2015DN01482A (ru) 2015-07-03
MX2015001138A (es) 2015-09-08
KR101946680B1 (ko) 2019-02-11
CN104583183A (zh) 2015-04-29
CO7200264A2 (es) 2015-02-27
US9376388B2 (en) 2016-06-28
BR112015001445B8 (pt) 2022-08-23
BR112015001445B1 (pt) 2019-12-17
HK1210465A1 (en) 2016-04-22
CA2879518C (en) 2019-11-12
AU2013293204B2 (en) 2016-10-20
PL2877452T3 (pl) 2018-01-31
US20140031558A1 (en) 2014-01-30
JP6062050B2 (ja) 2017-01-18
UY34945A (es) 2014-02-28
EP2877452B1 (en) 2017-08-23
KR20150036672A (ko) 2015-04-07
ZA201500601B (en) 2016-10-26
TW201408640A (zh) 2014-03-01
IL236817B (en) 2018-10-31
WO2014018506A1 (en) 2014-01-30
US20150191428A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
RU2545021C1 (ru) Способ получения 4-амино-3-хлор-5-фтор-6-(замещенных)пиколинатов
RU2627659C2 (ru) Фторпиколиноилфториды и способы их получения
KR101542340B1 (ko) 4-아미노-3-클로로-5-플루오로-6-(치환된)피콜리네이트의제조 방법
AU2013293200B2 (en) Process for the preparation of 4-amino-5-fluoro-3-halo-6-(substituted)picolinates
RU2525918C2 (ru) Способ получения 6-арил-4-аминопиколинатов
CN102408385A (zh) 一种2-取代-2h-1,2,3-三氮唑衍生物的制备方法
CN105007734A (zh) 制备4-氨基-5-氟-3-氯-6-(取代的)吡啶甲酸酯的方法
Das et al. An efficient conversion of alcohols to alkyl bromides using pyridinium based ionic liquids: a green alternative to appel reaction
WO2017158404A1 (en) An improved method for the preparation of alkylenedioxybenzene compounds
CN109666041A (zh) 一类二苯醚骨架的手性单膦配体HP-Phos及制备方法和应用
MXPA02010875A (es) Compuestos de esteres y acidos de ariloxi.

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner