RU2625769C2 - Сенсор аналита с тисненой ячейкой и способ изготовления - Google Patents

Сенсор аналита с тисненой ячейкой и способ изготовления Download PDF

Info

Publication number
RU2625769C2
RU2625769C2 RU2012120483A RU2012120483A RU2625769C2 RU 2625769 C2 RU2625769 C2 RU 2625769C2 RU 2012120483 A RU2012120483 A RU 2012120483A RU 2012120483 A RU2012120483 A RU 2012120483A RU 2625769 C2 RU2625769 C2 RU 2625769C2
Authority
RU
Russia
Prior art keywords
sensors
substrate
tested
reagent
channel
Prior art date
Application number
RU2012120483A
Other languages
English (en)
Other versions
RU2012120483A (ru
Inventor
Адриан ПЕТИТ
Саймон Эндрю ГЕКТОР
Original Assignee
Эббот Дайабитиз Кэр, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эббот Дайабитиз Кэр, Инк. filed Critical Эббот Дайабитиз Кэр, Инк.
Publication of RU2012120483A publication Critical patent/RU2012120483A/ru
Application granted granted Critical
Publication of RU2625769C2 publication Critical patent/RU2625769C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • Y10T436/144444Glucose

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surgery (AREA)
  • Electrochemistry (AREA)
  • Emergency Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Diabetes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Изобретение относится к медицине и представляет собой способ изготовления системы измерения аналита, имеющей сенсоры с тиснеными каналами измерительной камеры. В одном варианте осуществления сенсоры являются удлиненными тест-полосками для тестирования in vitro, причем каждая тест-полоска имеет подложку, по меньшей мере, один электрод, канал, вытисненный в электроде, и накрывающую ленту, покрывающую, по меньшей мере, часть тисненого канала. Способ позволяет устранить необходимость в калибровочном коде при использовании сенсоров с измерительным прибором. 9 з.п. ф-лы, 6 ил.

Description

Настоящая заявка подана 16 октября 2007 как международная патентная заявка РСТ от имени АВВОТТ DIABETES CARE, INC. национальной корпорации США, являющейся заявителем для всех стран, кроме США, и от имени Adrian PETYT, гражданина Великобритании, и Simon Andrew HECTOR, гражданина Великобритании, являющихся заявителями только для США; заявка испрашивает приоритет согласно заявке на изобретение США, per. №11/552,234 от 24 октября 2006.
Область техники, к которой относится изобретение
Настоящее изобретение относится к медицинским приборам для контроля аналитов у живых организмов, например, для контроля уровня глюкозы у больных диабетом. В частности, изобретение относится к сенсору аналита, имеющему тисненую пробоотборную камеру.
Уровень техники
Больные диабетом обычно измеряют свой уровень глюкозы в крови, прокалывая кончик пальца или другое место на теле, чтобы выдавить кровь, нанося кровь на одноразовую тест-полоску в ручном измерительном приборе и позволяя измерительному прибору и полоске произвести электрохимический анализ крови, чтобы определить текущую концентрацию глюкозы. Такие тесты in vitro обычно проводятся по меньшей мере несколько раз в день. Подробное описание таких систем контроля глюкозы и их применение даются в патенте US 7058437, выданном TheraSense, от 6 июня 2006, который полностью включен в данное описание путем ссылки.
Кроме примеров, приведенных в патенте US 7,058,437, было много других подходов к конструкции сенсоров в виде тест-полосок в области in vitro мониторинга уровня глюкозы в крови. Ниже описываются два распространенных способа.
В первом обычном способе конструкции тест-полоски используется конфигурация из сетки, изолирующей и накрывающей ленты. В этом способе сначала на подложке формируют базовый электрод. Затем к базовому электроду прикрепляют покрытую поверхностно-активным веществом сетку, печатая поверх слой изоляционных чернил. Чернила наносят по напечатанному рисунку. Открытая (не имеющая печати) область рисунка образует ячейку для проб и определяет рабочую область базового электрода. Затем на верхнюю поверхность изолирующей печати наносится накрывающая лента, которая оставляет достаточно отверстий для выхода воздуха, когда полоска наполняется кровью при использовании.
Недостатком этого способа является то, что точность совмещения печати и реология чернил ограничивают наименьший размер ячейки, которую можно изготовить воспроизводимо. Кроме того, требуются три отдельных технологических этапа, и материалы сетки и изоляции являются относительно дорогими.
Во втором распространенном способе конструкции тест-полоски используются штампованная прокладка и гидрофильная накрывающая лента. Этот способ обычно включает в себя накладывание штампованной прокладки слоем на гидрофильную накрывающую ленту. В свою очередь, накрывающая лента накладывается слоем на базовый электрод на подложке. В большинстве случаев клей, используемый на всех границах раздела, является контактным. Толщина прокладки и слоев клея, в сочетании с двумерной областью, удаляемой с прокладки, ограничивает объем ячейки для проб.
Недостатком этого второго способа является то, что при обрезании контактного клея часто возникают проблемы с выделением смолы. Обычно пачкается оборудование для производства тест-полосок, но и отверстия для ввода тест-полосок на приборе пользователя также могут стать непригодными из-за загрязнений, вызванных клеем. Кроме того, уменьшать размер механических прокалывателей можно только до определенного размера. Также, в этом способе во всех отношениях важна точность совмещения печати, а используемые материалы дороги.
Нанесение слоя реагента при изготовлении тест-полосок является сложной задачей в ситуациях, когда тампопечать не подходит. Эта задача была решена двумя разными путями: нанесением через щелевое сопло и нанесением напылением, каждый из которых описывается по очереди ниже.
При шлицевом нанесении используются шлицевая головка и насос для реагента для дозированной подачи материала на движущееся полотно. Скорость насоса, скорость перемещения полотна, реологические свойства реагента и геометрия щели – все это важные факторы для достижения желаемого покрытия. Этот способ может быть идеальным путем контролированного нанесения низковязких реагентов с высокими скоростями. Однако он имеет ряд проблем. Первая проблема состоит в том, что это – непрерывный процесс, и поэтому покрываются области на полотне, которые не требуются функционально для анализа. Это не только расточительная трата реагента, но также вызывает колебания высоты сторон пробоотборной камеры, что создает проблемы с герметизацией камеры. Если пробоотборная камера уплотнена недостаточно хорошо, проба крови может вытечь из заданной области измерения и дать ошибочные результаты. Наконец, с некоторыми жидкостями получение однородных полосок способом нанесения через щелевое сопло может быть проблематичным, так как на краях полосок с покрытием часто обнаруживаются более толстые ленты материала.
Напыление является другим способом укладки тонкого слоя реагента на движущееся полотно, но этот способ также страдает от некоторых недостатков. В отличие от ситуации с нанесением через щелевое сопло, в этом случае более типично, что центр полоски толще, чем края. Это облегчает герметизацию пробоотборной камеры, но она также неравномерная. Так как напыление также является непрерывным процессом, при нем неэкономно тратится слишком много реагента, и трудно аккуратно ограничить площади без масок.
Даже при жестком контроле изготовления полосок обычно имеются отклонения между разными партиями полосок. Чтобы сохранить точными результаты теста, обычно применяется некоторый тип калибровки полосок. Например, после изготовления может быть протестирована репрезентативная выборка полосок из каждой партии. Из тестирования может быть определен калибровочный код, и этот код может даваться с каждой полоской в соответствующей партии, например, на упаковочной этикетке. Перед использованием каждой упаковки тест-полосок, в измерительное устройство можно ввести код, тем самым калибруя измерительное устройство для конкретных используемых полосок, чтобы обеспечить точность результатов тестирования. Однако это требует от пользователя проведения лишнего этапа. Кроме того, если пользователь пренебрежет введением нового калибровочного кода для новой упаковки полосок или введет код некорректно, могут быть получены неправильные результаты теста, что потенциально может принести вред пользователю. Некоторые производители прибегали к тому, чтобы предусмотреть считываемый машиной код на каждой полоске или упаковке полосок, который мог бы напрямую считываться измерительным устройством при использовании. Хотя это может уменьшить вероятность ошибок, эти системы не защищены от неправильного использования и повышают стоимость тест-полосок и измерительных приборов. Другим способом снижения проблем калибровки является предоставление части произведенных тест-полосок, имеющих заданный калибровочный код, заданному контингенту заказчиков, имеющему измерительные приборы, которые уже были откалиброваны для применения с этими конкретными тест-полосками. Остальные произведенные тест-полоски метятся калибровочными кодами и поставляются другому контингенту заказчиков, имеющих измерительные приборы, требующие ручного ввода калибровочных кодов. Этот способ является эффективным только для части покупателей, которым не нужно использовать калибровочные коды. Кроме того, могут возникнуть проблемы с поставкой продукции, если распределение калибровок не совпадает с требованиями обеих баз измерительных приборов.
Сущность изобретения
Согласно аспектам некоторых вариантов осуществления настоящего изобретения, система in vitro мониторинга аналита может быть выполнена так, чтобы работать с минимумом анализируемой жидкости. В одном варианте осуществления сенсор может быть сформирован путем размещения по меньшей мере одного электрода на подложке, предусматривая тиснение канала в электроде, покрывая канал реагентом и накрывая канал гидрофильной накрывающей лентой. На дистальном конце сенсора может быть предусмотрено отверстие в канале, чтобы, когда в это отверстие подавался аналит, он втягивался в канал поверхностным натяжением (т.е. капиллярным затеканием). На противоположном конце канала можно предусмотреть выходное отверстие, чтобы, когда аналит наполнял канал, воздух, предварительно заполнявший канал, можно было вывести через это выходное отверстие. Аспекты настоящего изобретения хорошо подходят для применения с сенсорами типа амперметров, потенциометров, колориметрических сенсоров и сенсоров других типов.
Согласно другим аспектам изобретения, процесс тиснения может быть проведен до или после нанесения электрода(ов) на подложку. В одном варианте осуществления электроды могут быть нанесены на непроводящую подложку до тиснения канала. Например, на подложку может напыляться золото с помощью маски, чтобы сформировать несколько электродов, разделенных участками непроводящей поверхности подложки. Альтернативно, напыление может проводиться на всю поверхность подложки, а позднее участки могут быть вытравлены, чтобы образовать промежутки между множеством электродов. В любом случае канал или каналы могут быть затем вытиснены в электроде на плоской подложке. Преимуществом этого подхода с последующим тиснением является то, что материал подложки, имеющий плоскую поверхность с образованными на ней электродами, можно приобрести от множества источников и позднее подвергнуть тиснению. При этом подходе может также быть легче контролировать конечные размеры тисненого канала, если этап тиснения является одним из последних этапов, который должен проводиться до сборки сенсора.
В другом варианте осуществления канал или каналы могут быть вытиснены в подложке сенсора до того, как на подложке будут образованы электрод или электроды. При этом подходе с предварительным тиснением можно использовать намного более тонкий слой проводника. Это может быть особенно выгодным при использовании дорогих проводников, таких, как золото. Кроме того, для применения в подходе с предварительным тиснением допустимы более хрупкие проводящие материалы.
Согласно другим аспектам изобретения, используемым процессом тиснения, может быть процесс с вращающимся или плоским слоем. Могут использоваться различные профили канала, такие, как прямоугольный и V-образный. Согласно одному варианту осуществления, тисненые каналы могут иметь полукруглое сечение и могут иметь глубину менее примерно 200 микрон. Более предпочтительно, каналы могут быть глубиной менее примерно 100 микрон. Наиболее предпочтительно, каналы могут иметь глубину менее примерно 50 микрон. Активная длина канала измерительной камеры часто может диктоваться конфигурацией тест-полоски. Согласно одному варианту осуществления, тисненый канал выровнен с продольной осью тест-полоски. Могут также использоваться другие ориентации. В одном варианте осуществления активная длина тисненого канала (т.е. длина, содержащая электроды и реагент) может быть меньше примерно 10 мм. Более предпочтительно, активная длина может составлять примерно от 2 до 7 мм, и наиболее предпочтительно длина может составлять примерно от 3 до 4 мм.
Согласно аспектам настоящего изобретения, вышеуказанная геометрия может давать пробоотборные камеры с хорошей воспроизводимостью объемов, а также площадью поверхности электрода от полоски к полоске, тем самым повышая точность. В частном варианте осуществления, объем пробоотборной камеры может быть меньше примерно 200 нанолитров, более предпочтительно меньше примерно 50 нанолитров, и наиболее предпочтительно может быть меньше примерно 20 нанолитров.
Согласно аспектам изобретения, реагент может наноситься на канал пробоотборной камеры с помощью иглы и ракеля, хотя могут также применяться другие способы, такие, как покрытие через щелевое сопло или напыление. Тест-полоски изготавливаются предпочтительно рядами, в которых тест-полоски соединены боковыми сторонами, и затем разделяются на индивидуальные тест-полоски, например, сечением или разрезанием как одним из последних этапов изготовления. В одном варианте осуществления один или более рядов могут при изготовлении формировать движущееся полотно. Реагент может закачиваться через иглу или иглы на движущееся полотно, а ракель используется для распределения реагента и удаления излишков с полотна. Альтернативно, тест-полоски могут быть образованы отдельными листами до их разделения, и игла(ы) и ракель(и) могут перемещаться относительно листов для нанесения и распределения реагента.
При нанесении с помощью иглы и ракеля может с выгодой использоваться объем канала, который уже был задан на этапе тиснения. В канал и окружающую область реагент может осаждаться дозирующей системой с иглой, а затем распределяться ракелем. Ракель может собирать и удалять реагент с плоских областей, окружающих канал, оставляя канал полностью заполненным. Затем влажный реагент можно сушить, получая в результате только тонкую пленку в канале. Вес конечного покрытия типично может определяться вязкостью реагента, жесткостью ракеля, давлением ракеля и разбавлением реагента. Скорость подачи в игольчатой дозирующей системе может или быть идеально сбалансирована со скоростью нанесения, или может быть выше при использовании на ракеле системы рециркуляции или полных потерь.
Согласно другим аспектам настоящего изобретения, можно предусмотреть процесс подрезания концов тест-полосок, чтобы откалибровать сенсоры. После формирования рисунка электродов, тиснения, нанесения реагента и наложения гидрофильной крышки, как описано выше, сенсоры могут быть по существу функциональными. На этой стадии, предпочтительно до отделения друг от друга индивидуальных сенсоров, может быть протестирована репрезентативная выборка сенсоров, чтобы установить по меньшей мере один калибровочный параметр партии, такой, как наклон и/или точка пересечения калибровочной кривой. Через определение характеристик на этапе разработки сенсоров, можно найти диапазон наклонов и/или других калибровочных параметров, ожидаемых от конструкции, и нижнее значение может быть выбрано для выпуска продукта. Путем подрезания рабочей области оставшихся электродов можно затем подобрать наклон, чтобы он соответствовал этому более низкому значению выпуска продукции. Этот процесс подрезания может давать сенсоры, которые все имеют по существу одинаковый калибровочный наклон, тем самым устраняя необходимость маркировки сенсоров калибровочным кодом и требования вводить код в измерительный прибор перед использованием. Описанные выше варианты осуществления конструкции с тиснеными тест-полосками особенно хорошо подходят для такого подрезания из-за большой длины каналов по отношению к площади сечения, и из-за того, что в процессе подрезания выравнивание сенсора должно проводиться не более чем в одном направлении.
Используя аспекты настоящего изобретения, можно производить контроль различных аналитов. Эти аналиты могут включать в себя, без ограничения перечисленным, лактат, ацетилхолин, амилазу, билирубин, холестерин, хорионгонадотропин, креатин киназу (например, CK-MB), креатин, ДНК, фруктозамин, глюкозу, глутамин, гормоны роста, гематокрит, гемоглобин (например, HbA 1c), гормоны, кетоны, лактат, кислород, пероксид, простата-специфичный антиген, протромбин, РНК, тироид-стимулирующий гормон и тропонин, в образцах жидкости тела. Измерительные приборы могут также быть сконструированы так, чтобы определять концентрацию лекарств, таких, например, как антибиотики (например, гентамицин, ванкомицин и т.п.), дигитоксин, дигоксин, употребление наркотиков, теофиллин, варфарин и т.п. Такие аналиты могут контролироваться в крови, внутритканевых жидкостях, слюне, моче и других жидкостях тела.
Краткое описание чертежей
Каждая из фигур схематически иллюстрирует аспекты изобретения. На них:
фиг. 1: вид сверху, показывающий сенсор с тест-полоской для применения с глюкометром.
фиг. 2: вид в перспективе с пространственным разделением деталей, показывающий компоненты примерного варианта осуществления сенсора с тест-полоской, выполненного в соответствии с аспектами настоящего изобретения;
фиг. 3: вид в перспективе, показывающий компоненты фиг. 2 в сборке;
фиг. 4 вид в перспективе, показывающий альтернативный вариант осуществления сенсора;
фиг. 5: вертикальный вид сбоку, показывающий реагент, который выпускается и распределяется по серии сенсоров согласно аспектам настоящего изобретения; и
фиг. 6: вид сверху, показывающий процесс подрезания согласно аспектам настоящего изобретения.
Допустимы варианты изобретения, отличные от показанных на фигурах.
Подробное описание
Следующее описание сфокусировано на одном варианте настоящего изобретения. Этот вариант изобретения должен рассматриваться как неограничивающий пример. Следует понимать, что изобретение не ограничено излагаемыми частными вариантами и, конечно, они могут изменяться. Изменения могут быть внесены в описанное изобретение, и эквиваленты (как известные в настоящее время, так и те, которые будут разработаны в будущем) могут быть заменены, не выходя за истинную сущность и объем изобретения. Кроме того, могут быть сделаны модификации, чтобы приспособиться к конкретной ситуации, материалу, составу материала, процессу, шагам или этапам процесса, к цели(ям), духу или объему настоящего изобретения.
Фиг. 1 показывает вид сверху примерной аналитической системы 10 в данном частном варианте осуществления - глюкометр. Система 10 включает в себя портативный измерительный прибор 12 и сенсор 14 с одноразовой тест-полоской. Тест-полоска 14 может вставляться и выводиться из отверстия 16 для тест-полосок измерительного прибора 12 для физического и электрического соединения с ним. Измерительный прибор 12 включает в себя жидкокристаллический дисплей 18 для отображения информации для пользователя измерительного прибора, и кнопки 20, 22 и 24 для приема входных данных от пользователя.
Вообще говоря, для проведения измерения уровня глюкозы в крови измерительным прибором 12, пользователь вставляет новую тест-полоску 14 в отверстие 16 измерительного прибора 12. До или после введения полоски в измерительный прибор пользователь прокалывает кончик пальца или другую часть тела (т.е. альтернативное место), чтобы выдавить маленькую каплю крови 26 на поверхность кожи. Измерительный прибор и полоска помещаются над каплей крови 26 так, чтобы один из концов 28 пробоотборной камеры касался капли крови 26. Хотя этот частный пример поясняет использование полоски, заполняемой с боков, следует отметить, что, как будет описано позднее, могут использоваться полоски, заполняемые с края, сверху или другие типы тест-полосок. Кроме того, при исследовании аналита вообще не обязательно использовать тест-полоску. Например, вместо отдельных тест-полосок можно предусмотреть вращающееся испытательное колесо, имеющее множество сенсоров. В настоящем примере поверхностное натяжение (капиллярное затекание) автоматически втягивает малое количество крови 26 в пробоотборную камеру, и электрохимическое исследование проводится автоматически измерительным прибором 12, чтобы определить концентрацию глюкозы в крови 26. Затем уровень 30 глюкозы отображается на дисплее измерительного прибора 12.
Обратимся к фиг. 2 и 3, где показан вид с пространственным разделением деталей типичного сенсора 32 с тест-полоской, выполненного согласно аспектам настоящего изобретения. В этом варианте осуществления сенсор 32 включает в себя подложку 34, накладку 36 и накрывающую ленту 38. Реагирующий на заполнение электрод 40, рабочий электрод 42 и контрольный электрод 44 могут быть сформированы около дистального конца 46 подложки 34. Проводящие электроды 40, 42 и 44 могут быть отделены участками непроводящей подложки 34 и могут быть соединены проводящими дорожками с соединительными площадками 48, 50 и 52, соответственно. При использовании тест-полоска 32, каждая соединительная площадка 48, 50 и 52 может быть электрически соединена с соответствующими контактами соединителя (не показано) в измерительном приборе 12, показанном на фигуре 1. Может использоваться меньшее число электродов, дополнительные или другие типы электродов. Например, реагирующий на заполнение электрод 40 может не предусматриваться, и/или может быть добавлен второй рабочий электрод, чтобы позволить компенсацию гематокрита.
В этом варианте осуществления канал 54 вытиснен в подложке 34 и пересекает каждый из электродов 40, 42 и 44. Реагент добавляют в канал 54, один пример которого описывается ниже. Накрывающая лента 38 может быть нанесена на подложку 34, например, с помощью контактного клея, чтобы закрыть канал 54. Накладка 36 может добавляться, например, с помощью контактного клея, в основном из эстетических соображений и чтобы защитить проводящие дорожки. Вышеописанными этапами создается функциональная тест-полоска, показанная на фиг. 3. Как будет описано позднее, могут проводиться дополнительные производственные этапы.
Вышеописанная конструкция формирует измерительную камеру для пробы, ограниченную снизу каналом 54 в подложке 34 и сверху накрывающей лентой 38. Открытый конец 56 пробоотборной камеры, находящийся на или около дистального конца 46 тест-полоски 32, позволяет пробе жидкости, например, крови, войти в пробоотборную камеру. Накрывающая лента 38, ее клей и материалы, образующие подложку 34 и электроды 40, 42 и 44 – все они предпочтительно являются гидрофильными. Эта компоновка позволяет автоматически наполнять пробоотборную камеру пробной жидкостью, посредством поверхностного натяжения (капиллярное затекание), когда отверстие 56 находится в контакте с жидкостью. Предпочтительно, размеры и допуски канала 54 и накрывающей ленты 38 выбираются так, чтобы обеспечить, что канал 54 пройдет к проксимальному концу 58 полоски 32 дальше, чем накрывающая лента 38, чтобы создать выходное отверстие 60. Выходное отверстие 60 позволяет воздуху, вытесняемому наполняющейся жидкостью, легко выйти из пробоотборной камеры, не мешая потоку жидкости. Как показано на фигуре 3, между накладкой 36 и накрывающей лентой 38 можно оставить зазор 62, способствуя обеспечению того, чтобы выходное отверстие 60 не было заблокировано. В альтернативном варианте осуществления, накладку 36 можно совсем не использовать, чтобы уменьшить стоимость материалов и сборки и сохранить выходное отверстие 60 открытым. В другом альтернативном варианте осуществления одна из накладки 36 и накрывающей ленты 38 могут перекрывать другую. Например, накладка 36 может перекрывать накрывающую ленту 38 примерно на 1 мм. Поскольку край перекрываемого нижнего слоя имеет некоторую толщину, которая создает ступеньку, верхний слой не может формировать идеальное уплотнение со ступенькой. Это неполное уплотнение расширяет выходное отверстие сбоку вдоль ступеньки до каждой боковой стороны тест-полоски 32.
Тисненый канал 54 может быть выровнен с продольной осью полоски 32, создавая полоску, заполняемую с конца, показанную на фиг. 3. В альтернативном варианте осуществления канал может быть перпендикулярен оси полоски. Пример такой заполняемой сбоку структуры показан на фиг. 1, где один конец 28 пробоотборной камеры служит для наполнения камеры жидкостью в этом варианте осуществления, а конец 28 пробоотборной камеры на противоположной стороне полоски 14 служит для выпуска выходящего воздуха. Могут также использоваться другие конфигурации тисненого канала 54. Фиг. 4 показывает вариант полоски 32, изображенной на фигуре 3. В этом альтернативном варианте осуществления накрывающая лента 38' полоски 32' укорочена, так что она не доходит до конца полоски 38'. В этом варианте осуществления участки канала 54 и подложки 34 открыты, создавая "посадочную площадку" 64 для приема крови или другого аналита, тем самым образуя полоску, наполняемую сверху. При использовании капля крови 26 может быть помещена на посадочную площадку 64 рядом с или сверху наружного края накрывающей ленты 38', как показано на фиг. 4. Кровь 26 затекает в канал 54 между накрывающей лентой 38' и подложкой 34 и исследуется, как описано выше. Такая структура может быть выгодной в такой обстановке, как больницы, где проба аналита может наноситься на тест-полоску пипеткой.
Согласно аспектам настоящего изобретения, канал 54 может быть вытиснен до или после формирования электродов 40, 42 и 44 на подложке 34. Когда канал 54 вытиснен после формирования электродов на подложке 34, материалы и процессы могут выбираться так, чтобы избежать чрезмерного повреждения электродов, например, деформации материалов электродов, настолько, чтобы их сопротивления резко повысились, или материалы фактически сломались. Таких проблем можно избежать, используя пластичный материал для электрода, такой, как золото или близкие металлы, и/или повышая толщину материалов электрода. Могут также быть разработаны внутренние и внешние инструменты для тиснения, чтобы снизить излишний материальный поток, смягчая тем самым вышеназванные проблемы. Другими факторами, которые могут уменьшить повреждение электродов, являются более толстая и/или более мягкая подложка и более мелкий канал. Подбирая инструменты, материалы, толщины и процессы, применяемые для получения канала 54, можно для частного набора требований к сенсору добиться допустимого баланса между глубиной канала и повреждением электрода.
Предпочтительным материалом подложки может быть ПВХ, так как его легко тиснить. Другим предпочтительным материалом может быть сложный полиэфир. Полиэфир не так легко поддается тиснению, как ПВХ, но его применение может способствовать уменьшению времени сушки реагента. Полиэфир можно нагревать до 75 градусов Цельсия без усадки, тогда как ПВХ нельзя нагревать выше примерно 55 градусов Цельсия. Другим предпочтительным материалом подложки может быть полипропилен, так как он предлагает компромисс между свойствами ПВХ и полиэфира.
С описанными выше инструментами, способами и материалами можно получить тест-полоску 32, имеющую очень малый объем пробы и очень воспроизводимые геометрические свойства. Малый объем пробы позволяет пользователям проводить "тестирование из альтернативного места" (т.е. в местах, отличных от кончиков пальцев) и позволяет забирать меньше крови. Это, в свою очередь, снижает или устраняет боль, связанную с забором крови, может уменьшить грязь от образцов крови на коже и меньше травмирует тело. Согласно аспектам настоящего изобретения, размер пробы может быть меньше примерно 20 нанолитров. Кроме того, воспроизводимые геометрические свойства, которые могут достигаться с раскрываемыми здесь тест-полосками, еще больше улучшают аккуратность и точность исследования аналита с помощью полосок.
Обратимся теперь к фиг. 5, на которой показана типичная структура для нанесения реагента при изготовлении тест-полосок 32. В этом показанном варианте осуществления тест-полоски 32 сформированы, примыкая друг к другу, на непрерывном полотне материала подложки 34, чтобы быть разделенными на отдельные полоски 32 в более позднем процессе изготовления. До стадии, показанной на фиг. 5, на подложке 34 может быть нанесен по рисунку материал электрода 44 и другие электроды (не показаны), и в электродах и/или подложке 34 могут быть вытиснены каналы 54a - 54e, как было ранее описано выше. Полотно материала подложки 34 может в таком случае перемещаться в направлении, показанном стрелкой A, под стационарной иглой 66 для наполнения реагентом и ракелем 68. Реагент 70 можно накачивать насосом, подавать самотеком под действием силы тяжести или иным способом подавать через иглу 66 на перемещающуюся подложку 34. Ракель 68 может помогать распределить реагент 40 по каналам 54 и вытирать избыточный реагент с электродов и подложки 34. По существу можно удалить с поверхности подложки 34 весь реагент 70, оставляя реагент 70 только в каналах 54, которые в таком случае предпочтительно заполнены полностью. Подачу реагента 70 на подложку 34 можно точно дозировать, чтобы избежать напрасного расхода реагента 70. Альтернативно, к подложке 34 может подаваться больше реагента 70, чем нужно, чтобы гарантировать полное покрытие, и избыток можно использовать повторно или выбросить. Фиг. 5 показывает еще не наполненный канал 54a, канал 54b в процессе наполнения реагентом 70 иглой 66 и выравниваемый ракелем 68, канал 54c, который был наполнен и выровнен, и два канала 54d и 54e, которые были наполнены, выровнены и теперь сушатся, оставляя только тонкий слой реагента 70 вдоль каналов.
В зависимости от конфигурации полотна 34 подложки и/или от других параметров, может использоваться одна игла 66 для реагента или множество игл и/или один или множество ракелей 68. Множество игл могут подавать один и тот же или разные реагенты к подложке 34. Игла(ы) 66 не обязательно должны иметь круговое или овальное отверстие, скорее они могут иметь удлиненную щель или отверстие другой формы. Ракель(и) 68 не обязательно должны быть отделены от игл 66, но они могут быть объединены с ними. Вышеописанные компоновки могут применяться в периодических процессах, а не на показанном рулонном материале. Например, подложка в виде кардной ленты (не показана), содержащая конечный массив тест-полосок 32, может быть покрыта реагентом 70 и установлена горизонтально, удерживая кардную ленту неподвижной и перемещая иглу(ы) 66 и ракель(и) 68 (по отдельности или тандемом) над кардными лентами с тест-полосками.
Обратимся теперь к фиг. 6, где показан примерный вариант проведения подрезания тест-полосок 32 согласно аспектам настоящего изобретения. После того, как тест-полоски 32 станут функциональными, можно протестировать репрезентативную пробу. Следует протестировать достаточное число тест-полосок (или, другими словами, "размер партии" должен быть достаточно малым), чтобы можно было с надежностью предположить, что все тест-полоски 32 в каждой конкретной партии, если она протестирована, будут давать по существу такие же результаты тестирования, как и репрезентативная выборка. Основываясь на результатах тестирования, можно определить, что вся партия имеет определенные калибровочные характеристики, например, имеют калибровочную кривую с конкретным наклоном. Вместо того, чтобы помечать партию калибровочной характеристикой (например, наклоном) и калибровать измерительный прибор 12 применительно к полоскам 32 при использовании, можно модифицировать полоску 32 при изготовлении, чтобы "откалибровать" ее по отношению к измерительному прибору 12. Уменьшая объем покрытого канала 54 и площадь рабочего электрода 44, можно уменьшить наклон калибровочной кривой полоски до заданного значения. Чтобы уменьшить площадь электрода на по существу готовой тест-полоске 32, можно удалить относительно малую часть с дистального конца 46 тест-полоски 32. Это можно осуществить подрезанием ряда неразделенных тест-полосок 32 по линии B, например, отсечением или отрезанием, как показано на фигуре 6. Место линии отреза B может меняться в зависимости от того, как много функциональных изменений полосок 32 желательно. Можно снова протестировать репрезентативную выборку подрезанных тест-полосок 32, чтобы гарантировать, что теперь каждая партия будет иметь по существу одинаковые характеристики. После подрезания (если требуется), тест-полоски 32 можно отделить друг от друга. Альтернативно, сначала можно разделить тест-полоски 32, а затем, если нужно, подрезать. Вышеописанные процедуры тестирования и подрезания могут проводиться до или после процесса старения. Используя описанный выше способ изготовления, можно устранить необходимость калибровки пользователем. Равным образом, можно стесать дистальные концы 46 полосок 32, чтобы они совпадали с краями рабочих электродов 44, показанных на фигуре 6, для улучшения удобства пользователя и облегчения применения.
Как ранее обсуждалось выше, материал электрода может выбираться пластичным, чтобы избежать повреждения электрода на этапе тиснения. Целью следующего обсуждения является дать определение понятию "пластичный". Поведение материалов как пластичного и хрупкого выражается как качественной, так и количественной разницей их соответствующих кривых зависимости деформации от напряжения. Пластичные материалы выдерживают большие деформации перед разрывом; хрупкие материалы разрываются при гораздо более низких деформациях. Пластическая зона для пластичного материала часто занимает большую часть кривой деформация-напряжение, тогда как для хрупких материалов она почти отсутствует. Хрупкие материалы часто имеют относительно высокий модуль Юнга и предельные напряжения по сравнению с пластичными материалами.
Что касается дополнительных деталей, относящихся к настоящему изобретению, то могут применяться материалы и технологии изготовления, доступные уровню специалистов в соответствующей области техники. Это же справедливо по отношению к аспектам изобретения, основанным на способе, в терминах дополнительных шагов, применяющихся обычно или по логике. Также, допускается, чтобы любой факультативный признак описанных вариантов изобретения мог формулироваться и заявляться независимо или в комбинации с любым одним или более из описанных здесь признаков. Равным образом, ссылка на предмет в единственном числе включает возможность того, что имеется множество таких предметов. В частности, как используется здесь и в приложенной формуле изобретения, формы единственного числа и выражения "и", "указанный" и "этот" включают множество объектов ссылки, если контекст ясно не диктует иное. Кроме того, отметим, что пункты формулы могут быть отредактированы, чтобы исключить любой необязательный элемент. Разумеется, целью этого утверждения является быть априорной основой для использования таких исключающих терминов, как "исключительно", "только" и т.п. в связи с перечислением элементов пункта, или использования "негативного" ограничения. Если здесь не указано иное, все используемые здесь технические и научные термины имеют то же значение, какое обычно понимается специалистом среднего уровня в области, к которой относится настоящее изобретение. Объем настоящего изобретения должен ограничиваться не определением объекта, а только прямым значением использованных терминов формулы.

Claims (21)

1. Способ изготовления множества сенсоров аналита, включающий в себя этапы, на которых:
формируют множество сенсоров аналита, при этом каждый сенсор имеет пробоотборную камеру, содержащую рабочий электрод;
тестируют, по меньшей мере, один из сенсоров для определения калибровочного параметра сенсора;
на основе калибровочного параметра протестированного сенсора подрезают дистальный конец непротестированных сенсоров для уменьшения площади рабочего электрода или объема пробоотборной камеры, тем самым изменяя калибровочный параметр непротестированных сенсоров до заданного значения.
2. Способ по п.1, дополнительно содержащий этап упаковки подрезанных сенсоров в, по меньшей мере, одну упаковку без указания калибровочного параметра.
3. Способ по п.1, дополнительно содержащий этап отделения непротестированных сенсоров в отдельные сенсоры.
4. Способ по п.3, в котором отделение непротестированных сенсоров выполняют после подрезания непротестированных сенсоров.
5. Способ по п.1, дополнительно содержащий этап, на котором:
тестируют, по меньшей мере, один из подрезанных непротестированных сенсоров для определения калибровочного параметра подрезанных непротестированных сенсоров.
6. Способ по п.5, дополнительно содержащий этап отделения подрезанных непротестированных сенсоров в отдельные сенсоры.
7. Способ по п.1, дополнительно содержащий этап стесывания углов на дистальном конце непротестированных сенсоров, причем пробоотборная камера находится на или около дистального конца.
8. Способ по п.1, в котором пробоотборная камера содержит канал, проходящий в продольном направлении вдоль сенсоров.
9. Способ по п.8, в котором формирование множества сенсоров аналита включает в себя формирование множества электродов на подложке сенсоров; и
тиснение каналов на подложке сенсоров,
причем рабочий электрод является одним из множества электродов и каждый канал пересекает множество электродов.
10. Способ по любому из пп. 8 или 9, в котором формирование множества сенсоров аналита включает в себя этапы, на которых:
обеспечивают подложку, имеющую каналы на поверхности подложки, причем каналы проходят в продольном направлении вдоль поверхность подложки;
располагают, по меньшей мере, одну иглу рядом с поверхностью подложки и распределяют реагент из иглы на поверхность;
обеспечивают контакт поверхности с, по меньшей мере, одним ракелем; и
вызывают относительное перемещение между подложкой и иглой и между подложкой и ракелем,
причем игла и ракель взаимодействуют так, чтобы по существу наполнить каналы реагентом и оставить остальную часть поверхности в целом без реагента.
RU2012120483A 2006-10-24 2012-05-17 Сенсор аналита с тисненой ячейкой и способ изготовления RU2625769C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/552,234 US7312042B1 (en) 2006-10-24 2006-10-24 Embossed cell analyte sensor and methods of manufacture
US11/552,234 2006-10-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2009115484/15A Division RU2461002C2 (ru) 2006-10-24 2007-10-16 Сенсор аналита с тисненой ячейкой и способ изготовления

Publications (2)

Publication Number Publication Date
RU2012120483A RU2012120483A (ru) 2013-11-27
RU2625769C2 true RU2625769C2 (ru) 2017-07-18

Family

ID=38863268

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2009115484/15A RU2461002C2 (ru) 2006-10-24 2007-10-16 Сенсор аналита с тисненой ячейкой и способ изготовления
RU2012120483A RU2625769C2 (ru) 2006-10-24 2012-05-17 Сенсор аналита с тисненой ячейкой и способ изготовления

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2009115484/15A RU2461002C2 (ru) 2006-10-24 2007-10-16 Сенсор аналита с тисненой ячейкой и способ изготовления

Country Status (8)

Country Link
US (6) US7312042B1 (ru)
EP (2) EP2759833B1 (ru)
JP (2) JP2010507805A (ru)
CN (1) CN101563605A (ru)
BR (1) BRPI0716334A2 (ru)
CA (1) CA2667356A1 (ru)
RU (2) RU2461002C2 (ru)
WO (1) WO2008051407A2 (ru)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
DE60238119D1 (de) 2001-06-12 2010-12-09 Pelikan Technologies Inc Elektrisches betätigungselement für eine lanzette
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
EP1404235A4 (en) 2001-06-12 2008-08-20 Pelikan Technologies Inc METHOD AND DEVICE FOR A LANZETTING DEVICE INTEGRATED ON A BLOOD CARTRIDGE CARTRIDGE
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US10022078B2 (en) 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
DE602004028463D1 (de) 2003-05-30 2010-09-16 Pelikan Technologies Inc Verfahren und vorrichtung zur injektion von flüssigkeit
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc METHOD AND APPARATUS FOR PROVIDING IMPROVED SAMPLE CAPTURING DEVICE
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7654956B2 (en) 2004-07-13 2010-02-02 Dexcom, Inc. Transcutaneous analyte sensor
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8057404B2 (en) * 2005-10-12 2011-11-15 Panasonic Corporation Blood sensor, blood testing apparatus, and method for controlling blood testing apparatus
US7312042B1 (en) * 2006-10-24 2007-12-25 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture
CA3170924A1 (en) 2007-10-02 2009-04-09 Labrador Diagnostics Llc Modular point-of-care devices and uses thereof
EP2284528A1 (en) * 2008-01-18 2011-02-16 Lifescan Scotland Limited Method of manufacturing test strip lots having a predetermined calibration characteristic and system comprising such a test strip
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
US8262874B2 (en) * 2008-04-14 2012-09-11 Abbott Diabetes Care Inc. Biosensor coating composition and methods thereof
JP5405916B2 (ja) * 2008-06-24 2014-02-05 パナソニック株式会社 バイオセンサ、その製造方法、及びそれを備える検出システム
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8366485B2 (en) 2009-03-19 2013-02-05 Fci Americas Technology Llc Electrical connector having ribbed ground plate
US8608937B2 (en) * 2009-03-30 2013-12-17 Roche Diagnostics Operations, Inc. Biosensor with predetermined dose response curve and method of manufacturing
EP2434944B1 (en) 2009-05-29 2014-12-03 Abbott Diabetes Care, Inc. Glucose monitoring system with wireless communications
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
JP5698085B2 (ja) * 2010-07-12 2015-04-08 アークレイ株式会社 バイオセンサ及びその製造方法
CN102478573A (zh) * 2010-11-29 2012-05-30 内蒙古蒙牛乳业(集团)股份有限公司 一种评价乳制品检测中庆大霉素试纸条有效性的方法
CN106290160A (zh) 2011-01-21 2017-01-04 提拉诺斯公司 样品使用最大化的系统和方法
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US9433376B2 (en) 2012-03-16 2016-09-06 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9557288B2 (en) 2013-04-29 2017-01-31 Hewlett-Packard Development Company, L.P. Electrochemical sensing well
US9500616B2 (en) * 2013-12-23 2016-11-22 Cilag Gmbh International Multi-orientation test strip
US9841391B2 (en) * 2014-09-09 2017-12-12 LifeSan Scotland Limited Hand-held test meter with integrated thermal channel
US10197522B2 (en) 2015-03-18 2019-02-05 Materion Corporation Multilayer constructs for metabolite strips providing inert surface and mechanical advantage
US10378098B2 (en) 2015-03-18 2019-08-13 Materion Corporation Methods for optimized production of multilayer metal/transparent conducting oxide (TCO) constructs
CN105319254B (zh) * 2015-11-26 2017-04-19 济南大学 一种基于Pt/PdCu‑三维石墨烯标记的电化学免疫传感器的制备及应用
WO2018067235A1 (en) * 2016-10-05 2018-04-12 Roche Diabetes Care, Inc. Detection reagents and electrode arrangements for multi-analyte diagnostic test elements, as well as methods of using the same
US10334515B2 (en) 2017-01-13 2019-06-25 ENK Wireless, Inc. Conveying information via auxiliary device selection
EP3406193B1 (en) * 2017-05-23 2021-12-08 Roche Diabetes Care GmbH Sensor system and method for manufacturing thereof
JP7414529B2 (ja) 2017-06-07 2024-01-16 シファメド・ホールディングス・エルエルシー 血管内流体移動デバイス、システム、および使用方法
JP2019078573A (ja) * 2017-10-20 2019-05-23 アークレイ株式会社 バイオセンサの製造方法
WO2019094963A1 (en) 2017-11-13 2019-05-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
WO2019152875A1 (en) 2018-02-01 2019-08-08 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US20220032259A1 (en) * 2018-09-12 2022-02-03 Ohio State Innovation Foundation Chemical actuators
US20200129105A1 (en) * 2018-10-29 2020-04-30 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for making and operating such sensors
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
EP4034192A4 (en) 2019-09-25 2023-11-29 Shifamed Holdings, LLC INTRAVASCULAR BLOOD PUMP SYSTEMS AND METHODS OF USE AND CONTROL THEREOF
US20220057358A1 (en) * 2020-08-20 2022-02-24 Polymer Technology Systems, Inc. Systems and Methods for a Test Strip Calibrator Simulating an Electrochemical Test Strip
CN112101830B (zh) * 2020-11-23 2021-04-23 广州万孚健康科技有限公司 检测hiv抗体的试纸条的制备校准方法、系统和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258922C2 (ru) * 2000-03-28 2005-08-20 Дайэбитиз Дайэгностикс, Инк Одноразовые электрохимические датчики
US20060144704A1 (en) * 2004-12-29 2006-07-06 Ghesquiere Alexander G Analyte test sensor and method of manufacturing the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180263A (ja) * 1986-02-04 1987-08-07 Terumo Corp 酸素センサ−
US4988630A (en) * 1987-04-27 1991-01-29 Hoffmann-La Roche Inc. Multiple beam laser instrument for measuring agglutination reactions
JPH041337A (ja) 1990-04-19 1992-01-06 Matsushita Electric Works Ltd 温水洗浄装置
DE19541619A1 (de) * 1995-11-08 1997-05-15 Bosch Gmbh Robert Elektrochemischer Meßfühler und Verfahren zur Herstellung eines elektrochemischen Meßfühlers
JPH09201337A (ja) * 1996-01-25 1997-08-05 Casio Comput Co Ltd グルコース測定装置
JP3394262B2 (ja) * 1997-02-06 2003-04-07 セラセンス、インク. 小体積インビトロ被検体センサー
US6103033A (en) * 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
JP3874321B2 (ja) * 1998-06-11 2007-01-31 松下電器産業株式会社 バイオセンサ
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
KR100340174B1 (ko) * 1999-04-06 2002-06-12 이동준 전기화학적 바이오센서 테스트 스트립, 그 제조방법 및 전기화학적 바이오센서
CA2408235A1 (en) * 2000-05-08 2001-11-15 Mass Sensors, Inc. Microscale mass spectrometric chemical-gas sensor
US6994827B2 (en) * 2000-06-03 2006-02-07 Symyx Technologies, Inc. Parallel semicontinuous or continuous reactors
JP4623870B2 (ja) * 2001-06-28 2011-02-02 パナソニック株式会社 バイオセンサ及びその測定感度調整方法
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US6939450B2 (en) * 2002-10-08 2005-09-06 Abbott Laboratories Device having a flow channel
WO2004039897A2 (en) * 2002-10-30 2004-05-13 Inverness Medical Limited Process for making an electrochemical sensor
US20040118704A1 (en) * 2002-12-19 2004-06-24 Yi Wang Analyte test intrument having improved versatility
JP2004226358A (ja) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd バイオセンサ
GB0306163D0 (en) * 2003-03-18 2003-04-23 Univ Cambridge Tech Embossing microfluidic sensors
US8153081B2 (en) * 2003-05-29 2012-04-10 Bayer Healthcare Llc Test sensor and method for manufacturing the same
US7452457B2 (en) * 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8071030B2 (en) * 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
EP1642117B1 (en) 2003-06-20 2018-06-13 Roche Diabetes Care GmbH Reagent stripe for test strip
CA2581176A1 (en) * 2004-09-20 2006-03-30 Bayer Healthcare Llc An optical sensor and methods of making it
US7312042B1 (en) * 2006-10-24 2007-12-25 Abbott Diabetes Care, Inc. Embossed cell analyte sensor and methods of manufacture
NL2003126C2 (en) * 2009-07-03 2014-05-08 Micronit Microfluidics Bv Method for manufacturing and testing microfluidic chips.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2258922C2 (ru) * 2000-03-28 2005-08-20 Дайэбитиз Дайэгностикс, Инк Одноразовые электрохимические датчики
US20060144704A1 (en) * 2004-12-29 2006-07-06 Ghesquiere Alexander G Analyte test sensor and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АРБАТСКАЯ Н.Ю. Современные приборы для самоконтроля уровня сахара крови, Лечащий врач, N 5, 2005г, онлайн [найдено из Интернет] [найдено 05.05.2015] http//www.lvrach.ru/2005/05/4532531/. HEALEY BG et al., Multianalyte biosensors on optical imaging bundles. Biosens Bioelectron. 1997; N 12(6), c. 521-9, онлайн [найдено из Интернет] [найдено 05.05.2015] http//www.ncbi.nlm.nih.gov/pubmed/9253155. *

Also Published As

Publication number Publication date
CA2667356A1 (en) 2008-05-02
JP5344728B2 (ja) 2013-11-20
EP2759833A1 (en) 2014-07-30
EP2759833B1 (en) 2016-06-08
US9638698B2 (en) 2017-05-02
WO2008051407A2 (en) 2008-05-02
RU2461002C2 (ru) 2012-09-10
US8211632B2 (en) 2012-07-03
RU2012120483A (ru) 2013-11-27
US20080101983A1 (en) 2008-05-01
US20140127821A1 (en) 2014-05-08
JP2012211916A (ja) 2012-11-01
WO2008051407A3 (en) 2008-12-31
US20110099786A1 (en) 2011-05-05
US20170276685A1 (en) 2017-09-28
RU2009115484A (ru) 2010-10-27
US20130031772A1 (en) 2013-02-07
JP2010507805A (ja) 2010-03-11
EP2078194A2 (en) 2009-07-15
CN101563605A (zh) 2009-10-21
BRPI0716334A2 (pt) 2015-05-19
US7771926B2 (en) 2010-08-10
US7312042B1 (en) 2007-12-25
US8632965B2 (en) 2014-01-21

Similar Documents

Publication Publication Date Title
RU2625769C2 (ru) Сенсор аналита с тисненой ячейкой и способ изготовления
US8557104B2 (en) In vitro analyte sensor, and methods
US8460524B2 (en) System and methods of chemistry patterning for a multiple well biosensor
JP4885508B2 (ja) 小体積生体外分析物センサおよび関連する方法
EP1903334B1 (en) Biosensor
US20090214384A1 (en) Identification of a strip type by the meter using conductive patterns on the strip
EP2426485A1 (en) Method of making biosensors
US20010050228A1 (en) Electrochemical sensor with increased reproducibility
GB2463914A (en) Test strip for glucose monitoring with discrete testing zones
KR20170084310A (ko) 적어도 하나의 분석물을 전기 화학적으로 검출하기 위한 테스트 엘리먼트
CN111278360B (zh) 用于检测体液中的分析物的传感器以及制造传感器的方法
US20230273143A1 (en) Method for manufacturing at least one electrode of an analyte sensor

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20161013

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20161013

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191017