RU2605560C2 - Неорганический многослойный пакет и относящиеся к нему способы и композиции - Google Patents

Неорганический многослойный пакет и относящиеся к нему способы и композиции Download PDF

Info

Publication number
RU2605560C2
RU2605560C2 RU2013137882/05A RU2013137882A RU2605560C2 RU 2605560 C2 RU2605560 C2 RU 2605560C2 RU 2013137882/05 A RU2013137882/05 A RU 2013137882/05A RU 2013137882 A RU2013137882 A RU 2013137882A RU 2605560 C2 RU2605560 C2 RU 2605560C2
Authority
RU
Russia
Prior art keywords
inorganic
capsule
molecules
vapor
gas
Prior art date
Application number
RU2013137882/05A
Other languages
English (en)
Other versions
RU2013137882A (ru
Inventor
Рави Прасад
Деннис Р. ХОЛЛАРС
Original Assignee
Витрифлекс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Витрифлекс, Инк. filed Critical Витрифлекс, Инк.
Publication of RU2013137882A publication Critical patent/RU2013137882A/ru
Application granted granted Critical
Publication of RU2605560C2 publication Critical patent/RU2605560C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • G02F1/0107Gaskets, spacers or sealing of cells; Filling and closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Hybrid Cells (AREA)

Abstract

Изобретение относится к многослойному пакету на подложке для использования в качестве капсулы. Многослойный пакет содержит: один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с одним или более неорганическими барьерными слоями, и химически активный слой обладает способностью вступать в реакцию с молекулами газа или пара. При этом в рабочем состоянии многослойного пакета молекулы газа или пара диффундируют через один или более неорганических барьерных слоев, вступают в реакцию с неорганическим химически активным слоем. Изобретение позволяет эффективно защитить изделия, находящиеся в капсуле, чувствительные к влаге и газам окружающей среды, за счет непроницаемости для молекул газа или пара многослойного пакета. 8 н. и 27 з.п. ф-лы, 5 ил.

Description

РОДСТВЕННЫЕ ЗАЯВКИ
Эта заявка объявляет приоритет Предварительных Заявок на патент США, имеющих порядковые номера 61/436,726, 61/436,732 и 61/436,744, каждая из которых была зарегистрирована 27 января 2011 г., и содержание каждой из которых полностью введено здесь ссылкой.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится, в общем случае, к многослойным пакетам и к их способам и композициям. Более конкретно, настоящее изобретение относится к гибким многослойным пакетам, используемым в качестве капсул в таких применениях, как изготовление фотогальванических элементов, электролитических элементов, полупроводникового освещения и дисплеев на светоизлучающих диодах (СД).
СУЩЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Самая различная продукция, такая как электронные приборы, медицинские приборы и лекарственные препараты, чувствительна к парам воды и газам окружающей атмосферы, воздействие которых приводит к порче продукции и/или ухудшению характеристик продукции. В соответствии с этим, в качестве средства защиты, позволяющего предотвратить такое нежелательное воздействие, обычно используются блокировочные покрытия.
В качестве блокировочных покрытий часто используются пластмассовое покрытие или слои пластмассы. К сожалению, они имеют такой недостаток, как плохая сопротивляемость к проникновению газа или жидкости, которая в типичном случае имеет величину на несколько порядков ниже, чем величина сопротивляемости к проникновению, требуемая для получения приемлемых характеристик продукции. Например, от герметического покрытия некоторых дисплеев на СД и фотогальванических элементов требуются, чтобы перенос паров воды составлял величину порядка <10-4 г/м2/день, но, в противовес этому требованию, скорость переноса паров воды в полиэтилентерефталате (PET), обычно используемого в качестве пластмассовой подложки, составляет величину порядка между приблизительно 1 и 10 г/м2/день. Специалистам в этой области техники будет понятно, что величина переноса паров воды может рассматриваться как величина, обратно пропорциональная сопротивляемости к проникновению воды.
В других применениях защита от воздействия нежелательных элементов осуществляется нанесением блокировочных покрытий на пластмассовые пленки типа PET для снижения проницаемости паров воды. Эти покрытия обычно представляют собой единичные слои неорганических материалов, таких как Al, SiOx, AlOx и Si3N4, осажденных на пластмассовые подложки, используя хорошо известные процессы вакуумного осаждения. Однослойное покрытие из этих неорганических материалов будет в типичном случае снижать проницаемость паров воды в PET от 1.0 до 0.1 г/м2/день. Таким образом, единичное блокировочное покрытие на пластмассовой подложке также не отвечает требуемой величине сопротивляемости к проникновению.
На Фиг. 1 показана диада 10, представляющая собой структуру, которая образована, когда неорганический блокировочный слой, или покрытие, 12 сформирован поверх органического слоя 14 (например, из акрила). Диада 10 может быть осаждена в качестве защитного слоя на полимерной подложке. Блокировочный слой 12 состоит из плотно упакованных частиц оксида и действует как обычный диффузионный барьер, задерживающий проникновение через него газа или влаги. Однако дефекты, обычно присутствующие в блокировочном слое, позволяют влаге и молекулам газа окружающей среды диффундировать через оксидные частицы, и в конечном итоге ухудшают расположенные за ним электронные компоненты, такие как фотогальванические элементы и органические светоизлучающие диоды. Для устранения недостатков, связанных с наличием этих дефектов, на блокировочный слой 12 наносится неорганический слой 14, как попытка сгладить дефекты и подстилающую поверхность полимерной подложки. В некоторых других подходах на полимерных подложках осаждается несколько диад, служащих предпосылкой того, что несовпадение между собой дефектов, которые имеются в нескольких диадах, приведет к дальнейшему снижению проникновения газа и влаги. Однако осаждение нескольких диад приводит к более дорогим барьерам, а также снижает гибкость получаемой в результате барьерной пленки.
Безотносительно к тому, используется ли в качестве защитной меры единичный слой блокировочного покрытия или единственная диада, или несколько диад, традиционные схемы замедления диффузии, описанные выше, не обеспечивают защиту расположенного за ними полимерного слоя в необходимой степени для конкретного прикладного случая (например, в случае фотогальванического элемента или дисплея на СД). В частности, дефекты, имеющиеся в неорганическом слое, эффективно не заполняются и предоставляют диффузионный канал для влаги и неблагоприятных газов окружающей среды, по которому они проходят с поверхности блокировочного слоя к полимерной подложке. Традиционные полимерные подложки не способны надлежащим образом защитить основное изделие, которое герметизируется от воздействия влаги и неблагоприятных газов окружающей среды. В результате, соответствующее изделие со временем ухудшается, в конце концов, отказывая и имея относительно более короткий срок службы.
Это, тем самым, определяет необходимость разработки новых защитных слоев, которые эффективно защищают основные изделия, чувствительные к влаге и газам, от влаги и неблагоприятных газов окружающей среды и которые не имеют недостатков, создаваемых традиционными реализациями блокировочного слоя и диад.
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
В контексте вышеизложенного, одной особенностью настоящего изобретения является предоставление многослойного пакета. Этот многослойный пакет содержит: (1) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (2) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, и этот химически активный слой обладает способностью вступать в реакцию с молекулами газа или пара; и (3) при этом, в рабочем состоянии этого многослойного пакета молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается то, что многослойный пакет будет, большей частью, непроницаемым для молекул газа или пара.
Молекулы этого пара или газа могут включать, по меньшей мере, одно вещество, выбранное из группы, которая состоит из влаги, кислорода, азота, водорода, углекислоты, аргона и сероводорода. В соответствии с предпочтительным примером осуществления настоящего изобретения, неорганический барьерный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида металла. Композиция металла в неорганическом барьерном слое предпочтительно включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из алюминия, серебра, кремния, цинка, олова, титана, тантала, ниобия, рутения, галлия, платины, ванадия, индия и углерода.
Неорганический химически активный слой предпочтительно включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния. В некоторых примерах осуществления, неорганический слой настоящего изобретения легирован одним или более химическими компонентами без кислородных соединений.
Толщина каждого неорганического барьерного слоя и неорганического химически активного слоя может находиться между приблизительно 10 нм и приблизительно 1 микрон. В некоторых примерах осуществления настоящего изобретения, один или более барьерных слоев включают два барьерных слоя, а химически активный слой расположен между двумя барьерными слоями. Химически активный слой предпочтительно включает столбчатые структуры. Каждый из одного или более барьерных слоев может быть выполнен из одного или более аморфных веществ. Неорганические барьерные слои являются предпочтительно, большей частью, прозрачными для приложений, требующих передачи света.
Другой особенностью настоящего изобретения является предоставление фотогальванического модуля. Фотогальванический модуль содержит: (1) фотогальванический элемент; и (2) капсулу, по меньшей мере, частично заключающую в себе фотогальванический элемент, а капсула также включает: (а) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (б) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, а химически активный слой обладает способностью вступать в реакцию с молекулами газа или пара; и (в) при этом в рабочем состоянии капсулы фотогальванического элемента молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается возможность того, что капсула защищает фотогальванический элемент от молекул газа или пара. В одном примере осуществления, фотогальванический элемент настоящего изобретения представляет собой один элемент, выбранный из группы, которая состоит из фотогальванического элемента на базе кремния, тонкопленочного фотогальванического элемента, органического фотоэлектрического фотогальванического элемента и сенсибилизированного красителем фотогальванического элемента. Этот тонкопленочный фотогальванический элемент предпочтительно включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из меди, индия, галлия, мышьяка, кадмия, теллура, селена и серы.
Еще одной особенностью настоящего изобретения является предоставление модуля генерации света. Этот модуль генерации света содержит: (1) световой источник; и (2) капсулу, по меньшей мере, частично заключающую в себе световой источник; а упомянутая капсула кроме того включает: (а) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (б) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, а химически активный слой обладает возможностью вступать в реакцию с молекулами газа или упомянутого пара; и (в) при этом в рабочем состоянии капсулы, молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается то, что капсула защищает световой источник от молекул газа или пара. В определенных примерах осуществления, световой источник настоящего изобретения включает органические или неорганические светоизлучающие диоды.
В еще одной особенности, настоящее изобретение содержит дисплей на светоизлучающих диодах ("СД"). Дисплей на СД содержит: (1) светоизлучающий диод; и (2) капсулу, по меньшей мере, частично заключающую в себе СД, а капсула кроме того включает: (а) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (б) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, а химически активный слой вступает в реакцию с молекулами газа или пара; и (в) при этом, в рабочем состоянии капсулы молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается то, что капсула защищает СД от молекул газа или пара. В некоторых примерах осуществления, СД настоящего изобретения включает органические светоизлучающие диоды, известные также как ОСИД. В еще одной особенности, настоящее изобретение предоставляет электролитический элемент. Этот электролитический элемент содержит: (1) катод; (2) анод; (3) электролит; и (4) капсулу, по меньшей мере, частично заключающую в себе катод, анод и электролит, при этом капсула кроме того включает: (а) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (б) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, а химически активный слой вступает в реакцию с молекулами газа или пара; и (в) при этом, в рабочем состоянии капсулы электролитического элемента, молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается то, что капсула защищает электролитический элемент от молекул газа или пара. В некоторых примерах осуществления, электролитический элемент настоящего изобретения является гибким.
В другой особенности, настоящее изобретение предоставляет модуль пассивного индикатора. Этот модуль пассивного индикатора содержит: (1) пассивный индикатор; и (2) капсулу, по меньшей мере, частично заключающую в себе пассивный индикатор, при этом капсула включает: (а) один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; (б) неорганический химически активный слой, расположенный смежно с одним или более неорганическими барьерными слоями, а химически активный слой обладает способностью вступать в реакцию с молекулами газа или пара; и (в) при этом, в рабочем состоянии капсулы пассивного индикатора, молекулы пара или газа, которые диффундируют через один или более неорганические барьерные слои, вступают в реакцию с неорганическим химически активным слоем, и тем самым обеспечивается то, что капсула защищает пассивный индикатор от молекул газа или пара. Пассивный индикатор включает электрофоретический индикатор или многослойный жидкокристаллический индикатор.
В еще одной особенности, настоящее изобретение предоставляет способ изготовления многослойного пакета на подложке для использования в качестве капсулы. Этот способ содержит: (1) загрузку гибкой подложки на валковую установку для нанесения покрытий; (2) смещение гибкой подложки или части машины для нанесения покрытий так, что гибкая подложка занимает первое положение внутри машины для нанесения покрытий; (3) изготовление одного или более неорганических барьерных слоев на гибкой подложке, когда гибкая подложка находится в первом положении, и неорганический барьерный слой обладает способностью снижения переноса через него молекул пара или газа; (4) смещение гибкой подложки или машины для нанесения покрытий так, что гибкая подложка занимает второе положение внутри валковой установки для нанесения покрытий, и второе положение отличается от первого положения; и (5) формирование химически активного слоя, смежного с одним или более барьерными слоями, при этом химически активный слой вступает в реакцию с молекулами пара или газа, которые диффундируют через неорганический барьерный слой, и один или более барьерных слоев и химически активный слой объединяются на гибкой подложке и образуют многослойный пакет.
Описанный выше способ предпочтительно содержит применение этого многослойного пакета, по меньшей мере, к одной функциональной единице, выбранной из группы, которая состоит из фотогальванического элемента, светового источника и дисплея на светоизлучающих диодах, и электролитической ячейки. Этап изготовления может включать, по меньшей мере, одну технологию, выбранную из группы, которая состоит из напыления, реактивного ионно-лучевого распыления, термовакуумного испарения, реактивного термовакуумного испарения, химического осаждения из паровой фазы, процесса покрытия в растворе и химического осаждения из паровой фазы с плазменным ускорением. Подобным же образом, формирование химически активного слоя предпочтительно включает, по меньшей мере, одну технологию, выбранную из группы, которая состоит из напыления, реактивного ионно-лучевого распыления, термовакуумного испарения, реактивного термовакуумного испарения, химического осаждения из паровой фазы, процесса покрытия в растворе и химического осаждения из паровой фазы с плазменным ускорением. Этап изготовления, и формирования химически активного слоя может быть проведен при температуре, которая находится между приблизительно -20°С и приблизительно 200°С. Каждый этап изготовления и этап формирования проводится в технологической операции перемотки с валка на валок.
Этап загрузки в описанном выше способе предпочтительно содержит: (а) установку внутри валковой установки для нанесения покрытий гибкой подложки, намотанной вокруг катушки; и (б) вытягивание и фиксация гибкой подложки на приемно-намоточной катушке так, что, по меньшей мере, часть гибкой подложки вытягивается, что реализует этап изготовления. Во время этапов изготовления и формирования в описанном выше способе, подложка может контактировать с барабаном, на котором устанавливается температура, находящаяся между приблизительно -20°С и приблизительно 200°С.
В еще одной особенности, настоящее изобретение предоставляет композицию многослойного пакета на подложке для использования в качестве капсулы. Эта композиция содержит: (1) неорганический барьерный слой для снижения переноса через него молекул газа или пара, и при этом неорганический барьерный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида-оксинитрида металла; и (2) неорганический химически активный слой, содержащий эффективное количество химически активного вещества для вступления в реакцию с молекулами газов или пара, которые диффундировали через неорганический барьерный слой, а химически активное вещество включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния. По меньшей мере, одно вещество в упомянутом неорганическом барьерном слое может иметь концентрацию, которая является величиной между приблизительно 1% (по весу) и приблизительно 100% (по весу), и, аналогично, по меньшей мере одно химически активное вещество может иметь концентрацию, которая является величиной между приблизительно 1% (по весу) и приблизительно 100% (по весу).
Построение и способ действия изобретения, вместе с его дополнительными целями и преимуществами, будут, однако, лучше всего поняты из последующих описаний конкретных примеров осуществления при чтении совместно с прилагаемыми фигурами чертежей.
КРАТКОЕ ОПИСАНИЕ ФИГУР ЧЕРТЕЖЕЙ
Фиг. 1 показывает изображение поперечного сечения традиционного блокировочного покрытия, используемого для герметизации фотогальванических элементов.
Фиг. 2 - показывает многослойный барьерный пакет, в соответствии с одним примером осуществления настоящего изобретения, для защиты от влаги и других неблагоприятных газов окружающей среды.
Фиг. 3 показывает изображение бокового разреза многослойного барьерного пакета, в соответствии с другим примером осуществления настоящего изобретения, для защиты от влаги и других неблагоприятных газов окружающей среды.
Фиг. 4 - перспективное изображение столбчатой структуры химически активного слоя, в соответствии с одним примером осуществления настоящего изобретения, который может быть использован в многослойном барьерном пакете на Фиг. 2 к/или Фиг. 3.
Фиг. 5 - вид сверху машины для нанесения покрытий, в соответствии с одним примером осуществления настоящего изобретения, которая осуществляет изготовление изобретенных многослойных пакетов перемоткой с валка на валок.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ
В последующем описании излагаются многочисленные специфические особенности, с тем чтобы обеспечить всестороннее понимание настоящего изобретения. Однако специалистам в этой области техники будет очевидно, что настоящее изобретение может быть реализовано без ограничения некоторыми или всеми этими специфическими особенностями. В других случаях не описываются подробно этапы хорошо известных процессов, с тем чтобы не затруднять без необходимости понимание предмета изобретения.
На Фиг. 2 показывается многослойный пакет 200, в котором барьерный слой 202 расположен с примыканием к химически активному слою 204. Многослойный пакет 200 изготовлен на подложке, предпочтительно на гибкой подложке, выполненной из пластмассы. В соответствии с предпочтительным примером осуществления, многослойный пакет настоящего изобретения служит в качестве капсулы для различных применений. В качестве примера, пластмассовая подложка с многослойным пакетом 200, образованным на ней, используется для герметического размещения фотогальванического модуля, электролитического элемента, модуля генерации света, дисплея на светоизлучающих диодах (СД) и модуля пассивного индикатора, с целью защиты основной структуры от воздействия влаги и неблагоприятных газов или газов окружающей среды.
В многослойном пакете 200 барьерный слой 202 служит в качестве барьера для влаги и неблагоприятных газов, таких как кислород, азот, водород, двуокись углерода, аргон и сероводород. Барьерный слой 202 содержит, по меньшей мере, одно вещество, выбранного из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида металла. Кроме того, барьерный слой 202 предпочтительно содержит углерод или кислород в их элементарной форме или как часть химических соединений. Примерами барьерного слоя 202 являются оксид кремния, оксид алюминия, нитрид алюминия, оксинитрид алюминия, оксид тантала, оксид ниобия, нитрид кремния, оксинитрид кремния, оксикарбид кремния и карбонитрид кремния.
Барьерный слой 202 может быть выполнен из одного или более слоев неорганического вещества. В предпочтительных примерах осуществления настоящего изобретения барьерный слой 202 содержит аморфное вещество. Когда используется более одного органического слоя, то различные слои предпочтительно налагаются смежно друг на друга. Нет необходимости в том, чтобы тип неорганического материала, используемого в каждом слое, являлся бы одним и тем же, он может быть различным в определенных примерах осуществления настоящего изобретения. Хотя барьерный слой 202 может быть выполнен из любого неорганического материала, который служит в качестве барьера для упомянутых газов окружающей среды, в предпочтительных примерах осуществления настоящего изобретения барьерный слой 202 содержит композицию металлов, представленных в их элементарной форме или в форме соединения (как описано выше), которое содержит, по меньшей мере, один элемент, выбранный из группы, состоящей из алюминия, серебра, кремния, цинка, олова, титана, тантала, ниобия, рутения, галлия, платины, ванадия и индия. В качестве примера, оксидом металла является AlxOy или SiOx. В барьерном слое 202 наличие эффективного количества металлов или оксидов металлов снижает перенос молекул неблагоприятного газа или пара через барьерный слой. В предпочтительных примерах осуществления настоящего изобретения, металлы или оксиды металлов в барьерном слое 202 имеют концентрацию, которая находится между приблизительно 1% (по весу) и приблизительно 100% (по весу), а предпочтительно между приблизительно 1% (по весу) и приблизительно 50% (по весу).
Барьерный слой 202 имеет толщину, которая находится между приблизительно 10 нм и приблизительно 1 микрон, а предпочтительно между приблизительно 20 нм и приблизительно 300 нм.
Барьерный слой 202 предназначен для снижения переноса через него молекул газа или пара, но он не является полностью непроницаемым для влаги и определенных молекул неблагоприятных газов. С этой целью в настоящем изобретении используется химически активный слой 204, который образован для того, чтобы вступать в реакцию с влагой и молекулами неблагоприятных газов, например, кислорода, азота, водорода, углекислоты, аргона и сероводорода, которые диффундируют через барьерный слой 202. В соответствии с традиционными представлениями, реакционная природа химически активного слоя 204 нежелательна в фотогальванических элементах и других применениях, поскольку он абсорбирует влагу и неблагоприятные газы окружающей среды, являясь причиной ухудшения качества изделия и приводя в конечном итоге к отказу этого изделия. Однако в настоящем изобретении по-новому используется реакционная природа химически активного слоя 204 таким образом, что он является полезным при использовании в качестве барьерных пакетов. В частности, влага и газы окружающей среды или неблагоприятные газы, которые диффундируют через барьерный слой 204, вступают в реакцию с химически активным слоем 204, обеспечивая то, что многослойный пакет 200 будет, по-существу, непроницаем для молекул диффундировавшего газа или пара.
Химически активный слой 204 может быть выполнен из любого неорганического вещества и является, что желательно, химически однородным. Однако в предпочтительных примерах осуществления настоящего изобретения химически активный слой 204 содержит, по меньшей мере, одно химически активное вещество, выбранное из группы, состоящей из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния. В определенных примерах осуществления настоящего изобретения химически активный слой 204 имеет присадки из одного или более химических компонентов без кислородных соединений. Типичными примерами таких легирующих веществ без кислородных соединений являются щелочные металлы, такие как кальций, натрий и литий.
Каждый из одного или более химически активных слоев может быть выполнен из одинакового вещества или из различных веществ. Подобно барьерному слою 202, химически активный слой 204 может содержать один или более химически активных слоев, которые располагаются смежно друг с другом. Химически активный слой 204 содержит эффективное количество химически активного вещества и вступает в химическую реакцию с влагой и неблагоприятными газами или газами окружающей среды, которые диффундировали через примыкающий к нему барьерный слой. В предпочтительных примерах осуществления настоящего изобретения в химически активном слое 204 химически активное вещество имеет концентрацию, которая находится между приблизительно 1% (по весу) и приблизительно 100% (по весу). Однако в более предпочтительных примерах осуществления настоящего изобретения химически активное вещество в химически активном слое 204 имеет концентрацию, которая находится между приблизительно 90% (по весу) и приблизительно 100% (по весу).
Химически активный слой 204 может иметь суммарную толщину, величина которой находится между приблизительно 10 нм и приблизительно 1 микрон, а предпочтительно, которая находится между приблизительно 20 нм и приблизительно 500 нм. В некоторых применениях, где многослойный пакет 200 изготавливается на пластмассовой подложке и используется как капсула, существует риск того, что во время поставки, обращения и хранения изделия, заключенного в капсулу, влага и неблагоприятные газы окружающей среды будут диффундировать через пластмассовую подложку и вступят в реакцию с химически активным слоем 204. В результате, требуемое реакционное свойство химически активного слоя 204 уменьшится, делая тем самым многослойный пакет 200 неэффективным. Исходя из этого, в некоторых предпочтительных примерах осуществления настоящего изобретения создается дополнительный барьерный слой, который располагается между пластмассовой подложкой и химически активным слоем.
Если химически активный слой 204 по своему составу является подобным барьерному слою 202, тогда предпочтительно иметь химически активный слой, который в значительной степени отличается от барьерного слоя по структуре, степени легирования, степени кристалличности (включая случай, когда один слой является аморфным, в то время как другой не является таковым) или по химической активности к соединению с влагой или неблагоприятными газами окружающей среды.
На Фиг. 3 показывается многослойный пакет 300, в соответствии с альтернативным примером осуществления настоящего изобретения. Многослойный пакет 300 содержит химически активный слой 304, который расположен между двумя барьерными слоями 302 и 306. Химически активный слой 304 на Фиг. 3 подобен, в основном, химически активному слою 204 на Фиг. 2, а барьерные слои 302 и 306 на Фиг. 3 подобны, в основном, барьерному слою 202 на Фиг. 2. Аналогично многослойному пакету 200, многослойный пакет 300 также изготавливается на некоторой подложке. Однако в предпочтительных примерах осуществления настоящего изобретения пакет 300 изготавливается на гибкой, пластмассовой подложке.
В конфигурации многослойного пакета, показанного на Фиг. 3, влага или молекулы неблагоприятного газа или газа окружающей среды, которые диффундируют через пластмассовую подложку, блокируются барьерным слоем 302 перед тем, как они достигнут химически активного слоя 304. В результате, барьерный слой 302 защищает химически активный слой 304 от влаги и неблагоприятных газов или газов окружающей среды, которые диффундируют через подложку из полимерного субстрата.
Безотносительно к тому, используется ли многослойный пакет 200, показанный на Фиг. 2, или многослойный пакет 300, показанный на Фиг. 3, слой с химически активным компонентом имеет, что предпочтительно, столбчатую структуру 404, показанную на Фиг. 4, которая расположена в качестве химически активного слоя (например, химически активный слой 204 на Фиг. 2 или химически активный слой 304 на Фиг. 3). Химически активный слой, имеющий столбчатую структуру, представляет собой предпочтительный пример осуществления настоящего изобретения, поскольку такая структура обеспечивает больше площади той активной поверхности, которая вступает в реакцию с диффундировавшими химическими веществами.
Хотя предложенные барьерные и химически активные слои на Фиг. 2 и Фиг. 3 показаны в виде слоев, контактирующих между собой, нет необходимости, чтобы они были таковыми. В некоторых примерах осуществления настоящего изобретения, между барьерными и химически активными слоями может быть расположен промежуточный слой, исполняющий одну или более различных функций. В качестве примера, промежуточный слой может быть использован для выравнивания одной из двух или обеих поверхностей барьерного и химически активного слоев, между которыми он расположен. В результате, в тех случаях, где в спецификации написано, что барьерный слой располагается смежно с химически активным слоем, термин "смежно" не ограничивается теми примерами осуществления, где барьерные и химически активные слои контактируют между собой. Сюда входят также те примеры осуществления, где между барьерными и химически активными слоями расположены один или более промежуточных слоев.
Кроме того, в соответствии с описанными выше предпочтительными примерами осуществления, каждый из изобретенных барьерных и химически активных слоев выполняются из одного или более различных типов неорганических веществ. Однако в других примерах осуществления настоящего изобретения, изобретенные барьерные и химически активные слои не ограничиваются этим случаем. В некоторых примерах осуществления настоящего изобретения, каждый из барьерных и химически активных слоев выполняются из одного или более различных типов органических веществ.
В предпочтительных примерах осуществления настоящего изобретения, многослойный пакет 200 на Фиг. 2 и многослойный пакет на Фиг. 3 используются в качестве капсулы. В качестве примера, при использовании в аппаратуре с фотогальваническими элементами изобретенные многослойные пакеты применяются для заключения в капсулу фотогальванического элемента. В другом примере, в осветительной аппаратуре, где используется модуль генерации света, изобретенные многослойные пакеты применяются для заключения в капсулу источника света. В еще одном примере, в электролитическом элементе, изобретенные многослойные пакеты применяются для заключения в капсулу катода, анода и электролита. В еще одном примере, в аппаратуре с дисплеем, изобретенные многослойные пакеты применяются для заключения в капсулу дисплеев, таких как дисплей на СД или пассивный индикатор. Специалистам в данной области техники понятно, что заключение в капсулу фотогальванических элементов, модулей генерации света, электролитических ячеек, дисплеев на СД и пассивных индикаторов осуществляется с использованием технологий, хорошо известных этим специалистам.
В соответствии с традиционными представлениями, когда при образовании многослойного пакета один слой формируется так, что он примыкает к другому слою, то дефекты, имеющиеся в одном слое, распространяются на смежный слой, что нежелательно. Проблема распространения дефектов обостряется по мере того, как возрастает число слоев в многослойном пакете. В полной противоположности этому, в настоящем изобретении поразительно и неожиданно обнаруживается, что неорганический слой покрывает дефекты, существующие в смежном с ним слое, и сглаживает смежный слой. В результате оказывается, что предложенные многослойные пакеты являются особенно предпочтительными при использовании в качестве барьеров влаги и пара, поскольку они предотвращают или существенно снижают распространение дефектов или неблагоприятной структуры из одного слоя в другой.
Хотя предложенные многослойные пакеты могут быть выполнены с использованием любой технологии, хорошо известной специалистам в этой области техники, использование технологии перемотки с валка на валок, которая обеспечивает относительно высокую производительность, представляет предпочтительный пример осуществления настоящего изобретения. На Фиг. 5 показывается вид сверху машины для нанесения покрытий 500, в соответствии с одним примером осуществления настоящего изобретения. Машина для нанесения покрытий, называется также "валковая установка для нанесения покрытий", поскольку она покрывает валок гибкой пленки. Машина для нанесения покрытий 500 содержит разматывающий валок 502, натяжной валок 504, приемно-намоточный валок 506, барабан осаждения с управляемой температурой 508, одну или более зон осаждения 510 и камеру осаждения 512. Каждая из одной или более зон осаждения 510, как это рассмотрено ниже, содержит вещество мишени, которое в конечном итоге осаждается на гибкой подложке, источник питания и заслонки.
Способ покрытия, в соответствии с одним примером осуществления настоящего изобретения, начинается с того, что на разматывающий валок 502 загружается гибкая подложка 514. Гибкая подложка 514 предпочтительно наматывается вокруг катушки, которая загружается на разматывающий валок 502. Обычно из катушки вытягивается некоторая часть намотанной на ней гибкой подложки и направляется вокруг натяжных валков 504 и барабана осаждения 508, который может вращаться, так что подложка поступает на приемно-намоточный валок 506. В состоянии, когда машина для нанесения покрытий 500 работает, разматывающий валок 502, приемно-намоточный валок 506 и барабан осаждения 508 вращаются, чем обеспечивается смещение гибкой подложки 514 вдоль различных участков вокруг охлажденного барабана осаждения 508.
Как только гибкая подложка 514 загружается внутрь машины для нанесения покрытий 500, происходит процесс покрытия, начинающийся с возникновения плазменного разряда внутри зоны осаждения 510. Заслонки в зонах покрытия направляют заряженные частицы в поле плазмы, эти частицы соударяются с веществом мишени и выбрасывают это вещество так, что оно осаждается на гибкой подложке. Во время процесса покрытия температура гибкой подложки 514 управляется, используя барабан осаждения 508 предпочтительно при таких значениях температуры, которые не приводят к повреждению подложки. В этих примерах осуществления настоящего изобретения, где гибкая подложка 514 содержит полимерное вещество, барабан осаждения 508 охлаждается так, что температура барабана осаждения является предпочтительно около или ниже температуры стеклования полимерного вещества. Такое охлаждающее воздействие предотвращает плавление подложки на базе полимера во время процесса осаждения, и тем самым устраняет разрушение подложки на базе полимера, которое могло бы возникнуть при отсутствии барабана осаждения 508.
Как можно увидеть из Фиг. 5, создается несколько зон осаждения, каждая из которых может быть специализирована на эффективное осаждение определенного вещества на полимерную подложку. В качестве примера, в одной из зон осаждения вещество мишени содержит, по меньшей мере, один элемент, выбранный из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида металла, для обеспечения осаждения барьерного слоя (например, для изготовления барьерного слоя 202 на Фиг. 2 или изготовления, по меньшей мере, одного из барьерных слоев 302 и 306 на Фиг. 3). В качестве другого примера, вещество мишени в другой из зон осаждения содержит, по меньшей мере, один элемент, выбранный из группы, которая состоит из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния, для изготовления химически активного слоя (например, для изготовления химически активного слоя 204 на Фиг. 2 или химически активного слоя 304 на Фиг. 3). Посредством смещения гибкой подложки 514 от одного участка к другому, могут быть осаждены на подложке, на различных ее зонах осаждения, различные типы вещества мишени и различной его толщины. Машина для нанесения покрытий 500 может быть использована для реализации, по меньшей мере, одной технологии, которая выбрана из группы, состоящей из напыления, реактивного ионно-лучевого распыления, термовакуумного испарения, реактивного термовакуумного испарения, химического осаждения из паровой фазы и химического осаждения из паровой фазы с плазменным ускорением.
Примечательно, что вместо перемещения подложки от одного положения к другому при осуществлении осаждения нескольких слоев, предложенные особенности настоящего изобретения могут быть реализованы, когда подложка удерживается в стационарном положении, а перемещается, по меньшей мере, часть машины для нанесения покрытий или перемещается как подложка, так и машина для нанесения покрытий.
Безотносительно к определенному способу, реализованному для осаждения, будет приниматься во внимание то, что технология перемотки с валка на валок настоящего изобретения обеспечивает очень быстрое осаждение различных типов слоев различной толщины на подложке для формирования изобретенных многослойных пакетов. Предложенный в изобретении способ изготовления перемоткой с валка на валок обеспечивает очень высокую производительность, которая имеет следствием повышенную прибыльность. На фоне текущего состояния, когда промышленность фотогальванических элементов остается проблемной, чтобы стать коммерчески жизнеспособным решением альтернативной энергии, предложенные в изобретении многослойные пакеты и способы предоставляют очевидное улучшение перед традиционными решениями и способами.
Как было объяснено выше, барьерные и химически активные слои в многослойном пакете 300 на Фиг. 3 могут быть выполнены из подходящих веществ неорганических оксидов, так что получаемые многослойные пакеты являются как гибкими, так и непроницаемыми к парам воды. В настоящем изобретении признается, что если величина адсорбции паров воды через барьерный слой ограничена, то химически активный слой внутри многослойного пакета обладает повышенной долговечностью. Более того, в настоящем изобретении также признается, что минимизацией количества паров воды, поступающего на поверхность раздела барьерного и химически активного слоев, достигается ограниченная адсорбция.
Хотя были показаны и описаны проиллюстрированные примеры осуществления этого изобретения, подразумеваются и другие модификации, изменения и замены. В качестве примера, настоящее изобретение раскрывает барьеры простых газов и паров воды; однако возможно также снизить перенос органических веществ, используя системы, способы и композиции настоящего изобретения. Соответственно, предполагается, что прилагаемые пункты формулы изобретения будут истолкованы широко и таким образом, который согласуется с объемом раскрытия, как это сформулировано в следующих пунктах формулы изобретения.

Claims (35)

1. Многослойный пакет на подложке для использования в качестве капсулы, содержащий:
один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, и упомянутый химически активный слой обладает способностью вступать в реакцию с молекулами упомянутого газа или упомянутого пара; и
при этом в рабочем состоянии упомянутого многослойного пакета молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается то, что упомянутый многослойный пакет будет, большей частью, непроницаемым для молекул упомянутого газа или упомянутого пара.
2. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что молекулы упомянутого пара или упомянутого газа включают, по меньшей мере, одно вещество, выбранное из группы, которая состоит из влаги, кислорода, азота, водорода, углекислоты и сероводорода.
3. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что упомянутый неорганический барьерный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида металла.
4. Многослойный пакет на подложке для использования в качестве капсулы по п. 3, отличающийся тем, что упомянутый неорганический барьерный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из алюминия, серебра, кремния, цинка, олова, титана, тантала, ниобия, рутения, галлия, платины, ванадия и индия.
5. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что упомянутый неорганический химически активный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния.
6. Многослойный пакет на подложке для использования в качестве капсулы по п. 5, отличающийся тем, что упомянутый неорганический химически активный слой легирован одним или более химическими компонентами без кислородных соединений.
7. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что толщина упомянутого неорганического барьерного слоя находится между приблизительно 10 нм и приблизительно 1 микрон.
8. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что толщина упомянутого неорганического химически активного слоя находится между приблизительно 10 нм и приблизительно 1 микрон.
9. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что упомянутые один или более барьерные слои включают два барьерных слоя и упомянутый химически активный слой расположен между двумя упомянутыми барьерными слоями.
10. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что упомянутый химически активный слой включает столбчатые структуры.
11. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что каждый из упомянутых одного или более барьерных слоев выполнен из одного или более аморфных веществ.
12. Многослойный пакет на подложке для использования в качестве капсулы по п. 1, отличающийся тем, что упомянутый неорганический барьерный слой является, большей частью, прозрачным.
13. Фотогальванический модуль, содержащий:
фотогальванический элемент; и
капсулу, по меньшей мере, частично заключающую в себе упомянутый фотогальванический элемент, и при этом упомянутая капсула включает:
один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, и упомянутый химически активный слой обладает способностью вступать в реакцию с молекулами упомянутого газа или упомянутого пара; и
при этом в рабочем состоянии упомянутой капсулы молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается возможность того, что упомянутая капсула защищает упомянутый фотогальванический элемент от молекул упомянутого газа или упомянутого пара.
14. Фотогальванический модуль по п. 13, отличающийся тем, что упомянутый фотогальванический элемент представляет собой один элемент, выбранный из группы, которая состоит из фотогальванического элемента на базе кремния, тонкопленочного фотогальванического элемента, органического фотоэлектрического фотогальванического элемента и сенсибилизированного красителем фотогальванического элемента.
15. Фотогальванический модуль по п. 13, отличающийся тем, что упомянутый тонкопленочный фотогальванический элемент включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из меди, индия, галлия, мышьяка, кадмия, теллура, селена и серы.
16. Модуль генерации света, содержащий:
световой источник; и
капсулу, по меньшей мере, частично заключающую в себе упомянутый световой источник, и при этом упомянутая капсула включает:
один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, а упомянутый химически активный слой обладает возможностью вступать в реакцию с молекулами упомянутого газа или упомянутого пара; и
при этом в рабочем состоянии упомянутой капсулы молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается то, что упомянутая капсула защищает упомянутый световой источник от молекул упомянутого газа или упомянутого пара.
17. Модуль генерации света по п. 16, отличающийся тем, что упомянутый световой источник содержит органические или неорганические светоизлучающие диоды.
18. Дисплей на светоизлучающих диодах, содержащий:
светоизлучающий диод; и
капсулу, по меньшей мере, частично заключающую в себе упомянутый светоизлучающий диод, при этом упомянутая капсула включает:
один или более неорганических барьерных слоев для снижения переноса через них молекул упомянутого газа или упомянутого пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, и упомянутый химически активный слой вступает в реакцию с молекулами упомянутого газа и упомянутого пара; и
при этом в рабочем состоянии упомянутой капсулы молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается то, что упомянутая капсула защищает упомянутый светоизлучающий диод от молекул упомянутого газа или упомянутого пара.
19. Дисплей на светоизлучающих диодах по п. 18, отличающийся тем, что упомянутый светоизлучающий диод содержит органические светоизлучающие диоды, известные также как ОСИД.
20. Электролитический элемент, содержащий:
катод;
анод;
электролит; и
капсулу, по меньшей мере, частично заключающую в себе упомянутый катод, упомянутый анод и упомянутый электролит, при этом упомянутая капсула включает:
один или более неорганических барьерных слоев для снижения переноса через них молекул упомянутого газа или упомянутого пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, а упомянутый химически активный слой вступает в реакцию с молекулами упомянутого газа и упомянутого пара; и
при этом в рабочем состоянии упомянутой капсулы молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается то, что упомянутая капсула защищает упомянутый электролитический элемент от молекул упомянутого газа или упомянутого пара.
21. Электролитический элемент по п. 20, отличающийся тем, что упомянутый электролитический элемент является гибким и легким.
22. Модуль пассивного индикатора, содержащий:
пассивный индикатор; и
капсулу, по меньшей мере, частично заключающую в себе упомянутый пассивный индикатор, и при этом капсула включает:
один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара;
неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с упомянутыми одним или более неорганическими барьерными слоями, а упомянутый химически активный слой обладает способностью вступать в реакцию с молекулами упомянутого газа и упомянутого пара; и
при этом в рабочем состоянии упомянутой капсулы молекулы упомянутого пара или упомянутого газа, которые диффундируют через упомянутые один или более неорганические барьерные слои, вступают в реакцию с упомянутым неорганическим химически активным слоем, и тем самым обеспечивается то, что упомянутая капсула защищает упомянутый пассивный индикатор от молекул упомянутого газа или упомянутого пара.
23. Модуль пассивного индикатора по п. 22, отличающийся тем, что упомянутый пассивный индикатор содержит электрофоретический индикатор или многослойный жидкокристаллический индикатор.
24. Способ изготовления многослойного пакета на подложке для использования в качестве капсулы, при этом упомянутый способ включает:
загрузку подложки на валковую установку для нанесения покрытий;
смещение подложки или части упомянутой валковой установки для нанесения покрытий так, что подложка занимает первое положение внутри упомянутой валковой установки для нанесения покрытий;
изготовление одного или более неорганических барьерных слоев на подложке, когда подложка находится в упомянутом первом положении, и упомянутый неорганический барьерный слой обладает способностью снижения переноса через него молекул пара или газа;
смещение подложки или упомянутой валковой установки для нанесения покрытий так, что подложка занимает второе положение внутри упомянутой валковой установки для нанесения покрытий, и упомянутое второе положение отличается от упомянутого первого положения; и
формирование химически активного слоя, содержащего неорганический связующий материал и смежного с упомянутым одним или более барьерными слоями, упомянутый химически активный слой вступает в реакцию с молекулами упомянутого пара или упомянутого газа, которые диффундируют через упомянутый неорганический барьерный слой, и упомянутые один или более барьерные слои и упомянутый химически активный слой объединяются на подложке и образуют многослойный пакет.
25. Способ по п. 24, содержащий также применение упомянутого многослойного пакета, по меньшей мере, к одной функциональной единице, выбранной из группы, которая состоит из фотогальванического элемента, светового источника и дисплея на светоизлучающих диодах и электролитической ячейки.
26. Способ по п. 24, отличающийся тем, что упомянутое изготовление включает, по меньшей мере, одну технологию, выбранную из группы, которая состоит из напыления, реактивного ионно-лучевого распыления, термовакуумного испарения, реактивного термовакуумного испарения, химического осаждения из паровой фазы, процесса покрытия в растворе и химического осаждения из паровой фазы с плазменным ускорением.
27. Способ по п. 24, отличающийся тем, что упомянутое формирование упомянутого химически активного слоя включает, по меньшей мере, одну технологию, выбранную из группы, которая состоит из напыления, реактивного ионно-лучевого распыления, термовакуумного испарения, реактивного термовакуумного испарения, химического осаждения из паровой фазы, процесса покрытия в растворе и химического осаждения из паровой фазы с плазменным ускорением.
28. Способ по п. 24, отличающийся тем, что упомянутое изготовление проводится при температуре, которая находится между приблизительно -20°С и приблизительно 200°С.
29. Способ по п. 24, отличающийся тем, что упомянутое формирование химически активного слоя проводится при температуре, которая находится между приблизительно -20°С и приблизительно 200°С.
30. Способ по п. 24, отличающийся тем, что каждое упомянутое изготовление упомянутых одного или более барьерных слоев и упомянутое формирование упомянутого химически активного слоя проводится в технологической операции перемотки с валка на валок.
31. Способ по п. 24, отличающийся тем, что упомянутая загрузка включает:
установку внутри упомянутой валковой установки для нанесения покрытий подложки, намотанной вокруг катушки; и
вытягивание и фиксацию подложки на приемно-намоточной катушке так, что, по меньшей мере, часть подложки вытягивается, что обеспечивает упомянутое изготовление.
32. Способ по п. 24, отличающийся тем, что во время упомянутого изготовления и упомянутого формирования упомянутая подложка контактирует с барабаном, на котором устанавливается температура, находящаяся приблизительно между -20°С и приблизительно 200°С.
33. Композиция многослойного пакета на подложке для использования в качестве капсулы, содержащая:
неорганический барьерный слой для снижения переноса через него молекул газа или пара, и при этом упомянутый неорганический барьерный слой включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из металла, оксида металла, нитрида металла, оксинитрида металла, карбонитрида металла и оксикарбида - оксинитрида металла; и
неорганический химически активный слой, содержащий неорганический связующий материал и включающий эффективное количество химически активного вещества для вступления в реакцию с молекулами упомянутых газов или упомянутого пара, которые диффундировали через упомянутый неорганический барьерный слой, а упомянутое химически активное вещество включает, по меньшей мере, одно вещество, выбранное из группы, которая состоит из оксида щелочного металла, оксида цинка, оксида титана, оксида цинка с присадками металла и оксида кремния.
34. Композиция по п. 33, отличающаяся тем, что упомянутое, по меньшей мере, одно вещество в упомянутом неорганическом барьерном слое имеет концентрацию, которая находится между приблизительно 1% по весу и приблизительно 100% по весу.
35. Композиция по п. 33, отличающаяся тем, что упомянутое, по меньшей мере, одно химически активное вещество имеет концентрацию, которая находится между приблизительно 1% по весу и приблизительно 100% по весу.
RU2013137882/05A 2011-01-27 2012-01-27 Неорганический многослойный пакет и относящиеся к нему способы и композиции RU2605560C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161436744P 2011-01-27 2011-01-27
US201161436726P 2011-01-27 2011-01-27
US201161436732P 2011-01-27 2011-01-27
US61/436,744 2011-01-27
US61/436,726 2011-01-27
US61/436,732 2011-01-27
PCT/US2012/022809 WO2012103390A2 (en) 2011-01-27 2012-01-27 An inorganic multilayer stack and methods and compositions relating thereto

Publications (2)

Publication Number Publication Date
RU2013137882A RU2013137882A (ru) 2015-03-10
RU2605560C2 true RU2605560C2 (ru) 2016-12-20

Family

ID=46581414

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013137882/05A RU2605560C2 (ru) 2011-01-27 2012-01-27 Неорганический многослойный пакет и относящиеся к нему способы и композиции

Country Status (10)

Country Link
US (1) US10522695B2 (ru)
EP (1) EP2668034A4 (ru)
JP (2) JP6096126B2 (ru)
KR (1) KR101909310B1 (ru)
CN (2) CN103328205B (ru)
AU (1) AU2012211217B2 (ru)
BR (1) BR112013019014A2 (ru)
MY (1) MY161553A (ru)
RU (1) RU2605560C2 (ru)
WO (1) WO2012103390A2 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013019014A2 (pt) 2011-01-27 2016-10-04 Vitriflex Inc pilha de multicamadas inorgânicas e métodos e composições relacionados a essa
MY175677A (en) * 2012-08-31 2020-07-06 Vitriflex Inc Novel barrier layer stacks and methods and compositions thereof
CN103855308B (zh) * 2012-11-30 2016-04-27 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
KR20140077624A (ko) * 2012-12-14 2014-06-24 삼성디스플레이 주식회사 롤투롤 공정용 플렉서블 기판 및 이의 제조 방법
US8927439B1 (en) 2013-07-22 2015-01-06 Rohm And Haas Electronic Materials Llc Organoaluminum materials for forming aluminum oxide layer from coating composition that contains organic solvent
JP6507523B2 (ja) * 2014-08-22 2019-05-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
KR102182521B1 (ko) 2014-12-30 2020-11-24 코오롱글로텍주식회사 고유연성 배리어 섬유기판 및 그의 제조방법
US10988844B2 (en) * 2015-01-20 2021-04-27 Basf Coatings Gmbh Process for producing flexible organic-inorganic laminates
CN105821395B (zh) * 2015-01-22 2019-08-13 成均馆大学校产学协力团 金属氧化物薄膜的沉积方法及其制备装置
KR101942749B1 (ko) * 2015-12-08 2019-01-28 한국생산기술연구원 다층무기봉지박막 및 이의 제조방법
US9970102B2 (en) * 2016-02-08 2018-05-15 International Business Machines Corporation Energy release using tunable reactive materials
JP2017182062A (ja) * 2016-03-25 2017-10-05 日東電工株式会社 調光フィルムの製造方法
JP6263242B1 (ja) * 2016-08-31 2018-01-17 株式会社フジクラ 光電変換素子
WO2018063208A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Metal aluminum gallium indium carbide thin films as liners and barriers for interconnects
JP6907032B2 (ja) * 2017-06-06 2021-07-21 株式会社ジャパンディスプレイ 表示装置及びその製造方法
CN109980073B (zh) * 2017-12-27 2021-02-19 Tcl科技集团股份有限公司 一种封装薄膜及其制备方法、光电器件
CN108529714B (zh) * 2018-05-08 2021-02-26 中国科学技术大学苏州研究院 光电化学反应池及其处理硫化氢废气和废水的方法
CN109786488B (zh) * 2019-01-14 2022-03-15 江苏林洋光伏科技有限公司 一种具有阻水阻中远红外光功能柔性光伏组件封装前板
CN110071188B (zh) * 2019-05-09 2020-12-08 蚌埠市维光塑胶制品有限公司 一种用于太阳能电池背板防护的复合膜材料
CN113079600B (zh) * 2020-01-06 2023-01-24 佛山市顺德区美的电热电器制造有限公司 复合材料、电器和制备复合材料的方法
CN111599934A (zh) * 2020-05-07 2020-08-28 Tcl华星光电技术有限公司 显示面板及其制备方法
CN117242203A (zh) * 2021-05-05 2023-12-15 赛丹思科大学 钝化金属氧化物层中的表面效应的方法以及包括金属氧化物层的器件
KR20240018598A (ko) * 2021-07-08 2024-02-13 아그파-게바에르트 엔.브이. 알칼리 수전해용 세퍼레이터
CN113593413B (zh) * 2021-07-30 2023-09-29 昆山国显光电有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230694C2 (ru) * 1998-11-26 2004-06-20 Тетра Лаваль Холдингз Энд Файнэнс С.А. Многослойная упаковочная структура и упаковочные контейнеры, изготавливаемые из нее, а также способ производства многослойной структуры
US20070010101A1 (en) * 2005-07-05 2007-01-11 Peter Mardilovich Use of expanding material oxides for nano-fabrication
US20080078444A1 (en) * 2006-06-05 2008-04-03 Translucent Photonics, Inc. Thin film solar cell
WO2010049743A1 (en) * 2008-04-07 2010-05-06 Guiseppe Giovanni Bogani Multilayer material

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318685A (en) * 1987-08-18 1994-06-07 Cardinal Ig Company Method of making metal oxide films having barrier properties
CN1150639C (zh) 1998-12-17 2004-05-19 剑桥显示技术有限公司 有机发光装置
US6866901B2 (en) * 1999-10-25 2005-03-15 Vitex Systems, Inc. Method for edge sealing barrier films
JP4259798B2 (ja) * 2000-05-26 2009-04-30 テトラ ラバル ホールディングス アンド ファイナンス エス エイ 包装用積層体の製造方法
US20030203210A1 (en) 2002-04-30 2003-10-30 Vitex Systems, Inc. Barrier coatings and methods of making same
US20040081780A1 (en) * 2002-10-29 2004-04-29 Anatoliy Goldman Container closure with a multi-layer oxygen barrier liner
WO2005080076A1 (ja) * 2004-02-19 2005-09-01 Toyo Seikan Kaisha, Ltd. プラスチック多層構造体
US20060063015A1 (en) 2004-09-23 2006-03-23 3M Innovative Properties Company Protected polymeric film
US20060093795A1 (en) * 2004-11-04 2006-05-04 Eastman Kodak Company Polymeric substrate having a desiccant layer
CN101330971A (zh) * 2005-12-15 2008-12-24 三井金属矿业株式会社 脱氧剂以及脱氧剂的制造方法
TW200730243A (en) 2005-12-15 2007-08-16 Mitsui Mining & Smelting Co Oxygen scavenger and method for producing the same
WO2007096565A2 (fr) * 2006-02-22 2007-08-30 Saint-Gobain Glass France Dispositif electroluminescent organique et utilisation d'une couche electroconductrice transparente dans un dispositif electroluminescent organique
US7608308B2 (en) * 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
US7674662B2 (en) * 2006-07-19 2010-03-09 Applied Materials, Inc. Process for making thin film field effect transistors using zinc oxide
KR101130199B1 (ko) 2006-11-06 2012-04-23 에이전시 포 사이언스, 테크놀로지 앤드 리서치 나노입자 캡슐 배리어 스택
GB2447091B8 (en) * 2007-03-02 2010-01-13 Photonstar Led Ltd Vertical light emitting diodes
WO2009053886A2 (en) * 2007-10-25 2009-04-30 Koninklijke Philips Electronics N.V. Organic electro-optical device, light source, display device and solar cell
FR2924863B1 (fr) * 2007-12-07 2017-06-16 Saint Gobain Perfectionnements apportes a des elements capables de collecter de la lumiere.
CN104327758A (zh) 2007-12-28 2015-02-04 3M创新有限公司 柔性封装膜系统
US8193018B2 (en) * 2008-01-10 2012-06-05 Global Oled Technology Llc Patterning method for light-emitting devices
KR101490112B1 (ko) 2008-03-28 2015-02-05 삼성전자주식회사 인버터 및 그를 포함하는 논리회로
JP4931858B2 (ja) * 2008-05-13 2012-05-16 パナソニック株式会社 有機エレクトロルミネッセント素子の製造方法
EP2319686B1 (en) * 2008-08-26 2015-01-21 Mitsubishi Gas Chemical Company, Inc. Deoxidizing laminate
KR101084267B1 (ko) * 2009-02-26 2011-11-16 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
JP5550848B2 (ja) * 2009-04-17 2014-07-16 株式会社Shカッパープロダクツ 配線構造の製造方法、及び配線構造
JP6076738B2 (ja) 2009-09-11 2017-02-08 ジェイピー ラボラトリーズ インコーポレイテッド ナノ構造の変形、破壊、および変換に基づくモニタリング装置およびモニタリング方法
US8742398B2 (en) * 2009-09-29 2014-06-03 Research Triangle Institute, Int'l. Quantum dot-fullerene junction based photodetectors
US20110206777A1 (en) * 2010-02-20 2011-08-25 Vellore Institute Of Technology Inorganic oxide nano materials as anti-microbial agents
BR112013019014A2 (pt) * 2011-01-27 2016-10-04 Vitriflex Inc pilha de multicamadas inorgânicas e métodos e composições relacionados a essa
JP2013168242A (ja) * 2012-02-14 2013-08-29 Canon Inc 有機発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230694C2 (ru) * 1998-11-26 2004-06-20 Тетра Лаваль Холдингз Энд Файнэнс С.А. Многослойная упаковочная структура и упаковочные контейнеры, изготавливаемые из нее, а также способ производства многослойной структуры
US20070010101A1 (en) * 2005-07-05 2007-01-11 Peter Mardilovich Use of expanding material oxides for nano-fabrication
US20080078444A1 (en) * 2006-06-05 2008-04-03 Translucent Photonics, Inc. Thin film solar cell
WO2010049743A1 (en) * 2008-04-07 2010-05-06 Guiseppe Giovanni Bogani Multilayer material

Also Published As

Publication number Publication date
WO2012103390A2 (en) 2012-08-02
CN107097484A (zh) 2017-08-29
MY161553A (en) 2017-04-28
RU2013137882A (ru) 2015-03-10
KR20140008516A (ko) 2014-01-21
EP2668034A4 (en) 2016-07-06
EP2668034A2 (en) 2013-12-04
US20140060648A1 (en) 2014-03-06
US10522695B2 (en) 2019-12-31
JP2014511286A (ja) 2014-05-15
JP6096126B2 (ja) 2017-03-15
CN103328205A (zh) 2013-09-25
KR101909310B1 (ko) 2018-12-19
JP2017047689A (ja) 2017-03-09
WO2012103390A3 (en) 2012-11-01
AU2012211217B2 (en) 2016-01-07
BR112013019014A2 (pt) 2016-10-04
CN103328205B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
RU2605560C2 (ru) Неорганический многослойный пакет и относящиеся к нему способы и композиции
AU2012211217A1 (en) An inorganic multilayer stack and methods and compositions relating thereto
US9555595B2 (en) Multi-laminate hermetic barriers and related structures and methods of hermetic sealing
KR101964265B1 (ko) 산소 및/또는 수분 민감성 전자 소자들을 밀봉하는 다층막
KR101423446B1 (ko) 원자층 증착에 의해 제작된 플라스틱 기판용 배리어 필름
TWI462358B (zh) 經保護之聚合膜
Jeong et al. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs
US20100132762A1 (en) Environmental barrier coating for organic semiconductor devices and methods thereof
US20130333835A1 (en) Process for manufacturing gas permeation barrier material and structure
Kim et al. Durable polyisobutylene edge sealants for organic electronics and electrochemical devices
US20130337259A1 (en) Gas permeation barrier material
JP2016051569A (ja) 有機エレクトロルミネッセンス素子
RU2636075C2 (ru) Новаторское многослойное барьерное покрытие, способ его изготовления и композиция
WO2013188613A1 (en) Gas permeation barrier material
Kim et al. The development of thin film barriers for encapsulating organic electronics
KR102076705B1 (ko) 태양전지용 유무기 복합 봉지막의 제조방법
KR101465620B1 (ko) 유기발광소자의 봉지방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190128