JP2017182062A - 調光フィルムの製造方法 - Google Patents

調光フィルムの製造方法 Download PDF

Info

Publication number
JP2017182062A
JP2017182062A JP2017056183A JP2017056183A JP2017182062A JP 2017182062 A JP2017182062 A JP 2017182062A JP 2017056183 A JP2017056183 A JP 2017056183A JP 2017056183 A JP2017056183 A JP 2017056183A JP 2017182062 A JP2017182062 A JP 2017182062A
Authority
JP
Japan
Prior art keywords
light control
film
layer
roll
control layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017056183A
Other languages
English (en)
Inventor
正義 片桐
Masayoshi Katagiri
正義 片桐
望 藤野
Nozomi Fujino
望 藤野
智剛 梨木
Tomotake Nashiki
智剛 梨木
健太 渡辺
Kenta Watanabe
健太 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to CN201780019696.4A priority Critical patent/CN108885380A/zh
Priority to EP17770325.3A priority patent/EP3435151A4/en
Priority to KR1020187025067A priority patent/KR20180122340A/ko
Priority to PCT/JP2017/011643 priority patent/WO2017164285A1/ja
Priority to TW106109914A priority patent/TW201736927A/zh
Publication of JP2017182062A publication Critical patent/JP2017182062A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】フィルム基板上に調光層および触媒層を備え、水素化と脱水素化により透明状態と反射状態とをスイッチング可能な水素活性型調光フィルムを提供する。
【解決手段】ロールトゥロールスパッタにより、高分子フィルム基板(10)上に、水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化する調光層(30)、および調光層における水素化および脱水素化を促進する触媒層(40)、を成膜する。本発明の製造方法では、調光層の成膜から触媒層の成膜までが、大気開放を行うことなく連続して実施される。
【選択図】図1

Description

本発明は、透明フィルム基板上に水素活性型調光層および触媒層を備える調光フィルムの製造方法に関する。
建物や乗り物等の窓ガラスやインテリア材料等に、調光素子が用いられている。特に近年では、冷暖房負荷の低減や、照明負荷の削減、快適性向上等の観点から、調光素子に対する需要や期待が高まっている。中でも、調光材料の水素化と脱水素化により光の透過と反射をスイッチングする水素活性型の調光素子は、外光を反射して熱の流入を防止できるため遮熱性に優れ、高い省エネルギー効果が得られるとの利点を有する。また、水素化と脱水素化をガスクロミック方式によりスイッチングできるため、大面積化が容易である。
水素化と脱水素化により透明状態と反射状態を可逆的にスイッチングできる水素活性型調光材料としては、イットリウム、ランタン、ガドリニウム等の希土類金属や、希土類金属とマグネシウムの合金、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属とマグネシウムの合金、およびニッケル、マンガン、コバルト、鉄等の遷移金属とマグネシウムの合金が知られている。特に、調光材料としてマグネシウム合金を用いた場合、水素化マグネシウムの可視光透過率が高いため、透明状態における光透過率の高い調光素子が得られる。水素活性型の調光素子では、調光材料からなる調光層に近接して触媒層が設けられる。触媒層は、調光層の水素化、脱水素化を促進する機能を有し、パラジウムや白金、あるいはパラジウム合金や白金合金等が用いられる。
特許文献1には、ガラス基板上に、調光層および触媒層を備える調光素子が開示されている。特許文献2では、調光層と触媒層との間に金属薄膜や水素化金属薄膜等のバッファー層を設けることにより、触媒層へのマグネシウムのマイグレーションを防止し、水素化と脱水素化のスイッチングの繰り返しに伴う素子の劣化を抑制できることが提案されている。
特開2013−83911号公報 特開2014−26262号公報
水素活性型調光素子を量産化および低コスト化するためには、基板として、ガラスに代えてフィルムを用い、ロールトゥロールスパッタにより調光層や触媒層等の機能層を連続成膜することが有用と考えられる。ロールトゥロールスパッタでは、長尺(例えば、10m〜10万m程度)のフィルムのロール状巻回体をスパッタ装置内に装填し、巻回体からフィルムを巻き出して走行させながら、フィルム上に連続的に成膜が行われる。そのため、膜厚や特性が均一な薄膜を備える調光フィルムを長尺で提供でき、大面積化も容易になる。また、フィルム基板を用いた場合、一般的なガラス板等への貼り合わせが容易である上に、曲面への適用も可能であることから、汎用性にも優れる。
しかし、これまでフィルム基板上にロールトゥロールスパッタで水素活性型調光素子を形成した例は報告されておらず、製造上の課題等は明らかではない。本発明者らが、ロールトゥロールスパッタでフィルム基板上に水素活性型の調光層を備える調光フィルムの作製を試みたところ、ガラス基板上に調光層および触媒層を備える調光素子に比べて調光性能が低下する場合や、調光性能が発現しない場合があることが判明した。かかる課題に鑑み、本発明は、フィルム基板上に調光層および触媒層を備え、ガラス基板を用いた場合と同等の調光性能を有する水素活性型調光フィルムの提供を目的とする。
フィルム基板上に調光層および触媒層を備える調光フィルムの製造方法について本発明者らが検討の結果、調光層を成膜後、大気開放を行うことなく、調光層上に触媒層を成膜することにより、調光層表面の酸化が抑制され、水素活性型の調光素子として利用可能な調光フィルムが得られることが見出された。
本発明は、高分子フィルム基板上に、調光層および触媒層をこの順に備える調光フィルムの製造方法に関する。調光層は水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化する層であり、例えば、希土類金属、希土類金属とマグネシウムの合金、アルカリ土類金属とマグネシウムの合金、および遷移金属とマグネシウムの合金からなる群から選択される金属の薄膜である。触媒層は、調光層における水素化および脱水素化を促進する層である。
本発明の製造方法では、ロールトゥロールスパッタにより、フィルム基板上に、調光層および触媒層が成膜され、調光層の成膜から触媒層の成膜までが、大気開放を行うことなく連続して実施される。一実施形態では、ロールトゥロールスパッタ装置の巻出しロールからフィルム基板を巻き出して走行させ、フィルム基板が巻取りロールで巻き取られるまでの間に、調光層の成膜および触媒層の成膜が実施される。これにより、スパッタ成膜表面をフィルム基板と接触させることなく、調光層の成膜から触媒層の成膜までを連続して実施できる。調光層は、触媒層側界面から5nmの領域における酸素含有量が、50原子%未満であることが好ましい。
本発明の製造方法によれば、調光層の成膜から前記触媒層の成膜までが、大気開放を行うことなく連続して実施されるため、調光層の触媒層側界面の酸化が抑制される。そのため、触媒層から調光層への水素の移動が妨げられず、水素化と脱水素化により透明状態と反射状態とをスイッチング可能な調光フィルムが得られる。
調光フィルムの積層構成例を表す模式的断面図である。 スパッタ成膜装置の構成概念図である。 スパッタ成膜装置の構成概念図である。 スパッタ成膜装置の構成概念図である。 調光フィルムの積層構成例を表す模式的断面図である。 調光フィルムの積層構成例を表す模式的断面図である。
図1は、本発明の調光フィルムの積層構成の一例を表す模式的断面図である。調光フィルム1は、高分子フィルム基板10上に、調光層30および触媒層40を備える。
高分子フィルム基板10は、透明でも不透明でもよい。調光層の水素化時に調光フィルムを光透過性とするために、高分子フィルム基板の材料としては透明プラスチック材料が好ましく用いられる。透明プラスチック材料としては、ポリエチレンテレフタレート等のポリエステル、ポリオレフィン、ノルボルネン系等の環状ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート等が挙げられる。
高分子フィルム基板10の膜厚は特に限定されないが、一般には、2〜500μm程度であり、20〜300μm程度が好ましい。高分子フィルム基板10の表面には、易接着層、帯電防止層、ハードコート層等が設けられていてもよい。また、高分子フィルム基板10の表面には、調光層30との密着性を高める観点から、コロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理等の適宜の接着処理を施してもよい。
高分子フィルム基板10の長手方向(MD:Machine Direction)の熱収縮率は、4%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。高分子フィルム基板の熱収縮率が小さい場合は、スパッタ成膜時や成膜後の処理における加熱に伴う寸法変化が小さく、高分子フィルム基板10と調光層30との界面の応力を低減できる。そのため、界面の応力に起因するフィルムの反りや、調光層の膜剥がれを抑制し、調光フィルムの耐久性を向上できる。後述の様に、熱収縮率の小さいフィルム基板を用いることにより、水素の吸蔵および離脱に伴って調光層に体積変化が生じた場合でも、界面での応力が生じ難く調光フィルムの反りや膜剥がれを抑制できる。熱収縮率は、180℃5分の加熱前後の寸法変化率であり、10cm角に切り出したフィルムの加熱前のMDの長さL1と、180℃で5分加熱後のMDの長さL2から、下記の式に従って算出される。
熱収縮率(%)={(L1−L2)/L1}×100
高分子フィルム基板10上に、スパッタ法により、調光層30および触媒層40を順に成膜することにより、調光フィルムが得られる。
調光層30は、水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化するクロミック材料を含んでいれば、その材料は特に限定されない。調光層を構成する材料の具体例としては、Y,La,Gd,Sm等の希土類金属、希土類金属とマグネシウムの合金、Ca,Sr,Ba等のアルカリ土類金属とマグネシウムの合金、Ni,Mn,Co,Fe等の遷移金属とマグネシウムの合金等が挙げられる。水素化時の透明性に優れることから、調光層30はマグネシウムを含むことが好ましく、透明性と耐久性とを両立する観点から、希土類金属元素とマグネシウムの合金がより好ましい。なお、調光層30は、上記合金以外の元素を微量成分として含んでいてもよい。
調光層30を構成する上記の金属あるいは合金は、水素化により透明状態になり、水素を放出することにより反射状態になる金属元素を含む。例えば、マグネシウムは水素化されると透明なMgHになり、脱水素化により金属反射を有するMgになる。
調光層30上の触媒層40は、調光層30の水素化および脱水素化を促進する機能を有する。触媒層40が設けられることにより、反射状態から透明状態へのスイッチング(調光層の水素化)および透明状態から反射状態へのスイッチング(調光層の脱水素化)におけるスイッチング速度が高められる。
触媒層40は、調光層30の水素化、脱水素化を促進する機能を有するものであれば、その材料は特に限定されないが、例えば、パラジウム、白金、パラジウム合金、および白金合金の中から選択される少なくとも1種の金属を有することが好ましい。特に、水素透過性が高いことから、パラジウムが好適に用いられる。
本発明においては、ロールトゥロールスパッタ装置を用いて、長尺の高分子フィルム基板を長手方向に連続的に走行させながら成膜が行われる。調光層30の成膜から触媒層40の成膜までを、大気開放を行うことなく連続して実施することにより、調光層の成膜表面を大気に暴露することなく、調光層上に触媒層が成膜されるため、調光層の酸化が抑制される。
調光層と触媒層とは、それぞれ別のスパッタターゲットを用いて成膜される。一般に、スパッタ装置のターゲットを交換するためには、装置の真空を破って大気開放する必要がある。本発明の製造方法では、途中で大気開放を行わずに調光層と触媒層とを連続して成膜するために、フィルム搬送方向に沿って複数のターゲットを装着可能なロールトゥロールスパッタ装置が用いられることが好ましい。フィルム搬送方向に沿って複数のターゲットを装着可能なロールトゥロールスパッタ装置としては、1つの成膜ロールの周りに複数のターゲットを配置可能としたものや、複数の成膜ロールを備えるものが挙げられる。
図2は、1つの成膜ロールの周りに複数のターゲットを配置可能に構成されたロールトゥロールスパッタ装置の構成概念図である。スパッタ装置200は、準備室250、成膜室260および巻取室280を有し、成膜室260内に成膜ロール261が設けられている。成膜室260内には、成膜ロールの周方向に沿って、隔壁で区切られた複数のサブ成膜室210,220が設けられており、それぞれのサブ成膜室内にはカソード214,224が設けられている。カソード214,224には、成膜ロール261に対面するように、ターゲット213,223が配置される。図2では、1つの成膜ロールの周りに2つのサブ成膜室が設けられた形態が図示されているが、成膜ロールの周方向に沿って3つ以上のサブ成膜室が設けられていてもよい。
図2に示すスパッタ装置を用いた調光フィルムの製造方法の一形態では、準備室250内の巻出しロール251に、長尺フィルム基板の巻回体201がセットされる。巻出しロールから巻出されたフィルム基板は、成膜室260内の成膜ロール261上に搬送され、第一サブ成膜室210、第二サブ成膜室220へと順に導かれる。第一サブ成膜室210でフィルム基板上に調光層が成膜され、第二サブ成膜室220で調光層上に触媒層が成膜される。フィルム基板上に調光層および触媒層が形成された調光フィルムは、巻取室280へ導かれ、巻取りロール281で巻取られ、調光フィルムの巻回体208が得られる。
スパッタ装置200は、各ロールの駆動方向を逆転させることにより、ロール281側からロール251側へとフィルムを搬送可能に構成されていてもよい。例えば、ロール281にフィルム基板の巻回体201をセットし、ロール251側へフィルムを搬送しながら、成膜ロール261上で調光層および触媒層を成膜することもできる。
ロール251側からロール281側へフィルムを搬送しながら成膜ロール261上で調光層を成膜し、巻取りロール上で一旦フィルムを巻き取った後、ロール281側からロール251側へフィルムを搬送しながら成膜ロール261上で触媒層を成膜することもできる。このように、調光層と触媒層とを2パスで成膜する場合は、調光層の成膜条件と触媒層の成膜条件を個別に設定できるため、調光層の成膜後に大気開放を行わずに触媒層を成膜する場合でも、成膜条件の設定の自由度が高められる。ロールトゥロールスパッタ装置によるスパッタ成膜時の基板温度は、成膜ロールの設定温度である。1パス成膜により同一の成膜ロール上で調光層および触媒層が成膜される場合は調光層成膜時の基板温度と触媒層成膜時の基板温度が同一となるのに対して、2パス成膜の場合は、調光層成膜時の基板温度と触媒層成膜時の基板温度を個別に設定可能である。事前に複数のターゲットを装置内に配置しておけば、2パス、あるいは3パス以上で成膜を行う場合でも、途中で大気開放を行うことなく、フィルム基板上に調光層と触媒層とを成膜できる。
図3は、複数の成膜ロールを備えるロールトゥロールスパッタ装置の構成概念図である。スパッタ装置300は、準備室350と巻取室380との間に2つの成膜室360,370を有し、成膜室360,370内のそれぞれに、成膜ロール361,371、およびカソード314,324が設けられている。カソード314,324には、成膜ロール361,371に対面するように、ターゲット313,323が配置される。図3では、2つの成膜ロールを備える形態が図示されているが、スパッタ装置は3つ以上の成膜ロールを備えていてもよい。図4に示すように、各成膜室には、成膜ロールの周りに隔壁で区切られた複数のサブ成膜室が設けられ、各サブ成膜室内にカソードが設けられていてもよい。
図3に示すスパッタ装置を用いた調光フィルムの製造方法の一形態では、準備室350内の巻出しロール351から巻出されたフィルム基板が、第一成膜室360の第一成膜ロール361上に搬送され、フィルム基板上に調光層が成膜された後、第二成膜室370の第二成膜ロール371上に搬送され、調光層上に触媒層が成膜される。フィルム基板上に、調光層および触媒層が形成された調光フィルムは、巻取室380へ導かれ、巻取りロール381で巻取られ、調光フィルムの巻回体308が得られる。スパッタ装置300は、各ロールの駆動方向を逆転させることにより、ロール381側からロール351側へとフィルムを搬送可能に構成されていてもよい。
図3に示すように複数の成膜ロールを備えるスパッタ装置を用いる場合、それぞれの成膜ロールの温度を個別に設定可能である。そのため、調光層と触媒層とを1パスで成膜する場合でも、調光層成膜時の基板温度と触媒層成膜時の基板温度とを個別に設定できる。調光層および触媒層の成膜時の基板温度は特に制限されないが、フィルム基板の脆化や熱変形等を抑制する観点から、−20℃〜180℃が好ましい。
図4は、複数の成膜ロールを備え、各成膜ロールの周りに複数のターゲットを配置可能に構成されたロールトゥロールスパッタ装置の構成概念図である。スパッタ装置400は、2つの成膜室460,470を有し、成膜室460,470内のそれぞれに、成膜ロール461,471が設けられている。各成膜室460,470内には、成膜ロールの周方向に沿って、隔壁で区切られた複数のサブ成膜室410,420,430,440が設けられており、それぞれのサブ成膜室内にはカソード414,424,434,444設けられている。各カソードには、成膜ロール461,471に対面するように、ターゲット413,423,433,443が配置される。図4に示すスパッタ装置を用いた調光フィルムの製造方法の一形態では、準備室450内の巻出しロール451からフィルム基板を巻き出して走行させながら、第一成膜室460および第二成膜室470で、調光層および触媒層が順次成膜される。
調光層および触媒層は、複数のカソードを用い、膜厚方向に分割成膜してもよい。例えば、図4のスパッタ装置を用いる場合、第一成膜室の2つのカソード414,424のそれぞれに、調光層成膜用のターゲット413,423を配置することにより、調光層を膜厚方向に2分割して成膜できる。第一成膜室460で調光層の膜厚の一部を成膜後、第二成膜室470で調光層の膜厚の残部および触媒層の成膜が行われてもよい。また、第一成膜室および第二成膜室のいずれか一方で調光層および触媒層を成膜し、他方の成膜室で下地層や表面層の成膜が行われてもよい。1つの成膜ロールに沿って3以上のカソードが配置されている場合や、3つ以上の成膜ロールを備えるスパッタ装置を用いる場合は、さらに成膜のバリエーションが拡げられる。
ロールトゥロールスパッタによる調光層および触媒層の成膜に際しては、スパッタ装置内にロール状のフィルム基板を装填後、成膜の開始前にスパッタ装置内を排気して、装置内の水分や、フィルム基板から発生する水分、酸素および有機ガス等の不純物を取り除いた雰囲気とすることが好ましい。事前に装置内およびフィルム基板内のガスを除去することにより、調光層30への酸素や水分等の取り込みに起因する酸化を抑制できる。
長尺状のフィルム基板を用いるロールトゥロールスパッタでは、ガラスや枚葉フィルム上へのスパッタに比して、スパッタ装置の真空槽内に装填される基板の量(体積)が大きいため、基板の水分等が脱ガスされにくく、スパッタ成膜時の基板からのアウトガス量が多くなる傾向がある。基板からの水分等は、調光層を酸化し、調光性能を低下させる原因となり得る。そのため、ロールトゥロールスパッタによる調光層の成膜では、スパッタ成膜開始前(プロセスガス導入前)のスパッタ装置内の圧力(到達真空度)をできる限り低圧とすることが好ましい。スパッタ成膜開始前の装置内の圧力は、例えば、1×10−2Pa以下であり、5×10−3Pa以下が好ましく、1×10−3Pa以下がより好ましく、5×10−4Pa以下がさらに好ましく、5×10−5Pa以下が特に好ましい。スパッタ装置内を減圧後、スパッタ成膜開始前に、長尺状のフィルム基板を真空槽内で搬送して、フィルム基板中の水分等の脱ガスを行ってもよい。
<調光層の成膜>
調光層30の成膜には金属ターゲットが用いられる。調光層として合金層を成膜する場合、合金ターゲットを用いてもよく、複数の金属ターゲットを用いてもよい。また、エロージョン部分が所定の面積比となるように複数の金属板がバッキングプレート上に配置・ボンディングされたーゲット(分割ターゲット)を用いて合金層を形成することもできる。複数の金属ターゲットを用いる場合、各ターゲットへの印加電力を調整することにより、所望の組成の合金層を形成できる。不活性ガスを導入しながら調光層の成膜が行われる。
スパッタにより形成される金属酸化物は緻密な膜となりやすいため、調光層30の成膜初期に形成される酸化領域31は、フィルム基板10からのアウトガスをブロックする作用を有する。すなわち、調光層30のフィルム基板10との界面側の酸化領域31を犠牲層として機能させることにより、触媒層40側に位置する調光領域32の酸化を抑制し、高い調光性能を維持できる。そのため、フィルム基板10上に接して調光層を成膜する場合は、フィルム基板10側に酸素含有量が50原子%以上の酸化領域31を有し、その上に酸素含有量が50原子%未満の調光領域32を有する調光層30が形成されることが好ましい。
調光層30が、フィルム基板10との界面側に酸化領域31を有する場合、その厚みは特に制限されない。酸化領域を連続被膜とする観点から、酸化領域31の厚みは2nm以上が好ましい。一方、酸化領域の厚みが過度に大きいと、生産性の低下、および調光性能の低下を生じる傾向があるため、酸化領域の厚みは100nm以下が好ましい。フィルム基板10上に接して調光層30を成膜する場合、酸化領域の厚みは、4〜80nmがより好ましく、6〜60nmがさらに好ましい。調光層成膜時の基板温度、ガス導入量、プロセス圧力、ターゲットの金属組成等を調整することにより、成膜初期に形成される酸化領域の厚みを制御できる。
調光層30の触媒層40側の界面付近の酸素含有量はできる限り小さいことが好ましい。具体的には、調光層30の触媒層40側界面から5nmの範囲内の酸素含有量は、50原子%未満が好ましく、45原子%以下がより好ましく、40原子%以下がさらに好ましい。調光層30の触媒層40側界面の酸素含有量を前記範囲とすることにより、触媒層40と調光層30との間の水素の移動が促進され、良好な調光性能を有する調光フィルムが得られる。また、調光層30の触媒層40側界面の酸素含有量が小さいほど、スイッチングの繰り返しに伴う素子の劣化が少なく、長期使用の耐久性に優れる調光フィルムが得られる。
調光層30における酸素含有量は、調光フィルムの表面側(触媒層40側)から基板側に向けて調光層をエッチングしながら、X線電子分光法(XPS)により元素濃度の膜厚方向分布(デプスプロファイル)を測定することにより求められる。デプスプロファイルにおけるエッチング深さ(nm)は、エッチング時間(分)に、SiOに対する標準エッチングレート(nm/分)を掛け合わせることにより算出される。得られたデプスプロファイルにおいて、調光層に隣接する層と調光層との間に位置し、調光層に隣接する層中に最も多く含まれる元素の濃度が最大値の半値となる位置を、調光層と隣接層との界面(調光層の始点および終点)とし、調光層の始点から酸素含有量が50原子%以上となる点までを調光領域32の厚み、酸素含有量が50原子%以上である領域の厚みを酸化領域31の厚みとする。
調光層30の膜厚は特に限定されないが、透明状態における光透過率と反射状態における光遮蔽率(反射率)とを両立する観点からは、10nm〜500nmが好ましく、15nm〜200nmがより好ましく、20nm〜100mがさらに好ましい。調光層の膜厚が過度に小さいと、反射状態における光反射率が低くなる傾向があり、調光層の膜厚が過度に大きいと、透明状態における光透過率が低くなる傾向がある。図5に示すように、調光層30の基板10側界面付近に酸素含有量が50原子%以上の酸化領域31が形成される場合は、酸素含有量が50原子%未満の調光領域32の膜厚が10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。
<触媒層の成膜>
調光層を成膜後、大気開放を行わずに、触媒層の成膜が行われる。触媒層の成膜には金属ターゲットが用いられる。触媒層は、不活性ガスを導入しながら成膜が行われる。触媒層の膜厚は、調光層の反応性、触媒層の触媒能力等により適宜設定可能であり、特に限定されないが、1〜30nmが好ましく、2〜20nmがより好ましい。触媒層の膜厚が過度に小さいと、水素化および脱水素化の触媒機能が十分に発現されない場合があり、触媒層の膜厚が過度に大きいと、光透過率が低下する傾向がある。
前述のように、調光層30の基板10側界面には酸化領域が形成されていてもよい。一方、調光層30の触媒層40側界面に酸化膜が形成されると、酸化膜により触媒層と調光層の間の水素の移動が妨げられる。特に、マグネシウムは酸素との結合力が高いため、マグネシウムを主成分とする調光層の触媒層側界面が酸化されると、触媒層側から水素を導入しても、調光層が水素化せず、調光性能を発揮できなくなる。
本発明においては、調光層を成膜後、大気開放を行わずに触媒層の成膜が行われることにより、調光層の成膜表面が大気に曝されないため、調光層30の触媒層40側界面の酸化を抑制できる。そのため、調光層がマグネシウム等の酸素との結合力の強い金属を主成分とする材料からなる場合でも、調光層30の触媒層40側の界面付近の酸素含有量を前述の範囲内とすることができ、調光層の水素化と脱水素化により透明状態と反射状態とをスイッチング可能な調光フィルムが得られる。
前述のように、フィルム搬送方向に沿って複数のターゲットを配置可能なロールトゥロールスパッタ装置を用いることにより、大気開放を行うことなく、調光層の成膜から触媒層の成膜までを連続して実施できる。
調光層が形成されたフィルム基板を一旦巻き取った後に、再びフィルムを走行させながら触媒層の成膜を行ってもよく、調光層を形成後にフィルム基板を巻き取ることなく、調光層と触媒層とを1パスで成膜してもよい。図3や図4に示すように複数の成膜ロールを備えるスパッタ装置を用い、調光層の成膜と触媒層の成膜とを別の成膜ロール上で実施すれば、調光層と触媒層とを異なる基板温度で1パス成膜することができる。
調光層の成膜表面の大気暴露以外に、調光層の成膜表面とフィルム基板との接触も、調光層の触媒層側界面の酸素含有量を増加させる原因となる場合がある。特に、ポリエステル等の酸素原子含有ポリマーからなるフィルム基板を用いる場合や、背面(調光層成膜面の反対側の面)にアクリルやエポキシ等の酸素原子を含むハードコート層が形成されたフィルム基板を用いる場合は、フィルム基板の背面と調光層の成膜表面との接触により成膜表面が酸化されやすくなると考えられる。調光層と触媒層とを1パスで成膜すれば、調光層の成膜表面とフィルム基板の背面とを接触させることなく、調光層上に触媒層が形成される。また、1パス成膜では、調光層を成膜後、その上に触媒層が成膜されるまでの時間が短く、スパッタ装置内での基板からのアウトガス等に起因する調光層の酸化を抑制できる。そのため、調光層と触媒層とを1パスで成膜することにより、調光層の触媒層側界面の酸化のさらなる抑制を期待できる。
前述の通り、ロールトゥロールスパッタでは、ガラスや枚葉フィルム上へのスパッタに比して、フィルム基板からのアウトガス量が多い傾向があり、調光層がマグネシウム等の酸素との結合力の強い金属元素を含む場合は、大気開放を行わない場合でも、真空槽内のフィルム基板からのアウトガス(酸化性ガス)により、基板上に成膜後の調光層が酸化される場合がある。そのため、調光層を成膜後、短時間で、調光層よりも耐酸化性の高い膜を調光層上に成膜することが好ましい。調光層よりも耐酸化性の高い膜の具体例には、触媒層や、後述のバッファー層および表面層等が含まれる。
調光層を成膜後、その上に触媒層等の耐酸化性の高い膜を成膜するまでの時間は、60分以内が好ましく、45分以内がより好ましく、30分以内がさらに好ましく、10分以内が特に好ましい。調光層を成膜後のフィルム基板を一旦巻き取った後に、再びフィルムを走行させながら触媒層の成膜を行う場合は、フィルム基板の巻取り後、フィルムの走行を再開するまでの時間を短くすることが好ましい。また、フィルム基板の長手方向に沿って、調光層の成膜後に触媒層が成膜されるまでの時間が異なるため、最初に調光層が成膜された部分(成膜開始時の基板巻回体の外周部)に触媒層が成膜されるまでの時間が60分以内となるようにフィルム基板の全長を調整することが好ましい。一方、調光層と触媒層とを1パスで成膜する場合は、調光層の成膜後に触媒層が成膜されるまでの時間がフィルム基板の長手方向に沿って一様であるため、フィルム基板の全長に制限がなく、ロールトゥロールによる調光フィルムの生産性を向上できる。調光層を成膜後、触媒層等を成膜するまでの時間の下限は特に限定されないが、一般には0.1秒以上である。
ロールトゥロールスパッタにより調光層および触媒層を成膜する際のフィルム基板の搬送速度は、例えば、0.5m/分以上であり、好ましくは1m/分以上であり、より好ましくは、2m/分以上である。フィルム基板の搬送速度を大きくすることにより、調光層を成膜後その上に触媒層を成膜するまでの時間が短縮され、真空槽内のフィルム基板からのアウトガス等に起因する調光層の酸化を抑制できる。フィルム基板の搬送速度の上限は、搬送性を維持できる範囲であれば特に限定されず、一般には100m/分以下である。
<他の付加層>
本発明の調光フィルムは、高分子フィルム基板10上に、調光層30および触媒層40以外の層を有していてもよい。例えば、図6に示すように、フィルム基板10と調光層30との間に下地層20を設けたり、調光層30と触媒層40との間にバッファー層50を設けてもよい。また、触媒層上に表面層70が設けられてもよい。
(下地層)
フィルム基板10上に下地層20を設けることにより、調光層30成膜時のフィルム基板10側界面の酸化を抑制できる場合がある。特に、フィルム基板10上に、下地層20として無機酸化物層が形成されることにより、フィルム基板10から発生する水分や酸素ガス等を遮断し、調光層30の酸化を抑制できる。
無機酸化物としては、例えば、Si,Ge,Sn,Pb,Al,Ga,In,Tl,As,Sb,Bi,Se,Te,Mg,Ca,Sr,Ba,Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zn,Cd等の金属元素あるいは半金属元素の酸化物が好ましく用いられる。無機酸化物層は、複数種の(半)金属の混合酸化物を含んでいてもよい。これらの中でも、光吸収が少なく、かつ酸素や水蒸気等のガス遮断性に優れることから、Si,Nb,Ti等の酸化物が好ましく用いられる。
フィルム基板からのガスに対する遮断性を持たせるためには、下地層20の膜厚は1nm以上が好ましい。一方、下地層の膜厚が過度に大きいと、下地層を構成する無機酸化物等の光吸収に起因する光透過率の低下を生じる傾向があるため、下地層の膜厚は200nm以下が好ましい。下地層20が、フィルム基板からのガスに対する遮断性を有する場合は、調光層の成膜初期の酸化領域の形成が抑制される。また、酸化領域が形成されない場合や、酸化領域の厚みが小さい場合でも、下地層20によりフィルム基板10からのアウトガスがブロックされるため、フィルム基板からのアウトガスに起因する調光層30の酸化を抑制し、高い調光性能を維持できる。
フィルム基板と調光層との間に下地層を設ける場合、事前に下地層が形成されたフィルム基板を用いてもよく、調光層の成膜と同一パスで、調光層の成膜直前に、スパッタ法により下地層を設けてもよい。スパッタ法により無機酸化物の下地層を成膜する場合、金属ターゲットまたは酸化物ターゲットが用いられる。金属ターゲットが用いられる場合は、アルゴン等の不活性ガスに加えて、反応性ガス(例えば、酸素)を導入しながらスパッタ成膜が行われる。酸化物ターゲットが用いられる場合は、アルゴン等の不活性ガスを導入しながら成膜が行われる。酸化物ターゲットが用いられる場合も、必要に応じて反応性ガスを導入しながら成膜が行われてもよい。
(バッファー層)
調光層30と触媒層40との間にバッファー層50が設けられる場合、バッファー層50は、水素を透過可能なものが好ましい。バッファー層は1層のみからなるものでもよく、複数の層を含んでいてもよい。例えば、バッファー層50は、調光層30からの金属のマイグレーション抑制機能を有する層と、触媒層40側から調光層30への酸素の透過を抑制する層との積層構成でもよい。
バッファー層50として、調光層30と触媒層40との間に、Ti,Nb,Vあるいはこれらの金属の合金等からなる金属薄膜を設けることにより、調光層から触媒層へのマグネシウム等のマイグレーションが抑制されるとともに、脱水素化による透明状態から反射状態へのスイッチング速度が大きくなる傾向がある。
バッファー層50としてW,Ta,Hfあるいはこれらの金属の合金等からなる金属薄膜を設けることにより、触媒層40側からの調光層30への酸素の透過を抑制して、調光層の酸化による劣化を抑制できる。また、バッファー層50として、調光層と同様の金属を含む金属薄膜を挿入することにより、触媒層40を透過する酸素と反応する犠牲層として機能させ、調光層30の酸化を抑制できる。このような犠牲層として作用するバッファー層は、酸素と可逆的に結合し、調光層30の水素化時(透明状態)には水素化されて光透過率が上昇することが好ましい。そのため、バッファー層としてマグネシウム合金を用いる場合は、金属元素全量に対するマグネシウムの含有量が50原子%未満であることが好ましい。
調光層30上へのバッファー層50の形成は、ロールトゥロールスパッタにより行われる。調光層30と触媒層40との間にバッファー層50を備える調光フィルムの製造においては、調光層30を形成後、大気開放を行うことなく、バッファー層50および触媒層40が連続して成膜される。バッファー層50の膜厚は、その目的等に応じて適宜設定可能であり、特に限定されないが、例えば、1〜200nmであり、好ましくは1〜30nmである。
(表面層)
触媒層40上に表面層70が設けられる場合、表面層70は水素を透過可能なものであればよい。表面層70は、水や酸素の透過を遮断し、調光層30の酸化を防止する機能を有することが好ましい。また、表面層70の光学膜厚を調整することにより、調光フィルム表面での光反射を低減し、透明状態における光透過率を高めることができる。
表面層70の材料としては、下地層を構成する無機酸化物層の材料として先に例示した(半)金属酸化物や、上記バッファー層の材料として例示した金属等を用いることができる。また、表面層70の材料として、ポリマー等の有機材料や、有機‐無機ハイブリッド材料等を用いることもできる。表面層70の材料として、フッ素系樹脂のように撥水性を有するものを用いれば、水や酸素による調光層30の酸化抑制機能をさらに高め、調光素子の耐久性を向上できる。
表面層70の膜厚は、その目的等に応じて適宜設定可能であり、特に限定されないが、例えば1nm〜50μm程度である。表面層は1層のみからなるものでもよく、複数の層を含んでいてもよい。例えば、屈折率の異なる複数の薄膜を積層し、各層の光学膜厚を調整することにより、反射防止性能を高め、透明状態における光透過率を高めることができる。また、有機層と無機層とを組み合わせることにより、耐久性向上を図ることもできる。
表面層70の形成方法は特に限定されない。触媒層40の成膜と連続して、ロールトゥロールスパッタにより表面層を成膜してもよく、触媒層を形成後、大気開放を行った後に表面層を形成してもよい。表面層の形成方法はスパッタ法に限定されない。表面層がポリマー等の有機材料や、有機‐無機ハイブリッド材料である場合は、スピンコート、ディップコート、グラビアコート、ダイコート等のウェット法により成膜が行われることが好ましい。表面層が無機材料である場合は、上記のコーティング法や、CBD法、めっき法等のウェット法を採用してもよく、真空蒸着法、電子ビーム蒸着法、CVD法等の、スパッタ法以外のドライプロセスを採用することもできる。
[調光素子]
本発明の調光フィルムは、調光層の水素化と脱水素化により光の透過状態と反射状態をスイッチング可能な水素活性型調光素子に用いることができる。調光層の水素化および脱水素化を行う方法は特に限定されず、例えば、調光フィルムを水素雰囲気に曝して調光層の水素化を行い、調光フィルムを酸素雰囲気(空気)に曝して調光層を脱水素化する方法(ガスクロミック方式);および液体の電解質(電解液)または固体の電解質を用いて、調光層30の水素化および脱水素化を行う方法(エレクトロクロミック方式)が挙げられる。中でも、大面積の調光層を短時間でスイッチングが可能であることから、ガスクロミック方式が好ましい。
本発明の調光フィルムは、そのまま調光素子として用いてもよく、ガラス等の透明部材や、半透明部材、不透明部材等と組み合わせて調光素子を形成してもよい。本発明の調光フィルムを、ガス充填室内に配置することにより、ガスクロミック方式の調光素子を形成することもできる。ガスクロミック調光素子としては、例えば、複数の透明部材の間隙をガス充填室として、当該ガス充填室内に調光フィルムを配置した構成が挙げられる。この調光素子は、ガス充填室内への水素の給排気により、調光層の水素化と脱水素化を行い、透明状態と反射状態を可逆的にスイッチング可能である。
調光層は、水素化および脱水素化により体積が変化し、これに伴って膜界面に応力が生じる。可撓性のフィルム基板上に調光層が設けられた調光フィルムでは、調光層のフィルム基板側の膜界面の応力に起因して、フィルムの反りや膜剥がれが生じる場合がある。本発明においては、低熱収縮率のフィルム基板を用いることにより、調光層の水素の吸蔵および離脱に起因して体積変化生じた場合でも、界面の応力が緩和され、調光フィルムの反りや膜剥がれを抑制できる。
本発明の調光フィルムを用いた調光素子は、建物や乗り物の窓ガラスや、プライバシー保護を目的とした遮蔽物、各種の装飾物、照明機器、娯楽道具等に適用できる。本発明の調光フィルムは、フレキシブル基板を用いているため、加工が容易であり、曲面への適用も可能であるため、汎用性に優れる。
以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
実施例1では、第一成膜ロールを備える第一成膜室および第二成膜ロールを備える第二成膜室の2つの成膜室を有するロールトゥロールスパッタ装置を用いて、透明フィルム基板上に、Mg−Y調光層およびPd触媒層を形成した。スパッタ装置の第一成膜ロールに対面するようにMg−Yターゲットを配置し、第二成膜ロールに対面するようにPdターゲットを配置した。Mg−Yターゲットとしては、Mg金属板とY金属板とを、エロ―ジョン部の面積比2:5で有するMg−Y分割ターゲット(レアメタリック社製)を用いた。Pdターゲットとしては、Pd金属ターゲット(田中貴金属社製)を用いた。
スパッタ装置の巻出しロールに、厚み188μmのポリエチレンテレフタレート(PET)フィルム(三菱樹脂社製、MDの熱収縮率2%)のロールをセットし、各成膜室の到達真空度が5×10−3Paとなるまで排気した。スパッタリングガスを導入しない状態で、スパッタ装置内でPETフィルムを搬送したところ、PETフィルムに含まれる残存ガスの放出により、第一成膜室内の圧力が4×10−2Paまで上昇した。
スパッタ装置内の各成膜室に、プロセス圧力が0.4Paとなるようにアルゴンを導入し、巻出しロールからPETフィルムを巻き出して装置内を3m/分で走行させながら、DCスパッタにより、第一成膜ロール上でMg−Y合金からなる調光層(膜厚43nm)、および第二成膜ロール上でPdからなる触媒層(膜厚10nm)を続けて成膜し、巻取りロールでPETフィルムを巻き取った。調光層および触媒層成膜時の基板温度(第一成膜ロールおよび第二成膜ロールの温度)はいずれも−5℃であり、調光層を成膜後、調光層上に触媒層が形成されるまでに要した時間(インターバル)は5分であった。
[実施例2,3]
実施例2および実施例3では、実施例1と同一のロールトゥロールスパッタ装置を用い、第一成膜ロールに対面するようにPdターゲットを、第二成膜ロールに対面するようにMg−Yターゲットを配置して、透明フィルム基板上に、Mg−Y調光層およびPd触媒層を形成した。した。スパッタ装置の巻出しロールに、厚み188μmのPETフィルムのロールをセットし、巻出しロールからPETフィルムを繰り出して装置内を1m/分で走行させ、第一成膜ロールに対面するカソードからの放電をオフにして、第二成膜ロール上でDCスパッタによりMg‐Y合金からなる調光層を成膜し、巻取りロールでフィルムを巻き取った。その後、真空環境を維持した状態で、第二成膜ロールに対面するカソードからの放電をオフにして、第一成膜ロールに対面するカソードからの放電を開始し、巻取りロールからフィルムを繰り出して、第一成膜ロール上でDCスパッタによりPd層からなる触媒層を成膜し、繰り出しロールでフィルムを巻き取った。調光層および触媒層成膜時の基板温度はいずれも−5℃とした。フィルム基材の長手方向の異なる2点をサンプリングし、それぞれ実施例2および実施例3とした。調光層形成と触媒層形成のインターバルは、実施例2が25分、実施例3が60分であった。
[比較例1]
比較例1では、実施例1と同様のロールトゥロールスパッタ装置を用い、第一成膜室のみを利用して、PETフィルム上にMg−Y調光層およびPd触媒層を形成した。スパッタ装置の第一成膜ロールに対面するようにMg−Yターゲットを配置し、第二成膜ロールに対面する位置にはターゲットを配置しなかった。
スパッタ装置の巻出しロールに、厚み188μmのPETフィルムのロールをセットし、実施例1と同様の条件で、巻出しロールからPETフィルムを繰り出して装置内を走行させながら、第一成膜ロール上でDCスパッタによりMg−Y合金からなる調光層を成膜し、第二成膜ロール上では成膜を行わずに、巻取りロールでフィルムを巻き取った。
PETフィルム上にMg−Y合金層を成膜後、真空を破って大気開放を行い、スパッタ装置内を常圧として、第一成膜ロールに対面して配置されたターゲットを、Mg−YターゲットからPdターゲットに交換した。その後、Mg−Y層が形成されたPETフィルムを、巻取りロール側から繰出して装置内を走行させながら、第一成膜ロール上でDCスパッタによりPd層を成膜し、繰出しロールでフィルムを巻き取った。なお、調光層および触媒層形成時の基板温度は−5℃、調光層形成と触媒層形成のインターバルは180分(大気解放時間を含む)であった。
[調光層の酸素含有量の測定]
Arイオンエッチング銃を備える走査型X線光電子分光装置(「Quantum2000」、アルバック・ファイ社製)を用いて、デプスプロファイル測定を行い、調光層の酸素濃度分布を求めた。なお、デプスプロファイルの解析においては、触媒層と調光層との間に位置し、かつ、Pd元素濃度が触媒層内のPd元素濃度の最大値の半値となる位置を、触媒層と調光層との界面(調光層の始点)と定義した。デプスプロファイルにおける膜厚(深さ)は、珪素酸化物層のArイオンエッチングレートを基準として、エッチング時間を深さに換算することにより算出した。触媒層と調光層との界面から5nmの範囲の調光層の酸素濃度の最大値を、調光層の酸素量とした。
[調光性能の評価]
実施例および比較例の調光フィルムは、いずれも金属光沢の反射状態であった。調光フィルムを、アルゴンで1体積%に希釈した1気圧の水素ガス雰囲気下に曝すと、実施例1〜3の調光フィルムは、目視にて透明状態への変化が確認可能であり、調光性能を有していた。一方、比較例1の調光フィルムは、水素ガス雰囲気下に曝しても、透明状態に変化せず、調光性能を有していなかった。実施例1および実施例2では、実施例3に比べて水素ガス雰囲気下での透明性が高く、優れた調光性を有していた。
実施例および比較例の調光フィルムの製造条件(調光層形成後触媒層形成までの大気開放の有無およびインターバル)、ならびに調光フィルムの特性(調光層の酸素量および調光性)をまとめたもの表1に示す。
Figure 2017182062
上記の結果から、調光層を成膜後触媒層の成膜前に大気開放を行った比較例1では、調光層の酸化により調光層の水素吸蔵能力が低下したために、調光性を有していなかったことが分かる。一方、実施例1〜3では、調光層を成膜後、大気開放を行わずに触媒層を成膜することにより、調光層の成膜表面の酸化が抑制され、調光層の水素化と脱水素化により透明状態と反射状態とをスイッチング可能な調光フィルムが得られることが分かる。
実施例1〜3の対比から、調光層の成膜表面に他の層(触媒層)を成膜するまでの時間を短くすることにより、調光層の酸化がさらに抑制され、調光性を向上できることが分かる。ロールトゥロールスパッタにより、長手方向に均一な特性を有する調光フィルムを作製するためには、実施例1のように、調光層とその上に設けられる触媒層とを1パスで成膜することにより、調光層の成膜から触媒層の成膜までの時間を、フィルム基板の長手方向で一定とすることが好ましいことが分かる。
1,2,3 調光フィルム
10 高分子フィルム基板
30 調光層
31 酸化領域
32 調光領域
40 触媒層
20 下地層
50 バッファー層
70 表面層

Claims (4)

  1. 高分子フィルム基板上に、水素化による透明状態と脱水素化による反射状態との間で状態が可逆的に変化する調光層;および前記調光層における水素化および脱水素化を促進する触媒層、をこの順に備える調光フィルムを製造する方法であって、
    ロールトゥロールスパッタにより、フィルム基板上に、調光層および触媒層が成膜され、
    前記調光層の成膜から前記触媒層の成膜までが、大気開放を行うことなく連続して実施される、調光フィルムの製造方法。
  2. 前記調光層として、希土類金属、希土類金属とマグネシウムの合金、アルカリ土類金属とマグネシウムの合金、および遷移金属とマグネシウムの合金からなる群から選択される金属の薄膜が成膜される、請求項1に記載の調光フィルムの製造方法。
  3. 前記調光層の触媒層側界面から5nmの領域における酸素含有量が、50原子%未満である、請求項1又は2に記載の調光フィルムの製造方法。
  4. ロールトゥロールスパッタ装置の巻出しロールからフィルム基板を巻き出して走行させ、フィルム基板が巻取りロールで巻き取られるまでの間に、前記調光層の成膜および前記触媒層の成膜が実施される、請求項1〜3のいずれか1項に記載の調光フィルムの製造方法。
JP2017056183A 2016-03-25 2017-03-22 調光フィルムの製造方法 Pending JP2017182062A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780019696.4A CN108885380A (zh) 2016-03-25 2017-03-23 调光薄膜的制造方法
EP17770325.3A EP3435151A4 (en) 2016-03-25 2017-03-23 METHOD FOR PRODUCING LIGHT MODULATION FILM
KR1020187025067A KR20180122340A (ko) 2016-03-25 2017-03-23 조광 필름의 제조 방법
PCT/JP2017/011643 WO2017164285A1 (ja) 2016-03-25 2017-03-23 調光フィルムの製造方法
TW106109914A TW201736927A (zh) 2016-03-25 2017-03-24 調光膜之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062620 2016-03-25
JP2016062620 2016-03-25

Publications (1)

Publication Number Publication Date
JP2017182062A true JP2017182062A (ja) 2017-10-05

Family

ID=60004577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056183A Pending JP2017182062A (ja) 2016-03-25 2017-03-22 調光フィルムの製造方法

Country Status (5)

Country Link
EP (1) EP3435151A4 (ja)
JP (1) JP2017182062A (ja)
KR (1) KR20180122340A (ja)
CN (1) CN108885380A (ja)
TW (1) TW201736927A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176969A1 (ja) * 2018-03-16 2019-09-19 日東電工株式会社 ガスクロミック調光素子
WO2020158799A1 (ja) * 2019-01-30 2020-08-06 日東電工株式会社 調光フィルムおよびその製造方法
JPWO2019188736A1 (ja) * 2018-03-28 2021-04-08 日東電工株式会社 ガラスフィルムを含む調光素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005003A1 (en) * 2019-07-05 2021-01-14 Institutt For Energiteknikk Method for producing an oxyhydride-based photochromic device
EP3995447A4 (en) 2019-08-02 2024-02-28 Tokuyama Corporation SILICON CORE WIRE FOR DEPOSITION OF POLYCRYSTALLINE SILICON AND PRODUCTION METHOD THEREFOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026262A (ja) * 2012-06-20 2014-02-06 National Institute Of Advanced Industrial & Technology 反射型調光素子。
JP2015074810A (ja) * 2013-10-10 2015-04-20 日東電工株式会社 スパッタ装置およびスパッタ装置のフィルムロールの交換方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129863A (ja) * 1997-07-10 1999-02-02 Canon Inc 堆積膜製造方法
US7976899B2 (en) * 2006-10-23 2011-07-12 General Electric Company Methods for selective deposition of graded materials on continuously fed objects
JP5789357B2 (ja) * 2010-04-14 2015-10-07 株式会社アツミテック 水素センサ
JP6096126B2 (ja) * 2011-01-27 2017-03-15 ヴィトリフレックス・インコーポレーテッド 無機多層積層体並びにそれに関連する方法及び構成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026262A (ja) * 2012-06-20 2014-02-06 National Institute Of Advanced Industrial & Technology 反射型調光素子。
JP2015074810A (ja) * 2013-10-10 2015-04-20 日東電工株式会社 スパッタ装置およびスパッタ装置のフィルムロールの交換方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉村 和記: "調光ミラーガラス窓 〜テクノロジーにより快適な省エネルギー住生活空間を求める〜", NANOTECHJAPAN BULLETIN, vol. Vol.6, No.4, 2013, JPN6021000783, ISSN: 0004562450 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176969A1 (ja) * 2018-03-16 2019-09-19 日東電工株式会社 ガスクロミック調光素子
US20200401010A1 (en) * 2018-03-16 2020-12-24 Nitto Denko Corporation Gaschromic light control element
JPWO2019176969A1 (ja) * 2018-03-16 2021-03-11 日東電工株式会社 ガスクロミック調光素子
JPWO2019188736A1 (ja) * 2018-03-28 2021-04-08 日東電工株式会社 ガラスフィルムを含む調光素子
JP7274458B2 (ja) 2018-03-28 2023-05-16 日東電工株式会社 ガラスフィルムを含む調光素子
WO2020158799A1 (ja) * 2019-01-30 2020-08-06 日東電工株式会社 調光フィルムおよびその製造方法
JPWO2020158799A1 (ja) * 2019-01-30 2021-02-18 日東電工株式会社 調光フィルムおよびその製造方法

Also Published As

Publication number Publication date
EP3435151A4 (en) 2019-10-02
CN108885380A (zh) 2018-11-23
EP3435151A1 (en) 2019-01-30
KR20180122340A (ko) 2018-11-12
TW201736927A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
JP2017182062A (ja) 調光フィルムの製造方法
CN107615157B (zh) 调光薄膜及其制造方法、以及调光元件
JP6057255B2 (ja) 反射型調光素子。
US10514560B2 (en) Light-modulating film and method for producing same, and light-modulating element
WO2019176969A1 (ja) ガスクロミック調光素子
WO2016186130A1 (ja) 調光フィルムおよびその製造方法、ならびに調光素子
WO2016190284A1 (ja) ガスバリア性フィルムおよびその製造方法
TW201708610A (zh) 於製造可撓性有機-無機層合物之方法
WO2017164285A1 (ja) 調光フィルムの製造方法
WO2016186131A1 (ja) 調光フィルムおよびその製造方法、ならびに調光素子
US20220066273A1 (en) Light control film and manufacturing method thereof
WO2017090605A1 (ja) ガスバリアー性フィルム及び電子デバイス
JP2020142441A (ja) 機能性フィルムおよびその製造方法
JP2019010735A (ja) ガスバリアー性フィルム及び電子デバイス
JP2000045063A (ja) 透明導電薄膜付きフィルムおよびその製造方法
KR101719520B1 (ko) 탄화불소 박막을 포함하는 다층 배리어 필름 및 이의 제조방법
WO2017090579A1 (ja) 積層型ガスバリアー性フィルム及び電子デバイス
WO2017163577A1 (ja) 積層体の製造方法
WO2016136843A1 (ja) ガスバリア性フィルムおよび該ガスバリア性フィルムを用いた電子デバイス
JP2017094570A (ja) ガスバリアー性フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803