RU2569460C2 - Инсектицидные белковые комбинации, содержащие cry1ab и cry2aa, для регулирования кукурузного мотылька и способы борьбы с устойчивостью насекомых - Google Patents

Инсектицидные белковые комбинации, содержащие cry1ab и cry2aa, для регулирования кукурузного мотылька и способы борьбы с устойчивостью насекомых Download PDF

Info

Publication number
RU2569460C2
RU2569460C2 RU2012129899/10A RU2012129899A RU2569460C2 RU 2569460 C2 RU2569460 C2 RU 2569460C2 RU 2012129899/10 A RU2012129899/10 A RU 2012129899/10A RU 2012129899 A RU2012129899 A RU 2012129899A RU 2569460 C2 RU2569460 C2 RU 2569460C2
Authority
RU
Russia
Prior art keywords
plants
protein
seeds
transgenic
cry2aa
Prior art date
Application number
RU2012129899/10A
Other languages
English (en)
Other versions
RU2012129899A (ru
Inventor
Томас МИД
Кеннет НАРВА
Николас П. СТОРЕР
Джоэл Дж. ШИТС
Аарон Т. ВУСЛИ
Стефани Л. БЕРТОН
Original Assignee
ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи filed Critical ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи
Publication of RU2012129899A publication Critical patent/RU2012129899A/ru
Application granted granted Critical
Publication of RU2569460C2 publication Critical patent/RU2569460C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

Изобретение относится к области биохимии, в частности к трансгенному растению кукурузы, которое обладает устойчивостью к насекомым-вредителям европейским кукурузным мотылькам, а также к его семени. Раскрыто множество растений кукурузы на поле, включающее не содержащие Bacillus thuringiensis (не содержащие Bt) растения, которые не экспрессируют трансгенные инсектицидные белки, и множество трансгенных растений, которые обладают устойчивостью к насекомым-вредителям европейским кукурузным мотылькам, а также раскрыта смесь семян кукурузы, включающая семена от не содержащих Bt растений, которые не экспрессируют трансгенные инсектицидные белки, и множество семян, содержащих ДНК, кодирующую инсектицидный белок Cry1Ab, и ДНК, кодирующую инсектицидный белок Cry2Аа. Также раскрыт способ снижения развития устойчивости к белку Cry1Ab или белку Cry2Аа у насекомых европейских кукурузных мотыльков. Изобретение позволяет эффективно бороться с насекомыми-вредителями европейским кукурузным мотыльком. 5 н. и 14 з.п. ф-лы, 1 ил., 4 пр.

Description

Предпосылки изобретения
Люди выращивают кукурузу с целью получения продуктов питания и энергии. Насекомые поедают и повреждают растения кукурузы и тем самым подрывают эти усилия человека.
Современный трансгенный контроль этих вредителей в растении достигается за счет экспрессии в растении гена кристаллического (Cry) дельта-эндотоксина, кодирующего белок Cry1Fa Bacillus thuringiensis. Cry1Fa представляет собой белковый токсин, в настоящее время присутствующий в трансгенных семенах кукурузы марки HerculexTM Dow AgroSciences (Herculex, Herculex-Extra, и Herculex-RW), которые устойчивы к насекомым-вредителям FAW и ECB. Этот белок действует путем связывания со специфическим рецептором(ами), расположенным в кишечнике насекомых, и образует поры в клетках кишечника. Формирование этих пор мешает насекомым регулировать осмотический баланс, что приводит к их гибели.
Тем не менее, существует некоторое опасение, что насекомые могут быть в состоянии вырабатывать устойчивость к действию Cry1Fa благодаря генетическим изменениям рецепторов в своем кишечнике, которые связывают Cry1Fa. Насекомые, которые продуцируют рецепторы с пониженной способностью связывать Cry1Fa, могут быть устойчивы к активности Cry1Fa и поэтому выживать на растениях, которые экспрессируют этот белок.
С одним Cry-токсином, постоянно присутствующим в растении в условиях его роста, существует опасение, что насекомые могут приобрести устойчивость к активности этого белка благодаря генетическим изменениям рецептора, который связывается с токсином Cry1Fa в кишечнике насекомых. Уменьшение связывания токсина из-за этих изменений рецептора приведет к снижению токсичности Cry1Fa, возможно, ведущей в конечном итоге к снижению эффективности белка при экспрессии в сельскохозяйственной культуре.
КРАТКОЕ ОПИСАНИЕ
Настоящее изобретение относится, в частности, к комплектованию белка Cry1Ab и белка Cry2Aa, чтобы сделать растения (в частности, зерновые и кукурузу) более устойчивыми и менее подверженными тому, чтобы дать возможность развиваться насекомым, которые устойчивы к активности какого-либо из этих двух токсинов. Эти комплекты можно применять специфически против европейского кукурузного мотылька (ECB).
ПОДРОБНОЕ ОПИСАНИЕ
Настоящее изобретение относится, в частности, к комплектованию инсектицидного белка Cry1Ab и инсектицидного белка Cry2Aa, чтобы сделать растения (в частности, зерновые и кукурузу) более устойчивыми и менее подверженными тому, чтобы дать возможность развиваться насекомым, которые устойчивы к активности какого-либо из этих двух токсинов. Эти комплекты можно применять специфически против европейского кукурузного мотылька (ECB; Ostrinia nubilalis).
Настоящее изобретение также относится, в частности, к тройным комплектам или «пирамидам» из трех (или более) белковых токсинов, с белком Cry1Ab и белком Cry2Aa, составляющими основную пару. (Под «раздельными участками воздействия» подразумевается, что любой из данных белков не вызывает перекрестной устойчивости друг с другом). Добавление третьего белка, который нацелен против ECB, может обеспечить белок с третьим участком воздействия против ECB. В некоторых предпочтительных вариантах осуществления, третий белок может быть выбран из группы, состоящей из DIG-3 (смотри US 2010-00269223), Cry1I, Cry1Be, Cry2Aa и Cry1Fa. Смотри, например, USSN 61/284278, поданную 16 декабря 2009 года. Смотри также US 2008-0311096.
Таким образом, в некоторых предпочтительных вариантах осуществления выбранные токсины обладают тремя раздельными участками воздействия против ECB. Опять же, предпочтительные «многоуровневые» комбинации представляют собой пару белков плюс третий IRM-белок по изобретению.
Пары и/или тройные комплекты (активные в отношении ECB) по изобретению также можно комбинировать с дополнительными белками - для нацеливания, например, против травяной совки (FAW). Такие белки могут включать, например, Vip3, Cry1C, Cry1D и/или Cry1E. CryBe и/или Cry1Fa может также применять для нацеливания против FAW и ECB.
Для получения последовательностей любых генов и белков, раскрытых или упомянутых в настоящем документе, можно использовать GENBANK. Смотри Приложение А.
Настоящее изобретение также относится к трем инсектицидным белкам (белки Cry в некоторых предпочтительных вариантах осуществления), которые активны в отношении отдельных вредителей-мишеней, но не приводят к перекрестной устойчивости друг против друга.
Растения (и участок, засаженный этими растениями), которые продуцируют эти три (как минимум) токсина, включены в область охвата настоящего изобретения. Можно также добавить дополнительные токсины/гены, но эти специфические тройные комплекты, в соответствии с настоящим изобретением, могли бы выгодно и неожиданно обеспечить три участка воздействия против ECB.
Пары или тройные комплекты (и/или комбинации дополнительных белков) по настоящему изобретению могут помочь уменьшить или ликвидировать требования для рефугийного участка (например, менее 40%, менее 20%, меньше чем 10%, менее 5%, или даже 0% рефугия). Поэтому засеянное таким образом поле площадью более 10 акров включено в настоящее изобретение. Полинуклеотид(ы) по изобретению, предпочтительно, находится в генетической конструкции под контролем промотора(ов), отличного от промотора(ов) Bacillus thuringiensis. Полинуклеотиды по изобретению могут содержать кодоны для увеличения экспрессии в растении.
Для того чтобы противодействовать способности насекомых вырабатывать устойчивость к белку Cry, авторы идентифицировали Cry-токсины, которые неконкурентно связываются с белковыми рецепторами в пищеварительной системе ECB. Было обнаружено, что Cry1Ab не вытесняет Cry2Aa, связанный с рецепторами, расположенными в кишечнике личинок насекомого ECB.
Авторы обнаружили, что Cry2Aa и Cry1Ab являются токсичными для личинок ECB, но все же они не в полной мере взаимодействуют с одним и тем же рецепторным участком(ами); это показывает, что их токсичность не будет подвергаться перекрестной устойчивости в ECB.
Таким образом, насекомые с развившейся устойчивостью к Cry1Ab будут по-прежнему чувствительны к токсичности Cry2Aa-белков, например, тех, которые связываются с альтернативными рецепторными участками. Авторы получили биохимические данные, которые подтверждают это. Комбинация этих белков, экспрессированных в трансгенных растениях, обеспечивает полезный и ценный механизм снижения вероятности развития устойчивости насекомых в поле и, таким образом, приводит к снижению требований для рефугиев. Данные, описанные в настоящем документе ниже, демонстрируют, что Cry2Aa-белок взаимодействует с отдельным по сравнению с Cry1Ab участком(ами)-мишенью в кишечнике насекомого, и поэтому может стать отличным партнером по комплектации.
Если устойчивость наступала благодаря изменениям в аффинности рецепторов кишечника насекомого, которые связываются с Cry-токсинами, изменения должны были произойти по крайней мере в двух различных рецепторах одновременно, чтобы дать возможность насекомым выжить на растениях, экспрессирующих несколько белков. Вероятность такого события крайне мала, что увеличивает, таким образом, устойчивость трансгенного продукта к защите от насекомых, обладающих способностью развития толерантности к белкам.
Авторы метили белок Cry1Ab радиоактивным йодом и использовали способы анализа радиорецепторного связывания для определения их связывания с предполагаемыми рецепторными белками, расположенными в мембранах кишечника насекомого. Мембраны кишечника подготавливали как мембранные везикулы щеточной каймы (BBMV) способом Волферсбергера. Иодирование токсинов проводили с использованием либо Iodo-Beads или обработанных пробирок Iodo-gen от Pierce Chemicals. Удельная активность радиоактивно меченного токсина составляла приблизительно 1-4 мкКи/мкг белка. Исследования по связыванию проводили, в основном, при помощи методики Лян (1995).
Данные, представленные в настоящем документе, показывают, что токсины воздействуют на отдельный по сравнению с Cry1Ab участок-мишень в кишечнике насекомых и, таким образом, могли бы стать отличными партнерами по комплектации.
Настоящее изобретение можно применять с множеством растений. Примеры включают зерновые (кукурузу), сою и хлопок.
Гены и токсины, пригодные в соответствии с настоящим изобретением, включают не только раскрытые полноразмерные последовательности, но также фрагменты этих последовательностей, варианты, мутанты и слитые белки, которые сохраняют характерную пестицидную активность токсинов, специфически представленных в настоящем документе. Как используется в настоящем документе, термины «варианты» или «вариации» генов относятся к нуклеотидным последовательностям, которые кодируют те же токсины или которые кодируют эквивалентные токсины, обладающие пестицидными активностями. Как используется в настоящем документе, термин «эквивалентные токсины» относится к токсинам, обладающим такой же или, по существу, такой же биологической активностью в отношении вредителей-мишеней, что и заявленные токсины.
Как используется в настоящем документе, границы составляют приблизительно 95% (например, Cry1Ab и Cry2Aa), 78% (например, Cry1A и Cry2A) и 45% (Cry1 и Cry2) идентичности последовательностей, согласно «Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins», N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D.H. Dean. Microbiology and Molecular Biology Reviews (1998) Vol 62: 807-813. Эти уровни можно также применять только для основных белков.
Фрагменты и эквиваленты, которые сохраняют пестицидную активность типичных токсинов, находятся в границах настоящего изобретения. Кроме того, в силу вырожденности генетического кода множество последовательностей ДНК могут кодировать аминокислотные последовательности, раскрытые в настоящем документе. Это находится в пределах компетенции специалиста в области создания таких альтернативных последовательностей ДНК, кодирующих такие же или, по существу, такие же токсины. Эти варианты последовательностей ДНК находятся в рамках настоящего изобретения. Как используется в настоящем документе, ссылка на «по существу, такая же» последовательность относится к последовательностям, которые имеют аминокислотные замены, делеции, добавления или вставки, которые существенно не влияют на пестицидную активность. Фрагменты генов, кодирующих белки, которые сохранили пестицидную активность, также включены в это определение.
Еще одним способом идентификации генов, кодирующих токсины, и частей генов, полезных в соответствии с настоящим изобретением, является способ с использованием олигонуклеотидных зондов. Эти зонды являются детектируемыми нуклеотидными последовательностями. Эти последовательности можно определить посредством соответствующей метки или можно сделать флуоресцентными по своей природе, как описано в Международной заявке No. WO93/16094. Как известно в данной области, если молекула зонда и образец нуклеиновой кислоты гибридизуются, образуя прочную связь между двумя молекулами, можно резонно предположить, что зонд и образец имеют значительную гомологию. Предпочтительно, гибридизация проводится в жестких условиях при помощи способов, известных в данной области, как описано, например, в Keller, G. H., M. M. Manak (1987) DNA Probes, Stockton Press, New York, N.Y., pp. 169-170. Далее представлены некоторые примеры концентраций соли и температурных условий (в порядке увеличения жесткости): 2X SSPE или SSC при комнатной температуре; 1X SSPE или SSC при 42ºC; 0,1X SSPE или SSC при 42ºC; 0,1X SSPE или SSC при 65ºC. Детектирование зонда предоставляет средства для определения известным способом, произошла ли гибридизация. Такой зондовый анализ предоставляет быстрый способ определения генов, кодирующих токсин, по настоящему изобретению. Нуклеотидные сегменты, которые используются в качестве зондов в соответствии с изобретением, могут быть синтезированы с использованием ДНК-синтезатора и стандартных процедур. Эти нуклеотидные последовательности можно также использовать в качестве ПЦР-праймеров, чтобы амплифицировать гены по настоящему изобретению.
Определенные белки по настоящему изобретению подробно рассмотрены в настоящем изобретении. Поскольку эти белки являются просто типичными белками по изобретению, то должно быть очевидно, что настоящее изобретение включает вариантные или эквивалентные белки (и нуклеотидные последовательности, кодирующие эквивалентные белки) с пестицидной активностью, такой же или сходной с пестицидной активностью типичного белка. Эквивалентные белки должны иметь аминокислотную гомологию с типичным белком. Эта аминокислотная идентичность, как правило, должна быть больше чем 75%, больше чем 90% и может быть больше чем 91, 92, 93, 94, 95, 96, 97, 98 или 99%. Аминокислотная идентичность будет наиболее высокой в критических областях белка, которые ответственны за биологическую активность или вовлечены в установление пространственной конфигурации, которая, в конечном счете, отвечает за биологическую активность. При этом некоторые аминокислотные замены являются приемлемыми и можно ожидать, что эти замены находятся в областях, которые не являются критическими для активности или являются консервативными аминокислотными заменами, которые не влияют на трехмерную структуру молекулы. Например, аминокислоты можно отнести к следующим классам: неполярных, незаряженных полярных, основных и кислых аминокислот. Консервативные замены, при которых аминокислота одного класса заменяется другой аминокислотой того же типа, находятся в границах настоящего изобретения, при условии, что замена существенным образом не меняет биологической активности соединения. Ниже приведен список примеров аминокислот, принадлежащих к каждому классу. В некоторых случаях, также можно делать неконсервативные замены. Критическим фактором является то, что эти мутации не должны существенно уменьшать биологическую активность белка.
Класс аминокислот Примеры аминокислот
неполярные Ala, Val, Leu, Ile, Pro, Met, Phe, Trp
незаряженные полярные Gly, Ser, Thr, Cys, Tyr, Asn, Gln
кислые Asp, Glu
основные Lys, Arg, His
Трансформация растений. Предпочтительным рекомбинантным хозяином для продуцирования инсектицидных белков по настоящему изобретению является трансформированное растение. Гены, кодирующие белки Bt-токсина, как раскрыто в настоящем документе, могут быть встроены в клетки растений с использованием разнообразных способов, которые хорошо известны в данной области. Например, большое количество векторов для клонирования, содержащих систему репликации в Escherichia coli и маркер, который позволяет проводить селекцию трансформированных клеток, доступны для подготовки к введению чужеродных генов в высшие растения. Векторы включают, например, pBR322, серии pUC, серии M13mp, pACYC184, в частности. Соответственно, фрагмент ДНК, имеющий последовательность, кодирующую белок Bt-токсина, можно встраивать в вектор по подходящему сайту рестрикции. Полученную в результате плазмиду используют для трансформации в E. coli. Клетки E. coli культивируют в подходящей питательной среде, а затем собирают и лизируют. Плазмиду выделяют. Анализ последовательности, рестрикционный анализ, электрофорез и другие биохимические, молекулярно-биологические способы, как правило, проводят как способы анализа. После каждой манипуляции, используемую последовательность ДНК можно расщеплять и присоединять к следующей последовательности ДНК. Каждая плазмидная последовательность может быть клонирована в ту же или другие плазмиды. В зависимости от способа встраивания нужных генов в растение, могут быть необходимы другие последовательности ДНК. Если, например, для трансформации растительной клетки используется плазмида Ti и Ri, то, по крайней мере, правая граница, а часто, правая и левая границы Т-ДНК плазмиды Ti и Ri должны быть соединена как фланкирующая область генов, который следует вставить. Использование Т-ДНК для трансформации растительных клеток было интенсивно исследовано и достаточно описано в EP 120 516, Lee and Gelvin (2008), Hoekema (1985), Fraley et al., (1986), and An et al., (1985), и является принятым в данной области.
После того как встроенная ДНК была интегрирована в геном растения, она является относительно стабильной. Трансформационный вектор обычно содержит селективный маркер, который придает трансформированным клеткам растений устойчивость к биоциду или антибиотику, такому как Bialaphos, канамицин, G418, блеомицин или гигромицин, в частности. Индивидуально действующий маркер, соответственно, должен давать возможность селектировать трансформированные клетки, а не клетки, которые не содержат встроенной ДНК.
Для встраивания ДНК в растительную клетку-хозяин доступно большое количество способов. Эти способы включают в себя трансформацию Т-ДНК, используя Agrobacterium tumefaciens или Agrobacterium rhizogenes в качестве трансформационного агента, слияние, инъекции, биолистику (бомбардировка микрочастицами) или электропорацию, а также другие возможные способы. Если для трансформации используются Agrobacteria, предназначенную для встраивания ДНК необходимо клонировать в специальные плазмиды, а именно либо в промежуточный вектор, либо в бинарный вектор. Промежуточные векторы могут быть интегрированы в плазмиду Ti или Ri при помощи гомологичной рекомбинации благодаря последовательностям, гомологичным последовательностям в Т-ДНК. Плазмида Ti или Ri также содержит vir-область, необходимую для передачи Т-ДНК. Промежуточные векторы не могут самостоятельно реплицироваться в Agrobacteria. Промежуточные векторы можно передать в Agrobacterium tumefaciens посредством плазмиды-хелпера (конъюгация). Бинарные векторы могут самостоятельно реплицироваться как в E. coli, так и в Agrobacteria. Они содержат ген селективного маркера и линкер или полилинкер, который ограничен правой и левой граничными областями Т-ДНК. Они могут быть трансформированы непосредственно в Agrobacteria (Holsters et al., 1978). Agrobacterium, использованные в качестве клетки-хозяина, должны содержать плазмиду, несущую vir-область. Vir-область необходима для передачи Т-ДНК в клетки растений. Могут содержаться дополнительные Т-ДНК. Таким образом, трансформированные бактерии используются для трансформации клеток растений. Эксплантаты растений можно успешно выращивать с Agrobacterium tumefaciens или Agrobacterium rhizogenes для передачи ДНК в клетки растений. Целые растения затем можно регенерировать из инфицированного растительного материала (например, кусочки листьев, сегменты стебля, корней, а также протопласты или культивируемые в суспензии клетки) в подходящей среде, которая может содержать антибиотики или биоциды для селекции. Полученные таким образом растения затем можно проверить на наличие встроенной ДНК. В случае инъекции и электропорации никаких специальных манипуляций с плазмидами не осуществляют. Можно использовать исходные плазмиды, такие как, например, производные pUC.
Трансформированные клетки выращивают внутри растения обычным образом. Они могут образовывать половые клетки и передавать трансформированный признак(и) растениям-потомкам. Такие растения можно выращивать обычным образом и скрещивать с растениями, имеющими такие же трансформированные наследственные факторы или иные наследственные факторы. Полученные в результате гибридные особи обладают соответствующими фенотипическими свойствами.
В предпочтительном варианте осуществления настоящего изобретения, растения трансформируют генами, у которых коэффициент использования кодонов был оптимизирован для растений. Смотри, например, Патент США No. 5380831, который включен в настоящее описание посредством ссылки. Хотя некоторые укороченные токсины приведены в настоящем документе, в Bt-области известно, что токсины типа 130 кДа (полноразмерные) содержат N-концевую половину, которая представляет собой основной токсин, и C-концевую половину, которая представляет собой «хвост» протоксина. Таким образом, соответствующие «хвосты» можно использовать с укороченными/основными токсинами по настоящему изобретению. Смотри, например, Патент США No. 6218188 и Патент США No. 6673990. Кроме того, способы создания синтетических Bt-генов для использования в растениях известны в данной области (Stewart and Burgin, 2007). Одним неограничивающим примером предпочтительного трансформированного растения является плодовитое растение кукурузы, содержащее экспрессируемый в растении ген, кодирующий белок Cry1Da, а также содержащее второй экспрессируемый в растении ген, кодирующий белок Cry1Be.
Перенос (или интрогрессию) определяемого Cry1Da и Cry1Be признака(ов) в инбредные линии кукурузы можно достичь путем периодического отбора, селекции, например, при помощи обратного скрещивания. В этом случае, необходимый рекуррентный родитель сначала скрещивают с донорным инбредом (нерекуррентным родителем), который несет соответствующий ген(ы) для определяемых Cry1D- и Cry1C признаков. Затем проводят возвратное скрещивание потомства этого скрещивания с рекуррентным родителем с последующей селекцией в образуемом потомстве на желаемый признак(и), который передается от нерекуррентного родителя. После трех, предпочтительно четырех, более предпочтительно пяти или более поколений возвратных скрещиваний с рекуррентным родителем с селекцией на желаемый признак(и), потомство будет гетерозиготным по локусу, контролирующему передаваемый признак(и), но будет похоже на рекуррентного родителя по большинству или почти всем другим генам (смотри, например, Poehlman & Sleper (1995) Breeding Field Crops, 4th Ed., 172-175; Fehr (1987) Principles of Cultivar Development, Vol.1 : Theory and Technique, 360-376).
Стратегии борьбы с устойчивостью насекомых (IRM). Roush et al., например, описывает двухтоксинные стратегии, также называемые «пирамидированием» или «комплектованием», для агротехники инсектицидных трансгенных культур (The Royal Society. Phil. Trans. R. Soc. Lond. B. (1998) 353, 1777-1786).
На своем сайте Агентство по охране окружающей среды США (epa.gov/oppbppd1/biopesticides/pips/bt_corn_refuge_2006.htm) публикует следующие требования для обеспечения нетрансгенных (т.е., не содержащих B.t.) рефугиев (раздел Bt-несодержащих сельскохозяйственных культур и кукурузы) для использования с трансгенными сельскохозяйственными культурами, продуцирующими один Bt-белок, активный в отношении вредителей-мишеней.
«Специфические структурные требования для продуктов из Bt(Cry1Ab или Cry1F)-кукурузы, защищенной от кукурузного мотылька, представляют собой следующие:
Структурные рефугии: 20% рефугия кукурузы, не содержащей Bt против чешуекрылых, в кукурузном поясе;
50% рефугия, не содержащего Bt против чешуекрылых, в поясе хлопчатника
Блоки
Внутренний (т.е., в Bt-поле)
Внешние (т.е., отдельные поля в пределах 1/2 мили (1/4 мили, если возможно) Bt-поля для того, чтобы максимизировать случайное скрещивание)
Полосы в поле
Полосы должны представлять собой не менее 4 борозд в ширину (предпочтительно, 6 борозд), чтобы снизить эффект от движения личинок
Кроме того, Национальная ассоциация кукурузоводов на своем сайте:(ncga.com/insect-resistance-management-fact-sheet-bt-corn) также предоставляет аналогичные руководства в отношении требований к рефугиям. Например:
«Требования для IRM от кукурузного мотылька:
- засадить по крайней мере 20% от ваших акров с кукурузой рефугийными гибридами;
- в регионах, производящих хлопок, рефугий должен составлять 50%;
- должно быть посажено в пределах 1/2 мили рефугийных гибридов;
- рефугий можно высадить полосами в пределах Bt-поля; рефугийные полосы должны быть не менее 4 борозд в ширину;
- рефугий можно обрабатывать традиционными пестицидами только в случае, если экономические границы достигают насекомых-мишеней;
- поддающиеся разбрызгиванию инсектициды на основе Bt не могут применяться на рефугийной кукурузе;
- соответствующий рефугий должен быть посажен на каждой ферме с Bt-кукурузой».
Как указано в Roush et al. (правая колонка на страницах 1780 и 1784, например), комплектование или «пирамидирование» из двух различных белков, каждый из которых эффективен против вредителей-мишеней и с небольшой или отсутствием перекрестной устойчивости, может позволить использование меньшего рефугия. Рош предполагает, что для успешного комплекта рефугийный размер менее 10% рефугия может обеспечить агротехнику с сопоставимой устойчивостью для около 50% рефугия для одного («немногоуровневого») признака. Для доступных в настоящее время продуктов «многоуровневой» Bt-кукурузы Агентство по защите окружающей среды США требует, чтобы было посажено значительно меньше (обычно 5%) структурированного рефугия не содержащей Bt кукурузы, чем для продуктов с одним признаком (обычно 20%).
Существуют различные способы обеспечения IRM-эффектов рефугия, включая различные геометрические схемы посадки в полях (как упоминалось выше) и упакованные семенные смеси, как дополнительно отмечается в Roush et al. (выше) и Патенте США No. 6551962.
Указанные выше проценты, или аналогичные коэффициенты рефугиев, могут быть использованы для рассматриваемых двойных или тройных комплектов или пирамид. Для тройных комплектов с тремя участками воздействия против одного вредителя-мишени целью был бы нулевой рефугий (или менее чем 5%-рефугий, например). Это особенно верно для коммерческих площадей - более 10 акров, например.
Все патенты, заявки на патенты, предварительные заявки и публикации, упомянутые или цитируемые в настоящем описании, включены посредством ссылки в полном объеме в той мере, пока они не являются несовместимыми с конкретными идеями данной спецификации.
За исключением случаев, когда это специально оговорено или следует из контекста, грамматические формы единственного числа следует понимать как означающие “по крайней мере один”.
Ниже приводятся примеры, иллюстрирующие процедуры для практикующих изобретение. Эти примеры не следует истолковывать в качестве ограничивающих. Все процентные соотношения приводятся по массе и все пропорции смесей растворителей - по объему, если не указано иное. Все температуры в градусах Цельсия.
ПРИМЕРЫ
Пример 1. 125 I-мечение белков Cry
Иодирование Cry-токсинов. Очищенные усеченные Cry-токсины йодировали с помощью Iodo-Beads или Iodo-gen (Pierce). Вкратце, два Iodo-Bead промывали два раза 500 мкл забуференного фосфатом солевого раствора PBS (20 мМ фосфата натрия, 0,15 М NaCl, рН 7,5) и помещали в 1,5-мл центрифужную пробирку за свинцовой защитой. К этому прибавляли еще 100 мкл PBS. За защитой и при использовании надлежащих приемов обращения с радиоактивностью, 0,5 мкКи Na125I (17,4 Ки/мг, Lot 0114, Amersham) добавляли к раствору PBS с Iodo-Beads. Компонентам была предоставлена возможность реагировать в течение 5 минут при комнатной температуре, затем 2-25 мкг высокоочищенного укороченного Cry-белка добавляли в раствор и давали возможность реагировать в течение еще 3-5 минут. Реакцию прекращали удалением раствора от Iodo-Beads и нанесением его на 0,5-мл обессоливающую колонку Zeba spin (InVitrogen), уравновешенную PBS. Каждый из Iodo-Bead промывали два раза по 10 мкл PBS и промывочный раствор также наносили на обессоливающую колонку. Радиоактивный раствор элюировали через обессоливающую колонку путем центрифугирования при 1000 x g в течение 2 мин. С помощью этой процедуры, Cry-токсин в 100 мМ фосфатном буфере (pH 8) сначала очищали от липополисахаридов (LPS) путем его пропускания несколько раз через небольшую 0,5-мл полимиксиновую колонку. К пробирке с Iodo-gen (Pierce Chem. Co.) добавляли 20 мкг не содержащего LPS Cry1Da-токсина, затем 0,5 мкКи Na125I. Реакционную смесь встряхивали в течение 15 мин при 25ºC. Раствор удаляли из пробирки и добавляли 50 мкл 0,2 М нерадиоактивно меченного NaI, чтобы подавить реакцию. Белок диализовали против PBS с 3 сменами буфера для полного удаления несвязанного 125I.
Радио-чистоту йодированных Cry-белков определяли при помощи электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия (SDS-PAGE), образования изображения в фосфоимеджере и гамма-радиометрии. Вкратце, 2 мкл радиоактивного белка разделяли при помощи SDS-PAGE. После разделения гели высушивали с помощью прибора BioRad для сушки гелей в соответствии с инструкциями производителя. Высушенные гели визуализировали путем заворачивания их в пленку Mylar (12 мкм в толщину) и выдерживания их под экраном Molecular Dynamics storage phosphor screen (35 см×43 см) в течение 1 часа. Пластины проявляли с помощью фосфоимеджера Molecular Dynamics Storm 820 и изображение анализировали с использованием программного обеспечения ImageQuantTM. Радиоактивную полосу вместе с областями, расположенными непосредственно выше и ниже полосы, вырезали из геля с помощью лезвия и подсчитывали в гамма-счетчике. Радиоактивность детектировалась только в полосе Cry-белка и в областях ниже полосы. Выше полосы никакой радиоактивности не детектировалось, что указывает на то, что все радиоактивное загрязнение состоит из меньших белковых компонентов, чем укороченный Cry-белок. Эти компоненты, скорее всего, представляют собой продукты деградации.
Пример 2. Протокол подготовки BBMV
Подготовка и фракционирование растворимых BBMV. Личинки Spodoptera frugiperda, Ostrinia nubilalis или Heleothis zea поздней возрастной стадии подвергали голоданию в течение ночи, а затем утром рассекали после охлаждения на льду в течение 15 минут. Ткань средней кишки удаляли из полости тела, оставляя сзади заднюю кишку, прикрепленную к кожным покровам. Среднюю кишку помещали в 9X объем охлажденного во льду буфера для гомогенизации (300 мМ маннитол, 5 мМ EGTA, 17 мМ Трис-основание, рН 7,5) с добавлением Protease Inhibitor Cocktail (конечная концентрация компонентов коктейля (в мкМ) составляет AEBSF (500), EDTA (250 мМ), Бестатин (32), Е-64 (0,35), лейпептин (0,25), апротинин (0,075)) (Sigma P-2714) в разведении, рекомендованном поставщиком. Ткань гомогенизировали за 15 ходов стеклянного гомогенизатора для ткани. BBMV подготавливали способом MgCl2-преципитации Wolfersberger (1993). Вкратце, равный объем 24 мМ раствора MgCl2 в 300 мМ маннитоле смешивали с гомогенатом среднего кишечника, перемешивали в течение 5 минут и оставляли на льду в течение 15 мин. Раствор центрифугировали при 2500 x g в течение 15 мин при 4ºC. Супернатант сохраняли и осадок суспендировали в исходном объеме 0,5-х разведенного буфера для гомогенизации и центрифугировали снова. Два супернатанта объединяли, центрифугировали при 27000 x g в течение 30 мин при 4ºC для образования фракции BBMV. Осадок суспендировали в 10 мл буфера для гомогенизации с добавлением ингибиторов протеаз и центрифугировали снова при 27000 x g в течение 30 мин при 4ºC для промывки BBMV. Полученный в результате осадок суспендировали в буфере для хранения BBMV (10 мМ HEPES, 130 мМ KC1, 10% глицерин, pH 7,4) до концентрации примерно 3 мг/мл белка. Концентрацию белка определяли с помощью способа Брэдфорда (1976) с бычьим сывороточным альбумином (BSA) в качестве стандарта. Определение щелочной фосфатазы проводили перед замораживанием образцов с помощью теста от Sigma, следуя инструкциям производителя. Удельная активность этого маркерного фермента во фракции BBMV, как правило, увеличивается в 7 раз по сравнению с тем, что обнаруживается для фракции гомогената среднего кишечника. Фракцию BBMV распределяли по аликвотам в образцы 250 мкл, быстро замораживали в жидком азоте и хранили при -80ºC.
Пример 3. Способ определения связывания 125 I-белков Cry с белков BBMV
Связывание 125 I-белков Cry с BBMV. Для определения оптимального количества белка BBMV для использования в анализах по связыванию была построена кривая насыщения. Радиоактивно меченый 125I белок Cry (0,5 нМ) инкубировали в течение 1 часа при 28ºC с разными количествами белка BBMV в диапазоне от 0 до 500 мкг/мл в буфере для связывания (8 мМ NaHPO4, 2 мМ H2PO4, 150 мМ NaCl, 0,1% бычьего сывороточного альбумина, pH 7,4). Общий объем составлял 0,5 мл. Связанный с 125I Cry-белок отделяли от несвязанного путем отбора 150 мкл реакционной смеси в трех повторностях из 1,5-мл центрифужной пробирки в 500-мкл центрифужную пробирку и центрифугирования образцов при 14000 x g в течение 6 минут при комнатной температуре. Супернатант аккуратно отбирали и осадок аккуратно промывали три раза охлажденным во льду буфером для связывания. Нижнюю часть центрифужной пробирки, содержащую осадок, отделяли и помещали в стеклянную пробирку для культивирования размером 13×75 мм. Каждый образец обсчитывали в течение 5 минут в гамма-счетчике. Данные, содержащиеся в выборке, вычитали из фоновых значений (реакция без какого-либо белка) и строили график зависимости от концентрации белка BBMV. Оптимальное количество белка для использования, как было определено, составляло 0,15 мг белка BBMV на мл.
Для определения кинетики связывания была построена кривая насыщения. Вкратце, BBMV (150 мкг/мл) инкубировали в течение 1 часа при 28ºC с 125I Cry-токсинов в возрастающей концентрации в диапазоне от 0,01 до 10 нМ. Общее связывание определяли путем отбора по 150 мкл для каждой концентрации в трех повторностях, центрифугирования образца и подсчета, как описано выше. Неспецифическое связывание определяли таким же образом, с добавлением 1000 нМ гомологичного трипсинизированного нерадиоактивного Cry-токсина, добавленного в реакционную смесь, для насыщения всех участков неспецифического связывания с рецепторами. Специфическое связывание рассчитывали как разницу между общим связыванием и неспецифическим связыванием.
Гомологичные и гетерологичных тесты по конкурентному связыванию проводили с использованием 150 мкг/мл белка BBMV и 0,5 нМ радиоактивно меченного 125I белка Cry. Концентрация конкурентного, не меченного радиоактивно Cry-токсина, добавленного к реакционной смеси, варьировала от 0,045 до 1000 нМ, и его добавляли в то же время, что и радиоактивный лиганд, чтобы обеспечить истинную конкуренцию связывания. Инкубации проводили в течение 1 часа при 28ºC и количество 125I белка Cry, связанного с его рецептором токсина, определяли, как описано выше, с вычитанием неспецифического связывания. Сто процентов общего связывания определялось в отсутствие какого-либо конкурентного лиганда. Результаты были представлены на полулогарифмическом графике в виде зависимости процента общего специфического связывания от концентрации добавленного конкурентного лиганда.
Пример 4. Краткое описание результатов
Фигура 1 показывает процент специфического связывания 125I CryAb (0,5 нМ) в BBMV ECB против конкуренции немеченого гомологичного Cry1Ab(♦) и гетерологичного Cry2Aa (□). Смещение кривой для гомологичной конкуренции на Cry1Ab приводит к сигмоидальной кривой, демонстрирующей 50% смещение радиолиганда при около 3 нМ Cry1Ab. Cry2Aa при концентрации 1000 нМ (в 2000 раз больше, чем вытесненный 125I Cry1Ab) приводит к менее чем 50%-смещению. Планки погрешностей представляют диапазон значений, полученных из определения трех повторностей.
ССЫЛКИ
Figure 00000001
Приложение A
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015

Claims (19)

1. Трансгенное растение кукурузы, которое обладает устойчивостью к насекомым-вредителям европейским кукурузным мотылькам (ЕСВ: Ostrinia nubilalis), содержащее ДНК, кодирующую инсектицидный белок Cry1Ab с SEQ ID NO: 1, и ДНК, кодирующую инсектицидный белок Cry2Аа с SEQ ID NO: 2.
2. Трансгенное растение по п. 1, дополнительно содержащее ДНК, кодирующую третий инсектицидный белок, где указанный третий белок выбран из группы, состоящей из Cry1Fa, Cry1Be, Cry1I и DIG-3.
3. Трансгенное растение по п. 2, где указанный третий белок выбран из группы, состоящей из Cry1Fa и Cry1Be, и указанное растение дополнительно содержит ДНК, кодирующую четвертый и пятый инсектицидные белки, выбранные из группы, состоящей из Cry1Ca, Cry1Da, Cry1E и Vip3Ab.
4. Семя растения, по любому из пп. 1-3, содержащее ДНК, кодирующую инсектицидный белок Cry1Ab с SEQ ID NO: 1, и ДНК, кодирующую инсектицидный белок Cry2Аа с SEQ ID NO: 2, где указанное семя засеивают с целью контроля развития у кукурузной листовой совки устойчивости к инсектицидным белкам.
5. Множество растений кукурузы на поле, включающее не содержащие Bacillus thuringiensis (не содержащие Bt) растения, которые не экспрессируют трансгенные инсектицидные белки, и множество трансгенных растений, которые обладают устойчивостью к насекомым-вредителям европейским кукурузным мотылькам, по любому из пп. 1-3, где указанные трансгенные растения содержат ДНК, кодирующую инсектицидный белок Cry1Ab с SEQ ID NO: 1, и ДНК, кодирующую инсектицидный белок Cry2Аа с SEQ ID NO: 2, где указанные не содержащие Bt растения, которые не экспрессируют трансгенные инсектицидные белки, составляют менее 40% от всех культурных растений в указанном множестве растений, где указанное множество растений противодействует выработке устойчивости к белку Cry1Ab или белку Cry2Аа насекомыми европейскими кукурузными мотыльками, где указанное множество растений включает по меньшей мере одно не содержащее Bt растение, которое не экспрессирует трансгенные инсектицидные белки.
6. Множество растений на поле по п. 5, где указанные не содержащие Bt растения составляют менее 30% от всех культурных растений в указанном множестве растений.
7. Множество растений на поле по п. 5, где указанные не содержащие Bt растения составляют менее 20% от всех культурных растений в указанном множестве растений.
8. Множество растений на поле по п. 5, где указанные не содержащие Bt растения составляют менее 10% от всех культурных растений в указанном множестве растений.
9. Множество растений на поле по п. 5, где указанные не содержащие Bt растения составляют менее 5% от всех культурных растений в указанном множестве растений.
10. Множество растений на поле по п. 5, где указанные не содержащие Bt растения расположены в блоках или полосах.
11. Смесь семян кукурузы, включающая семена от не содержащих Bt растений, которые не экспрессируют трансгенные инсектицидные белки, и множество семян, содержащих ДНК, кодирующую инсектицидный белок Cry1Ab с SEQ ID NO: 1, и ДНК, кодирующую инсектицидный белок Cry2Аа с SEQ ID NO: 2, где указанные не содержащие Bt семена составляют менее 40% всех семян в смеси, где указанную смесь семян засеивают для контроля выработки устойчивости к белку Cry1Ab или белку Cry2Аа европейским кукурузным мотыльком, где указанная смесь семян включает по меньшей мере одно не содержащее Bt семя, которое не экспрессирует трансгенные инсектицидные белки.
12. Смесь семян по п. 11, где указанные не содержащие Bt семена составляют менее 30% всех семян в смеси.
13. Смесь семян по п. 11, где указанные не содержащие Bt семена составляют менее 20% всех семян в смеси.
14. Смесь семян по п. 11, где указанные не содержащие Bt семена составляют менее 10% всех семян в смеси.
15. Смесь семян по п. 11, где указанные не содержащие Bt семена составляют менее 5% всех семян в смеси.
16. Способ снижения развития устойчивости к белку Cry1Ab или белку Cry2Аа у насекомых европейских кукурузных мотыльков, включающий засевание семян для получения множества трансгенных растений кукурузы, содержащих ДНК, кодирующую инсектицидный белок Cry1Ab с SEQ ID NO: 1, и ДНК, кодирующую инсектицидный белок Cry2Аа с SEQ ID NO: 2, и приведение указанного насекомого в контакт с указанным множеством трансгенных растений.
17. Множество растений кукурузы по любому из пп. 5-10, где указанные растения занимают более 10 акров.
18. Растение по любому из пп. 1-3, где указанное растение представляет собой растение кукурузы.
19. Растение по любому из пп. 1-3, где указанный инсектицидный белок Cry1Ab характеризуется SEQ ID NO: 1, и указанный инсектицидный белок Cry2Аа содержит SEQ ID NO: 2.
RU2012129899/10A 2009-12-16 2010-12-16 Инсектицидные белковые комбинации, содержащие cry1ab и cry2aa, для регулирования кукурузного мотылька и способы борьбы с устойчивостью насекомых RU2569460C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28427809P 2009-12-16 2009-12-16
US61/284,278 2009-12-16
PCT/US2010/060831 WO2011075590A1 (en) 2009-12-16 2010-12-16 Insecticidal protein combination comprising cry1ab and cry2aa for controlling european corn borer, and methods for insect resistance management

Publications (2)

Publication Number Publication Date
RU2012129899A RU2012129899A (ru) 2014-01-27
RU2569460C2 true RU2569460C2 (ru) 2015-11-27

Family

ID=44167702

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012130017/10A RU2577141C2 (ru) 2009-12-16 2010-12-16 Инсектицидные комбинации белков для борьбы с совкой травяной и кукурузным мотыльком и способы управления устойчивостью насекомых
RU2012129899/10A RU2569460C2 (ru) 2009-12-16 2010-12-16 Инсектицидные белковые комбинации, содержащие cry1ab и cry2aa, для регулирования кукурузного мотылька и способы борьбы с устойчивостью насекомых

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2012130017/10A RU2577141C2 (ru) 2009-12-16 2010-12-16 Инсектицидные комбинации белков для борьбы с совкой травяной и кукурузным мотыльком и способы управления устойчивостью насекомых

Country Status (18)

Country Link
US (2) US20120324605A1 (ru)
EP (3) EP2512220B1 (ru)
JP (2) JP5907891B2 (ru)
KR (2) KR101841299B1 (ru)
CN (3) CN102753012B (ru)
AR (2) AR079621A1 (ru)
AU (2) AU2010330915B2 (ru)
BR (2) BR112012014702A2 (ru)
CA (2) CA2782572A1 (ru)
CL (3) CL2012001634A1 (ru)
CO (2) CO6602145A2 (ru)
IL (2) IL220336A (ru)
MX (2) MX348249B (ru)
NZ (4) NZ601098A (ru)
RU (2) RU2577141C2 (ru)
UA (2) UA116433C2 (ru)
WO (2) WO2011075590A1 (ru)
ZA (2) ZA201204923B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797237C2 (ru) * 2017-12-15 2023-06-01 Монсанто Текнолоджи Ллс Способы и композиции для ppo-гербицидной толерантности

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083219A1 (en) 2010-12-16 2012-06-21 Dow Agrosciences Llc Combined use of vip3ab and cry1ab for management of resistance insects
BR102012019434B1 (pt) 2011-07-26 2021-11-09 Dow Agrosciences Llc Métodos de controle de pestes, de insetos, molécula e sequência de dna diagnóstica para o evento de soja 9582.814.19.1
CA2843642A1 (en) * 2011-08-05 2013-02-14 Dow Agrosciences Llc Use of dig3 insecticidal crystal protein in combination with cry1ab
US10119149B2 (en) 2011-08-05 2018-11-06 Dow Agrosciences Llc Use of DIG3 insecticidal crystal protein in combination with cry1Ab for management of resistance in european cornborer
AP2015008351A0 (en) * 2012-10-05 2015-04-30 Dow Agrosciences Llc Use of cry1ea in combinations for management of resistant fall armyworm insects
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
CN102972428B (zh) * 2012-12-11 2014-07-09 北京大北农科技集团股份有限公司 控制害虫的方法
RU2015143825A (ru) 2013-03-15 2017-04-26 Пайонир Хай-Бред Интернэшнл, Инк. Полипептиды phi-4 и способы их применения
US10006045B2 (en) 2013-08-16 2018-06-26 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
ES2937045T3 (es) 2013-09-13 2023-03-23 Pioneer Hi Bred Int Proteínas insecticidas y métodos para su uso
CN103688974B (zh) * 2013-11-11 2015-07-15 北京大北农科技集团股份有限公司 控制害虫的方法
CN103757049B (zh) * 2013-12-24 2016-06-08 北京大北农科技集团股份有限公司 控制害虫的构建体及其方法
CN103725704B (zh) * 2014-01-17 2015-11-18 北京大北农科技集团股份有限公司 控制害虫的构建体及其方法
MX2016010187A (es) 2014-02-07 2017-07-11 Pioneer Hi Bred Int Proteinas insecticidas y metodos para su uso.
EP3102684B1 (en) 2014-02-07 2020-05-06 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2016000237A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
CN107108705B (zh) 2014-10-16 2021-05-25 先锋国际良种公司 杀昆虫蛋白及其使用方法
CN107529763B (zh) 2015-03-11 2021-08-20 先锋国际良种公司 Pip-72的杀昆虫组合及使用方法
CA2985198A1 (en) 2015-05-19 2016-11-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US10647995B2 (en) 2015-06-16 2020-05-12 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
AR104833A1 (es) * 2015-07-01 2017-08-16 Syngenta Participations Ag Composiciones y métodos para controlar plagas de plantas
AR105155A1 (es) * 2015-07-07 2017-09-13 Syngenta Participations Ag Composiciones y métodos para controlar plagas de plantas
CN115418357A (zh) 2015-07-13 2022-12-02 皮沃特生物公司 改良植物性状的方法及组合物
WO2017023486A1 (en) 2015-08-06 2017-02-09 Pioneer Hi-Bred International, Inc. Plant derived insecticidal proteins and methods for their use
AU2016315655A1 (en) 2015-08-28 2018-02-01 E. I. Du Pont De Nemours And Company Ochrobactrum-mediated transformation of plants
AU2016336328A1 (en) 2015-10-05 2018-04-19 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
WO2017105987A1 (en) 2015-12-18 2017-06-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3442994A4 (en) 2016-04-14 2019-11-27 Pioneer Hi-Bred International, Inc. INSECTICIDES POLYPEPTIDES WITH IMPROVED EFFICIENCY SPECTRUM AND USES THEREOF
US11028407B2 (en) 2016-04-19 2021-06-08 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
MX2018012613A (es) * 2016-04-19 2019-08-01 Dow Agrosciences Llc Combinacion de cuatro toxinas de proteinas vip y cry para el manejo de plagas de insectos en plantas.
BR112018072417B1 (pt) 2016-05-04 2023-03-14 E. I. Du Pont De Nemours And Company Polipeptídeo inseticida recombinante, polipeptídeo quimérico, composição, polinucleotídeo recombinante, construtos de dna, métodos para obter uma planta transgênica, métodos para inibir o crescimento ou extermínio de uma praga de inseto ou população de praga, método para obter uma célula procariótica transformada, célula procariótica transformada e método para modificar geneticamente o polipeptídeo inseticida
CN109312359A (zh) 2016-06-16 2019-02-05 先锋国际良种公司 用以防治昆虫有害生物的组合物和方法
ES2924552T3 (es) 2016-06-24 2022-10-07 Pioneer Hi Bred Int Elementos reguladores de las plantas y métodos de uso de los mismos
US11155829B2 (en) 2016-07-01 2021-10-26 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
US20210292778A1 (en) 2016-07-12 2021-09-23 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
PE20190838A1 (es) 2016-07-29 2019-06-17 Monsanto Technology Llc Metodos y composiciones para la expresion genica en plantas
WO2018084936A1 (en) 2016-11-01 2018-05-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN106749566B (zh) * 2016-11-21 2020-05-05 北京大北农科技集团股份有限公司 杀虫蛋白组合及其管理昆虫抗性的方法
EP3555118B1 (en) 2016-12-14 2021-08-18 Pioneer Hi-Bred International Inc. Insecticidal proteins and methods for their use
MX2019007491A (es) 2016-12-22 2019-09-06 Pioneer Hi Bred Int Proteinas insecticidas y metodos para su uso.
MX2019007962A (es) * 2017-01-12 2019-09-04 Syngenta Participations Ag Proteinas insecticidas.
CR20190367A (es) 2017-01-12 2019-09-25 Monsanto Technology Llc Proteínas toxinas pesticidas activas contra insectos lepidópteros
WO2018132774A1 (en) 2017-01-12 2018-07-19 Pivot Bio, Inc. Methods and compositions for improving plant traits
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
US20190390219A1 (en) 2017-02-08 2019-12-26 Pioneer Hi-Bred International, Inc. Insecticidal combinations of plant derived insecticidal proteins and methods for their use
CN110621780B (zh) 2017-05-11 2024-03-19 先锋国际良种公司 杀昆虫蛋白及其使用方法
BR112019024827A2 (pt) 2017-05-26 2020-06-16 Pioneer Hi-Bred International, Inc. Construto de dna, planta transgênica ou progênie da mesma, composição e método para controlar uma população de pragas de insetos
CN107474120B (zh) * 2017-08-16 2020-08-18 中国农业大学 人工合成用于转基因抗虫植物的Bt杀虫基因mcry1F
WO2019074598A1 (en) 2017-10-13 2019-04-18 Pioneer Hi-Bred International, Inc. VIRUS-INDUCED GENETIC SILENCING TECHNOLOGY FOR THE CONTROL OF INSECTS IN MAIZE
EP3755797A1 (en) 2018-02-22 2020-12-30 Zymergen, Inc. Method for creating a genomic library enriched for bacillus and identification of novel cry toxins
CN111770995A (zh) 2018-03-02 2020-10-13 齐默尔根公司 杀昆虫蛋白发现平台和自其发现的杀昆虫蛋白
WO2019169150A1 (en) 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay
CA3096516A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
US11963530B2 (en) 2018-06-27 2024-04-23 Pivot Bio, Inc. Agricultural compositions comprising remodeled nitrogen fixing microbes
BR112021003797A2 (pt) 2018-08-29 2021-05-25 Pioneer Hi-Bred International, Inc. proteínas inseticidas e métodos para seu uso
WO2021076346A1 (en) 2019-10-18 2021-04-22 Pioneer Hi-Bred International, Inc. Maize event dp-202216-6 and dp-023211-2 stack
WO2021221690A1 (en) 2020-05-01 2021-11-04 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
US11580389B2 (en) 2020-01-14 2023-02-14 International Business Machines Corporation System and method for predicting fall armyworm using weather and spatial dynamics
EP4143211A2 (en) 2020-05-01 2023-03-08 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
US20230235352A1 (en) 2020-07-14 2023-07-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112023002603A2 (pt) 2020-08-10 2023-04-04 Pioneer Hi Bred Int Elementos reguladores de plantas e métodos de uso dos mesmos
EP4362661A1 (en) 2021-07-02 2024-05-08 Pivot Bio, Inc. Genetically-engineered bacterial strains for improved fixation of nitrogen
CN114128728B (zh) * 2021-12-17 2023-03-21 湖北省农业科学院植保土肥研究所 去氢木香内酯对草地贪夜蛾的生物活性及其在农业防治中的应用
WO2023156906A1 (en) * 2022-02-15 2023-08-24 Futuragene Israel Ltd A bacillus thuringiensis pesticidal protein (bt pp) combination useful for plant protection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210593C2 (ru) * 1993-09-02 2003-08-20 Новартис Аг ФРАГМЕНТ ГИБРИДНОГО ТОКСИНА Bacillus thuringiensis, ОБЛАДАЮЩИЙ ИНСЕКТИЦИДНОЙ АКТИВНОСТЬЮ, КОДИРУЮЩАЯ ЕГО РЕКОМБИНАНТНАЯ ДНК, СПОСОБ БОРЬБЫ С НАСЕКОМЫМИ

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338544A (en) * 1987-04-16 1994-08-16 Ecogen Inc. CryIIB protein, insecticidal compositions and methods of use thereof
US5045469A (en) * 1988-10-27 1991-09-03 Mycogen Corporation Novel bacillus thuringiensis isolate denoted B. T. PS81F, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
US5188960A (en) 1989-06-27 1993-02-23 Mycogen Corporation Bacillus thuringiensis isolate active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US6329574B1 (en) * 1990-01-22 2001-12-11 Dekalb Genetics Corporation High lysine fertile transgenic corn plants
US5273746A (en) * 1992-01-29 1993-12-28 Mycogen Corporation Bacillus thuringiensis isolates active against phthiraptera pests
WO1993016094A2 (en) 1992-02-12 1993-08-19 Chromagen, Inc. Applications of fluorescent n-nucleosides and fluorescent structural analogs of n-nucleosides
US5527883A (en) * 1994-05-06 1996-06-18 Mycogen Corporation Delta-endotoxin expression in pseudomonas fluorescens
US5508264A (en) 1994-12-06 1996-04-16 Mycogen Corporation Pesticidal compositions
AP9901541A0 (en) * 1996-11-20 1999-06-30 Ecogen Inc Broad-spectrum delta-endotoxins.
US6218188B1 (en) 1997-11-12 2001-04-17 Mycogen Corporation Plant-optimized genes encoding pesticidal toxins
US6500617B1 (en) * 1998-05-01 2002-12-31 Maxygen, Inc. Optimization of pest resistance genes using DNA shuffling
US6489542B1 (en) * 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
AR024430A1 (es) * 1999-06-29 2002-10-02 Syngenta Ltd Proteinas insecticidas y combinaciones sinergicas de las mismas
US6593293B1 (en) * 1999-09-15 2003-07-15 Monsanto Technology, Llc Lepidopteran-active Bacillus thuringiensis δ-endotoxin compositions and methods of use
US6750379B2 (en) * 2000-03-09 2004-06-15 Dekalb Genetics Corporation Homologous recombination-mediated transgene alterations in plants
US6551962B1 (en) 2000-10-06 2003-04-22 Monsanto Technology Llc Method for deploying a transgenic refuge
ES2315360T3 (es) * 2001-01-09 2009-04-01 Bayer Bioscience N.V. Proteinas insecticidas de bacillus thuringiensis.
US7053266B2 (en) * 2002-03-27 2006-05-30 Council Of Scientfic And Industrial Research Chimeric cry1E δendotoxin and methods of controlling insects
US7351881B2 (en) * 2003-02-20 2008-04-01 Athenix Corporation AXMI-008, a delta-endotoxin gene and methods for its use
US7355099B2 (en) * 2003-02-20 2008-04-08 Athenix Corporation AXMI-004, a delta-endotoxin gene and methods for its use
WO2004074462A2 (en) * 2003-02-20 2004-09-02 Athenix Corporation Delta-endotoxin genes and methods for their use
US7253343B2 (en) * 2003-08-28 2007-08-07 Athenix Corporation AXMI-003, a delta-endotoxin gene and methods for its use
AR048747A1 (es) * 2004-03-05 2006-05-24 Agrigenetics Inc Combinaciones de cry1ab y cry1fa como una herramienta para el control de la resistencia de los insectos
EP1737964A1 (en) * 2004-03-26 2007-01-03 Dow AgroSciences LLC Cry1f and cry1ac transgenic cotton lines and event-specific identification thereof
US20080226753A1 (en) * 2004-03-29 2008-09-18 Pioneer Hi-Bred International, Inc. Method of Reducing Insect Resistant Pests in Transgenic Crops
CA2672732A1 (en) * 2006-12-22 2008-07-17 Pioneer Hi-Bred International, Inc. An insect pest resistance management strategy for crop plants
WO2008130985A2 (en) * 2007-04-16 2008-10-30 Monsanto Technology, Llc Plants with multiple transgenes on a chromosome
WO2008145406A1 (en) * 2007-06-01 2008-12-04 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins
MX2010011925A (es) * 2008-05-01 2010-11-30 Bayer Bioscience Nv Manejo en plantas transgenicas de la resistencia de la oruga militar tardia.
US20090313717A1 (en) * 2008-06-16 2009-12-17 Carmen Sara Hernandez Bollworm insect resistance management in transgenic plants
EP2300618A1 (en) * 2008-06-13 2011-03-30 Bayer BioScience N.V. Bollworm insect resistance management in transgenic plants
US20110088129A1 (en) * 2008-06-13 2011-04-14 Carmen Sara Hernandez Bollworm Insect Resistance Management in Transgenic Plants
AU2010236944B2 (en) * 2009-04-17 2016-07-21 Dow Agrosciences Llc DIG-3 insecticidal Cry toxins
WO2011050271A1 (en) * 2009-10-23 2011-04-28 Monsanto Technology Llc Methods and compositions for expression of transgenes in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210593C2 (ru) * 1993-09-02 2003-08-20 Новартис Аг ФРАГМЕНТ ГИБРИДНОГО ТОКСИНА Bacillus thuringiensis, ОБЛАДАЮЩИЙ ИНСЕКТИЦИДНОЙ АКТИВНОСТЬЮ, КОДИРУЮЩАЯ ЕГО РЕКОМБИНАНТНАЯ ДНК, СПОСОБ БОРЬБЫ С НАСЕКОМЫМИ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANWAAR AHMAD et al., Expression of synthetic Cry1Ab and Cry1Ac genes in basmati rice (Oryza sativa L.) variety 370 via Agrobacterium-mediated transformation for the control of the european corn borer (Ostrinia nubilalis), In Vitro Cellular & Developmental Biology - Plant, 2002, Vol. 38, Issue 2, pp. 213-220. . KAREN BIANCHI DOS SANTOS et al., Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), Biological Control, 2009, Vol. 50, pp.157-163. . RAYMOND JOSEPH AKHURST et al., Resistance to the Cry1Ac δ-Endotoxin of Bacillus thuringiensis in the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), J. Econ. Entomol, 2003, Vol. 96, N.4, pp. 1290-1299. . *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797237C2 (ru) * 2017-12-15 2023-06-01 Монсанто Текнолоджи Ллс Способы и композиции для ppo-гербицидной толерантности

Also Published As

Publication number Publication date
NZ601105A (en) 2014-10-31
CN107177627A (zh) 2017-09-19
CL2014003381A1 (es) 2015-02-27
RU2577141C2 (ru) 2016-03-10
IL220336A0 (en) 2012-08-30
NZ630801A (en) 2016-03-31
UA111814C2 (uk) 2016-06-24
AU2010330915B2 (en) 2016-04-21
MX348249B (es) 2017-06-05
WO2011075590A1 (en) 2011-06-23
US20120324605A1 (en) 2012-12-20
EP2512223A1 (en) 2012-10-24
EP2512220A4 (en) 2013-09-25
EP2512220A1 (en) 2012-10-24
JP5907891B2 (ja) 2016-04-26
JP2013514776A (ja) 2013-05-02
RU2012129899A (ru) 2014-01-27
CA2782572A1 (en) 2011-06-23
CL2012001634A1 (es) 2013-01-25
WO2011075586A1 (en) 2011-06-23
ZA201204923B (en) 2013-03-27
NZ630817A (en) 2016-02-26
EP3372689A1 (en) 2018-09-12
KR20120115316A (ko) 2012-10-17
CN102762095A (zh) 2012-10-31
CO6561808A2 (es) 2012-11-15
US20130007924A1 (en) 2013-01-03
BR112012014702A2 (pt) 2015-08-25
RU2012130017A (ru) 2014-01-27
EP2512220B1 (en) 2018-04-25
MX2012007130A (es) 2012-11-12
CN102753012A (zh) 2012-10-24
CA2782627A1 (en) 2011-06-23
NZ601098A (en) 2014-10-31
AU2010330919A8 (en) 2012-08-16
CO6602145A2 (es) 2013-01-18
KR101841299B1 (ko) 2018-03-22
AR079622A1 (es) 2012-02-08
IL220336A (en) 2017-02-28
AU2010330919A1 (en) 2012-07-12
BR112012014700A2 (pt) 2015-08-25
MX348991B (es) 2017-07-05
JP2013514767A (ja) 2013-05-02
KR20120101548A (ko) 2012-09-13
ZA201204920B (en) 2013-03-27
EP2512223B1 (en) 2018-01-24
IL220339A (en) 2016-09-29
CL2012001633A1 (es) 2013-01-25
CN102753012B (zh) 2016-03-09
UA116433C2 (uk) 2018-03-26
AR079621A1 (es) 2012-02-08
AU2010330919B2 (en) 2016-05-12
EP2512223A4 (en) 2013-10-02
AU2010330915A1 (en) 2012-07-12
MX2012007133A (es) 2012-10-09

Similar Documents

Publication Publication Date Title
RU2569460C2 (ru) Инсектицидные белковые комбинации, содержащие cry1ab и cry2aa, для регулирования кукурузного мотылька и способы борьбы с устойчивостью насекомых
RU2590592C2 (ru) ПРИМЕНЕНИЕ Cry1Da В СОЧЕТАНИИ С Cry1Be ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ
RU2603257C2 (ru) КОМБИНИРОВАННОЕ ПРИМЕНЕНИЕ БЕЛКОВ Cry1Da И Cry1Fa ДЛЯ ВЫРАБАТЫВАНИЯ РЕЗИСТЕНТНОСТИ К НАСЕКОМЫМ
JP5907892B2 (ja) 抵抗性昆虫の対応のためのCry1Beと組み合わせたCry1Abの使用
RU2593961C2 (ru) КОМБИНИРОВАННОЕ ПРИМЕНЕНИЕ БЕЛКОВ CRY1Ca И CRY1Fa ДЛЯ БОРЬБЫ С РЕЗИСТЕНТНОСТЬЮ У НАСЕКОМЫХ
AU2013326885B2 (en) Use of Cry1Ea in combinations for management of resistant fall armyworm insects
MX2010011925A (es) Manejo en plantas transgenicas de la resistencia de la oruga militar tardia.
US20090313717A1 (en) Bollworm insect resistance management in transgenic plants
RU2569108C2 (ru) ПРИМЕНЕНИЕ Cry1Da В СОЧЕТАНИИ С Cry1Ca ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ
RU2624031C2 (ru) Применение инсектицидного кристаллического белка dig3 в комбинации с cry1ab для регулирования устойчивости к кукурузному мотыльку
RU2608500C2 (ru) Комбинированное применение vip3ab и cry1ab для регулирования устойчивых насекомых
US20110088129A1 (en) Bollworm Insect Resistance Management in Transgenic Plants
US10119149B2 (en) Use of DIG3 insecticidal crystal protein in combination with cry1Ab for management of resistance in european cornborer
BR102012019662A2 (pt) Uso de proteína cristal inseticida dig3 em combinação com cry1ab para o controle de resistência em broca do milho europeu
RU2575084C2 (ru) ПРИМЕНЕНИЕ Vip3Ab В СОЧЕТАНИИ С Cry1Ca ДЛЯ УПРАВЛЕНИЯ УСТОЙЧИВЫМИ НАСЕКОМЫМИ
RU2575611C2 (ru) КОНТРОЛЬ УСТОЙЧИВОСТИ НАСЕКОМЫХ С ПОМОЩЬЮ КОМБИНАЦИИ БЕЛКОВ Cry1Be И Cry1F

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181217