RU2555047C2 - Способ и установка сушки тестообразной массы, в частности, осадка из очистной станции - Google Patents

Способ и установка сушки тестообразной массы, в частности, осадка из очистной станции Download PDF

Info

Publication number
RU2555047C2
RU2555047C2 RU2012126090/05A RU2012126090A RU2555047C2 RU 2555047 C2 RU2555047 C2 RU 2555047C2 RU 2012126090/05 A RU2012126090/05 A RU 2012126090/05A RU 2012126090 A RU2012126090 A RU 2012126090A RU 2555047 C2 RU2555047 C2 RU 2555047C2
Authority
RU
Russia
Prior art keywords
circuit
drying
dryness
heat
stage
Prior art date
Application number
RU2012126090/05A
Other languages
English (en)
Other versions
RU2012126090A (ru
Inventor
Пьер Эмманюэль ПАРДО
Original Assignee
Дегремон
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дегремон filed Critical Дегремон
Publication of RU2012126090A publication Critical patent/RU2012126090A/ru
Application granted granted Critical
Publication of RU2555047C2 publication Critical patent/RU2555047C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/10Heating arrangements using tubes or passages containing heated fluids, e.g. acting as radiative elements; Closed-loop systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

Изобретение относится к термической сушке тестообразных материалов, в частности осадка очистных станций. Способ содержит две ступени сушки: первую ступень сушки (2) косвенного типа, запитываемую горячей текучей средой, которая принимает осадок, обладающий сухостью Se на входе, а на выходе выдает осадок, обладающий промежуточной сухостью Si, и водяной пар, который направляется в конденсатор (8) для нагревания в нем контура текучей среды для нагревания, в частности воды, которая в свою очередь будет нагревать нагревающий газ для второй ступени сушки (6); этап (5) придания осадку формы шнуров на выходе из первого этапа; вторую ступень сушки (6) шнуров из осадка при помощи газа, который нагревается, по меньшей мере, частично теплотой, отводимой из конденсатора. На выходе из второй ступени образуется продукт, обладающий окончательной сухостью Sf; причем промежуточная сухость Si регулируется в зависимости от измеренной сухости Se на входе и желаемой сухости Sf на выходе для минимального потребления общей энергии, используемой для сушки; причем вследствие этого регулируются расход, давление и/или температура горячей текучей среды (3), запитывающей первую стадию сушки (2). Технический результат - снижение энерго- и теплопотребления. 2 н. и 16 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к способу термической сушки тестообразной массы, в частности осадка, поступающего, в частности, из станции очистки сточных вод, с очень низким энерго- и теплопотреблением.
Настоящее изобретение может быть применено для сушки любых густых систем, которые необходимо высушить и которым в предварительно высушенном виде может быть придана форма шнуров, похожих на спагетти.
Хорошо известен способ термической сушки осадка, поступающего из станций городских сточных вод: существуют различные технологии, позволяющие получить конечный продукт, окончательная сухость которого равна или выше 85%.
Основной претензией, которую можно предъявить термической сушке, являются очень большой расход энергии, необходимой для такой сушки, и, таким образом, вытекающая из этого эксплуатационная стоимость.
В связи с этим согласно некоторым способам конвейерной сушки при термической сушке (для высушивания осадка) может рекуперироваться тепло с низкой температурой (50-90°C), фатальное тепло и, таким образом, неиспользуемое в другом процессе (когенерация, турбинная конденсация, тепловой насос, солнечно-тепловая система, бойлер на биогазе...). Однако данной фатальной теплоты, как правило, недостаточно для высушивания полностью осадка. Результатом этого является большое энергопотребление.
Кроме того, эти технологии конвейерной сушки при низкой температуре не применимы для высушивания осадка, который не является достаточно дегидратированным на входе, поскольку не представляется возможным должным образом нанести слой спагетти на сушильный аппарат.
Согласно другим способам термическая сушка рекуперирует тепло непосредственно из процесса сушки, но данное замыкание цикла энергетически не оптимизировано.
Существующие в настоящее время сушильные аппараты обладают необходимой для сушки осадка энергией, которая составляет приблизительно 900-1100 кВт·ч/TEE (ТЕЕ - тонна выпаренной воды). Эти сушильные аппараты могут быть прямыми сушильными аппаратами, в которых горячая текучая среда, полученная после сушки, как правило, газ, находится в непосредственном контакте с осадком, подлежащим высушиванию, или косвенными сушильными аппаратами, в которых горячая текучая среда, полученная после сушки, газ или жидкость передает свою теплоту осадку через стенку.
Сухость осадка может быть определена как отношение массы сухого вещества (MS) к общей массе осадка (MS+вода) или: MS/(MS+H2O).
В патенте EP 0781741 B1 приводится описание способа сушки тестообразных продуктов, в частности осадка, полученного из очистной станции, включающего в себя:
- первую ступень сушки (непрямая сушка), которая принимает осадок, имеющий на входе сухость Se, а на выходе выдает осадок, имеющий промежуточную сухость Si;
- этап придания осадку формы шнуров на выходе первой ступени;
- и вторую ступень прямой сушки шнуров из осадка при помощи горячего газа, на выходе которой выдается продукт, обладающий окончательной сухостью Sf.
Такие способы сушки и системы сушильных аппаратов с предварительным выпариванием осадка могут испытывать потребность в потреблении, составляющем 700-800 кВт·ч/TEE. Такое энергопотребление оптимизировано по сравнению с сушильными аппаратами, упомянутыми вначале, поскольку повторное использование части энергии, задействованной на первой стадии, подается под давлением на второй стадии для сушки последней. Однако согласно патенту EP 0781741 B1 ввиду условий сухости после предварительного выпаривания (40-60%) и условий температуры, используемой в сушильном аппарате (120°C), энергетические замыкания цикла не оптимизированы.
В настоящем изобретении предлагается внести энергетическое решение сушки осадка, оптимизируя способ и регулирование энергопотребления и приспосабливаясь к непостоянному использованию внешней энергии при низкой температуре (50-90°C).
Технической задачей данного изобретения является таким образом предоставление способа сушки тестообразных материалов ранее определенного типа, согласно которому энергопотребление минимизировано.
Изобретение заключается в управлении сухостью на выходе предварительного выпаривания или промежуточной сухостью таким образом, чтобы теплота, рекуперированная на первой ступени выпаривания, была необходимой и достаточной для сушки на второй ступени.
Согласно изобретению способ сушки тестообразных материалов, в частности осадка очистной станции, содержит две ступени сушки, а именно:
- первую ступень сушки косвенного типа, запитываемую горячей текучей средой, которая принимает осадок, обладающий сухостью Se на входе, а на выходе выдает осадок, обладающий промежуточной сухостью Si, и водяной пар, который направляется к конденсатору (8) для нагревания в нем контура текучей среды для нагревания, в частности воды;
- этап придания осадку формы шнуров на выходе из первой ступени;
- и вторую ступень сушки шнуров из осадка, нагреваемой непосредственно при помощи газа, который в свою очередь нагревается контуром текучей среды для нагревания, причем на выходе из второй ступени образуется продукт, обладающий окончательной сухостью Sf,
и отличается тем, что промежуточная сухость Si регулируется в зависимости от измеренной сухости Se на входе и желаемой сухости Sf на выходе для минимального потребления общей энергии, используемой для сушки, причем вследствие этого регулируются расход, давление и/или температура горячей текучей среды, которой запитывается первая ступень сушки.
Предпочтительно, промежуточная сухость Si определяется для минимального потребления общей энергии из измеренной сухости Se на входе, желаемой сухости Sf на выходе и параметров, содержащих удельный коэффициент α конденсатора, удельный коэффициент β второй стадии сушки и, в случае необходимости, подведенной даровой теплоты Q0. Промежуточная сухость Si может регулироваться таким образом, что рекуперированная на первой ступени через конденсатор теплота будет необходима и достаточна для сушки второй ступени.
Предпочтительно, используется тепловой контур низкой температуры, составляющей, в частности, от 30°C до 90°C, для нагревания второй ступени, который содержит жидкость, в частности воду, которая циркулирует по замкнутому циклу, проходя через конденсатор для рекуперирования в нем теплоты конденсированного пара и теплообменник жидкость/газ для нагревания газа второй ступени сушки.
Тепловой контур низкой температуры может содержать теплообменник между жидкостью контура и отводом жидкого теплоносителя первой стадии сушки. Тепловой контур низкой температуры может также содержать теплообменник для нагревания жидкости контура путем рекуперирования фатальной или дешевой энергии низкой температуры.
Изобретение также относится к установке для осуществления ранее определенного способа, содержащей:
первый сушильный аппарат, запитываемый горячей текучей средой, который принимает осадок, имеющий на входе сухость Se, а на выходе выдает осадок, имеющий промежуточную сухость Si, и водяной пар, который направляется к конденсатору для нагревания в нем нагревательной текучей среды для второго сушильного аппарата;
устройство придания осадку формы шнуров на выходе из первого сушильного аппарата;
и второй аппарат сушки шнуров из осадка при помощи газа, в частности воздуха, нагреваемого, по меньшей мере, частично теплотой, отводимой из конденсатора, посредством нагревательной текучей среды, причем этот второй сушильный аппарат на выходе выдает продукт, обладающий окончательной сухостью Sf,
установка отличается тем, что она содержит средства для управления промежуточной сухостью Si в зависимости от измеренной на входе сухости Se и желаемой на выходе сухости Sf для минимального потребления общей энергии, используемой для сушки, причем расход, давление и/или температура горячей текучей среды, которой снабжается первая ступень сушки, корректируются соответствующим образом.
Предпочтительно, установка содержит контур нагревания низкой температуры, которая составляет, в частности, от 30°C до 90°C, для нагревания второй ступени, содержащий жидкость, в частности воду, циркулирующую по замкнутому циклу, проходя через конденсатор для рекуперирования в нем теплоты конденсированного пара и теплообменник жидкость/газ для нагревания газа второй ступени сушки.
Предпочтительно, установка содержит вентилятор с регулируемой скоростью, втягивание которого сопряжено с выходом пара и газа из первого сушильного аппарата, а нагнетание сопряжено с конденсатором; причем скорость вентилятора регулируется для поддержания небольшого пониженного давления (порядка нескольких мбар) и контролируется в первом сушильном аппарате.
Перемещение осадка между выходом первого сушильного аппарата и устройством (5) формовки на входе второго сушильного аппарата может быть обеспечено регулируемым по скорости винтом без сердечника, позволяющим обеспечить герметичность по отношению к газу на выходе из первого сушильного аппарата.
Контур низкой температуры с циркуляцией жидкости установки может содержать:
часть с низкой температурой, составляющей 30º-80°C, предпочтительно 60º-70°C, на входе конденсатора;
часть средней температуры, составляющей 40º-90°C, предпочтительно 70º-80°C, на выходе конденсатора;
теплообменник между жидкостью контура и источником даровой энергии (на входе или выходе конденсатора) для нагревания жидкости контура посредством источника даровой или недорогой энергии низкой температуры, в частности двигателя когенерации, теплового насоса, бойлера на биогазе, на дровах, солнечно-тепловых систем или других источников фатальной энергии;
на выходе теплообменника между жидкостью контура и источником даровой энергии теплообменник с отводом жидкого теплоносителя, позволяющий завершить нагревание жидкости контура до регулируемой температуры для второго сушильного аппарата, составляющей 40º-90°C, предпочтительно 80º-90°C;
теплообменник жидкость/газ, в частности вода/воздух, позволяющий нагревать посредством жидкости контура газ второго сушильного аппарата, который приводится в движение, в частности, посредством вентилятора для циркуляции;
насос для циркуляции воды в контуре.
Предпочтительно, установка содержит регулирование, содержащее первый контур регулирования для обеспечения прямого регулирования промежуточной сухости Si на выходе из первого сушильного аппарата с устройством вычисления и управления, в частности автоматом, фиксирующим заданную величину промежуточной сухости Si на основании рабочих параметров.
Регулирование может быть предусмотрено для определения заданных величин промежуточной сухости Sic по формуле:
Sic=(β+α*556)/[(β-89*α)/Sf+645*α/Se+Q0], где:
Se - измеренная на входе сухость, (%);
Sf - предварительно заданная окончательная сухость, (%);
β - удельный коэффициент второй стадии сушки (6), кВт·ч/TEE;
α - удельный коэффициент конденсатора (8) (без размера);
Q0 - потенциально поставляемая даровая теплота, кВт·ч/TMS.
Автомат может управлять вентилем контроля расхода, давления или температуры жидкого теплоносителя в зависимости от измеренной промежуточной сухости; причем этот контроль осуществляется путем регулирования давления жидкого теплоносителя в случае, если жидкий теплоноситель - пар, или путем регулирования расхода или температуры (путем смешивания с холодным возвратом жидкого теплоносителя) в случае жидкого теплоносителя типа органической текучей среды.
Установка может содержать регулирование, содержащее регулировочный контур, который контролирует количество теплоты Q3, подаваемой в теплообменник между жидким теплоносителем и жидкостью контура низкой температуры.
Регулировочный контур, который контролирует количество теплоты Q3, подаваемой в теплообменник между жидким теплоносителем и жидкостью контура низкой температуры, может образовывать второй регулировочный контур. Регулирование установки может быть обеспечено исключительно на основе этого второго контура в обход (или by passant) первого регулировочного контура.
Теплообменник между жидким теплоносителем и жидкостью контура низкой температуры может иметь для заданной величины регулирования температуру жидкости контура на выходе из теплообменника; причем данная температура позволяет эффективно функционировать теплообменнику между жидким теплоносителем и газом второго сушильного аппарата и позволяет убедиться, что энергетические потребности второго сушильного аппарата сбалансированы.
Установка может содержать регулировочный контур, согласно которому измеряется теплота Q3, подаваемая в теплообменник, путем измерения температуры и расхода на входе и на выходе теплообменника, и если теплота Q3 больше определенной заданной величины, которая близка нулю, но не равна нулю, для того чтобы всегда иметь диапазон регулирования, регулирование изменяет выходной сигнал первого регулировочного контура таким образом, чтобы теплота, подаваемая в первый сушильный аппарат, приводилась в соответствие.
Регулирование установки для того, чтобы находиться в оптимальных условиях для теплообменника и конденсатора, может содержать третий регулировочный контур, который использует в качестве заданной величины температуру контура воды на выходе теплообменника. Третий регулировочный контур, предпочтительно, предусмотрен для использования заданной температуры, которая определена относительно заданной величины, зависящей от расхода осадка, измеренного на уровне насоса, обеспечивающего подачу осадка, и когда температура на выходе из теплообменника между жидкостью контура низкой температуры и газом второго сушильного аппарата повышается, циркуляционный насос контура уменьшает свой расход в диапазоне, приемлемом для компонентов.
Изобретением предусматривается использование теплового контура низкой температуры для нагревания второй ступени. Этот контур позволяет рекуперировать фатальную или дешевую энергию низкой температуры для нагревания второго сушильного аппарата. В зависимости от энергии, рекуперированной из этой фатальной или недорогой энергии, будет приведена в соответствие сухость на выходе из первой ступени.
Технологии сушильных аппаратов также часто содержат рециркуляцию газов для того, чтобы либо не испытывать пластичную фазу осадка (от 45 до 65% сухости) внутри сушильного аппарата или подготовить осадок на входе для того, чтобы он был совместим с технологией сушки.
Изобретение не использует рециркуляцию осадка и позволяет таким образом добиться лучших эксплуатационных качеств.
Таким образом, к преимуществам, которые привносятся способом, являющимся задачей изобретения, по сравнению с существующими технологиями можно отнести:
энергопотребление, которое меньше, чем в любых технологиях: от 400 до 600 кВт·ч/TEE вместо 1000 или 700-800 кВт·ч/TEE;
возможность дополнительного уменьшения данного потребления путем оптимизации энергетического контура в зависимости от имеющейся даровой или недорогой энергии низкой или средней температуры;
использование в отношении всех типов осадка, применяя технологию спагеттизации, т.е. придание имеющемуся осадку формы шнуров;
неиспользование способа рециркуляции осадка.
Изобретение заключается, исключая вышеизложенные положения, в некотором количестве других положений, которые в последующем будут представлять собой более конкретный вопрос в контексте описанных примеров практической реализации со ссылкой на прилагаемые фигуры чертежей, которые ни в коей мере не являются ограничительными, на которых:
- фиг.1 представляет собой схему установки, осуществляющую способ согласно изобретению;
- фиг.2 представляет собой схему дополнительного устройства для установки;
- фиг.3 представляет собой диаграмму, иллюстрирующую изменение соотношения: рекуперированная теплота/теплота, использованная на первой ступени сушки, выраженная в (%) и показанная по оси ординат, в зависимости от температуры (°C) неконденсирующихся газов на выходе из первой ступени, показанной по оси абсцисс.
На фиг.1 можно увидеть, что установка согласно изобретению содержит подачу тестообразного осадка, обладающего сухостью, которая, как правило, составляет 16-30%, которая обеспечивается насосом 1. Осадок попадает герметичным образом в первый сушильный аппарат 2 косвенного типа. Данный сушильный аппарат может быть, например, тонкослойного, дискового или пластинчатого типа. Вместе с тем предпочтительным будет являться дисковый сушильный аппарат.
Данный косвенный сушильный аппарат 2 нагревается посредством контура жидкого теплоносителя 3, в котором контролируется температура на входе, температура на выходе, расход и давление. Благодаря этому контролируется количество энергии Q1, подаваемой в сушильный аппарат 2. Жидким теплоносителем 3 может быть, например, пар или органическая текучая среда, в частности масло, температура которого (в качестве примера, который не носит ограничительного характера) может составлять 180°C-210°C.
Косвенный сушильный аппарат 2 также оснащен равномерно рассредоточенными средствами измерения давления (не показаны) и средством измерения (не показано) веса сушильного аппарата. Уплотнения данного сушильного аппарата выполнены для обеспечения минимального доступа воздуха. Кроме того, для дополнительной тепловой оптимизации в этом сушильном аппарате может быть продумано применение теплоизоляционного покрытия.
На выходе косвенного сушильного аппарата 2 осадок сопровождается винтом 4, размещенным в цилиндрической трубке, который позволяет уменьшить доступ воздуха в сушильный аппарат, на выходе из этого сушильного аппарата. Винт 4 образован, в частности, винтом без сердечника. Температура винта может поддерживаться посредством сети нагревания воды.
На выходе винта осадок проходит в устройство 5 формовки шнуров, называемое также «спагеттизатором», которое позволяет путем вдавливания осадка в калиброванные отверстия создавать слой из спагетти или шнуров на лентах 6a, 6b ленточного сушильного аппарата 6.
Ленточный сушильный аппарат 6 может быть одно- или многоярусным для оптимизации конкретного потребления данного сушильного аппарата.
Вентилятор 7 позволяет контролировать давление в сушильном аппарате 2 для поддержания и контроля небольшого пониженного давления. Данный момент является основным, поскольку, с одной стороны, сушильный аппарат 2 не должен оказаться в состоянии повышенного давления для недопущения возможной утечки запахов; кроме того, сушильный аппарат 2 не должен оказаться в состоянии слишком сильного пониженного давления для недопущения доступа воздуха в схему отвода вентилятора 7, что сильно изменило бы тепловой баланс конструкции.
Герметичность сушильного аппарата 2, таким образом, контролируется прекрасной герметичностью одновременно и со входа, и также со смотровых люков сушильного аппарата. Герметичность выхода сушильного аппарата 2 обеспечена одновременно:
- Выходом осадка в нижней части 2a сушильного аппарата в части, заполненной осадком.
- Наличием регулируемого по скорости винта 4 без сердечника в этой нижней части. Этот винт 4 позволяет, чтобы количество осадка в сушильном аппарате было всегда достаточным для обеспечения герметичности. Этот винт регулируется весом сушильного аппарата 2.
- Путем установки в область пониженного давления этого винта 4 на выходе винта на уровне «спагеттизатора» 5 посредством упомянутого вентилятора 15.
И, наконец, герметичность обеспечена путем контролируемого соблюдения давления в сушильном аппарате 2 благодаря вентилятору 7. Вентилятор 7, соединенный трубкой с верхней внешней частью сушильного аппарата 2, затягивает воздух, водяной пар и неконденсирующийся газ для их направления (по трубке) к конденсатору 8. Расход воздуха контролируется на уровне вентилятора 7, не позволяя вакууму (образованному путем конденсации водяного пара, выходящего из сушильного аппарата 2 и направляемого в конденсатор 8) бесконтрольно вызывать затягивание в сушильный аппарат.
Осадок, засасываемый вентилятором 7, содержит водяной пар и некоторое количество неконденсирующегося газа, которые зависят от качества осадка и герметичности, но в общем меньше 10% массы, с хорошо контролируемой герметичностью. Эти неконденсирующиеся газы образуются в результате испарения части компонентов осадка и очень небольшого доступа воздуха.
Затем этот конденсат проходит через водяной конденсатор 8, в котором циркулирует вода теплового контура низкой температуры B1, базы рекуперирования энергии.
Контур низкой температуры B1 образован следующими частями:
- часть B1.1 с низкой температурой 30º-80°C, предпочтительно 60º-70°C, перед конденсатором 8;
- часть B1.2 со средней температурой 40º-90°C, предпочтительно 70º-80°C, на выходе из конденсатора 8;
- на выходе из конденсатора вода может быть дополнительно нагрета в теплообменнике 9 при помощи источника «даровой» энергии низкой температуры, такого как двигатель когенерации, тепловой насос, бойлер на биогазе, дровах, солнечно-тепловые системы или любой другой источник фатальной или недорогой энергии. Необходимо отметить, что в зависимости от температурных зон, рассматриваемых для этого источника даровой теплоты, он может быть расположен перед конденсатором 8 или после него;
- на выходе из теплообменника 9 теплообменник 10 с жидким теплоносителем 3, перекачиваемым посредством отвода подводящей трубы текучей среды 3, позволяет завершить нагревание контура до температуры, регулируемой для ленточного сушильного аппарата 6, которая составляет 40º-90°C, предпочтительно 80º-90°C;
- эта нагретая вода позволяет затем нагреть посредством теплообменника вода-воздух 11 воздух сушильного аппарата 6 низкой температуры, приводимый в движение посредством вентилятора для циркуляции 12;
- насос P2, в частности, на выходе из теплообменника 11 для обеспечения циркуляции воды в контуре B1.
Втягивание вентилятора 12 соединено посредством трубы с объемом, который меньше сушильного аппарата 6, а подача под давлением соединена с входом нагреваемого газа теплообменника 11. Выход теплообменника 11 для нагреваемого газа соединен с объемом, который меньше сушильного аппарата 6.
Вентилятор для циркуляции 13, втягивание которого соединено посредством трубы с объемом, который меньше ленточного сушильного аппарата 6, а подача под давлением соединена посредством трубы с входом водяного конденсатора 14, позволяет устранить посредством этого конденсатора 14 влажность, содержащуюся в сушильном аппарате 6. Воздух, выходящий из конденсатора 14, направляется по трубе в ленточный сушильный аппарат 6.
Другой источник «даровой» теплоты, подобный Q0, может быть образован тепловым насосом C1 на части трубы вентилятора для циркуляции 13 (фиг.2). Тепловой насос C1 содержит трубопровод для специальной текучей среды, которая, поступая в жидком состоянии в выпарной аппарат 16, выпаривается, поглощая теплоту, затем сжимается в компрессоре 18 и вновь возвращается в жидкое состояние в конденсаторе 17, выделяя теплоту, затем снижает давление в регуляторе давления 19 перед тем, как вновь вернуться в выпарной аппарат 16. Горячий и влажный воздух, истекающий из сушильного аппарата 6, проходит через теплообменник, представленный выпарным аппаратом 16. Водяной пар горячего воздуха конденсируется посредством выпарного аппарата 16, который рекуперирует энергию конденсации. Вода, образованная в результате конденсации, выводится по трубопроводу 16a. Охлажденный воздух, выходящий из выпарного аппарата 16 и освобожденный от конденсированного водяного пара, затем вновь нагревается в теплообменнике конденсатора 17 и вновь нагнетается в сушильный аппарат. Энергия, вновь введенная под давлением в конденсатор 17, подобна Q0 и должна быть таким образом учтена в общей системе функционирования установки.
ПРИМЕРЫ ФУНКЦИОНИРОВАНИЯ
Случай отсутствия даровой энергии
Это случай, когда никакая даровая энергия или фатальная теплота не подается в теплообменник 9. Q0, таким образом, равен нулю.
Осадок, закаченный насосом 1, имеет следующие характеристики: сухость - 20%, процентное содержание MV (MV - летучие вещества) - 60%, температура - 12°C, расход - 6245 кг/час.
Энергетическая мощность для высушивания этого осадка в первом сушильном аппарате 2 до сухости 36,5% составляет 2495 кВт, получаемых от жидкого теплоносителя 3, а расход конденсата через вентилятор 7 составляет 3195 кг/час, из которых 290 кг/час являются неконденсирующимся газом. Температура этих конденсатов составляет 100°C.
На выходе из конденсатора 8 неконденсирующиеся газы и конденсаты имеют температуру 80°C, количество остаточного водяного пара составляет 164 кг/час, а обмененная мощность - 1575 кВт.
Со стороны водяного контура B1 на входе B.1.1 водяного контура перед конденсатором 8 температура составляет 72°C, на выходе из конденсатора 8 температура водяного контура составляет 86°C, а расход - 96,8 т/час.
Считается, что никакая теплота не поступает из теплообменника 9. Вода в контуре затем нагревается в теплообменнике 10 до температуры 88,74°C. Энергопотребление составляет 318 кВт.
Теплота, подаваемая в воздуховод вентилятора 12, позволяет вновь понизить температуру воды в контуре до 72°C, подавая в воздуховод мощность, составляющую 1826 кВт. Данная мощность, расходуемая на нагрев, позволяет выпаривать воду в ленточном сушильном аппарате 6 до сухости 90% с удельным показателем 872 кВт·ч/TEE.
Общая потребляемая мощность системы составляет 2495+318=2813 кВт для количества выпариваемой воды, равного 4997 кг/час.
Особенное потребление составляет таким образом 563 кВт·ч/TEE.
Случай с даровой энергией
Это случай, когда в теплообменник 9 подается даровая энергия или фатальная теплота. Q0 является таким образом положительным.
Рассмотрим случай даровой энергии, например двигатель когенерации, позволяющий поставлять 1000 кВт тепла путем нагревания воды теплового контура до 80°C в теплообменнике 9.
Для осадка, закаченного насосом 1, который имеет следующие характеристики: сухость - 20%, процентное содержание MV - 60%, температура - 12°C, расход - 6245 кг/час, энергетическая мощность для высушивания осадка в первой ступени или первом сушильном аппарате 2 до сухости 33% составляет 2184 кВт.
Конденсат, втягиваемый вентилятором 7, содержит 2650 кг/час, из которых 241 кг/час являются неконденсирующимся газом.
На выходе из конденсатора 8 температура конденсата составляет 78°C, мощность, поставляемая в воздуховод B1, составляет 1353 кВт, что представляет собой повышение температуры до 70°C-78°C при 145,4 т/час.
Теплообменник 9 двигателя когенерации позволяет нагревать воду до 78º-83,9°C. Теплообменник 10 текучей среды 3 позволяет вновь нагревать воду до 83,9°C-84,1°C с расходом 44 кВт.
Мощность, которой обеспечивается воздух, составляет 2329 кВт и позволяет высушивать осадок до 90% сухости с удельным расходом 900 кВт·ч/TEE.
Расход, кроме даровой энергии, составляет таким образом 2184+44=2228 кВт для 4997 кг/час выпаренной воды или удельный расход 445 кВт·ч/TEE.
Другие применения
Данный способ сушки при низкой температуре и соответствующая установка могут быть применимы при любых типах тестообразного продукта, приготовление которого позволит удалить камни или очень большое количество нитей и волокон для создания затруднений для спаггетизации.
К продуктам пульпы из биомассы можно отнести: дрова, агропродукты, продукты животной трансформации.
Регулирование
Сейчас рассматривается регулирование способа и установки термической сушки осадка, в частности станции очистки сточных вод, для того чтобы позволить добиться очень низкого энерго- и теплопотребления.
Регулирование может быть использовано для любого способа и установки для сушки любых тестообразных систем, которые желают высушить и которым в предварительно высушенном виде может быть придана форма спагетти.
Сначала определим в теоретическом плане отношения между различными конструктивными составляющими установки.
Рассматривается со ссылкой на фиг.3 реакция конденсатора 8 на изменение температуры водяного контура B1 и, таким образом, его способность охлаждения.
Предполагая, что вентилятором 7 подается 1000 кг/час конденсата, и предполагая, что эти конденсаты поступают при температуре 100°C и состоят на 10% из неконденсирующегося газа, количество энергии, рекуперированной в конденсаторе 8, выраженной в % от теплоты, использованной в сушильном аппарате 2, в зависимости от температуры выхода неконденсирующихся газов, показанных на оси абсцисс, изображено на фиг.3.
В случае регулирования уровня неконденсирующихся газов в конденсатах, подаваемых вентилятором 7, что является одним из основных положений изобретения, количество энергии очень мало зависит от уровня температуры выхода неконденсирующихся газов, если только она не превышает 83°C; при этом продуктивность при 83°C составляет 70%; продуктивность при 70°C составляет 74%; продуктивность при 30°C составляет 78%.
Кроме того, говоря о конденсаторе конденсаты/вода, коэффициенты обмена являются очень хорошими и температура конденсатов будет особенно зависима от температуры на входе трубы с водой контура низкой температуры B1.
В рамках рассматриваемого температурного диапазона можно считать, что продуктивность, выраженная коэффициентом α, составляет 72% (α=72%=0,72) и является постоянной даже с небольшими изменениями температуры на выходе неконденсирующихся газов.
В следующей части приводится описание математической базы регулирования настоящего изобретения.
При этом положим, что
Se - сухость осадка на входе (цифровая позиция 1);
Si - промежуточная сухость на выходе сушильного аппарата 2 и на входе винта 4;
Sf - окончательная сухость на выходе ленточного сушильного аппарата 6.
Рассматривается 1 тонна (1000 кг) сухого продукта на входе насоса 1. Количество воды, выпаренной на первой стадии 2, составляет 1/Se-1/Si.
Количество теплоты Q1, необходимой для такого выпаривания, является:
- немного зависимым от состава осадка [MS (сухой продукт), MV (летучее вещество)];
- среднезависимым от сухости на входе Se и от температуры осадка на входе;
- и сильно зависимым от количества выпариваемой воды и, таким образом, от коэффициента (1/Se-1/Si).
Действительно, помимо выпаривания, речь идет об осуществлении нагревания осадка.
Такое количество теплоты Q1 может выражаться с определенной точностью теоретической формулой:
Q1(Se,Si)=k(1/Se-1/Si)(1+0,16[Si(1-Se)/(Si-Se)],
где Q1 - в кВт,
Se и Si - в %,
k является постоянной величиной, равной 556, с вышеупомянутыми единицами измерения.
В теоретической формуле исключена зависимость от состава осадка, поскольку она появляется вновь только во втором порядке, поэтому данная формула действительна с точностью около 5%.
Теплота, которая нужна для второй сушки 6, приблизительно выражена:
Q2(Sf,Si)=β*(1/Si-1/Sf),
где:
Q2 - в кВт,
Si и Se - в %,
β - в кВт·ч/TEE.
Параметр β соответствует специальной теплоте выпаривания воды во втором сушильном аппарате 6 (в кВт·ч/TEE), зависящей от выбранной технологии ленточной сушки, в которую включены тепловые потери нагревательного контура. Исходя из того, что осадок вновь подается горячим в ступень ленточного сушильного аппарата 6, β составляет порядка 600-900 кВт·ч/TEE.
Теплота, рекуперированная на конденсаторе 8, определена как αQ1, где α равна приблизительно 0,72, как это было изложено ранее.
Даровая теплота, подаваемая в теплообменник 9, равна Q0.
Теплота, поставляемая жидким теплоносителем 3 в ленточный сушильный аппарат 6, равна: Q3=Max(Q2-αQ1-Q0; 0),
где Q3 - теплота, поставляемая жидким теплоносителем 3 через теплообменник 10.
Подаваемая общая теплота равна
Qg=Q1+Q3=Q1+Q2-αQ1-Q0, пока Q2-αQ1-Q0>0 и затем Q1, когда Q2-αQ1-Q0≤0.
Что дает:
Qg(Si)=556(1-α)*(1/Se-1/Si)(1+0,16[Si(1-Se)/(Si-Se)]*1,03+850((1/Si-1/Sf))-Q0, пока Q2-αQ1-Q0>0,
и затем Qg(Si)=556(1/Se-1/Si)(1+0,16[Si(1-Se)/(Si-Se)].
Целью является минимизировать эту функцию от Si. Данная функция является убывающей функцией в зависимости от Si, пока Q2-αQ1-Q0>0, затем возрастающей функцией от Si.
Минимум этой функции достигается, когда вся теплота первой ступени сушки 2 является необходимой и достаточной для нагревания второй ступени 6. То есть, когда Q2=αQ1+Q0.
Данная функция решается по нижеприводимой формуле [A].
Si=(β+α*556)/[(β-89*α)/Sf+645*α/Se+Q0). [A]
Зная при этом
β, которое зависит от технологии, использованной для ленточного сушильного аппарата 6;
α, которое является достаточно стабильным в зависимости от выходной температуры неконденсирующихся газов;
Sf, которое является фиксированным;
Q0, которое является фиксированным и которое подбирается к количеству энергии, которая может быть обеспечена для 1 тонны MS (сухой продукт),
представляется возможным определить оптимальную сухость Si в зависимости от Se.
Цифровое отображение:
β=850
α=0,72
Sf=90%
Q0=0
Se=20%
Si=39,1%
Описание регулирования
Согласно изобретению минимизация теплоты, потребляемой в рамках двух ступеней сушки, достигается путем рекуперирования энергии высокой температуры первой стадии 2 путем конденсации пара для нагревания теплового контура В1 низкой температуры (40-90°C), которая в свою очередь позволяет нагревать вторую ступень 6 сушки. Настоящее изобретение позволяет, кроме того, учитывать при регулировании установку теплообменника 9, рекуперирующего фатальную теплоту другой установки (теплота Q0).
Согласно изобретению промежуточная сухость Si регулируется в зависимости от измеренной сухости на входе Se и желаемой сухости на выходе Sf.
Принцип регулирования установки и способа заключается таким образом в определении на основании измерения сухости Se и параметров регулирования Sf, β, α и Q0 заданной величины сухости на выходе Sf. Измерение промежуточной сухости Si обеспечено датчиком сухости 20 на выходе сушильного аппарата 2.
Другие регулировки дополнят и обеспечат надежность первого регулирования, обеспеченного первым контуром регулирования.
Установка содержит множество контуров регулирования.
Целью первого контура регулирования является прямое регулирование промежуточной сухости Si, выход сушильного аппарата 2. Вычислительное и управляющее устройство, в частности автомат M, предусмотрено для определения заданной величины промежуточной сухости Sic, в частности, по ранее предложенной формуле [A] и значений параметров и величин, предоставляемых различными измерительными датчиками.
Автомат M управляет контрольным клапаном 21 расхода, давления или температуры жидкого теплоносителя в зависимости от промежуточной сухости Si, измеренной датчиком 20. Этот контроль может осуществляться путем регулирования расхода жидкого теплоносителя в случае парообразного теплоносителя или путем регулирования расхода или температуры (путем смешивания с холодным возвратом жидкого теплоносителя) в случае жидкого теплоносителя типа органической текучей среды.
Поскольку время реакции установки является продолжительным, контрольные операции будут осуществляться в соответствии с этим временем реакции.
Второй контур регулирования контролирует количество теплоты Q3, подаваемой в теплообменник 10 посредством водяного жидкого теплоносителя 3 контура B1 низкой температуры. Действительно, ранее было отмечено, что энергетический оптимум оказывался, когда это количество теплоты Q3 было равно 0, неотрицательным.
Заданной величиной управления данного теплообменника 10 является температура водяного контура на выходе теплообменника 10, измеренная датчиком 22, который передает информацию в автомат M. Данная температура позволяет эффективно функционировать теплообменнику 11 и позволяет удостовериться, что энергетические потребности сушильного аппарата 6 низкой температуры хорошо сбалансированы.
Если температура на выходе теплообменника 10 не достигнута, то это означает, что теплота, полученная в теплообменнике 11, выше температуры, предоставляемой конденсатором 8, и что, таким образом, больше не находится в состоянии энергетического оптимума.
Таким образом, теплота Q3, поставляемая в теплообменник 10, измеряется путем измерения температуры и расхода на входе теплообменника 10 посредством совокупности 23e датчиков и на выходе теплообменника 10 посредством совокупности датчиков 23s, причем датчики соединены с автоматом M для передачи измеренных величин.
Если теплота Q3 больше установленной заданной величины (или контрольной точки), которая близка нулю, но не равна нулю, чтобы всегда иметь диапазон регулирования, второй контур регулирования изменяет выход первого контура регулирования, представленного ранее, таким образом, чтобы подогнать теплоту, подаваемую в первый сушильный аппарат 2.
Регулирование установки и системы может также осуществляться исключительно на базе второго контура регулирования в обход первого контура регулирования.
И, наконец, для создания оптимальных условий для теплообменника 11 и конденсатора 8 третий контур регулирования использует в качестве заданной величины температуру контура воды, выходящей из теплообменника 11, которая измеряется датчиком 24, соединенным с автоматом для передачи значения температуры. Данная температура определена относительно заданной величины (контрольной точки), которая зависит от расхода осадка, измеренного на уровне насоса 1.
Если температура на выходе из теплообменника 11 повышается, то циркулирующий насос P2 контура уменьшает свой расход в диапазоне, приемлемом для аппаратов.
Этот тройной контур является автоустойчивым. Действительно, если потребности в теплоте в ленточном сушильном аппарате 6 снижаются, то температура на выходе из теплообменника 11 будет повышаться, причем циркулирующий насос будет снижать расход в теплообменниках 11 и 8. В конденсаторе 8 разница температуры ΔT между выходом и входом конденсатора 8 для воды контура B1 будет увеличиваться и температура на входе в теплообменник 10 будет увеличиваться, что приведет к уменьшению количества теплоты, необходимой для подачи в теплообменник 10 посредством жидкого теплоносителя 3, ниже заданной величины.
В этом случае автомат M передаст заданную величину на клапан 21 сушильного аппарата 2 для снижения расхода жидкого теплоносителя 3 в сушильном аппарате 2, что уменьшит промежуточную сухость Si и увеличит необходимость в выпаривании на ленточном сушильном аппарате, что приведет к восстановлению равновесия выходной температуры теплообменника 11.
Кроме того, заданная величина (контрольная точка) выходной температуры теплообменника 11 будет определена относительно производительности насоса 1, передаваемой в автомат M датчиком 25.
Действительно, если насос 1 снижает свой расход, то промежуточная сухость Si регулируется первым контуром регулирования, причем абсолютное количество теплоты на втором сушильном аппарате 6 оказывается уменьшенным. Обмен на теплообменнике 11, таким образом, будет, в свою очередь, также уменьшен, а если входная температура зафиксирована, то выходная температура будет повышаться. Необходимо таким образом уменьшить заданную величину расхода для того, чтобы охлаждение было более сильным.
Безусловно, настоящее изобретение не ограничено примерами практической реализации, описанными и/или изображенными, но оно охватывает все варианты, которые находятся в рамках прилагаемой формулы изобретения.

Claims (18)

1. Способ сушки тестообразных материалов, в частности осадка очистных станций, содержащий две ступени сушки, а именно:
- первую ступень сушки (2) косвенного типа, запитываемую горячей текучей средой, которая принимает осадок, обладающий сухостью Se на входе, а на выходе выдает осадок, обладающий промежуточной сухостью Si, и водяной пар, который направляется к конденсатору (8) для нагревания в нем контура текучей среды нагревания, в частности воды;
- этап (5), на котором осадку придают форму шнуров на выходе из первой ступени;
- и вторую ступень сушки (6) шнуров из осадка, нагреваемого непосредственно при помощи газа, который в свою очередь нагревается контуром текучей среды нагревания, причем на выходе из этой второй ступени (6) образуется продукт, обладающий окончательной сухостью Sf,
отличающийся тем, что промежуточную сухость Si регулируют в зависимости от измеренной сухости Se на входе и желаемой сухости Sf на выходе по формуле:
Sic=(β+α*556)/[(β-89*α)/Sf+645*α/Se+Q0)], где:
Se - измеренная на входе сухость, (%);
Sf - предварительно заданная окончательная сухость, (%);
β - удельный коэффициент второй ступени сушки (6), кВт·ч/ТЕЕ;
α - удельный коэффициент конденсатора (8);
Q0 - поставляемая рекуперированная энергия, кВт·ч/TMS (тонна сухого продукта),
причем вычислительное и управляющее устройство управляет контрольным клапаном расхода, давления или температуры горячей текучей среды (3), запитывающей первую ступень (2) сушки, исходя из промежуточной сухости Si, измеренной датчиком 20.
2. Способ по п. 1, отличающийся тем, что промежуточная сухость Si регулируется таким образом, что рекуперированная от первой ступени через конденсатор (8) теплота будет необходима и достаточна для сушки на второй ступени (6).
3. Способ по любому из пп. 1 или 2, отличающийся тем, что используют тепловой контур (В1) низкой температуры, составляющей, в частности, от 30°C до 90°C, для нагревания второй ступени (6), который содержит жидкость, в частности воду, которая циркулирует по замкнутому циклу, проходя через конденсатор (8) для рекуперирования в нем теплоты конденсированного пара и теплообменник (11) жидкость/газ для нагревания газа второй ступени сушки (6).
4. Способ по п. 3, отличающийся тем, что тепловой контур низкой температуры (В1) содержит теплообменник (10) между жидкостью контура (В1) и отводом жидкого теплоносителя (3) первой ступени сушки (2).
5. Способ по п. 3, отличающийся тем, что тепловой контур низкой температуры (В1) содержит теплообменник (9) для нагревания жидкости контура посредством рекуперированной энергии с низкой температурой.
6. Установка для осуществления способа по любому из предшествующих пунктов, содержащая:
- первый сушильный аппарат (2), запитываемый горячей текучей средой, который получает осадок, имеющий на входе сухость Se, а на выходе выдает осадок, имеющий промежуточную сухость Si, и водяной пар, который направляется к конденсатору (8) для нагревания в нем текучей среды нагревания для второго сушильного аппарата (6);
- устройство (5) формирования шнуров из осадка на выходе из первого сушильного аппарата (2);
- и второй аппарат сушки (6) шнуров из осадка при помощи газа, в частности воздуха, нагреваемого, по меньшей мере, частично теплотой, отводимой из конденсатора (8), посредством нагревательной текучей среды, причем этот второй сушильный аппарат (6) на выходе выдает продукт, обладающий окончательной сухостью Sf,
отличающаяся тем, что она содержит вычислительное и управляющее устройство для управления промежуточной сухостью Si в зависимости от измеренной на входе сухости Se и желаемой на выходе сухости Sf и для управления контрольным клапаном (21) расхода, давления или температуры горячей текучей среды (3), запитывающей первую ступень сушки (2), в зависимости от промежуточной сухости Si, измеренной датчиком 20.
7. Установка по п. 6, отличающаяся тем, что она содержит контур (В1) нагревания низкой температуры, которая составляет, в частности, от 30°C до 90°C, для нагревания второй ступени (6), содержащий жидкость, в частности воду, циркулирующую по замкнутому циклу, проходя через конденсатор (8) для рекуперирования в нем теплоты конденсированного пара и теплообменник (11) жидкость/газ для нагревания газа второй ступени сушки (6).
8. Установка по п. 6, отличающаяся тем, что она содержит вентилятор (7) с регулируемой скоростью, втягивание которого сопряжено с выходом пара и газа из первого сушильного аппарата (2), а нагнетание сопряжено с конденсатором (8); причем скорость вентилятора регулируется для поддержания пониженного давления и контролируется в первом сушильном аппарате (2).
9. Установка по п. 8, отличающаяся тем, что перемещение осадка между выходом первого сушильного аппарата (2) и устройством (5) формовки на входе второго сушильного аппарата (6) обеспечено регулируемым по скорости винтом без сердечника (4), позволяющим обеспечить герметичность по отношению к газу на выходе из первого сушильного аппарата (2).
10. Установка по п. 7, отличающаяся тем, что контур низкой температуры (В1) с циркуляцией жидкости содержит:
- часть (В1.1) с низкой температурой, составляющей 30°-80°C, предпочтительно 60°-70°C, на входе конденсатора (8);
- часть (В1.2) средней температуры, составляющей 40°-90°C, предпочтительно 70°-80°C, на выходе конденсатора (8);
- теплообменник (9) между жидкостью контура (В1) и источником рекуперированной энергии на выходе или на входе конденсатора (8) для нагревания жидкости контура (В1) посредством источника рекуперированной энергии с низкой температурой, в частности двигателя когенерации, теплового насоса, бойлера на биогазе, на дровах, солнечно-тепловых систем или других источников фатальной энергии;
- на выходе теплообменника (9) между жидкостью контура (В1) и источником рекуперированной энергии теплообменник (10) с отводом жидкого теплоносителя (3), позволяющий завершить нагревание жидкости контура (В1) до регулируемой температуры для второго сушильного аппарата (6), составляющей 40°-90°C, предпочтительно 80°-90°C;
- теплообменник (11) жидкость/газ, в частности вода/воздух, позволяющий нагревать посредством жидкости контура (В1) газ второго сушильного аппарата (6), который приводится в движение, в частности, посредством вентилятора для циркуляции (12);
- насос (Р2) для циркуляции воды в контуре (В1).
11. Установка по п. 10, отличающаяся тем, что она содержит регулирование, содержащее первый контур регулирования для обеспечения непосредственного регулирования промежуточной сухости Si на выходе из первого сушильного аппарата (2) с устройством вычисления и управления, в частности автоматом (Μ), фиксирующим заданную величину промежуточной сухости Si на основании рабочих параметров.
12. Установка по п. 11, отличающаяся тем, что автомат (М) управляет вентилем (21) контроля расхода, давления или температуры жидкого теплоносителя (3) в зависимости от измеренной промежуточной сухости; причем этот контроль осуществляется путем регулирования давления жидкого теплоносителя в случае, если жидкий теплоноситель - пар, или путем регулирования расхода или температуры (путем смешивания с холодным возвратом жидкого теплоносителя) в случае жидкого теплоносителя типа органической текучей среды.
13. Установка по п. 10, отличающаяся тем, что она содержит устройство регулирования, содержащее регулировочный контур, который контролирует количество теплоты (Q3), подаваемой в теплообменник (10) между жидким теплоносителем и жидкостью контура (В1) низкой температуры.
14. Установка по п. 13, отличающаяся тем, что регулировочный контур, который контролирует количество теплоты, подаваемой в теплообменник (10) между жидким теплоносителем и жидкостью контура (В1) низкой температуры, образует второй регулировочный контур; причем регулирование установки может быть обеспечено исключительно на основе этого второго контура в обход первого регулировочного контура.
15. Установка по п. 13, отличающаяся тем, что теплообменник (10) между жидким теплоносителем и жидкостью контура (В1) низкой температуры имеет в качестве величины регулирования температуру жидкости контура (В1) на выходе из теплообменника (10).
16. Установка по п. 15, отличающаяся тем, что она содержит регулировочный контур, согласно которому измеряется теплота (Q3), подаваемая в теплообменник (10), путем измерения температуры и расхода на входе и на выходе теплообменника (10), и если теплота (Q3) близка к нулю, но не равна нулю, для того чтобы всегда иметь диапазон регулирования, устройство регулирования изменяет выходной сигнал первого регулировочного контура, регулируя таким образом количество теплоты, подаваемой в первый сушильный аппарат (2).
17. Установка по п. 16, отличающаяся тем, что регулирование установки для того, чтобы находиться в оптимальных условиях для теплообменника (11) и конденсатора (8), содержит третий регулировочный контур, который использует в качестве заданной величины температуру контура воды на выходе из теплообменника (11).
18. Установка по п. 17, отличающаяся тем, что третий регулировочный контур предусмотрен для использования заданной температуры, которая определена относительно заданной величины, зависящей от расхода осадка, измеренного на уровне насоса (1) подачи осадка, и когда температура на выходе из теплообменника (11) между жидкостью контура (В1) низкой температуры и газом второго сушильного аппарата (6) повышается, циркуляционный насос (Р2) контура (В1) уменьшает свой расход.
RU2012126090/05A 2009-11-23 2010-11-19 Способ и установка сушки тестообразной массы, в частности, осадка из очистной станции RU2555047C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0905607A FR2953005B1 (fr) 2009-11-23 2009-11-23 Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d'epuration
FR0905607 2009-11-23
PCT/IB2010/055304 WO2011061715A1 (fr) 2009-11-23 2010-11-19 Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d'epuration

Publications (2)

Publication Number Publication Date
RU2012126090A RU2012126090A (ru) 2013-12-27
RU2555047C2 true RU2555047C2 (ru) 2015-07-10

Family

ID=42260354

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012126090/05A RU2555047C2 (ru) 2009-11-23 2010-11-19 Способ и установка сушки тестообразной массы, в частности, осадка из очистной станции

Country Status (17)

Country Link
US (1) US8832962B2 (ru)
EP (1) EP2504649B1 (ru)
JP (1) JP5847726B2 (ru)
KR (1) KR101878644B1 (ru)
CN (1) CN102713481B (ru)
AU (1) AU2010320518B2 (ru)
BR (1) BR112012012380B8 (ru)
CA (1) CA2781038C (ru)
DK (1) DK2504649T3 (ru)
ES (1) ES2477226T3 (ru)
FR (1) FR2953005B1 (ru)
MX (1) MX2012005877A (ru)
NZ (1) NZ600116A (ru)
PL (1) PL2504649T3 (ru)
PT (1) PT2504649E (ru)
RU (1) RU2555047C2 (ru)
WO (1) WO2011061715A1 (ru)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953005B1 (fr) * 2009-11-23 2011-12-09 Degremont Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d'epuration
KR20110132151A (ko) * 2010-06-01 2011-12-07 삼성전자주식회사 건조기 및 건조도 측정 방법
FR2994254B1 (fr) * 2012-08-02 2018-08-10 Electricite De France Pompe a chaleur pour realiser un chauffage a fort ecart de temperatures d'un fluide exterieur, et installation comprenant une telle pompe a chaleur
US8869420B1 (en) * 2012-11-19 2014-10-28 Mousa Mohammad Nazhad Energy-efficient process and apparatus for drying feedstock
KR101371424B1 (ko) * 2013-05-22 2014-03-07 코리아워터텍 주식회사 슬러지 건조장치 및 슬러지 건조방법
AU2014284257B2 (en) * 2014-02-11 2019-01-17 Kai Liu Novel solar autoclave equipment
EP3158130B1 (de) * 2014-07-29 2018-03-28 Siemens Aktiengesellschaft Verfahren und vorrichtung zur trocknung eines trocknungsguts und industrielle anlage
FR3024725B1 (fr) * 2014-08-08 2020-11-13 Degremont Procede et installation de sechage thermique de produits pateux
US9708937B2 (en) * 2014-11-14 2017-07-18 Bill & Melinda Gates Foundation Multi-functional fecal waste and garbage processor and associated methods
FR3035190B1 (fr) * 2015-04-20 2017-04-28 Degremont Procede et installation de sechage par carbonisation hydrothermale et par filtrage
DE102015106120A1 (de) * 2015-04-21 2016-10-27 Huber Se Verfahren zum Trocknen von Feuchtgut sowie Trocknungsanlage
CN105258488B (zh) * 2015-11-27 2017-12-12 广东石油化工学院 一种太阳能热泵联合干燥系统及干燥方法
CN106052363A (zh) * 2016-07-07 2016-10-26 杭州莱鸿能源科技有限公司 一种热回收热风干燥机
WO2018073344A1 (en) * 2016-10-20 2018-04-26 Hsl Energy Holding Aps Plant and process for production of hot water from humid air
CN106966566B (zh) * 2017-05-23 2019-09-24 杭州富阳钰宝机床厂 一种可进行两次高效干燥的污泥除杂干化装置
CN110997578A (zh) * 2017-09-14 2020-04-10 月岛机械株式会社 有机性废弃物的处理装置和处理方法
CN108895823A (zh) * 2018-08-18 2018-11-27 广东高而美制冷设备有限公司 一种热泵烘干系统
CN109520273B (zh) * 2018-11-12 2024-02-09 淮安保粮工程机械有限公司 太阳能热水循环持续烘干系统
CN111750625A (zh) * 2019-03-26 2020-10-09 湖南三德科技股份有限公司 用于样品干燥的通氮干燥方法及装置
US11629301B2 (en) 2019-07-29 2023-04-18 Ecoremedy Llc Biosolid treatment process and system
CN111153584A (zh) * 2020-03-03 2020-05-15 江苏釜鼎干燥工程有限公司 一种两段法热量回用污泥干燥系统及其干燥方法
CN111578662A (zh) * 2020-04-26 2020-08-25 上海净泥新能源科技有限公司 一种智能识别型冷凝除湿干化系统
CN113461301A (zh) * 2021-07-23 2021-10-01 大唐环境产业集团股份有限公司 一种耦合除湿热泵的污泥蒸汽干化系统和方法
CN115597340A (zh) * 2022-10-17 2023-01-13 北京国润伟业科技中心(有限合伙)(Cn) 一种水洗飞灰间接干燥的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1413389A1 (ru) * 1986-11-12 1988-07-30 Трипольский биохимический завод Способ автоматического регулировани процесса сушки
DE4205619A1 (de) * 1992-02-25 1993-08-26 Gea Canzler Gmbh & Co Verfahren und vorrichtung zur reduzierung des fluessigkeitsgehalts von gemischen von feststoffen und fluessigkeiten
EP0781741A1 (de) * 1995-12-27 1997-07-02 Intercept AG Verfahren zur Verarbeitung von Schlamm
RU2109545C1 (ru) * 1992-02-12 1998-04-27 Сирвен Способ извлечения твердых остатков из текучей среды посредством выпаривания и установка для его осуществления
RU2198141C1 (ru) * 2001-06-29 2003-02-10 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ утилизации шлама сточных вод

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139260A (en) * 1978-04-21 1979-10-29 Kuuchiyou Kougiyou Kenkiyuushi Method of drying sludge matter
JPS58136973A (ja) * 1982-02-08 1983-08-15 荏原インフイルコ株式会社 含水物の処理方法
JPS60120000U (ja) * 1984-01-17 1985-08-13 株式会社クボタ 汚泥解砕乾燥機
US5323546A (en) * 1989-02-10 1994-06-28 Eastman Kodak Company Method of drying photographic materials
JPH0643671Y2 (ja) * 1989-08-08 1994-11-14 ストード インターナショナル アクシェセルスカップ 動物又は植物材料の乾燥装置
DE4029525A1 (de) * 1990-09-18 1992-03-19 Umwelt & Energietech Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett
DE4138865C2 (de) * 1991-11-26 1993-12-09 Rhein Bayern Fahrzeugbau Gmbh Verfahren zum Aufbereiten und Konservieren von Futterstoffen und/oder feuchten Erntegütern und Vorrichtung zur Durchführung dieses Verfahrens
DE19522164A1 (de) * 1995-06-19 1997-01-02 Sep Tech Studien Verfahren und Vorrichtung zur kontinuierlichen Trocknung von Protein enthaltendem Schlamm
JPH09210330A (ja) * 1996-01-30 1997-08-12 Fukuoka Pref Gov 汚泥の乾燥・焼却方法及びその設備
JPH10311675A (ja) * 1997-05-12 1998-11-24 Okawara Mfg Co Ltd ゴミの低温乾燥システム
DE19739864A1 (de) * 1997-09-11 1999-03-18 Dornier Gmbh Lindauer Verfahren zur Behandlung der Abluft aus thermischen Trocknungsprozessen, insbesondere aus Prozessen beim Trocknen von Klärschlamm in Klärschlamm-Trocknern und Anlage zur Verfahrensdurchführung
JP3833462B2 (ja) * 2000-09-14 2006-10-11 大阪熱管理工業株式会社 蒸発乾燥方法と蒸発乾燥装置
JP4392820B2 (ja) * 2001-06-14 2010-01-06 月島機械株式会社 含水物燃焼処理設備及びその方法
DE10323774A1 (de) * 2003-05-26 2004-12-16 Khd Humboldt Wedag Ag Verfahren und Anlage zur thermischen Trocknung eines nass vermahlenen Zementrohmehls
KR100948784B1 (ko) * 2008-11-28 2010-03-23 (주)한국환경기술 슬러지 건조와 탄화장치
FR2953005B1 (fr) * 2009-11-23 2011-12-09 Degremont Procede et installation de sechage de matieres pateuses, en particulier de boues de stations d'epuration
FR2989597B1 (fr) * 2012-04-19 2014-11-28 Degremont Procede de denitrification des fumees produites par un four de combustion, et installation pour la mise en oeuvre de ce procede
US8464437B1 (en) * 2012-05-25 2013-06-18 Wyssmont Company Inc. Apparatus and method for the treatment of biosolids
JP6043671B2 (ja) * 2013-03-29 2016-12-14 株式会社デンソーアイティーラボラトリ クラクション発生装置、クラクション発生方法、プログラム及び乗物用入力装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1413389A1 (ru) * 1986-11-12 1988-07-30 Трипольский биохимический завод Способ автоматического регулировани процесса сушки
RU2109545C1 (ru) * 1992-02-12 1998-04-27 Сирвен Способ извлечения твердых остатков из текучей среды посредством выпаривания и установка для его осуществления
DE4205619A1 (de) * 1992-02-25 1993-08-26 Gea Canzler Gmbh & Co Verfahren und vorrichtung zur reduzierung des fluessigkeitsgehalts von gemischen von feststoffen und fluessigkeiten
EP0781741A1 (de) * 1995-12-27 1997-07-02 Intercept AG Verfahren zur Verarbeitung von Schlamm
RU2198141C1 (ru) * 2001-06-29 2003-02-10 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ утилизации шлама сточных вод

Also Published As

Publication number Publication date
JP5847726B2 (ja) 2016-01-27
RU2012126090A (ru) 2013-12-27
ES2477226T3 (es) 2014-07-16
CA2781038C (fr) 2017-07-04
KR101878644B1 (ko) 2018-07-16
MX2012005877A (es) 2012-06-19
DK2504649T3 (en) 2015-01-05
BR112012012380A2 (pt) 2018-04-17
BR112012012380B8 (pt) 2020-12-22
EP2504649A1 (fr) 2012-10-03
EP2504649B1 (fr) 2014-04-02
KR20120089753A (ko) 2012-08-13
CN102713481A (zh) 2012-10-03
BR112012012380B1 (pt) 2020-09-15
PL2504649T3 (pl) 2014-10-31
NZ600116A (en) 2013-05-31
AU2010320518A1 (en) 2012-06-07
US20120304488A1 (en) 2012-12-06
FR2953005B1 (fr) 2011-12-09
JP2013511693A (ja) 2013-04-04
US8832962B2 (en) 2014-09-16
FR2953005A1 (fr) 2011-05-27
PT2504649E (pt) 2014-07-10
BR112012012380A8 (pt) 2020-05-12
AU2010320518B2 (en) 2016-04-28
CA2781038A1 (fr) 2011-05-26
CN102713481B (zh) 2014-09-17
WO2011061715A1 (fr) 2011-05-26

Similar Documents

Publication Publication Date Title
RU2555047C2 (ru) Способ и установка сушки тестообразной массы, в частности, осадка из очистной станции
KR101274819B1 (ko) 습윤한 슬러지의 건조기 및 그 운전방법
CN109553270B (zh) 一种热泵型闭式污泥干化系统及其控制方法
CN103217008A (zh) 一种蒸汽再压缩烘干物料的方法及装置
CN112876030B (zh) 一种自适配型带式热泵污泥干化系统及其控制方法
CN110873517A (zh) 光伏驱动太阳能热泵干燥器
CN109626791B (zh) 污泥干化设备及污泥干化方法
CN103294086B (zh) 一种恒温液循环装置及温控方法
CN110028219A (zh) 一种热泵型闭式污泥干化系统
CN112661383A (zh) 一种新型风媒式污泥干化系统
CN111207570A (zh) 一种节能型热泵干燥系统及其控制方法
CA2947318C (en) Method for cool drying a gas
CN110926120A (zh) 室平衡的动态真空系统及物料干燥方法
CN206089407U (zh) 一种mvr干燥系统
CN209490495U (zh) 磷铵系统低温余热综合利用装置
CN208192092U (zh) 一种果蔬低压过热蒸汽高效节能干燥装置
WO2008127228A1 (en) A method and system for rejecting heat in an absorption chiller
CN104848305A (zh) 利用蒸汽换热与冷凝水回收机组
CN214528672U (zh) 一种新型风媒式污泥干化系统
CN101191664A (zh) 供热装置
CN108759328A (zh) 闭式除湿水水热泵多烘房烘干系统
CN207262836U (zh) 真空热泵烘干系统
CN116839346A (zh) 一种闭式热平衡除湿烘干机组
CN115818921A (zh) 热泵污泥干化系统
Hu et al. Study on drying characteristics of sludge under different conditions based on the low-temperature sludge heat pump drying model

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161120