RU2553993C2 - Каталитический комплекс для реакций метатезиса олефинов, способ его приготовления и его применение - Google Patents

Каталитический комплекс для реакций метатезиса олефинов, способ его приготовления и его применение Download PDF

Info

Publication number
RU2553993C2
RU2553993C2 RU2012105770/04A RU2012105770A RU2553993C2 RU 2553993 C2 RU2553993 C2 RU 2553993C2 RU 2012105770/04 A RU2012105770/04 A RU 2012105770/04A RU 2012105770 A RU2012105770 A RU 2012105770A RU 2553993 C2 RU2553993 C2 RU 2553993C2
Authority
RU
Russia
Prior art keywords
amino group
alkyl
group
catalyst
ligand
Prior art date
Application number
RU2012105770/04A
Other languages
English (en)
Other versions
RU2012105770A (ru
Inventor
Рената ДРОЗДЗАК
Original Assignee
Римтек Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Римтек Корпорейшн filed Critical Римтек Корпорейшн
Publication of RU2012105770A publication Critical patent/RU2012105770A/ru
Application granted granted Critical
Publication of RU2553993C2 publication Critical patent/RU2553993C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Настоящее изобретение относится к способу приготовления каталитического комплекса, имеющего формулу
Figure 00000017
где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C2-C20алкоксигруппы, галогена и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил. Способ включает стадию взаимодействия предшественника рутениевого катализатора с одним или двумя бидентатными лигандами класса Шиффовых оснований в неполярном растворителе и в присутствии слабого основания, где бидентатные лиганды класса Шиффовых оснований независимо находятся в количестве от 1,0 до 3,0 эквивалентов относительно количества предшественника катализатора (формулы предшественников и лигандов приведены в п.1 формулы изобретения). Также предложены каталитический комплекс, катализатор на носителе для реакций метатезиса олефинов и их применение в реакциях метатезиса олефинов. Изобретение позволяет получить катализатор, обладающий высокой активностью после активации, стабильностью в мономере, простым и безопасным способом. 4 н. и 7 з.п. ф-лы, 2 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к каталитическому комплексу для реакций метатезиса олефинов, к способу его приготовления и его применению в реакциях метатезиса олефинов, в частности в реакциях метатезисной полимеризации с раскрытием цикла (ROMP).
Уровень техники
В последние годы метатезис олефинов получил широкое развитие и стал универсальным и эффективным инструментом в органическом синтезе.
Успех реакции метатезиса олефинов объясняется главным образом универсальностью и разработкой хорошо охарактеризованных рутениевых катализаторов, устойчивых к требуемым условиям реакции. Ввиду того, что данные катализаторы стали коммерчески доступными и применялись в большом количестве потенциально интересных применений, в области возникли новые проблемы, например латентность катализаторов. Идеальный латентный катализатор метатезиса олефинов не проявляет каталитической активности в присутствии мономера или носителя при комнатной температуре, но может быть количественно стимулирован в высокоактивную форму путем термической, химической или фотохимической активации для инициирования реакции метатезиса. К тому же, устойчивость катализатора к распаду или термическому разложению должна быть гарантирована тщательным подбором лигандного окружения.
Для промышленного применения в полимеризации дициклопентадиена (DCPD) требуются латентные катализаторы, проявляющие пониженные начальные скорости, позволяющие дольше хранить смесь мономер-катализатор до начала полимеризации.
Ван дер Шааф с сотрудниками разработал термически активируемый, медленно инициирующий метатезис олефинов катализатор (PR3)(Cl)2Ru(CH(CH2)2-C,N-2-C5H4N) (Схема 1), при этом температуры инициирования были настроены путем изменения схемы замещения пиридинового кольца (Van der Schaaf, Р.А.; Kolly, R.; Kirner, H.-J.; Rime, F.; Muhlebach, A.; Hafner, A.J. Organomet. Chem. 2000, 606, 65-74). К сожалению, активности предложенных комплексов были нежелательно низкими; ограничиваясь 12000 экв. DCPD. Позднее Унг предложил аналогичные настраиваемые каталитические системы, полученные путем частичной изомеризации транс-(SIMes)(Cl)2Ru(CH(CH2)2-C,N-2-C5H4N) (2) в цис аналог (, Т.; Hejl, A.; Grubbs, R.H.; Schrodi, Y. Organometallics 2004, 23, 5399-5401). Однако ни один из этих катализаторов не мог храниться в DCPD мономере длительное время, так как реакция метатезисной полимеризации с раскрытием цикла (ROMP) дициклопентадиена (DCPD) завершалась через 25 минут после введения катализатора.
Figure 00000001
В другом подходе к рационально конструированному термически стабильному катализатору метатезиса олефинов для полимеризации дициклопентадиена (DCPD) усилия были направлены на развитие Ru-карбеновых катализаторов, содержащих O,N-бидентатный лиганд класса Шиффовых оснований, разработанных Verpoort et al (Схема 2, 4, 5, L=SIMes). Было показано, что такие комплексы крайне неактивны при комнатной температуре в отношении полимеризации циклических олефинов с низкой деформацией, могут храниться в DCPD в течение месяцев и могут быть термически активированы для достижения повышенной активности для полимеризации в массе DCPD, но активности, сопоставимые с соответствующими комплексами без оснований Шиффа, достигнуты быть не могут (ЕР 1 468 004; Allaert, В.; Dieltiens, N.; Ledoux, N.; Vercaemst, С; Van Der Voort, P.; Stevens, C.V.; Linden, A.; Verpoort, F. J. Mol. Cat. A: Chem. 2006, 260, 221-226).
Figure 00000002
К тому же, активации катализатора способствует добавление больших объемов кислот Брэнстеда (напр., HCl), что приводит к высокой каталитической активности в отношении реакции ROMP дициклопентадиена (DCPD) (ЕР 1 577 282; ЕР 1 757 613; В. De Clercq, F. Verpoort, Tetrahedron Lett., 2002, 43, 9101-9104; (b) B. Allaert, N. Dieltens, N. Ledoux, C. Vercaemst, P. Van Der Voort, С.V. Stevens, A. Linden, F. Verpoort, J. Mol. Catal. A: Chem., 2006, 260, 221-226; (c) N. Ledoux, B. Allaert, D. Schaubroeck, S. Monsaert, R. Drozdzak, P. Van Der Voort, F. Verpoort, J. Organomet. Chem., 2006, 691, 5482-5486). Однако необходимость больших объемов HCl, из-за ее высокой летучести и проблем коррозии, делает их неприемлемыми для промышленного применения.
Недавно были синтезированы серии латентных катализаторов метатезиса олефинов, несущих бидентатные к2-(O,O) лиганды (Схема 2, 3). Оказалось, что комплекс 3 является неактивным для полимеризации без растворителя дициклопентадиена (DCPD). К тому же, было показано, что комплекс 3 (Схема 2, L=РСу3, SIMes) легко активируется при облучении смеси катализатор/мономер, содержащей фотокислотный генератор и пригоден для реакции ROMP дициклопентадиена (DCPD) (D. М. Lynn, Е. L. Dias, R Н. Grubbs, В. Mohr, 1999, WO 99/22865). Несмотря на то что облучение раствора дициклопентадиена (DCPD) 3 (L=SIMes) в минимальном количестве CH2Cl2 приводило к полному гелеобразованию в течение 1 ч, отвержденный и поперечно-сшитый мономер не был получен. Это указывает на низкую каталитическую активность и действие на низком количестве активных частиц. Более того, протокол синтеза для катализатора 3 имеет серьезный недостаток, а именно использование Т1(алкил-асас). Таллий и его производные чрезвычайно токсичны, поэтому этот способ не приемлем для промышленного применения. К тому же, использование Ag(Me6acac) приводило к полному лигандному обмену, но требуемый продукт 3 оказался устойчив к дальнейшей очистке, только лигандный обмен с использованием таллия как более эффективного элемента переметаллирования позволил получить требуемый чистый комплекс 3 с высоким выходом (К. Keitz, R. Н. Grubbs, J. Am. Chem. Soc., 2009,131, 2038-2039).
Таким образом, латентные катализаторы являются важными для метатезисной полимеризации с раскрытием цикла циклических олефинов с низкой деформацией, допуская смешивание мономера и катализатора без сопутствующего гелеобразования или микрокапсулирования прекатализатора. Получение латентного катализатора, стабильного в мономере, высоко активного после подходящего для производства способа активации и изготовленного безвредным для окружающей среды способом, остается открытой проблемой.
Раскрытие изобретения
Целью настоящего изобретения является получение каталитического комплекса для применения в реакциях метатезиса олефинов, который преодолевает указанные выше недостатки латентных катализаторов с основанием Шиффа, стабилен в составе мономера DCPD, легко и эффективно активируется количественными объемами слабой кислоты Льюиса с высокой активностью после активации и получен простым, эффективным, безопасным способом с высоким выходом.
Указанная цель достигается с помощью способа приготовления каталитического комплекса, состоящего из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. двух бидентантных лигандов класса Шиффовых оснований, содержащих иминогруппу и скоординированных с металлом, в дополнение к атому азота указанной иминогруппы, через по меньшей мере один дополнительный гетероатом, выбранный из группы, состоящей из кислорода, серы и селена, связанный с указанным металлом;
c. нуклеофильного карбенового лиганда, связанного с указанным металлом; и
d. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд;
при этом способ включает стадии взаимодействия предшественника рутениевого или осмиевого катализатора, состоящего из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. двух анионных лигандов;
c. нуклеофильного карбенового лиганда, связанного с указанным металлом;
d. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд; и
e. нейтрального лиганда или
предшественника рутениевого или осмиевого катализатора, состоящего из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. одного анионного лиганда;
c. одного бидендатного лиганда класса Шиффовых оснований, содержащего иминогруппу и скоординированного с металлом, дополнительно к атому азота указанной иминогруппы, по меньшей мере через один дополнительный гетероатом, выбранный из группы, состоящей из кислорода, серы и селена, связанный с указанным металлом;
d. нуклеофильного карбенового лиганда, связанного с указанным металлом; и
е. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд;
с 1.0-3.0 эквивалентами бидентатного лиганда класса Шиффовых оснований в неполярном растворителе и в присутствии слабого основания.
Кроме того, настоящее изобретение относится к каталитическому комплексу, который можно получить этим способом, т.е. каталитическому комплексу, состоящему из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. двух бидентантных лигандов класса Шиффовых оснований, содержащих иминогруппу и скоординированных с металлом, дополнительно к атому азота указанной иминогруппы, по меньшей мере через один дополнительный гетероатом, выбранный из группы, состоящей из кислорода, серы и селена, связанный с указанным металлом;
c. нуклеофильного карбенового лиганда, связанного с указанным металлом; и
d. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд.
Кроме того, настоящее изобретение относится к катализатору на носителе, содержащему указанный выше каталитический комплекс.
Таким образом, настоящее изобретение относится к применению указанного выше каталитического комплекса и катализатора на носителе в реакциях метатезиса олефинов и, в частности, в метатезисной полимеризации с раскрытием цикла.
Предпочтительные варианты настоящего изобретения описаны в зависимых пунктах формулы изобретения.
Осуществление изобретения
Каталитический комплекс согласно настоящему изобретению содержит атом металла, выбранный из группы, состоящей из рутения и осмия, в качестве базового металла. Предпочтительно, чтобы каталитический комплекс содержал рутений.
К тому же, каталитический комплекс содержит два бидентатных лиганда класса Шиффовых оснований, содержащих иминогруппу и скоординированных с металлом, в дополнение к атому азота указанной иминогруппы, по меньшей мере через один дополнительный гетероатом, выбранный из группы, состоящей из кислорода, серы и селена, связанный с указанным металлом. Предпочтительно, чтобы гетероатомом являлся кислород.
Подходящие бидентатные лиганды класса Шиффовых оснований описаны, например, в европейском патенте 1468004. Эти лиганды класса Шиффовых оснований имеют общую формулу:
Figure 00000003
где Z выбран из группы, состоящей из кислорода, серы и селена, и где каждый R′, R″ и R′″ представляет собой радикал, независимо выбранный из группы, состоящей из водорода, C1-6алкила, С3-8циклоалкила, арила и гетероарила, или R″ и R′″ вместе образуют арильный или гетероарильный радикал, причем каждый указанный радикал необязательно замещен одним или несколькими, предпочтительно 1-3 заместителями R5, каждый из которых независимо выбран из группы, состоящей из атомов галогена, C1-6алкила, C1-6алкоксигруппы, арила, алкилсульфоната, арилсульфоната, алкилфосфоната, арилфосфоната, алкиламмония и ариламмония.
Кроме того, бидентатные лиганды класса Шиффовых оснований для применения в каталитическом комплексе согласно настоящему изобретению раскрыты в находящихся на рассмотрении европейских заявках на патент ЕР 08290747 и 08290748.
Эти лиганды класса Шиффовых оснований получены из производных салицилальдимина общей формулы, показанной ниже:
Figure 00000004
где от S1 до S4 представляют собой заместители, которые выбраны таким образом, чтобы соединение имело рКа ≥6.2, и где
А представляет собой
Figure 00000005
гетероарил, замещенный или незамещенный алкил, гетероалкил или циклоалкил;
В представляет собой водород, С120алкил, С120гетероалкил или гетероарил, где каждая отличная от водорода группа может быть необязательно замещенной одной или несколькими группами, выбранными из группы, состоящей из C110алкила и арила;
каждый Ro1, Ro2, Rm1, Rm2 и Rp выбран из группы, состоящей из водорода, C1-C20алкила, С120гетероалкила, С120алкоксигруппы, арила, арилоксигруппы, гетероарила, гетероциклоалкила, дисульфида, карбоната, изоцианата, карбодиимида, карбоалкокси, карбамата и галогена, простого тиоэфира, кетона, альдегида, сложного эфира, простого эфира, аминогруппы, амида, нитро, карбоновой кислоты, причем отличные от водорода группы необязательно замещены одной или несколькими группами, выбранными из группы, состоящей из C1-C20алкила, С120алкокси и арила, причем Ro1, Ro2, Rm1, Rm2 и Rp вместе могут формировать конденсированное циклическое алифатическое или ароматическое кольцо, необязательно замещенное одной или несколькими группами, выбранными из группы, состоящей из С120алкила, С120гетероалкила, С120алкоксигруппы, арила, арилоксигруппы, гетероарила, гетероциклоалкила, дисульфида, карбоната, изоцианата, карбодиимида, карбоалкоксигруппы, карбамата и галогена, простого тиоэфира, кетона, альдегида, сложного эфира, простого эфира, амина, амида, нитро, карбоновой кислоты, причем отличные от водорода группы необязательно замещены одной или несколькими группами, выбранными из группы, состоящей из С120алкила, С120алкоксигруппы и арила.
Предпочтительно, чтобы заместители от S1 до S4 были выбраны из группы, состоящей из водорода, аминогруппы, замещенного или незамещенного моно- и диалкиламиногруппы, С120алкила, тиоалкила, арила и арилоксигруппы.
Более предпочтительно, чтобы заместители от S1 до S4 были выбраны из группы, состоящей из водорода, метоксигруппы, метилтиогруппы, аминогруппы, диметиламиногруппы, трифторметила, трифторметоксигруппы, трет-бутила, фенила, феноксигруппы, хлора, брома, пиперидинила, 1-пирролидиногруппы, 4-трет-бутилфеноксигруппы и 2-пиридила.
Предпочтительно, чтобы Ro1, Ro2, Rm1, Rm2 и Rp были выбраны из группы, состоящей из водорода, метила, изопропила, трет-бутила, метоксигруппы, диметиламиногруппы и нитрогруппы.
Представлены определенные примеры таких лигандов класса Шиффовых оснований указанной выше общей формулы, в которой В представляет собой водород,
А представляет собой
Figure 00000006
и от S1 до S4 и Ro1, Ro2, Rm1, Rm2 и Rp являются такими, которые определены ниже.
Figure 00000007
Каталитический комплекс согласно настоящему изобретению кроме того содержит нуклеофильный карбеновый лиганд, связанный с металлом рутением или осмием.
Подходящие нуклеофильные карбеновые лиганды описаны в европейском патенте 1468004.
Предпочтительно, чтобы нуклеофильный карбеновый лиганд представлял собой замещенное или незамещенное, насыщенное или ненасыщенное 1,3-дигетероатомное циклическое соединение, в котором гетероатомами являются атомы азота.
Такое 1,3-дигетероатомное циклическое соединение может иметь формулу
Figure 00000008
где Y и Y1 независимо выбраны из группы, состоящей из водорода, С120алкила, С220алкенила, С220алкинила, С220алкоксикарбонила, арила, С120карбоксилата, С120алкоксигруппы, С220алкенилоксигруппы, С220алкинилоксигруппы или арилоксигруппы; каждый Y и Y1 необязательно является замещенным С15алкилом, галогеном, C16алкоксигруппой или фенильной группой, замещенной галогеном, C15алкилом или С15алкоксигруппой и;
Z и Z1 независимо выбраны из группы, состоящей из водорода, С120алкила, С220алкенила, С220алкинила, С220алкоксикарбонила, арила, С120карбоксилата, С120алкоксигруппы, С220алкенилоксигруппы, С220алкинилоксигруппы или арилоксигруппы, каждый Z и Z1 необязательно является замещенным С15алкилом, галогеном, C16алкоксигруппой или фенильной группой, замещенной галогеном, С15алкилом или С15алкоксигруппой, и при этом кольцо может быть необязательно ароматическим путем введения дополнительной двойной связи в кольцо.
Предпочтительно, чтобы нуклеофильный карбеновый лиганд представлял собой SIMES или IMES, и более всего предпочтительно, чтобы нуклеофильный карбеновый лиганд представлял собой SIMES.
Каталитический комплекс согласно настоящему изобретению, кроме того, содержит углеродсодержащий лиганд, связанный с металлом рутением или осмием. Этот углеродсодержащий лиганд выбран из группы, состоящей из замещенных или незамещенных алкилиденовых, винилиденовых или инденилиденовых лигандов.
Такие алкилиденовые, винилиденовые или инденилиденовые лиганды описаны, например, в WO 00/15339.
Заместители для этих лигандов выбраны из группы, состоящей из С110алкила, С220алкинила, С120алкоксигруппы, С220алкоксикарбонила и арила.
Более всего предпочтительно, чтобы углеродсодержащий лиганд представлял собой фенилинденилиденовый лиганд.
Подходящие углеродсодержащие лиганды также описаны в Европейском патенте 1468004.
Предпочтительное семейство каталитических комплексов согласно настоящему изобретению имеет формулу:
Figure 00000009
где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, галогена, C1-C20алкила, C2-C20алкенила, C2-C20алкинила, C2-C20алкоксикарбонила, арила, C1-C20карбоксилата, C1-C20алкоксигруппы, C2-C20алкенилоксигруппы, C2-C20алкинилоксигруппы, арилоксигруппы, C1-C20алкилтиогруппы, C1-C20алкилсульфонила, C1-C20алкилсульфинила, и при этом каждый из R1, R2, R3 и R4 может быть замещенным С15алкилом, галогеном, C1-C10алкоксигруппой или арильной группой, замещенной С15алкилом, С15арилоксигруппой, галогеном или функциональной группой.
Особенно предпочтительный комплекс согласно настоящему изобретению имеет формулу:
Figure 00000010
Каталитический комплекс по настоящему изобретению может применяться как таковой или в форме катализатора на носителе, содержащего каталитический комплекс и носитель.
Носитель может быть выбран из группы, состоящей из пористых неорганических твердых веществ, таких как аморфные или паракристаллические материалы, кристаллические молекулярные сита и модифицированные слоистые материалы, включающие один или несколько неорганических оксидов, и органические полимерные смолы.
Каталитический комплекс приготовлен способом, который содержит стадию взаимодействия предшественника рутениевого или осмиевого катализатора, состоящего из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. двух анионных лигандов;
c. нуклеофильного карбенового лиганда, связанного с указанным металлом;
d. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд; и
e. нейтрального лиганда;
или предшественника рутениевого или осмиевого катализатора, состоящего из:
a. атома металла, выбранного из группы, состоящей из рутения и осмия;
b. одного анионного лиганда;
c. одного бидендатного лиганда класса Шиффовых оснований, содержащего иминогруппу и скоординированного с металлом, дополнительно к атому азота указанной иминогруппы по меньшей мере через один дополнительный гетероатом, выбранный из группы, состоящей из кислорода, серы и селена, связанный с указанным металлом;
d. нуклеофильного карбенового лиганда, связанного с указанным металлом; и
e. углеродсодержащего лиганда, связанного с указанным металлом, при этом указанный углеродсодержащий лиганд представляет собой замещенный или незамещенный алкилиденовый, винилиденовый или инденилиденовый лиганд;
с 1,0-3,0 эквивалентами бидентатного лиганда класса Шиффовых оснований в неполярном растворителе и в присутствии слабого основания.
Пригодные для применения в настоящем изобретении анионные лиганды выбраны из группы, состоящей из С1-20алкила, С1-20алкенила, С1-20алкинила, С1-20карбоксилата, С1-20алкоксигруппы, С1-20алкенилоксигруппы, С1-20алкинилоксигруппы, арила, арилоксигруппы, С1-20алкоксикарбонила, C1-8алкилтиогруппы, С1-20алкилсульфонила, С1-20алкилсульфинила, C1-20алкилсульфоната, арилсульфоната, С1-20алкилфосфоната, арилфосфоната, С1-20алкиламмония, ариламмония, атомов галогена и цианогруппы. Предпочтительно, чтобы анионные лиганды представляли собой хлоридные лиганды.
Предпочтительно, чтобы нейтральный лиганд представлял собой фосфин формулы PR3R4R5, где R3 представляет собой вторичный алкил или циклоалкил, и каждый из R4 и R5 представляет собой арил, C110 первичный алкил, вторичный алкил или циклоалкил, каждый независимо от другого. Более предпочтительно, чтобы нейтральным лигандом был один из Р(циклогексил)3, Р(циклопентил)3, Р(изопропил)3 или Р(фенил)3.
Так как каталитический комплекс согласно настоящему изобретению и соединения, которые применяются в способе для его приготовления, являются чувствительными к воздуху, влаге и примесям, следует быть уверенным, что используемые исходные материалы, реагенты и растворители не содержат примесей и хорошо высушены.
Подходящие слабые основания для применения в способе согласно настоящему изобретению имеют величину pKb в диапазоне от 3,5 до 7. Примеры подходящих оснований для применения в настоящем изобретении включают Li2CO3, Na2CO3, K2CO3, CuCO3 и Ag2CO3. Ag2CO3 с величиной pKb 3,68 является особенно предпочтительным.
Дополнительные примеры слабых оснований, которые использовали в способе настоящего изобретении, включают карбоксилаты.
Для приготовления каталитического комплекса по настоящему изобретению предшественник катализатора, лиганд класса Шиффовых оснований и слабое основание, например Ag2CO3, предпочтительно предварительно смешивают и затем добавляют подходящий неполярный растворитель, который не взаимодействует ни с одним из компонентов предварительной смеси. В настоящем изобретении предпочтительно использовать апротонные растворители, которые не имеют кислотного водорода, с диэлектрической проницаемостью выше 3.
В целом, диэлектрическая проницаемость растворителя дает приблизительную оценку полярности растворителя. Растворители с диэлектрической проницаемостью меньше 15 в целом считаются неполярными. Технически, при помощи диэлектрической проницаемости можно оценить способность растворителя уменьшать напряженность электрического поля, окружающего заряженную частицу, погруженную в это поле. Примеры представлены ниже в Таблице 1.
Figure 00000011
Figure 00000012
Как указано выше, предпочтительные растворители для применения в настоящем изобретении имеют диэлектрическую проницаемость выше 3, и такие растворители включают тетрагидрофуран, метилендихлорид, хлороформ и диэтиловый эфир.
Наиболее предпочтительно, чтобы в качестве неполярного растворителя применялся тетрагидрофуран.
Реакционную смесь затем нагревают и перемешивают. Как правило, реакцию проводят при температуре в диапазоне от 20°C до температуры точки кипения применяемого неполярного растворителя, предпочтительно в диапазоне от 40°C до 60°C, особенно предпочтительно примерно при 40°C.
Как правило, время реакции составляет от 2 до 72 ч.
После завершения реакции реакционную смесь охлаждают примерно до 0°C для удаления любых побочных продуктов, образуемых при фильтрации. Затем растворитель удаляют выпариванием, обычно при пониженном давлении.
Количество слабого основания, которое применяется в способе согласно настоящему изобретению, как правило, находится в диапазоне от 0,5 до 2,0 эквивалентов.
Предпочтительно использовать слабое основание в количестве от 0,5 до 1 эквивалентов, более предпочтительно примерно 0,6 эквивалентов относительно количества предшественника катализатора в случае, когда предшественник содержит один анионный лиганд и используется один бидентатный лиганд класса Шиффовых оснований.
В случае, когда предшественник содержит два анионных лиганда, слабое основание предпочтительно использовать в количестве от 1,0 до 2,0 эквивалентов, предпочтительно примерно 1,1 эквивалентов относительно количества предшественника катализатора.
Количество лиганда класса Шиффовых оснований, применяющееся в способе согласно настоящему изобретению, как правило, составляет от 1.0 до 3.0 эквивалентов, предпочтительно от 1,0 до 1,5 эквивалентов и особенно предпочтительно примерно 1,1 эквивалент относительно количества предшественника катализатора в случае, когда предшественник содержит один лиганд класса Шиффовых оснований, и от 2,0 до 2,5 эквивалентов и особенно предпочтительно примерно 2,1 эквивалент относительно количества предшественника катализатора в случае, когда предшественник содержит два анионных лиганда.
Оптимальные выходы катализатора согласно настоящему изобретению достигаются тогда, когда 1 эквивалент предшественника катализатора взаимодействует с 2,1 эквивалентами лиганда класса Шиффовых оснований в присутствии 1,1 эквивалента слабого основания, предпочтительно Ag2CO3, в случае, когда предшественник содержит два анионных лиганда.
Оптимальные выходы катализатора согласно настоящему изобретению достигаются тогда, когда 1 эквивалент предшественника катализатора взаимодействует с 1,1 эквивалентом лиганда класса Шиффовых оснований в присутствии 0,6 эквивалентов слабого основания, предпочтительно Ag2CO3, в случае, когда предшественник содержит один анионный лиганд и один лиганд класса Шиффовых оснований.
Каталитический комплекс согласно настоящему изобретению проявляет отличную латентность в реакции метатезисной полимеризации с раскрытием цикла дициклопентадиена (DCPD) по сравнению с рутениевыми катализаторами в данной области. Более того, катализатор по настоящему изобретению является неактивным при комнатной температуре и даже после нагревания до 200°C, что подтверждено измерениями методом дифференциальной сканирующей калориметрии (DSC). Более того, катализатор согласно настоящему изобретению может быть активирован меньшим количеством кислоты Льюиса или Бронстеда, чем катализаторы известного уровня техники.
Более подробное описание настоящего изобретения представлено в следующих примерах, в которых манипуляции с чувствительными к кислороду и влаге материалами выполняли с использованием методики Шленка в атмосфере аргона. В качестве иллюстративного растворителя использовали THF.
Figure 00000013
Общая методика приготовления каталитических комплексов фенилинденилиден-основание Шиффа-рутений (Схема 3)
Стехиометрические количества предшественника фенилинденилиденового катализатора 1 (Схема 3, Способ А) или предшественники монооснований Шиффа 2 (Схема 3, Способ В), соответствующий лиганд класса Шиффовых оснований, карбонат серебра (I) добавляют в колбу Шленка (50-250 мл). Колбу вакуумируют и заполняют аргоном. Затем в колбу Шленка (все еще в атмосфере аргона) добавляют сухой THF (20 мл) и перемешивают в течение 6-72 ч. Реакционную смесь охлаждают до 0°C, при этом белый осадок PCy3AgCl (побочный продукт) удаляют фильтрацией. Фильтрат собирают в колбу Шленка (250 мл) и растворитель удаляют выпариванием при пониженном давлении. Неочищенный продукт суспендируют в гексане, хорошо перемешивают и фильтруют. Конечный продукт высушивают при пониженном давлении.
Комплекс 3. Способ А. Предшественник фенилинденилиденового катализатора 1 (Схема 3) (0.54 ммоль), 2-[(4-третбутилфенилимино)метил]-4-метоксифенол (1.134 ммоль), карбонат серебра(I) (0.594 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 3.
Комплекс 3. Способ В. Рутений[1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден]-[2-[[(4-третбутилфенилимино)метил]-4-метоксифенолил]-[3-фенил-1Н-инден-1-илиден] рутения(II) хлорид (0.54 ммоль), 2-[(4-третбутилфенилимино)метил]-4-метоксифенол (0.594 ммоль), карбонат серебра(I) (0.324 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 24 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 3.
Комплекс 4. Способ А. Предшественник фенилинденилиденового катализатора 1 (Схема 3) (0.54 ммоль), 2-[(4-третбутилфенилимино)метил]-5-метоксифенол (1.134 ммоль), карбонат серебра(I) (0.594 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 4.
Комплекс 4. Способ В. Рутений [1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден] - [2-[[(4-третбутил фенилимино)метил]-5-метоксифенолил] - [3-фенил-1Н-инден-1-илиден] рутения(II) хлорид (0.54 ммоль), 2-[(4-третбутилфенилимино)метил]-5-метоксифенол (0.594 ммоль), карбонат серебра(I) (0.324 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 4.
Комплекс 5. Способ А. Предшественник фенилинденилиденового катализатора 1 (Схема 3) (0.54 ммоль), 2-[(4-метилфенилимино)метил]-5-метоксифенол (1.134 ммоль), карбонат серебра(I) (0.594 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 5.
Комплекс 5. Способ В. Рутений[1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден] - [2-[[(4-третбутил фенилимино)метил]-5-метоксифенолил] - [3 -фенил-1Н-инден-1-илиден] рутения(II) хлорид (0.54 ммоль), 2-[(4-метилфениламино)метил]-5-метоксифенол (0.594 ммоль), карбонат серебра(I) (0.324 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 6.
Комплекс 6. Способ А. Предшественник фенилинденилиденового катализатора 1 (Схема 3) (0.54 ммоль), 2-[(4-метилфенилимино)метил]-5-метоксифенол (0.54 ммоль), карбонат серебра(I) (0.594 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре, затем добавляют 2-[(4-метилфенилимино)метил]-4-метоксифенол (0.594 ммоль). Полученная смесь реагирует еще в течение 48 ч. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 6.
Комплекс 6. Способ В. Рутений [1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден]-[2-[[(4-метилфенилимино)метил]-5-метоксифенолил]-[3-фенил-1Н-инден-1-илиден] рутения(II) хлорид (0.54 ммоль), 2-[(4-метилфенилимино)метил]-4-метоксифенол (0.594 ммоль), карбонат серебра(I) (0.324 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 24 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 6.
Комплекс 7. Способ А. Предшественник фенилинденилиденового катализатора 1 (Схема 3) (0.54 ммоль), 2-[(4-изопропилфенилимино)метил]-5-метоксифенол (1.134 ммоль), карбонат серебра(I) (0.594 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 72 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 7.
Комплекс 7. Способ В. Рутений [1,3-бис(2,4,6-триметилфенил)-2-имидазолидинилиден] - [2-[[(4-изопропилфенилимино)метил]-5-метоксифенолил] - [3 -фенил-1Н-инден-1-илиден] рутения(II) хлорид (0.54 ммоль), 2-[(4-изопропилфенилимино)метил]-5-метоксифенол (0.594 ммоль), карбонат серебра(I) (0.324 ммоль) и THF (10 мл) вводят в реакцию, как описано выше, в течение 24 ч при комнатной температуре. Исследование реакционной смеси методом ЯМР на ядрах 1Н и 31Р выявило количественное превращение в комплекс 7.
Figure 00000014
Свойства катализатора
Рутениевый каталитический комплекс (4) согласно настоящему изобретению, как показано выше, был испытан в реакции ROMP дициклопентандиена (DCPD). Рутениевый катализатор (2а), содержащий только один бидентантный лиганд класса Шиффовых оснований, использовали в качестве эталонного катализатора:
Figure 00000015
Полученные результаты представлены в Таблице 2 ниже.
Figure 00000016
Салицилальдиминовый лиганд эталонного катализатора (2а) несет заместитель в opтo-положении анилинового фрагмента и рутениевые катализаторы этого типа, имеющие салицилальдиминовый лиганд с таким орто-заместителем, проявляют хорошую латентность в реакциях метатезисной полимеризации с раскрытием цикла дициклопентадиена.
Несмотря на отсутствие такого заместителя было обнаружено, что рутениевый каталитический комплекс 4 согласно настоящему изобретению является исключительным латентным катализатором в реакции ROMP дициклопентандиена (DCPD) (соотношение катализатор/мономер 1:15000), неактивным при комнатной температуре и даже после нагревания выше 200°C, что подтверждено измерениями методом DSC. Стабильность бис-замещенного каталитического комплекса 4 настоящего изобретения превосходит стабильность более реакционноспособного монозамещенного аналога и аналогична стабильности эталонного катализатора (2а) (см. Таблицу 2). Стабильность рутениевого катализатора 4 настоящего изобретения в реакции ROMP дициклопентандиена (DCPD) улучшена отчасти благодаря увеличению стерического затруднения вокруг рутениевого центра.
При его химической активации бис-салицилальдиминовый каталитический комплекс 4 согласно настоящему изобретению демонстрирует увеличенную инициацию по сравнению с эталонным катализатором (2а), так как требуется только менее 1 эквивалента PhSiCl3 для генерации высокоактивной системы. При катализировании реакции ROMP дициклопентандиена (DCPD) химически активированным комплексом 2а в таких же условиях (меньше, чем 1 эквивалент PhSiCl3) наблюдается низкая каталитическая активность. Даже после химической активации с использованием 45 эквивалентов PhSiCl3, эталонный катализатор (2а) все еще проявляет более медленную инициацию по сравнению с рутениевым комплексом 4 согласно настоящему изобретению.
Таким образом, после его активации рутениевый комплекс 4 согласно настоящему изобретению значительно превосходит эталонный катализатор (2а) с образованием полимера, обладающего улучшенными свойствами, такими как температура стеклования 171°C и 178°C, превосходящими свойства других латентных катализаторов.

Claims (11)

1. Способ приготовления каталитического комплекса, имеющего формулу
Figure 00000017

где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C2-C20алкоксигруппы, галогена и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил;
где способ включает стадию взаимодействия предшественника рутениевого катализатора, имеющего формулу:
Figure 00000018

где Mes означает мезитилен, Су означает циклоалкил;
с двумя бидентатными лигандами класса Шиффовых оснований в неполярном растворителе и в присутствии слабого основания, где бидентатные лиганды класса Шиффовых оснований независимо находятся в количестве от 1,0 до 3,0 эквивалентов относительно количества предшественника катализатора, где один бидендатный лиганд класса Шиффовых оснований имеет формулу:
Figure 00000019

и другой бидендатный лиганд класса Шиффовых оснований имеет формулу
Figure 00000020

где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C1-C20алкоксигруппы, галогена и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил;
или стадию взаимодействия предшественника рутениевого катализатора, имеющего формулу:
Figure 00000021

где R1, R2 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C1-C20алкоксигруппы, галогена и аминогруппы, где если R1 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил;
с бидентатным лигандом класса Шиффовых оснований в неполярном растворителе и в присутствии слабого основания, где бидентатный лиганд класса Шиффовых оснований присутствует в количестве от 1,0 до 3,0 эквивалентов относительно количества предшественника катализатора, где бидендатный лиганд класса Шиффовых оснований имеет формулу:
Figure 00000022

где R3 и R4 независимо выбраны из группы, состоящей из водорода, C1-C20алкила, C1-C20алкоксигруппы, галогена и аминогруппы, где если R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил.
2. Способ по п.1, в котором слабым основанием является Ag2Co3.
3. Способ по п.1, в котором слабое основание используют в количестве от 1 до 2 эквивалентов, предпочтительно примерно 1,1 эквивалентов относительно количества предшественника катализатора, для случая когда указанный предшественник содержит два хлоридных лиганда, и используются два бидентатных лиганда класса Шиффовых оснований.
4. Способ по п.1, в котором слабое основание используют в количестве от 0,5 до 1 эквивалентов, предпочтительно примерно 0,6 эквивалентов относительно количества предшественника катализатора, для случая когда указанный предшественник содержит один хлоридный лиганд и используется один бидентатный лиганд класса Шиффовых оснований.
5. Способ по п.1, в котором неполярным растворителем является тетрагидрофуран.
6. Способ по п.1, в котором реакционную стадию проводят при температуре в диапазоне от 20°C до температуры точки кипения неполярного растворителя, предпочтительно примерно при 40°C.
7. Каталитический комплекс, полученный способом по п.1, имеющий формулу:
Figure 00000023

где R1, R2, R3 и R4 независимо выбраны из группы, состоящей из водорода, галогена, C1-C20алкила, C1-C20алкоксигруппы и аминогруппы, где если R1 или R3 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой алкил, если R2 или R4 представляет собой аминогруппу, то аминогруппа необязательно замещена одним или большим количеством фрагментов, представляющих собой C1-C20алкил.
8. Катализатор на носителе для реакций метатезиса олефинов, содержащий каталитический комплекс по п.7 и носитель.
9. Катализатор на носителе по п.8, в котором носитель выбран из группы, состоящей из пористого неорганического твердого вещества, такого как аморфные или паракристаллические материалы, кристаллические молекулярные сита и модифицированные слоистые материалы, включая один или более неорганических оксидов и органических полимеров.
10. Применение каталитического комплекса по п.7 или катализатора на носителе по п.8 или 9 в качестве катализатора в реакциях метатезиса олефинов.
11. Применение по п.10, в котором метатезисной полимеризацией олефинов является метатезисная полимеризация с раскрытием цикла.
RU2012105770/04A 2009-07-21 2010-07-07 Каталитический комплекс для реакций метатезиса олефинов, способ его приготовления и его применение RU2553993C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09290578.5 2009-07-21
EP09290578A EP2280017B1 (en) 2009-07-21 2009-07-21 Catalytic complex for olefin metathesis reactions, process for the preparation thereof and use thereof
PCT/EP2010/059719 WO2011009721A1 (en) 2009-07-21 2010-07-07 Catalytic complex for olefin metathesis reactions, process for the preparation thereof and use thereof

Publications (2)

Publication Number Publication Date
RU2012105770A RU2012105770A (ru) 2013-09-10
RU2553993C2 true RU2553993C2 (ru) 2015-06-20

Family

ID=41328724

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105770/04A RU2553993C2 (ru) 2009-07-21 2010-07-07 Каталитический комплекс для реакций метатезиса олефинов, способ его приготовления и его применение

Country Status (8)

Country Link
US (1) US8519069B2 (ru)
EP (1) EP2280017B1 (ru)
JP (1) JP5690825B2 (ru)
CN (1) CN102574881A (ru)
BR (1) BR112012001257A2 (ru)
IN (1) IN2012DN00806A (ru)
RU (1) RU2553993C2 (ru)
WO (1) WO2011009721A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2488474B1 (en) 2009-10-12 2017-01-25 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel from natural oil feedstocks
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
EP2460587B1 (en) 2010-12-01 2017-10-18 Rimtec Corporation Ruthenium catalyst system for olefin metathesis
WO2012168149A1 (en) * 2011-06-09 2012-12-13 Rimtec Corporation A field joint coating material and a process for making a field joint
US10946568B2 (en) 2011-06-09 2021-03-16 Rimtec Corporation Field joint coating material and a process for making a field joint
CA2839757C (en) 2011-06-17 2021-01-19 Materia, Inc. Adhesion promoters and gel-modifiers for olefin metathesis compositions
AT511852B1 (de) * 2011-09-02 2016-11-15 Technische Universität Graz Olefinmetathese
PL220408B1 (pl) * 2011-09-26 2015-10-30 Inst Chemii Organicznej Polskiej Akademii Nauk Kompleks rutentu, sposób jego wytwarzania oraz zastosowanie
US9777086B2 (en) * 2012-09-26 2017-10-03 Rimtec Corporation Polymerizable composition and method of production of resin shaped article
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
MX2015010583A (es) 2013-02-27 2016-04-07 Materia Inc Composiciones catalizadoras de metátesis de olefina que comprenden por lo menos dos catalizadores de metátesis de olefina metal carbeno..
US20160244632A1 (en) 2013-06-24 2016-08-25 Materia, Inc. Thermal insulation
CN107250142B (zh) * 2014-07-03 2020-10-30 光明创新(武汉)有限公司 第8族过渡金属催化剂及其制备方法和其在复分解反应中的应用
US9856352B2 (en) 2014-08-07 2018-01-02 Ppg Industries Ohio, Inc. Glass fiber sizing compositions, sized glass fibers, and polyolefin composites
EP2982709B1 (en) 2014-08-07 2017-06-28 Telene SAS Curable composition and molded article comprising the composition
KR20170093793A (ko) 2014-10-21 2017-08-16 스트라타시스 엘티디. 링-오프닝 복분해 중합반응을 이용한 삼차원 잉크젯 프린팅
CN106565866B (zh) * 2016-01-29 2020-01-31 上海克琴科技有限公司 一种席夫碱配体钌金属催化剂及其制备和应用
EP3199577A1 (en) 2016-02-01 2017-08-02 Telene SAS Method for preparing a two-component article and article obtainable by the method
US11001725B2 (en) 2016-02-05 2021-05-11 Stratasys Ltd. Three-dimensional inkjet printing using ring-opening metathesis polymerization
US11173653B2 (en) 2016-02-05 2021-11-16 Stratasys Ltd. Three-dimensional inkjet printing using polyamide-forming materials
EP3202813A1 (en) 2016-02-05 2017-08-09 Telene SAS Curable composition and molded article comprising the composition
WO2017134673A1 (en) 2016-02-07 2017-08-10 Stratasys Ltd. Three-dimensional printing combining ring-opening metathesis polymerization and free radical polymerization
WO2017187434A1 (en) 2016-04-26 2017-11-02 Stratasys Ltd. Three-dimensional inkjet printing using ring-opening metathesis polymerization
EP4267540A1 (en) 2021-02-02 2023-11-01 Apeiron Synthesis S.A. Long shelf life stable organoruthenium complexes as (pre)catalysts for olefin metathesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977393A (en) * 1997-11-21 1999-11-02 California Institute Of Technology Schiff base derivatives of ruthenium and osmium olefin metathesis catalysts
EP1468004A1 (en) * 2002-01-22 2004-10-20 Universiteit Gent Metal complexes for use in metathesis
RU2006134041A (ru) * 2004-02-26 2008-04-10 Университейт Гент (Be) Комплексы металлов для использования в реакциях обмена олефинов и переноса атомов или групп

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284852B1 (en) 1997-10-30 2001-09-04 California Institute Of Technology Acid activation of ruthenium metathesis catalysts and living ROMP metathesis polymerization in water
DE69941219D1 (de) 1998-09-10 2009-09-17 Univ New Orleans Foundation Katalysatorkomplex mit phenylindenyliden-ligand
CN1265882C (zh) * 2001-08-01 2006-07-26 加州理工学院 六配位钌或锇金属卡宾易位催化剂
JP4922558B2 (ja) * 2002-08-01 2012-04-25 カリフォルニア インスティテュート オブ テクノロジー 環状オレフィンモノマーの環挿入重合による大環状ポリマーの合成
JP2006076935A (ja) * 2004-09-10 2006-03-23 Mitsui Chemicals Inc 不斉ルテニウム触媒及びそれを用いる光学活性アルコールの製造法
GB0517137D0 (en) * 2005-08-22 2005-09-28 Viacatt N V Multicoordinated metal complexes for use in metalthesis reactions
CA2620019A1 (en) * 2005-08-22 2007-03-01 Viacatt N.V. Multicoordinated metal complexes for use in metathesis reactions
CN101328191B (zh) * 2008-06-13 2013-06-05 中国科学院上海有机化学研究所 一类含氮配体过渡金属络合物、合成方法及其用途
EP2151445B1 (en) 2008-08-01 2015-02-18 Rimtec Corporation Process for the preparation of bidentate Schiff base ruthenium catalysts containing a salicylaldimine-type ligand
PL2151446T3 (pl) 2008-08-01 2016-10-31 Sposób wytwarzania dwukleszczowych katalizatorów rutenowych będących zasadą Schiffa zawierających ligand typu salicylaldehydoiminowego

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977393A (en) * 1997-11-21 1999-11-02 California Institute Of Technology Schiff base derivatives of ruthenium and osmium olefin metathesis catalysts
EP1468004A1 (en) * 2002-01-22 2004-10-20 Universiteit Gent Metal complexes for use in metathesis
RU2006134041A (ru) * 2004-02-26 2008-04-10 Университейт Гент (Be) Комплексы металлов для использования в реакциях обмена олефинов и переноса атомов или групп

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMES J.S.M. et al, Bidentate N,O-prolinate ruthenium benzylidene catalyst highly active in RCM of disubstituted dienes, Chem. Commun., 2007, p. 2826-2828 *

Also Published As

Publication number Publication date
US20120271019A1 (en) 2012-10-25
CN102574881A (zh) 2012-07-11
JP2012533591A (ja) 2012-12-27
EP2280017B1 (en) 2013-01-02
WO2011009721A1 (en) 2011-01-27
BR112012001257A2 (pt) 2016-02-10
EP2280017A1 (en) 2011-02-02
RU2012105770A (ru) 2013-09-10
IN2012DN00806A (ru) 2015-06-26
US8519069B2 (en) 2013-08-27
JP5690825B2 (ja) 2015-03-25

Similar Documents

Publication Publication Date Title
RU2553993C2 (ru) Каталитический комплекс для реакций метатезиса олефинов, способ его приготовления и его применение
US6613910B2 (en) One-pot synthesis of group 8 transition metal carbene complexes useful as olefin metathesis catalysts
EP2350105B1 (en) Method for preparation of ruthenium-indenylidene carbene catalysts
KR101835170B1 (ko) Z-선택적 올레핀 복분해 촉매 및 이들의 합성 절차
JP5522941B2 (ja) 有機金属ルテニウム錯体および関連する四置換および別の嵩高いオレフィンの製造方法
RU2674471C2 (ru) Катализаторы на основе переходного металла 8 группы, способ их получения и способ их применения в реакции метатезиса
JP5595486B2 (ja) キレート化アルキリデン配位子を有するルテニウムベースのメタセシス触媒の製造方法
WO2015149068A1 (en) Chiral ligand-based metal-organic frameworks for broad-scope asymmetric catalysis
AU2003271713A1 (en) Ruthenium complexes as (pre)catalysts for metathesis reactions
AU2012206966A1 (en) Z-selective olefin metathesis catalysts and their synthetic procedure
JP6395714B2 (ja) ルテニウムベースのメタセシス触媒、それらの製造用の前駆体およびそれらの使用
EP2550284A1 (en) Ruthenium complexes for use in olefin metathesis
EP1827688A1 (en) Novel metathesis ruthenium catalyst
JP4550413B2 (ja) 新規遷移金属錯体及び遷移金属−触媒反応におけるその使用
Siano et al. Activity and stereoselectivity of Ru-based catalyst bearing a fluorinated imidazolinium ligand
EP1948671B1 (en) Preparation of catalysts
WO2014093687A1 (en) Z-selective metathesis catalysts
US9815765B2 (en) Ruthenium polymerisation catalysts
Dahcheh et al. Bis-mixed-carbene ruthenium-thiolate-alkylidene complexes: synthesis and olefin metathesis activity
Delaude et al. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands