RU2510936C2 - Получение уксусной кислоты - Google Patents

Получение уксусной кислоты Download PDF

Info

Publication number
RU2510936C2
RU2510936C2 RU2011128006/04A RU2011128006A RU2510936C2 RU 2510936 C2 RU2510936 C2 RU 2510936C2 RU 2011128006/04 A RU2011128006/04 A RU 2011128006/04A RU 2011128006 A RU2011128006 A RU 2011128006A RU 2510936 C2 RU2510936 C2 RU 2510936C2
Authority
RU
Russia
Prior art keywords
acetic acid
evaporator
distillation column
catalyst
stream
Prior art date
Application number
RU2011128006/04A
Other languages
English (en)
Other versions
RU2011128006A (ru
Inventor
Вейн Дж. Бртко
Майкл Е. Фитцпатрик
Original Assignee
Лайонделл Кемикал Текнолоджи, Л.П.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лайонделл Кемикал Текнолоджи, Л.П. filed Critical Лайонделл Кемикал Текнолоджи, Л.П.
Publication of RU2011128006A publication Critical patent/RU2011128006A/ru
Application granted granted Critical
Publication of RU2510936C2 publication Critical patent/RU2510936C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения уксусной кислоты, включающему: (a) карбонилирование метанола в присутствии катализатора для образования реакционной смеси; (b) мгновеное испарение и дистилляцию реакционной смеси в испарителе, оборудованном дистилляционной колонной, для того чтобы образовать жидкий поток, включающий катализатор, из куба испарителя, и паровой поток из верхней части дистилляционной колонны; и (c) возврат жидкого потока в цикл на стадию (а), причем паровой поток дистиллируют в колонне отгонки легких фракций, чтобы образовать кубовый поток сырой уксусной кислоты и поток дистиллятного пара, который конденсируют и разделяют на легкую фазу и тяжелую фазу, и часть легкой фазы вводят в верх дистилляционной колонны испарителя, и жидкий поток отбирают из куба дистилляционной колонны испарителя и направляют в верх колонны отгонки легких фракций, чтобы получить практически чистую уксусную кислоту. 10 з.п. ф-лы, 2 ил., 2 пр.

Description

Настоящее изобретение относится к получению уксусной кислоты карбонилированием метанола. Более конкретно, изобретение относится к способу производства уксусной кислоты, обеспечивающему пониженные потери катализатора.
Предпосылки создания изобретения
Получение уксусной кислоты карбонилированием метанола известно (см. патент США 5817869). В современном способе получения уксусной кислоты реакционную смесь выводят из реактора и разделяют в испарителе на жидкую фракцию, включающую катализатор и стабилизатор катализатора, и паровую фракцию, включающую уксусную кислоту, метанол, диоксид углерода, воду, метилйодид и примеси, образовавшиеся во время реакции карбонилирования. Жидкую фракцию затем возвращают в реактор карбонилирования. Паровую фракцию направляют на так называемую "отгонку легких фракций". При отгонке легких фракций отделяют уксусную кислоту от других компонентов с получением сырой уксусной кислоты. Сырую уксусную кислоту направляют в колонну осушки для удаления воды и затем подвергают "отгонке тяжелых фракций" для удаления таких тяжелых примесей, как пропионовая кислота.
В современном способе испаритель не имеет дистилляционной колонны для разделения пар-жидкость. Таким образом, катализатор может быть унесен в поток пара мгновенного испарения. Отложения твердого катализатора были видны в оборудовании, расположенном далее по схеме. Большую часть этого катализатора извлекают при очистке во время капитального ремонта, который обычно проводят один раз в три года. В промежутке технологическое оборудование становится оборудованием для хранения катализатора. Кроме того, поскольку катализатор отлагается в оборудовании, расположенном далее по схеме, он должен быть удален выше вместе со свежим катализатором.
Таким образом, требуется новый способ получения уксусной кислоты. Способ обеспечивает понижение уноса катализатора в поток пара из испарителя.
Сущность изобретения
Изобретением является способ получения уксусной кислоты. Способ включает карбонилирование метанола в присутствии катализатора для образования реакционной смеси, и мгновенное испарение и дистилляцию реакционной смеси в испарителе, оборудованном дистилляционной колонной. Паровой поток из дистилляционной колонны испарителя включает уксусную кислоту и другие летучие компоненты, но практически не содержит катализатор. Жидкий поток включает катализатор. Жидкий поток возвращают в цикл на карбонилирование. Паровой поток подвергают дальнейшему разделению, чтобы получить практически чистую уксусную кислоту. Способ по изобретению уменьшает или устраняет унос катализатора в паровой поток и препятствует катализатору быть занесенным в последующее оборудование.
Краткое описание рисунков
Фиг.1 является принципиальной схемой осуществления способа по изобретению.
Фиг.2 является принципиальной схемой другого осуществления способа по изобретению.
Способ по изобретению включает карбонилирование метанола. Реакцию карбонилирования осуществляют в присутствии катализатора. Подходящие катализаторы включают те, которые известны в производстве уксусной кислоты. Примеры подходящих катализаторов карбонилирования включают родиевые и иридиевые катализаторы. Подходящие родиевые катализаторы указаны, например, в патенте США 5817869. Подходящие родиевые катализаторы включают металлический родий и соединения родия. Предпочтительно соединения родия выбирают из группы, состоящей из солей родия, оксидов родия, ацетатов родия, родийорганических соединений, координационных соединений родия и т.п. и их смесей. Более предпочтительно соединения родия выбирают из группы, состоящей из Rh2(CO)4I2, Rh2(CO)4Br2, Rh2(CO)4Cl2, Rh(CH3CO2)2, Rh(CH3CO2)3, [H]Rh(CO2)I2 и т.п. и их смесей. Наиболее предпочтительно соединения родия выбирают из группы, состоящей из [H]Rh(CO2)I2, Rh(CH3CO2)2 и т.п. и их смесей. Подходящие иридиевые катализаторы указаны, например, в патенте США 5932764. Подходящие иридиевые катализаторы включают металлический иридий и соединения иридия. Примеры подходящих соединений иридия включают IrCl3, IrI3, IrBr3, [Ir(CO)2I]2, [Ir(CO)2Cl]2, [Ir(CO)2Br]2, [Ir(CO)4I2]-H+, [Ir(CO)2Br2]-H+, [Ir(CO)2I2]-H+, [Ir(CH3)I3(CO)2]-H+, Ir4(CO)12, IrCl3·4H2O, IrBr3·4H2O, Ir3(CO)12, Ir2O3, IrO2, Ir(acac)(CO)2, Ir(acac)3, Ir(OAc)3, [Ir3O(OAc)6(H2O)3][OAc] и H2[IrCl6]. Предпочтительно иридиевые соединения выбирают из группы, состоящей из ацетатов, оксалатов, ацетоацетатов, подобного и их смесей. Более предпочтительно соединениями иридия являются ацетаты. Иридиевый катализатор предпочтительно используют с сокатализатором. Предпочтительные сокатализаторы включают металлы и соединения металлов, выбранных из группы, состоящей из осмия, рения, рутения, кадмия, ртути, цинка, галлия, индия и вольфрама, их соединений, подобного и их смесей. Более предпочтительные сокатализаторы выбирают из группы, состоящей из соединений рутения и соединений осмия. Наиболее предпочтительными сокатализаторами являются соединения рутения. Предпочтительно сокатализаторами являются ацетаты.
Реакцию карбонилирования предпочтительно проводят в присутствии стабилизатора катализатора. Подходящие стабилизаторы катализатора включают известные в промышленности стабилизаторы. Известны два типа стабилизаторов катализатора. Первым типом стабилизаторов катализатора является йодидная соль металла, такая как йодид лития. Вторым типом стабилизаторов катализатора является несолевой стабилизатор. Предпочтительными несолевыми катализаторами являются пятивалентные оксиды элементов группы VA (см. патент США 5817869). Оксиды фосфина являются более предпочтительными. Наиболее предпочтительными являются оксиды трифенилфосфина.
Реакцию карбонилирования предпочтительно проводят в присутствии воды. Предпочтительно концентрация воды составляет от примерно 2 масс.% до примерно 14 масс.% в расчете на общую массу реакционной смеси. Более предпочтительно концентрация воды составляет от примерно 2 масс.% до примерно 10 масс.%. Наиболее предпочтительно концентрация воды составляет от примерно 4 масс.% до примерно 8 масс.%.
Реакцию карбонилирования предпочтительно проводят в присутствии метилацетата. Метилацетат может быть образован in situ. Если желательно, метилацетат может быть добавлен в качестве исходного материала в реакционную смесь. Предпочтительно концентрация метилацетата составляет от примерно 2 масс.% до примерно 20 масс.% в расчете на общую массу реакционной смеси. Более предпочтительно концентрация метилацетата составляет от примерно 2 масс.% до примерно 16 масс.%. Наиболее предпочтительно концентрация метилацетата составляет от примерно 2 масс.% до примерно 8 масс.%. Альтернативно для реакции карбонилирования может быть использован метилацетат или смесь метилацетата и метанола от потоков побочных продуктов метанолиза поливинилацетата или этиленвинилацетатных сополимеров.
Реакцию карбонилирования предпочтительно проводят в присутствии метилйодида. Метилйодид является промотором катализатора. Предпочтительно концентрация метилйодида составляет от примерно 0,6 масс.% до примерно 36 масс.% в расчете на общую массу реакционной смеси. Более предпочтительно концентрация метилйодида составляет от примерно 4 масс.% до примерно 24 масс.%. Наиболее предпочтительно концентрация метилйодида составляет от примерно 6 масс.% до примерно 20 масс.%. Альтернативно метилйодид может быть генерирован в реакторе карбонилирования добавлением йодистого водорода (HI).
В реактор карбонилирования вводят метанол и моноксид углерода. Метанольное питание реакции карбонилирования может поступать от установки синтез-газа - метанола или от любого другого источника. Метанол не взаимодействует непосредственно с моноксидом углерода с образованием уксусной кислоты. Он превращается в метилйодид йодистым водородом, присутствующим в реакторе уксусной кислоты, а затем взаимодействует с моноксидом углерода и водой, давая уксусную кислоту и регенерируя йодистый водород. Моноксид углерода не только становится частью молекулы уксусной кислоты, но также играет важную роль в образовании и стабильности активного катализатора.
Реакцию карбонилирования предпочтительно проводят при температуре в интервале от примерно 150оС до примерно 250оС. Более предпочтительно реакцию карбонилирования проводят при температуре в интервале от примерно 150оС до примерно 200оС. Реакцию карбонилирования предпочтительно проводят под давлением в интервале от примерно 200 psia (14 кг/см2) до примерно 1000 psia (70 кг/см2). Более предпочтительно реакцию проводят под давлением в интервале от примерно 300 psia (21 кг/см2) до примерно 500 psia (35 кг/см2).
Эту реакционную смесь выводят из реактора и мгновенно испаряют с образованием парового и жидкого потоков. Испаритель оборудован дистилляционной колонной. Предпочтительно дистилляционная колонна имеет по меньшей мере две тарелки. Более предпочтительно дистилляционная колонна имеет от двух до пяти тарелок. Паровой поток включает уксусную кислоту и другие летучие компоненты, такие как метанол, метилацетат, метилйодид, моноксид углерода, диоксид углерода и воду, в то время как жидкий поток включает катализатор. Жидкий поток включает также достаточное количество воды и уксусной кислоты, чтобы нести и стабилизировать катализатор. Нелетучие стабилизаторы катализатора находятся предпочтительно в жидком потоке. Жидкий поток направляют в рецикл на карбонилирование. Паровой поток подвергают дальнейшей дистилляции.
Паровой поток предпочтительно дистиллируют в колонне отгонки легких фракций для того, чтобы образовать дистиллятный поток, продуктовый поток сырой уксусной кислоты и кубовый поток. Предпочтительно колонна отгонки легких фракций имеет по меньшей мере 10 теоретических или 16 реальных ступеней. Более предпочтительно дистилляционная колонна имеет по меньшей мере 14 теоретических ступеней. Наиболее предпочтительно дистилляционная колонна имеет по меньшей мере 18 теоретических ступеней. Одна реальная ступень эквивалентна приблизительно 0,6 теоретической ступени. Реальные ступени могут быть тарелками или насадкой. Реакционную смесь подают в колонну отгонки легких фракций на кубовую или первую ступень колонны. Дистилляционная колонна предпочтительно работает под давлением в верхней части в интервале от 20 psia (1,4 кг/см2) до 40 psia (2,8 кг/см2). Более предпочтительно давление в верхней части находится в интервале от 30 psia (2 кг/см2) до 35 psia (2,5 кг/см2). Предпочтительно температура верха находится в интервале от 95°С до 135°С. Более предпочтительно температура верха находится в интервале от 110°С до 135°С. Наиболее предпочтительно температура верха находится в интервале от 125°С до 135°С. Поток дистиллятного пара предпочтительно включает воду, моноксид углерода, диоксид углерода, метилйодид, метилацетат, метанол и уксусную кислоту.
Колонна отгонки легких фракций предпочтительно работает при давлении куба в интервале от 25 psia (1,8 кг/см2) до 45 psia (3,2 кг/см2). Более предпочтительно давление в кубе находится в интервале от 30 psia (2,1 кг/см2) до 40 psia (2,8 кг/см2). Предпочтительно температура куба находится в интервале от 115°С до 155°С. Более предпочтительно температура куба находится в интервале от 125°С до 135°С. Кубовый поток предпочтительно включает уксусную кислоту, метилйодид, метилацетат, йодистый водород и воду.
Поток сырой жидкой уксусной кислоты отбирают через боковой отвод, который предпочтительно работает при давлении в интервале от 25 psia (1,8 кг/см2) до 45 psia (3,2 кг/см2). Более предпочтительно давление в боковом отводе находится в интервале от 30 psia (2,1 кг/см2) до 40 psia (2,8 кг/см2). Предпочтительно температура бокового отвода находится в интервале от 110°С до 140°С. Более предпочтительно температура бокового отвода находится в интервале от 125°С до 135°С. Боковой отвод предпочтительно отбирают между пятой и восьмой реальной ступенью. Поток сырой уксусной кислоты предпочтительно включает уксусную кислоту, воду и тяжелые примеси.
Дистиллятный пар колонны отгонки легких фракций предпочтительно конденсируют и разделяют в декантаторе на легкую водную фазу и тяжелую органическую фазу. Тяжелая органическая фаза предпочтительно включает метилйодид и метилацетат. Легкая водная фаза предпочтительно включает воду (более 50%), уксусную кислоту и метилацетат. В одном предпочтительном осуществлении часть легкой водной фазы вводят в верх дистилляционной колонны испарителя, и часть жидкости отбирают из куба дистилляционной колонны испарителя и вводят на верхнюю тарелку колонны отгонки легких фракций (см. фиг.1). Поскольку орошение дистилляционной колонны испарителя обеспечивается частью легкой водной фазы декантатора, которая более легко несет катализатор, катализатор вымывается в жидкость в куб испарителя. В другом предпочтительном осуществлении часть потока сырой уксусной кислоты вводят и орошают дистилляционную колонну испарителя; сырая уксусная кислота вымывает катализатор из парового потока в кубовую жидкость испарителя (см. фиг.2).
Поток сырой уксусной кислоты необязательно подвергают дополнительной очистке, такой как дистилляционная осушка для удаления воды и отгонка тяжелых фракций для удаления тяжелых примесей, таких как пропионовая кислота.
Следующие примеры просто иллюстрируют изобретение. Специалисты могут реализовать его различные варианты в рамках сущности и объема изобретения, ограниченного его формулой.
Пример 1.
Способ по изобретению смоделирован с использованием Aspen Plus, и результаты даны ниже для двух примеров.
Как показано на фиг.1, смесь 1 карбонилирования (100 масс. частей), включающая 6,48% воды, 0,14% моноксида углерода, 0,07% диоксида углерода, 2,98% йодистого водорода, 12,64% метилйодида, 2,87% метилацетата, 0,02% метанола, 64,72% уксусной кислоты, 0,04% пропионовой кислоты, 10,0% стабилизатора катализатора и 0,04% катализатора, дросселируют через клапан в испаритель 3. Рецикловый поток 10 из колонны 6 отгонки легких фракций (0,2 масс. части) также подают в испаритель 3.
Дистилляционная колонна 4 испарителя установлена на крышке испарителя 3 и содержит две тарелки. Часть 13 (12,1 масс. частей) легкой фазы жидкости 12 из декантатора подают на верхнюю тарелку в качестве орошения. Остаток 14 возвращают в цикл в реактор. Верх дистилляционных тарелок испарителя работает при 35 psia (2,3 кг/см2) и 131,4°С. Поток дистиллятного пара 5 (26,1 масс. частей) подают в последующую колонну 6 отгонки легких фракций на нижнюю ступень 1. Продукт 2 из кубовой части испарителя (69,8 масс. частей) возвращают в реактор. Кубовую жидкость 8 из дистилляционной колонны отбирают в качестве бокового отбора (16,5 масс. частей) и направляют в колонну 6 отгонки легких фракций в качестве орошения.
Колонна 6 отгонки легких фракций имеет 10 теоретических ступеней или 16 реальных ступеней. Верхняя часть находится под давлением 34 psia (2,4 кг/см2) и при 130,7°С. Дистиллятный поток 7 (26,9 масс. частей) включает 9,8% воды, 0,5% моноксида углерода, 0,3% диоксида углерода, 32,3% метилйодида, 7,0% метилацетата, 0,1% метанола и 50,0% уксусной кислоты. Дистиллятный поток 7 охлаждают до 38°С, и конденсат стекает в декантатор 11 для разделения жидкости.
Куб колонны отгонки легких фракций работает под давлением 33,7 psia (2,4 кг/см2) и при 129,9°С. Кубовый поток 10 (0,2 масс. части) включает 10,34% воды, 0,03% йодистого водорода, 20,66% метилйодида, 1,87% метилацетата, 0,02% метанола, 67,02% уксусной кислоты, 0,03% пропионовой кислоты и 0,03% стабилизатора катализатора. Он является потоком, который возвращают в цикл в испаритель 3.
Через боковой отвод 9 для отбора жидкости (15,5 масс. частей) при 33,7 psia (2,4 кг/см2) и 130°С отбирают с тарелки над нижней тарелкой колонны отгонки легких фракций. Этот поток включает 10,21% воды, 0,002% моноксида углерода, 0,008% диоксида углерода, 0,16% йодистого водорода, 20,22% метилйодида, 1,89% метилацетата, 0,02% метанола, 67,46% уксусной кислоты и 0,03% пропионовой кислоты. Этот поток является сырой уксусной кислотой, который передается в последующее оборудование для сушки и извлечения чистой уксусной кислоты.
Пример 2.
Как показано на фиг.2, смесь 1 карбонилирования (100 масс. частей), включающая 6,48% воды, 0,14% моноксида углерода, 0,07% диоксида углерода, 2,98% йодистого водорода, 12,64% метилйодида, 2,87% метилацетата, 0,02% метанола, 64,72% уксусной кислоты, 0,04% пропионовой кислоты, 10,0% стабилизатора катализатора и 0,04% катализатора, дросселируют через клапан в испаритель 3. Рецикловый поток 10 из колонны 6 отгонки легких фракций (1,0 масс. части) также подают в испаритель 3.
Дистилляционная колонна 4 испарителя содержит две тарелки и установлена на крышке испарителя 3. Часть 13 (15,5 масс. частей) жидкого потока 9 сырой уксусной кислоты из колонны 6 отгонки легких фракций подают на верхнюю тарелку в качестве орошения. Остаток 14 направляют на последующую очистку (дистилляционная осушка и/или отгонка тяжелых фракций). Верх дистилляционных тарелок испарителя работает при 35,1 psia (2,5 кг/см2) и 129,7°С. Поток дистиллятного пара 5 (25,0 масс. частей) подают в последующую колонну 6 отгонки легких фракций на нижнюю ступень 1. Продукт 2 из кубовой части испарителя (71,5 масс. частей) возвращают в реактор, и жидкость (9,3 масс. частей) с нижней тарелки дистилляционной колонны испарителя сливают в испаритель 3.
Колонна 6 отгонки легких фракций имеет 10 теоретических ступеней или 16 реальных ступеней. Верхняя часть дистилляционной колонны работает под давлением 33,7 psia (2,4 кг/см2) и при 124,2°С. Дистиллятный пар 7 (13,5 масс. частей) включает 16,6% воды, 1,0% моноксида углерода, 0,6% диоксида углерода, 45,7% метилйодида, 13,4% метилацетата, 0,8% метанола и 21,9% уксусной кислоты. Дистиллятный пар 7 охлаждают до 38°С, и конденсат стекает в декантатор 11 для разделения жидкости.
Куб колонны отгонки легких фракций работает под давлением 33,7 psia (2,4 кг/см2) и при 128°С. Кубовый поток 10 (1 масс. часть) включает 8,37% воды, 0,11% йодистого водорода, 28,64% метилйодида, 1,69% метилацетата, 0,01% метанола, 61,12% уксусной кислоты, 0,03% пропионовой кислоты и 0,03% стабилизатора катализатора. Этот поток возвращают в цикл в испаритель 3. Жидкий боковой отбор 9 (16,3 масс. частей) при 33,7 psia (2,4 кг/см2) и 127,3°С отбирают с тарелки над нижней тарелкой колонны отгонки легких фракций. Этот поток включает 9,66% воды, 0,003% моноксида углерода, 0,008% диоксида углерода, 0,02% йодистого водорода, 33,94% метилйодида, 1,52% метилацетата, 0,009% метанола, 54,82% уксусной кислоты и 0,02% пропионовой кислоты. Большая часть (95%) 14 потока 9 является сырой уксусной кислотой, который передается в последующее оборудование для сушки и извлечения чистой уксусной кислоты. Остаток (5%) 13 потока 9 орошает тарелки наверху испарителя.
Как показано выше, пример 1 дает более чистый продукт сырой уксусной кислоты, чем пример 2.

Claims (11)

1. Способ получения уксусной кислоты, включающий
(a) карбонилирование метанола в присутствии катализатора для образования реакционной смеси;
(b) мгновеное испарение и дистилляцию реакционной смеси в испарителе, оборудованном дистилляционной колонной, для того, чтобы образовать жидкий поток, включающий катализатор, из куба испарителя и паровой поток из верхней части дистилляционной колонны; и
(c) возврат жидкого потока в цикл на стадию (а), причем паровой поток дистиллируют в колонне отгонки легких фракций, чтобы образовать кубовый поток сырой уксусной кислоты и поток дистиллятного пара, который конденсируют и разделяют на легкую фазу и тяжелую фазу, и часть легкой фазы вводят в верх дистилляционной колонны испарителя, и жидкий поток отбирают из куба дистилляционной колонны испарителя и направляют в верх колонны отгонки легких фракций.
2. Способ по п.1, в котором дистилляционная колонна испарителя имеет по меньшей мере две тарелки.
3. Способ по п.1, в котором катализатор выбирают из группы, состоящей из родиевых катализаторов и иридиевых катализаторов.
4. Способ по п.1, в котором катализатором является родиевый катализатор.
5. Способ по п.1, в котором кубовый поток возвращают в цикл на карбонилирование или в испаритель.
6. Способ по п.1, в котором часть сырой уксусной кислоты направляют в дистилляционную колонну испарителя.
7. Способ по п.1, в котором поток сырой уксусной кислоты дистиллируют в колонне осушки и в колонне отгонки тяжелых фракций, чтобы получить очищенную уксусную кислоту.
8. Способ по п.5, в котором катализатор включает стабилизатор, выбранный из группы, состоящей из пятивалентных оксидов элементов группы VA, йодидных солей металлов и их смесей.
9. Способ по п.8, в котором стабилизатор представляет собой фосфин оксид.
10. Способ по п.9, в котором стабилизатор представляет собой трифенилфосфин оксид.
11. Способ по п.8, в котором стабилизатором является йодид лития.
RU2011128006/04A 2008-12-08 2009-11-13 Получение уксусной кислоты RU2510936C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/315,887 US8076508B2 (en) 2008-12-08 2008-12-08 Preparation of acetic acid
US12/315,887 2008-12-08
PCT/US2009/006108 WO2010077261A1 (en) 2008-12-08 2009-11-13 Preparation of acetic acid

Publications (2)

Publication Number Publication Date
RU2011128006A RU2011128006A (ru) 2013-01-20
RU2510936C2 true RU2510936C2 (ru) 2014-04-10

Family

ID=41718549

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011128006/04A RU2510936C2 (ru) 2008-12-08 2009-11-13 Получение уксусной кислоты

Country Status (4)

Country Link
US (1) US8076508B2 (ru)
CN (1) CN102307841B (ru)
RU (1) RU2510936C2 (ru)
WO (1) WO2010077261A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8889904B2 (en) * 2010-05-18 2014-11-18 Celanese International Corporation Processes for producing acetic acid
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8431740B2 (en) * 2010-07-21 2013-04-30 Equistar Chemicals, Lp Controlling decanter phase separation of acetic acid production process
CN103189125A (zh) * 2010-11-12 2013-07-03 伊士曼化工公司 羰基化过程产生的气流的处理
US8716522B2 (en) * 2010-12-30 2014-05-06 Uop Llc Acetic acid production from biomass pyrolysis
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8614359B2 (en) 2011-11-09 2013-12-24 Celanese International Corporation Integrated acid and alcohol production process
WO2013070210A1 (en) 2011-11-09 2013-05-16 Celanese International Corporation Integrated carbonylation and hydrogenation process to obtain ethanol having flashing to recover acid production catalyst
WO2013070209A1 (en) 2011-11-09 2013-05-16 Celanese International Corporation Integrated carbonylation and hydrogenation process to obtain ethanol
US8686201B2 (en) 2011-11-09 2014-04-01 Celanese International Corporation Integrated acid and alcohol production process having flashing to recover acid production catalyst
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US9102612B2 (en) 2012-06-25 2015-08-11 Lyondellbasell Acetyls, Llc Process for the production of acetic acid
CN104250209B (zh) * 2013-06-28 2016-12-28 中国石油化工股份有限公司 一种甲醇羰基化制醋酸的生产方法
CN104496787B (zh) * 2014-12-31 2017-02-22 石家庄工大化工设备有限公司 甲醇羰基化法合成乙酸的废酸母液回收方法
CN110049963B (zh) * 2017-01-18 2022-02-18 株式会社大赛璐 乙酸的制备方法
US10428004B2 (en) 2017-01-18 2019-10-01 Daicel Corporation Method for producing acetic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535825A2 (en) * 1991-10-02 1993-04-07 BP Chemicals Limited Process for the purification of carboxylic acids and/or their anhydrides
RU2132840C1 (ru) * 1993-09-10 1999-07-10 Бп Кемикэлс Лимитед Способ получения уксусной кислоты и каталитическая система для получения уксусной кислоты
US6031129A (en) * 1995-10-03 2000-02-29 Quantum Chemical Corporation Use of pentavalent group VA oxides in acetic acid processing
US6153792A (en) * 1997-12-18 2000-11-28 Uop Llc Carbonylation process using a flash step with washing
US6552221B1 (en) * 1998-12-18 2003-04-22 Millenium Petrochemicals, Inc. Process control for acetic acid manufacture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9211671D0 (en) 1992-06-02 1992-07-15 Bp Chem Int Ltd Process
US5990347A (en) * 1993-03-26 1999-11-23 Bp Chemicals Limited Process for preparing a carboxylic acid
US5817869A (en) * 1995-10-03 1998-10-06 Quantum Chemical Corporation Use of pentavalent Group VA oxides in acetic acid processing
GB9625335D0 (en) * 1996-12-05 1997-01-22 Bp Chem Int Ltd Process
CN1113845C (zh) * 1998-05-27 2003-07-09 千年石油化工公司 五价va族氧化物在乙酸制备方法中的应用
US7208625B1 (en) * 2006-08-04 2007-04-24 Lyondell Chemical Technology, L.P. Removing permanganate-reducing impurities from acetic acid
US7345197B1 (en) * 2007-06-05 2008-03-18 Lyondell Chemical Technology, L.P. Preparation of acetic acid
US7390919B1 (en) * 2007-10-01 2008-06-24 Lyondell Chemical Technology, L.P. Methyl acetate purification and carbonylation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535825A2 (en) * 1991-10-02 1993-04-07 BP Chemicals Limited Process for the purification of carboxylic acids and/or their anhydrides
RU2132840C1 (ru) * 1993-09-10 1999-07-10 Бп Кемикэлс Лимитед Способ получения уксусной кислоты и каталитическая система для получения уксусной кислоты
US6031129A (en) * 1995-10-03 2000-02-29 Quantum Chemical Corporation Use of pentavalent group VA oxides in acetic acid processing
US6153792A (en) * 1997-12-18 2000-11-28 Uop Llc Carbonylation process using a flash step with washing
US6552221B1 (en) * 1998-12-18 2003-04-22 Millenium Petrochemicals, Inc. Process control for acetic acid manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
. *

Also Published As

Publication number Publication date
CN102307841B (zh) 2014-03-05
CN102307841A (zh) 2012-01-04
WO2010077261A1 (en) 2010-07-08
RU2011128006A (ru) 2013-01-20
US20100145097A1 (en) 2010-06-10
US8076508B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
RU2510936C2 (ru) Получение уксусной кислоты
RU2503652C2 (ru) Получение уксусной кислоты
JP5428015B2 (ja) 軽留塔の改良により生産性を向上させた酢酸製造装置および酢酸製造方法
RU2470909C2 (ru) Способ и устройство для получения уксусной кислоты с повышенной производительностью
KR100611549B1 (ko) 카르보닐화 방법
KR102113365B1 (ko) 아세트산 제조 공정으로부터 과망간산염 환원 화합물의 회수 방법
RU2151140C1 (ru) Способ очистки карбоновой кислоты
JP2011502145A5 (ru)
KR20100061846A (ko) 개선된 정제효율로 아세트산을 제조하는 방법 및 장치
US7790919B2 (en) Removing hydrocarbon impurities from acetic acid production process
JP6047094B2 (ja) 高転化率での酢酸の製造
KR20170018853A (ko) 아세트산 제조 유닛에서 오프가스를 처리하기 위한 방법 및 장치
KR102425879B1 (ko) 프로세스
JP2017165693A (ja) 酢酸の製造方法
WO2021122642A1 (en) Separation process and apparatus
CN116583337A (zh) 用于蒸馏乙酸生产单元中含有乙酸和丙酸的料流的方法和装置
RU2572842C1 (ru) Процесс для изготовления уксусной кислоты
CN116457330A (zh) 处理乙酸生产单元中的废气的方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20161018

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191114