RU2499796C2 - Соли n-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида - Google Patents

Соли n-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида Download PDF

Info

Publication number
RU2499796C2
RU2499796C2 RU2011113229/04A RU2011113229A RU2499796C2 RU 2499796 C2 RU2499796 C2 RU 2499796C2 RU 2011113229/04 A RU2011113229/04 A RU 2011113229/04A RU 2011113229 A RU2011113229 A RU 2011113229A RU 2499796 C2 RU2499796 C2 RU 2499796C2
Authority
RU
Russia
Prior art keywords
compound
mesylate
salt
ptk787
pyridylmethyl
Prior art date
Application number
RU2011113229/04A
Other languages
English (en)
Other versions
RU2011113229A (ru
Inventor
Кайхун ЮАНЬ
Пяоян СУНЬ
Юньшу ЧЖОУ
Юнцзян ЧЭНЬ
Original Assignee
Цзянсу Хэнжуй Медицин Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Цзянсу Хэнжуй Медицин Ко., Лтд. filed Critical Цзянсу Хэнжуй Медицин Ко., Лтд.
Publication of RU2011113229A publication Critical patent/RU2011113229A/ru
Application granted granted Critical
Publication of RU2499796C2 publication Critical patent/RU2499796C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

Настоящее изобретение относится к фармацевтически приемлемой соли N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, где соль представляет собой соль мезилат или гидрохлорид. Кроме того, изобретение относится к фармацевтической композиции, обладающей противоопухолевой активностью, содержащей вышеуказанную соль, а также к применению данной соли при получении противоопухолевого лекарственного средства. Также раскрыт способ получения фармацевтически приемлемой соли N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, в частности его гидрохлорида и мезилата. Технический результат: получены и описаны новые соли N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, которые имеют лучшую стабильность и биодоступность. 4 н.п. ф-лы, 5 пр., 9 табл., 3 ил.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к фармацевтически приемлемым солям N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амидо-3-пиридинкарбоксамида.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Опухолевый ангиогенез играет критическую роль в росте и метастазах злокачественной опухоли. Когда опухоли перерастают 1 мм3, ангиогенез или древовидное разветвление кровеносных сосудов путем почкования от существующих кровеносных сосудов необходимо для обеспечения достаточного количества крови для выживания опухолевых клеток. Скорость роста опухолей и их склонность к метастазам связаны с уровнем факторов неоваскуляризации и количеством образующихся микрососудов. С тех пор как гипотеза "антиангиогенной терапии" была выдвинута Folkman в ранние 1970-е годы, люди совершили значительный прогресс в данной области, и ингибирование ангиогенеза опухолей повсеместно принято в качестве новой противораковой стратегии.
Тирозинкиназный эндотелиальный фактор роста сосудов (VEGF) и его рецептор (VEGFR) играют очень важные роли в ангиогенезе опухолей, и оба они являются важными мишенями при блокировании ангиогенеза опухолей. Эндотелиальный фактор роста сосудов (VEGF) является первоочередным фактором in vivo, стимулирующим ангиогенез. Связывание VEGF с рецептором эндотелиального фактора роста сосудов (VEGFR) в эндотелиальных клетках приводит к различным реакциям ангиогенеза, таким как пролиферация клеток, метастазы клеток, увеличение проницаемости кровеносных сосудов и движение предшественников эндотелиальных клеток из костного мозга. Семейство VEGFR включает VEGFR1 (Flt-1), VEGFR2 (KDR/Flk-1) и VEGFR3 (Flt-4). Стимуляция ангиогенеза, главным образом, опосредована связанным VEGF и VEGFR2 (KDR/Flk-1). Различные опухоли человека проявляют высокие уровни VEGFR. В настоящее время более 40 лекарств, способных к ингибированию ангиогенеза, находится в клинических испытаниях, как, например, моноклональные антитела к VEGF и его рецептору (VEGFR) и низкомолекулярные ингибиторы VEGFR тирозинкиназы. Моноклональное антитело к VEGF Авастин, которое разрабатывалось фирмой Genetech в течение более десяти лет, было одобрено к продаже в 2004 году. Эффективность Авастина в комбинации с другими лекарствами при раке ободочной кишки, раке легких и раке молочной железы доказала, что механизм действия Авастина в качестве лекарства анти-VEGF осуществим. Авастин также внес выдающиеся вклады в механизм антиангиогенеза как противораковой мишени.
Наиболее примечательные лекарства из низкомолекулярных ингибиторов VEGFR в недавние годы включают ингибитор VEGFR Ваталаниб (РТК787) для лечения рака ободочной кишки, разработанный Novartis/Schering, и ингибитор двойной мишени VEGFR и рецептора эпидермального фактора роста (EGFR) Зактима (ZD-6474) для лечения рецидивирующего/резистентного немелкоклеточного рака легкого, разработанный Astrazeneca. Ингибиторы VEGF постепенно становятся новыми не цитотоксическими противораковыми лекарствами с хорошими перспективами применения. По сравнению с традиционными цитотоксическими лекарствами, которые ингибируют рост опухолей, лекарства, направленные на ангиогенез, более специфичны и менее токсичны, а также помогают преодолению лекарственной устойчивости опухолей и могут применяться для лечения различных опухолей.
N-[4-(1-цианоцикпопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамид (здесь далее называемый "соединением A") является ингибитором тирозинкиназы нового поколения, и данное соединение имеет формулу (I):
Figure 00000001
Вышеупомянутое соединение описано в китайской заявке на патент №02138671.4, содержание которой полностью включено в данную заявку посредством ссылки. Обнаружено, что соединение A обладает очень сильным селективным ингибированием в отношении VEGFR-2 в тестах рецепторов тирозинкиназы на ферментативном уровне в различных лабораториях, IC50 которых составляла примерно 1 нМ. Кроме того, оно обладает некоторой активностью селективного ингибирования в отношении киназ Ret, VEGFR-1, PDGFR-P, c-kit, cSRC и т.д. При исследовании фармакодинамики на опухоли человека, трансплантированной бестимусным мышам, обнаружено, что эффективность соединения A на раке ободочной кишки Ls174t, трансплантированном бестимусным мышам, была значительно лучшей, чем РТК787; и эффективность соединения A улучшалась, когда его использовали в комбинации с оксалиплатином, причем его токсичность не повышалась. При использовании отдельно или в комбинации эффективность соединения A была лучше, чем РТК787. Также обнаружено, что эффективность соединения A на немелкоклеточном раке легкого А549, трансплантированном бестимусным мышам, была значительно лучшей, чем РТК787, максимальная эффективность которого была эквивалентна ZD6474 при обычной дозе. В аспекте токсичности соединение A было хорошо переносимым бестимусными мышами при максимальной дозе 400 мг/кг.
Однако во время исследования этого лекарства было обнаружено, что N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамид был неудовлетворительным в некоторых аспектах, например, в аспектах стабильности и биодоступности.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Посредством длительных усилий авторы изобретения обнаружили, что проблемы, такие как стабильность и биодоступность, были бы решены за счет превращения
N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида в его соответствующие фармацевтически приемлемые соли.
В одном аспекте настоящее изобретение относится к фармацевтически приемлемым солям N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, где эти фармацевтически приемлемые соли представляют собой общепринятые неорганические соли или органические соли в данной области техники. Кроме того, неорганическая соль предпочтительно выбрана из группы, состоящей из соли гидрохлорид, соли гидробромид, соли сульфат, соли нитрат и соли фосфат, а органическая соль предпочтительно выбрана из группы, состоящей из соли мезилат, соли малеат, соли тартрат, соли сукцинат, соли ацетат, соли трифторацетат, соли фумарат, соли цитрат, соли бензолсульфонат, соли бензоат, соли нафталинсульфонат, соли лактат и соли малат. Особенно предпочтительными фармацевтически приемлемыми солями являются соль мезилат и соль гидробромид, которые обладают большими преимуществами в отношении стабильности, характера и биодоступности, чем другие соли.
В другом аспекте настоящее изобретение относится к способу получения фармацевтически приемлемых солей N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, который является общепринятым способом солеобразования в данной области техники.
В третьем аспекте настоящее изобретение относится к фармацевтической композиции, содержащей терапевтически эффективное количество фармацевтически приемлемых солей N-[4-(1-цианоцикпопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, которая может дополнительно содержать один или более чем один фармацевтически приемлемый носитель.
В четвертом аспекте настоящее изобретение относится к применению фармацевтически приемлемых солей N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида при получении противоопухолевых лекарств.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг.1: Эффективность мезилата соединения A и РТК787 на раке ободочной кишки человека Ls174t, трансплантированном бестимусным мышам.
Фиг.2: Эффективность мезилата соединения A и РТК787 на раке ободочной кишки человека HT-29, трансплантированном бестимусным мышам.
Фиг.3: Кривая концентрация лекарства - время гидрохлорида (крыса 1-3), фосфата (крыса 4-6), малеата (крыса 7-9) и мезилата (крыса 10-12) соединения A, вводимого крысам перорально 20 мг/кг.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
1. ПОЛУЧЕНИЕ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫХ СОЛЕЙ СОЕДИНЕНИЯ A
Пример 1 для получения. Получение гидрохлорида соединения A:
5,049 г соединения A (12,7 ммоль) суспендировали в 120 мл этанола, добавляли по каплям 23,89 мл стандартного раствора соляной кислоты (0,5322 моль/л), и смесь нагревали до образования флегмы до получения прозрачного раствора (если существует какое-либо нерастворимое вещество, можно осуществить горячее фильтрование). После охлаждения до комнатной температуры (23°C) кристаллы выпадали в осадок из раствора. Полученную в результате смесь фильтровали, и фильтрационный кек промывали этанолом (20 мл × 2), переносили в вакуумную сушильную печь (CaCl2) и фильтровали с помощью наноса в течение 5 часов при 80°C с получением 3,619 г (65,7%) гидрохлорида соединения A. Диапазон плавления: 200-202,5°C, содержание воды 5,1% и остаток растворителя 0,025%.
Пример 2 для получения. Получение сульфата соединения A:
3,092 г соединения A (7,778 ммоль) суспендировали в 120 мл этанола, добавляли по каплям 14,89 мл (7,793 ммоль) стандартного раствора серной кислоты (0,5234 моль/л), и смесь нагревали до образования флегмы до получения прозрачного раствора (если существует какое-либо нерастворимое вещество, можно осуществить горячее фильтрование). Смесь концентрировали до 100 мл при пониженном давлении. После охлаждения до комнатной температуры (23°C) кристаллы выпадали в осадок из раствора. Полученную в результате смесь фильтровали, и фильтрационный кек промывали этанолом (8 мл × 2), переносили в вакуумную сушильную печь (CaCl2) и фильтровали с помощью наноса в течение 5 часов при 80°C с получением 2,662 г (выход 57,7% на основе содержания свободного основания) сульфата соединения A. Диапазон плавления: 199,5-230°C (не полностью плавится).
Пример 3 для получения. Получение фосфата соединения A:
Смесь 1,910 г соединения A (4,805 ммоль), 225 мл этанола и 9,29 мл (4,803 ммоль) стандартного раствора фосфорной кислоты (0,5008 моль/л) нагревали до образования флегмы. Через 4 часа твердые вещества полностью растворялись. Затем смеси давали охладиться до комнатной температуры (25°C), и кристаллы выпадали в осадок из раствора. Полученную в результате смесь фильтровали, и фильтрационный кек промывали этанолом (5 мл × 2), переносили в вакуумную сушильную печь (CaCl2) и фильтровали с помощью наноса в течение 6 часов при 80°C с получением 1,150 г (выход 46,1% на основе содержания свободного основания) фосфата соединения A. Диапазон плавления: 205-258°C (не полностью плавится).
Пример 4 для получения. Получение мезилата соединения A:
170 г (0,428 моль) соединения A, 42,5 г (0,442 моль) метансульфоновой кислоты и 2,55 л 95% водного раствора изопропанола добавляли в 5 л реакционную колбу. Смесь перемешивали и нагревали до полного растворения при защите азота и в темноте. Получили светло-желтый прозрачный раствор, и его фильтровали горячим. После охлаждения до комнатной температуры кристаллы выпадали в осадок из раствора. Полученные в результате осадки собирали фильтрованием и промывали изопропанолом, высушивали в вакууме с получением 180,2 г (0,365 моль) белых игольчатых кристаллов. Выход: 85,4%.
180,2 г мезилата соединения A в 2,52 л 95% водного раствора изопропанола добавляли в 5 л реакционную колбу. Смесь перемешивали и нагревали до полного растворения при азотной защите и в темноте и фильтровали горячей. После охлаждения до комнатной температуры кристаллы выпадали в осадок из раствора. Полученные в результате осадки собирали фильтрованием и промывали изопропанолом, высушивали в вакууме с получением 161,5 г белых игольчатых кристаллов. Выход: 85,4%. Диапазон плавления: 193,5-195°C.
Пример 5 для получения. Получение цитрата соединения A:
2,886 г свободного основания соединения A, 0,522 г лимонной кислоты и 80 мл этанола смешивали и нагревали почти до кипения до получения бесцветного прозрачного раствора. После охлаждения до комнатной температуры белые кристаллы осаждали и фильтровали. Фильтрационный кек промывали этанолом (3 мл × 2), фильтровали в вакуумной сушильной печи в течение 6 часов при 80°C с получением 2,283 г игольчатых кристаллов. Выход: 79%. Диапазон плавления: 160,5-162,0°C.
Пример 6 для получения. Получение малеата соединения A:
2,508 г свободного основания соединения A, 0,351 г малеиновой кислоты и 110 мл этанола смешивали и нагревали до образования флегмы до получения прозрачного светло-желтого раствора. Этот раствор кипятили и добавляли активированный углерод. Зону хлопьевидных нерастворимых веществ удаляли горячим фильтрованием. Фильтрат концентрировали примерно до 90 мл и охлаждали до комнатной температуры. Светло-желтые кристаллические твердые вещества осаждали и фильтровали. Фильтрационный кек промывали небольшим количеством этанола, фильтровали в вакуумной сушильной печи в течение 6 часов при 80°C с получением 1,009 г светло-желтых игольчатых кристаллов. Выход: 40%. Диапазон плавления: 115-160°C.
Пример 7 для получения. Получение сукцината соединения A:
2,827 г свободного основания соединения A, 0,401 г янтарной кислоты и 70 мл этанола смешивали и нагревали до образования флегмы. Твердые вещества полностью растворялись. Этот раствор кипятили и добавляли активированный углерод. Зону хлопьевидных нерастворимых веществ удаляли горячим фильтрованием. Фильтрат концентрировали примерно до 25 мл и охлаждали до комнатной температуры. Белые кристаллические твердые вещества осаждали и фильтровали. Фильтрационный кек промывали небольшим количеством этанола, фильтровали в вакуумной сушильной печи в течение 6 часов при 80°C с получением 1,009 г светло-желтых игольчатых кристаллов. Выход: 77%. Диапазон плавления: 117-161,5°C.
Figure 00000002
Figure 00000003
Вывод: В соответствии с результатом экспериментов по стабильности стабильность гидрохлорида и мезилата наиболее удовлетворительна. В частности, мезилат наиболее стабилен.
3. ИССЛЕДОВАНИЕ ФАРМАКОЛОГИЧЕСКОЙ АКТИВНОСТИ ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫХ СОЛЕЙ СОЕДИНЕНИЯ А
Пример 1: Ингибирование мезилата соединения A на рецепторном белке тирозинкиназе
(1) Метод
Метод ELISA (I Posner et al., J. Biol. Chem., Oct, 1992, Vol.267, Issue 29, 20638-20647): Планшет ферментативной метки покрывали субстратом ферментативной реакции Poly(Glu, Tyr)4:1, затем добавляли фермент, образец и АТФ. Фосфорилирование субстрата определяли моноклональным антителом против фосфорилирования тирозина (PY99). Затем добавляли IgG коза против мыши, меченый HRP, и степень фосфорилирования субстрата определяли с помощью окрашивания OPD. В то же время ставили контрольную группу без тирозинкиназы и контрольные планшеты соответствующей концентрации ДМСО. Для остановки реакции добавляли 2 М H2SO4 в количестве 50 мкл/лунка. Данные считывали с помощью прибора для микропланшетов с ферментативной меткой с регулируемой длиной волны VERSAmax (Sunnyvale, CA, U.S.A.) с последующей визуализацией реакции, затем наблюдали значение OD при 490 нм.
К о э ф ф и ц и е н т и н г и б и р о в а н и я = ( 1 З н а ч е н и е  OD соединения З н а ч е н и е  OD контрольной лунки без фермента З н а ч е н и е  OD отрицательной контрольной группы З н а ч е н и е  OD контрольной лунки без фермента ) × 100 %
Figure 00000004
Определяли относительный коэффициент ингибирования лекарств на белке тирозинкиназе.
Ингибиторную концентрацию 50% IC50 вычисляли методом LOGIT в соответствии с коэффициентами ингибирования различных концентраций. Каждый вышеупомянутый эксперимент повторяли 3 раза, и среднее значение IC50 3 повторов экспериментов принимали за конечный показатель ингибирующей способности.
(2) Результаты
Результаты ингибирования мезилата соединения A и положительного контрольного соединения РТК787 на 8 типах тирозинкиназ суммированы в таблице 1. Эти результаты показывают, что мезилат соединения A обладает значимым ингибированием в отношении киназной активности KDR, Flt1, PDGFR (3, c-Kit и c-Src на молекулярном уровне, IC50 которого составляет 2,43 нМ, 70,08 нМ, 537,31 нМ, 420,31 нМ и 348,53 нМ, соответственно. Напротив, IC50 положительного контрольного соединения РТК787 на KDR, Flt1, PDGFRp и c-Kit составляет 33,30 нМ, 84,69 нМ, 416,51 нМ и 606,11 нМ, соответственно. Эти результаты также показывают, что мезилат соединения A обладает сильным ингибированием в отношении киназной активности рецепторов эндотелиального фактора роста сосудов 1 и 2 (Flt1/VEGFR1 и KDR/VEGFR2). Его ингибирование на киназе KDR значимо сильнее, чем на киназе Flt1, и IC50 на киназе KDR в 13,7 раз ниже, чем для контрольного соединения. То есть ингибирование мезилата соединения A на KDR сильнее, чем для РТК787. В то же время, мезилат соединения A также обладает значительным ингибированием в отношении третьих рецепторных тирозинкиназ, таких как рецептор β тромбоцитарного фактора роста (PDGFR(3) и рецептор фактора роста стволовых клеток (c-Kit), которое является более слабым, чем ингибирование в отношении рецептора эндотелиального фактора роста сосудов. Когда концентрация повышается до 104 нМ, положительное соединение РТК787 не обладает ингибированием в отношении не рецепторной тирозинкиназы c-Src, тогда как IC50 ингибирования мезилата соединения A на c-Src составляет 348,53 нМ. Однако, когда концентрация повышается до 104 нМ, мезилат соединения A не обладает ингибированием в отношении киназной активности киназ из других семейств, таких как рецептор эпидермального фактора роста EGFR1 и ErbB2, и рецептор фактора роста фибробластов FGFR1. Кроме того, результаты показывают, что ингибирование мезилата соединения A в отношении киназной активности KDR сильнее, чем для положительного соединения РТК787, на молекулярном уровне, хотя их ингибирование в отношении тирозинкиназы Flt1, PDGFR, c-Kit является по существу одинаковым при силе ингибирования, находящейся на уровне одного диапазона. В отношении селективности, мезилат соединения A обладает более широким диапазоном, чем РТК787, и также обладает ингибированием в отношении киназной активности не рецепторной тирозинкиназы c-Src. Как вывод, мезилат соединения A является ингибитором тирозинкиназы, обладающим значимо селективным ингибированием в отношении KDR, вместе с ингибированием в отношении киназ Flt1, PDGFR, c-Kit, c-Src и т.д.
Таблица 1
Эффекты мезилата соединения A на тирозинкиназы*
Киназы РТК787 (IC50±SD нМ) Мезилат соединения A (IC50±SD нМ)
KDR 33,30±14,45 2,43±1,30
Flt1 84,69±20,65 70,08±29,36
PDGFRp 416,51±143,73 537,31±190,46
c-Kit 606,11±77,93 420,31±40,37
EGFR1 >10,000 >10,000
ErbB2 >10,000 >10,000
FGFR1 >10,000 >10,000
c-Src >10,000 348,53±194,42
Пример 2: Эффективность мезилата соединения A на раке ободочной кишки человека Ls174t, трансплантированном бестимусным мышам
(1) Подопытные животные
Бестимусные мыши BALB/cA, самки, 5-6-недельного возраста, доступные от компании с ограниченной ответственностью подопытных животных Shanghai Slaccas. Сертификационный номер: SCXK (hu) 2004-0005. Условия выращивания: квалификация SPF.
(2) Экспериментальные методы
После адаптации в течение недели подопытных животных инокулировали подкожно опухолевыми тканями рака ободочной кишки человека Ls174t. Когда опухоли вырастали до 100-300 мм3, животных делили случайным образом на несколько групп на сутки 0 (d0). Дозы мезилата соединения A составляли 50 мг/кг, 100 мг/кг и 200 мг/кг соответственно. РТК787 вводили в таких же дозах. Как мезилат соединения A, так и РТК787 вводили перорально (с помощью зонда) один раз в сутки от суток 0 (d0) до суток 13 (d13), всего 14 раз. Объемы опухолей и массы мышей измеряли 2-3 раза каждую неделю, и данные записывали. Уравнение для вычисления объема опухолей (V) приведено ниже:
V=1/2×a×b2
где а и b представляют собой длину и ширину, соответственно.
(3) Результаты
Экспериментами по энзимологии и на клеточном уровне доказано, что ведущей мишенью действия мезилата соединения A является VEGFR2/KDR (IC50=2,43±1,30 нМ). В качестве положительного соединения в эксперименте было выбрано РТК787 (IC50 на KDR равна 33,30±14,45 нМ) фирмы Novartis, соединение, имеющее подобную мишень действия, клинические испытания которого были проведены ранее. В соответствии с предварительными испытаниями мезилата соединения A и контрольного соединения РТК787 было выбрано три дозы 50, 100, 200 мг/кг, и оценку и сравнение эффективности проводили, используя те же дозы и режим дозировки. Результаты приведены в таблице 2. Эти результаты показывают, что мезилат соединения A дозозависимо ингибировал рост рака ободочной кишки человека Ls174t, и его Т/С% составляло 16,3% при дозе 200 мг/кг. РТК787 также ингибировал рост Ls174t при дозе 200 мг/кг, однако его Т/С% составляло только 60,2%, что указывает на то, что эффективность РТК787 значительно ниже по сравнению с мезилатом соединения A. В статье J.M. Wood et al., Cancer Research 60, 2178-2189, April 15, 2000, описано, что лучшее Т/С% могло достигать 40% при введении РТК787 в дозе 75 мг/кг, но экспериментальные результаты авторов изобретения показали, что РТК787, вводимый в дозе 100 мг/кг, не обладает значимым эффектом, и Т/С% составляло только 71,5%. При сравнении отмечено, что в эксперименте J.M. Wood et al. исходный объем опухолей в момент введения лекарств составлял 25-100 мм3, что по меньшей мере в 1,5-6 раз меньше, чем в эксперименте авторов изобретения, и введение длилось в течение 28 суток или более, что было дольше, чем в эксперименте авторов изобретения. Кроме того, Т/С%, описанное J.M. Wood et al., было лучшим среди других в их эксперименте, но не конечным Т/С% по окончании эксперимента. Напротив, лучшее Т/С% в эксперименте авторов изобретения оказывалось на 10е сутки в течение введения, и в это время Т/С% составляло 60,7% и 45,8% для дозы РТК787 100 мг/кг и 200 мг/кг соответственно, что было близко к значениям в эксперименте J.M. Wood et al. Кроме того, следует подчеркнуть, что существуют различные факторы, влияющие на эффективность эксперимента, и сравнение следует проводить в той же системе. Хотя эффективность РТК787 в настоящем эксперименте была не идентична литературным данным, сравнение между эффективностью РТК787 и мезилата соединения A не было подвергнуто воздействию. На основании таблицы 2 можно было вычислить, что ED50 мезилата соединения A на раке ободочной кишки Ls174t составляла 97,2 мг/кг, тогда как ED50 РТК787 составляла 458,7 мг/кг, что указывает на то, что эффективность мезилата соединения A на раке ободочной кишки Ls174t была значительно лучше, чем РТК787.
На основании этого можно заключить, что, когда мезилат соединения A и РТК787 оба вводят в дозе 400 мг/кг, их эффективность значимо не увеличивается, хотя они могут быть переносимы мышами, то есть отсутствует явное отношение доза - эффект. Этот результат был подобен другому ингибитору ангиогенеза SU11248. Поэтому в последующих экспериментах для оценки эффективности были выбраны дозы 200, 100, 50 мг/кг мезилата соединения A.
Согласно схеме эксперимента два соединения последовательно вводили мышам, несущим опухоли, в течение 14 суток соответственно. Результаты показывают, что оба эти соединения были хорошо переносимыми, и у мышей отсутствовала явная потеря массы. Токсичность этих двух соединений незначительно различалась в этой схеме эксперимента.
Figure 00000005
Пример 3: Эффективность мезилата соединения A на раке ободочной кишки человека НТ-29, трансплантированном бестимусным мышам
(1) Подопытные животные
Бестимусные мыши BALB/cA, самки, 5-6-недельного возраста, приобретенные от компании с ограниченной ответственностью подопытных животных Shanghai Slaccas. Сертификационный номер: SCXK (Ни) 2004-0005. Условия выращивания: квалификация SPF.
(2) Экспериментальные методы
После адаптации в течение недели подопытных животных инокулировали подкожно опухолевыми тканями рака ободочной кишки человека НТ-29. Когда опухоли вырастали до 100-300 мм3, животных делили случайным образом на несколько групп на сутки 0 (d0). Дозы мезилата соединения A составляли 50 мг/кг, 100 мг/кг, 200 мг/кг, соответственно, а доза РТК787 составляла 200 мг/кг. Как мезилат соединения A, так и РТК787 вводили перорально (с помощью зонда) один раз в сутки от суток 0 (d0) до суток 20 (d20), всего 21 раз. Объемы опухолей и массы мышей измеряли 2-3 раза каждую неделю, и данные записывали. Уравнение для вычисления объема опухолей (V) приведено ниже:
V=1/2×a×b2
где а и b представляют собой длину и ширину, соответственно.
(1) Результаты (см. таблицу 3):
Результаты показывают, что мезилат соединения A значимо ингибировал рост рака ободочной кишки человека НТ-29 с очевидной дозозависимостью. Эффективность РТК787 была также хорошей, но ниже эффективности мезилата соединения A. Т/С% мезилата соединения A и РТК787 при дозе 200 мг/кг составляло 25,5% и 56,5%, соответственно, и различались значимо (Р<0.01). Это указывает на то, что эффективность мезилата соединения A была значительно лучшей, чем РТК787.
Кроме того, оба эти соединения были хорошо переносимыми, и их токсичность эквивалента.
Figure 00000006
Пример 4: Исследование биодоступности соединения A посредством перорального введения
(1) Подопытные животные
Самцов крыс линии Спраг-Доули (SD) (масса: примерно 250 г, сертификат годности подопытных животных: 0006473) покупали от компании с ограниченной ответственностью подопытных животных Shanghai Slaccas (сертификационный номер: SCXK (hu) 2003-0003). В первую очередь проверяли релевантные квалификации и состояние здоровья крыс SD, и пригодных крыс помещали в комнаты асептической категории для крыс в Институте фармакологии, Шанхай.
(2) Экспериментальные приборы
Система анализа жидкостной хроматографии - масс-спектрометрии (ЖХ/МС/МС) включает двухканальный насос серии Agilent1100, подключенный деаэратор, автоматический дозатор, нагреватели колонок и тройной квадрупольный масс-спектрометр TSQ Quantum от фирмы Thermo Finnigan Company. Рабочими программными обеспечениями системы являются Xcalibur и Chemstation (США). Другие экспериментальные приборы включают: аппарат для азотной сушки Techne (Германия); морозильник сверхнизких температур на -80°C SANYO (Япония); мини-качалку Vibrax VXR (Германия); турбинную мешалку MS1 (Германия); магнитную мешалку стабильной температуры с таймером 92-2 (Шанхай); электронные аналитические весы с двойной шкалой METTLERAE240 (0,01 мг/41 г, 0,1 мг/205 г) (Германия) и флакон-диспенсер EPPENDORF (Германия).
(3) Экспериментальные методы
I. Условия анализа ЖХ/МС/МС
Условия анализа жидкостной хроматографии
Хроматографическая колонка: колонка Agilent Zorbax SB-C18 (50 мм × 2,1 мм ID);
Температура колонки: 25°C;
Подвижная фаза: A: H2O-CH3CN (2:98, об/об), В: H2O-CH3CN (10:90, об/об)
А: 25% + В : 75%, элюирование постоянным градиентом;
Скорость тока: 0,25 мл/мин;
Объем впрыска: 10 мкл;
Время анализа: 3 минуты.
II. Эксперименты с крысами
Световой цикл переключали на 12/12 часов день/ночь в комнатах асептической категории для крыс. Влажность и температура составляли 40-60% и 20-24°C, соответственно. Каждые 4 крысы содержали в стальных клетках для крыс размером 36×24×19 см3. Крысы имели свободный доступ к воде, и их кормили специальным кормом для крыс регулярно один раз в сутки. Только после одной недели адаптации крыс можно было использовать для эксперимента по фармакокинетике на животных. Трем крысам линии Спраг-Доули перорально вводили соединение A в дозе 20 мг/кг.
24 мг порошка соединения A точно взвешивали, растворяли в 4 мл воды, помещали в ступку и измельчали, а затем смывали 8 мл воды в 15 мл пробирку с получением суспензии 2 мг/мл для экспериментов на животных.
Образцы крови собирали в 0 часов перед введением и через 0,083, 0,25, 0,5, 1,0, 2, 4, 6, 8 часов после введения. Образцы крови крыс 250-300 мкл собирали в каждый момент времени из заднего венозного синуса глаз после респирационной анестезии эфиром (степень анестезии в высокой степени контролировали). Образцы крови собирали в пробирки, содержащие предварительно добавленный гепарин, а затем центрифугировали для получения плазмы. Полученную плазму делили на 2 части (50 мкл для каждой части) и хранили при -70°C до анализа. Концентрации соединения A в образцах крови в различные моменты времени анализировали, используя метод ЖХ/МС/МС. Эвтаназию проводили на использованных крысах газом CO2.
Фармакокинетические параметры эксперимента на животных каждой группы вычисляли, используя программное обеспечение InnaPhase Kinetica™ (США).
III. Результаты экспериментов
Таблица 4
Фармакокинетические параметры крыс SD после перорального введения соединения A (20 мг/кг) (некомпартментная модель)
Крыса 1 Крыса 2 Крыса 3 Среднее ±SD
С (нг/мл) 60,8 68,9 79,2 69,6±9,2
Tmax (ч) 1,5 1,5 1 1,33±0,29
AUC0→8ч (нг·ч/мл) 172 295 211 226±63
T1/2 (ч) 2,13 1,12 2,09 1,78±0,57
Kel-1) 0,325 0,622 0,332 0,426±0,169
MRT (ч) 3,20 3,38 3,32 3,30±0,09
CL (л/ч/кг) 115 67,4 92,7 91,5±23,6
Vd (л/кг) 366 228 308 300±69,4
*Cmax: максимальная концентрация лекарства в плазме после экстраваскулярного введения; Tmax: время экстраваскулярного введения; AUC0-8ч: площадь под кривой концентрация лекарства в плазме - время (от 0 до 8 часов); Т1/2: время полувыведения; Kel: константа скорости элиминации; MRT: среднее время пребывания in vivo отдельной молекулы; CL: плазматический клиренс; Vd: кажущийся объем распределения на основании концентрации в плазме.
Пример 5: Сравнение биодоступности четырех фармацевтически приемлемых солей соединения A посредством перорального введения
(1) Подопытные животные
Самцов крыс линии Спраг-Доули (SD) (масса: примерно 250 г, сертификат годности подопытных животных: 0006473) покупали от компании с ограниченной ответственностью подопытных животных Shanghai Slaccas (сертификационный номер: SCXK (hu) 2003-0003). В первую очередь проверяли релевантные квалификации и состояние здоровья крыс SD, и пригодных крыс помещали в комнаты асептической категории для крыс в Институте фармакологии, Шанхай.
(2) Экспериментальные приборы
Система анализа жидкостной хроматографии - масс-спектрометрии (ЖХ/МС/МС) включает двухканальный насос серии Agilent1100, подключенный деаэратор, автоматический дозатор, нагреватели колонок и тройной квадрупольный масс-спектрометр TSQ Quantum от фирмы Thermo Finnigan Company. Рабочими программными обеспечениями системы являются Xcalibur и Chemstation (США). Другие экспериментальные приборы включают: аппарат для азотной сушки Techne (Германия); морозильник сверхнизких температур на -80°C SANYO (Япония); мини-качалку Vibrax VXR (Германия); турбинную мешалку MS1 (Германия); магнитную мешалку стабильной температуры с таймером 92-2 (Шанхай); электронные аналитические весы с двойной шкалой METTLERAE240 (0,01 мг/41 г, 0,1 мг/205 г) (Германия) и флакон-диспенсер EPPENDORF (Германия).
(3) Экспериментальные методы
I. Условия анализа ЖХ/МС/МС
Условия анализа жидкостной хроматографии
Хроматографическая колонка: колонка Agilent Zorbax SB-C18 (50 мм × 2,1 мм ID);
Температура колонки: 25°C;
Подвижная фаза: A: H2O-CH3CN (2:98, об/об), В: H2O-CH3CN (10:90, об/об) А: 25% + В : 75%, элюирование постоянным градиентом;
Скорость тока: 0,25 мл/мин;
Объем впрыска: 10 мкл;
Время анализа: 3 минуты.
II. Эксперименты с крысами
Световой цикл переключали на 12/12 часов день/ночь в комнатах асептической категории для крыс. Влажность и температура составляли 40-60% и 20-24°C, соответственно. Каждые 4 крысы содержали в стальных клетках для крыс размером 36×24×19 см3. Крысы имели свободный доступ к воде, и их кормили специальным кормом для крыс регулярно один раз в сутки. Только после одной недели адаптации крыс использовали для проведения исследований фармакокинетики. 12 крыс линии Спраг-Доули делили на 4 группы, 3 на каждую группу. Четырем группам вводили перорально гидрохлорид, фосфат, малеат и мезилат соединения A в дозе 20 мг/кг, соответственно.
24 мг порошка гидрохлорида, фосфата, малеата и мезилата соединения A, соответственно, точно взвешивали, растворяли в 4 мл воды, помещали в ступки и измельчали, а затем смывали 8 мл воды в 15 мл пробирку с получением суспензии 2 мг/мл для экспериментов на животных.
Образцы крови собирали в 0 часов перед введением и через 0,083, 0,25, 0,5, 1,0, 2, 4, 6, 8 часов после введения. Образцы крови крыс 250-300 мкл собирали в каждый момент времени из заднего венозного синуса глаз после респирационной анестезии эфиром (степень анестезии в высокой степени контролировали). Образцы крови собирали в пробирки, содержащие предварительно добавленный гепарин, а затем центрифугировали для получения плазмы. Полученную плазму делили на 2 части (50 мкл для каждой части) и хранили при -70°C до анализа. Концентрации соединения A в образцах крови в различные моменты времени анализировали, используя метод ЖХ/МС/МС. После экспериментов эвтаназию проводили газом СО2.
Фармакокинетические параметры эксперимента на животных каждой группы вычисляли, используя программное обеспечение InnaPhase Kinetica™ (США).
III. Результаты экспериментов на животных
Концентрации в крови гидрохлорида, фосфата, малеата и мезилата соединения A, вводимых крысам перорально в дозе 20 мг/кг, в различные моменты времени приведены в таблицах 5 и 6, соответственно. Соответствующие кривые концентрация лекарства в плазме - время представлены на фиг.3, и Фармакокинетические параметры приведены в таблицах 7 и 8.
Figure 00000007
Figure 00000008
Figure 00000009
Cmax: максимальная концентрация лекарства в плазме после экстраваскулярного введения; Tmax: время, необходимое для достижения максимальная концентрация лекарства в плазме после экстраваскулярного введения; AUC0→8 ч: площадь под кривой концентрация лекарства в плазме - время (0-8 ч); AUMC0→8 ч площадь под кривой первый момент - время (0-8 часов); T1/2: время полувыведения; Kel: константа скорости элиминации; MRT: среднее время пребывания in vivo отдельной молекулы; CL: плазматический клиренс; Vd: кажущийся объем распределения на основе концентрации в плазме.
Figure 00000010
Cmax: максимальная концентрация лекарства в плазме после экстраваскулярного введения; Tmax: время, необходимое для достижения максимальная концентрация лекарства в плазме после экстраваскулярного введения; AUC0→8 ч - площадь под кривой концентрация лекарства в плазме - время (0-8 ч); AUMC0→8 ч: площадь под кривой первый момент - время (0-8 часов); Т1/2: время полувыведения; Kel: константа скорости элиминации; MRT: среднее время пребывания in vivo отдельной молекулы; CL: плазматический клиренс; Vd: кажущийся объем распределения на основе концентрации в плазме.
Таблица 9.
Относительная биодоступность перорального введения фармацевтически приемлемых солей соединения A в эксперименте
Гидрохлорид Фосфат Малеат Мезилат
MW 433,93 495,47 513,54 493,58
Доза (мг/кг) 20
Моль доза (мкмоль/кг) 46 40 39 41
Cmax (НГ/МЛ) 463±334 237±131 156±86 489±296
Tmax (Ч) 0,92±0,95 0,33±0,14 0,92±0,94 0,33±0,14
AUC0→8 ч (нг·ч/мл) 814±149 366±254 456±343 697±283
AUC0→8 ч моль дозы (нг·ч/мл) 17653±3232 9074±6292 11697±8807 17194±6984
Относительная F гидрохлорид>мезилат>малеат>фосфат
Cmax: максимальная концентрация лекарства в плазме после экстраваскулярного введения; Tmax: время, необходимое для достижения максимальная концентрация лекарства в плазме после экстраваскулярного введения; AUC0→8 ч: площадь под кривой концентрация лекарства в плазме - время (0-8 ч); AUC0→8 ч моль дозы (нг·ч/мл): площадь под кривой концентрация лекарства в плазме - время (0-8 ч) при дозе 1 ммоль/кг; Относительная F: относительная биодоступность.
Вывод: по сравнению с биодоступностью соединения A, определенной в примере 4, было обнаружено, что соли соединения A в настоящем изобретении значительно улучшали биодоступность соединения A, особенно гидрохлорид и мезилат соединения A.
4. ПРЕПАРАТ
Пример препарата 1: таблетка
Рецептура:
Мезилат соединения A 100 г
Крахмал 20 г
2% крахмальная суспензия соответствующее
количество
Стеарат магния 0,5 г
1000 таблеток
Способ получения: Фармацевтически приемлемые соли соединения A просеивали через сито 100-200 меш и смешивали с крахмалом. Добавляли 2% крахмальную суспензию, и смесь гранулировали, высушивали и смешивали со 5 стеаратом магния. Полученную в результате смесь прессовали и тестировали. Пригодные таблетки упаковывали.
Пример препарата 2: капсула
Рецептура:
Мезилат соединения A 50 г
Крахмал 10 г
Микрокристаллическая целлюлоза 5 г
1% крахмальная суспензия соответствующее
количество
Стеарат магния 0,25 г
1000 капсул
Способ получения: Смесь гранулировали, инкапсулировали, тестировали и упаковывали общепринятым способом.

Claims (4)

1. Фармацевтически приемлемая соль N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида, где соль представляет собой соль мезилат или гидрохлорид.
2. Фармацевтическая композиция, обладающая противоопухолевой активностью, содержащая терапевтически эффективное количество соли по п.1 и один или более фармацевтически приемлемых носителей.
3. Применение соли по п.1 при получении противоопухолевого лекарственного средства.
4. Способ получения соли по п.1, включающий стадию образования соли N-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида с соответствующей кислотой.
RU2011113229/04A 2008-09-16 2009-06-11 Соли n-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида RU2499796C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810149651.1 2008-09-16
CN2008101496511A CN101676267B (zh) 2008-09-16 2008-09-16 N-[4-(1-氰基环戊基)苯基]-2-(4-吡啶甲基)氨基-3-吡啶甲酰胺的盐
PCT/CN2009/072239 WO2010031266A1 (zh) 2008-09-16 2009-06-11 N-[4-(1-氰基环戊基)苯基]-2-(4-吡啶甲基)氨基-3-吡啶甲酰胺的盐

Publications (2)

Publication Number Publication Date
RU2011113229A RU2011113229A (ru) 2012-10-27
RU2499796C2 true RU2499796C2 (ru) 2013-11-27

Family

ID=42029001

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011113229/04A RU2499796C2 (ru) 2008-09-16 2009-06-11 Соли n-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида

Country Status (13)

Country Link
US (1) US8362256B2 (ru)
EP (1) EP2327697B1 (ru)
JP (1) JP5649132B2 (ru)
KR (1) KR101674227B1 (ru)
CN (1) CN101676267B (ru)
AU (1) AU2009295168B2 (ru)
BR (1) BRPI0919018A2 (ru)
CA (1) CA2736664C (ru)
HK (1) HK1141514A1 (ru)
MX (1) MX2011002816A (ru)
RU (1) RU2499796C2 (ru)
WO (1) WO2010031266A1 (ru)
ZA (1) ZA201101891B (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072412A (zh) * 2014-07-08 2014-10-01 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐b晶型及其制备方法和应用
CN104086483A (zh) * 2014-07-08 2014-10-08 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐f晶型及其制备方法和应用
CN104072411A (zh) * 2014-07-08 2014-10-01 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐c晶型及其制备方法和应用
CN104086484B (zh) * 2014-07-08 2016-05-25 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐溶剂化物晶体及其制备方法和应用
CN104072410B (zh) * 2014-07-08 2017-02-08 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐d晶型及其制备方法和应用
CN104072413A (zh) * 2014-07-08 2014-10-01 上海宣创生物科技有限公司 烟酰胺类衍生物的甲磺酸盐a晶型及其制备方法和应用
CN105541708A (zh) * 2014-10-28 2016-05-04 华东理工常熟研究院有限公司 硫酸阿帕替尼的新晶型
CN105622498A (zh) * 2014-10-28 2016-06-01 华东理工常熟研究院有限公司 硫酸阿帕替尼的新晶型
CN105622499A (zh) * 2014-10-28 2016-06-01 华东理工常熟研究院有限公司 硫酸阿帕替尼的新晶型
CN107454909B (zh) 2015-04-15 2021-01-29 陶氏环球技术有限责任公司 具有垂直伸长孔的绝热泡沫
CN105801476A (zh) * 2016-04-13 2016-07-27 上海宣创生物科技有限公司 阿帕替尼甲磺酸盐ii晶型及其制备方法和应用
CN106243031B (zh) * 2016-07-26 2017-09-08 江苏恒瑞医药股份有限公司 一种阿帕替尼的制备方法
TWI764943B (zh) 2016-10-10 2022-05-21 大陸商蘇州盛迪亞生物醫藥有限公司 一種抗pd-1抗體和vegfr抑制劑聯合在製備治療癌症的藥物中的用途
WO2018099423A1 (zh) 2016-12-01 2018-06-07 江苏恒瑞医药股份有限公司 一种vegfr抑制剂与parp抑制剂联合在制备治疗胃癌的药物中的用途
CN108250138A (zh) * 2016-12-28 2018-07-06 上海宣创生物科技有限公司 阿帕替尼a晶型及其制备方法和应用
CN106963948A (zh) * 2017-05-12 2017-07-21 顾艳宏 阿帕替尼与Anti‑PD‑1抗体联用在制备结肠癌药物中的应用
CN109381436A (zh) * 2017-08-14 2019-02-26 江苏恒瑞医药股份有限公司 阿帕替尼药物组合物及其制备方法
WO2019034048A1 (zh) * 2017-08-15 2019-02-21 江苏恒瑞医药股份有限公司 一种vegfr抑制剂晶型及其制备方法
CN109394685B (zh) * 2017-08-15 2021-04-06 江苏恒瑞医药股份有限公司 一种vegfr抑制剂的药物组合物及其制备方法
WO2019094832A1 (en) * 2017-11-10 2019-05-16 Lsk Biopharma A combination therapy with apatinib for the treatment of cancer
MX2020005659A (es) 2017-12-06 2020-08-20 Jiangsu Hengrui Medicine Co Uso de un inhibidor de parp en el tratamiento del cancer de ovario o cancer de mama resistente a la quimioterapia.
CN109942487A (zh) * 2017-12-21 2019-06-28 江苏恒瑞医药股份有限公司 一种吡啶类化合物及其制备方法、用途
CN111065412B (zh) 2017-12-29 2021-10-08 江苏恒瑞医药股份有限公司 Pd-1抗体和阿帕替尼联合治疗三阴性乳腺癌的用途
WO2020051173A1 (en) * 2018-09-05 2020-03-12 Assia Chemical Industries Ltd New crystalline polymorphs of rivoceranib and rivoceranib mesylate
CN115279405A (zh) * 2020-04-10 2022-11-01 江苏恒瑞医药股份有限公司 一种抗pd-1抗体在制备治疗肢端黑色素瘤的药物中的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2002121645A (ru) * 2000-01-27 2004-04-10 Новартис Аг Производные 2-аминоникотинамида и их применение в качестве ингибиторов vegf-рецептора тирозинкиназы
CN1502608A (zh) * 2002-11-27 2004-06-09 南京凯衡科贸有限公司 具有抑制血管生成活性的六员氨基酰胺类衍生物
US20070259849A1 (en) * 2004-07-01 2007-11-08 Astrazeneca Ab Azine-Carboxamides as Anti-Cancer Agents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0001930D0 (en) * 2000-01-27 2000-03-22 Novartis Ag Organic compounds
MXPA04012948A (es) 2002-07-31 2005-09-12 Schering Ag Inhibidores antranilamidopiridinas vegfr-2 y vegfr-3.
US7129252B2 (en) * 2003-06-16 2006-10-31 Guoqing P Chen Six membered amino-amide derivatives an angiogenisis inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2002121645A (ru) * 2000-01-27 2004-04-10 Новартис Аг Производные 2-аминоникотинамида и их применение в качестве ингибиторов vegf-рецептора тирозинкиназы
CN1502608A (zh) * 2002-11-27 2004-06-09 南京凯衡科贸有限公司 具有抑制血管生成活性的六员氨基酰胺类衍生物
US20070259849A1 (en) * 2004-07-01 2007-11-08 Astrazeneca Ab Azine-Carboxamides as Anti-Cancer Agents

Also Published As

Publication number Publication date
CN101676267B (zh) 2012-12-26
CA2736664C (en) 2016-05-24
CN101676267A (zh) 2010-03-24
RU2011113229A (ru) 2012-10-27
WO2010031266A1 (zh) 2010-03-25
EP2327697A1 (en) 2011-06-01
BRPI0919018A2 (pt) 2015-12-08
US8362256B2 (en) 2013-01-29
KR101674227B1 (ko) 2016-11-08
JP5649132B2 (ja) 2015-01-07
EP2327697B1 (en) 2014-03-12
JP2012502885A (ja) 2012-02-02
AU2009295168B2 (en) 2014-02-13
MX2011002816A (es) 2011-04-05
ZA201101891B (en) 2012-05-30
EP2327697A4 (en) 2012-06-06
AU2009295168A1 (en) 2010-03-25
HK1141514A1 (ru) 2010-11-12
KR20110059877A (ko) 2011-06-07
CA2736664A1 (en) 2010-03-25
US20110184023A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
RU2499796C2 (ru) Соли n-[4-(1-цианоциклопентил)фенил]-2-(4-пиридилметил)амино-3-пиридинкарбоксамида
CN110582483B (zh) 含邻氨基杂芳环炔基的化合物及其制备方法和用途
CN106132403B (zh) 喷雾干燥制剂
RU2693480C2 (ru) Ингибиторы jak2 и alk2 и способы их использования
KR101871889B1 (ko) (이)-엔-[4-[[3-클로로-4-(2-피리딜메톡시)페닐]아미노]-3-시아노-7-에톡시-6-퀴놀릴]-3-[(2알)-1-메틸피롤리딘-2-일]프로프-2-엔아미드의 약학적으로 허용 가능한 염, 그의 제조 방법, 및 그의 의학적 용도
JP2017527524A (ja) 腫瘍を治療するための方法、薬用組成物及び薬剤ボックスキット
JP2018517672A (ja) イソオキサゾリル置換イミダゾピリジン類
TW202208375A (zh) 4-胺基-5-(6-(4-甲基哌-1-基)-1h-苯并[d]咪唑-2-基)噻吩并[2,3-b]吡啶-6(7h)-酮之鹽及晶形
TW201636350A (zh) 作為激酶調節劑之三唑並嗒
TW201010702A (en) Novel VEGF-2 receptor and protein tyrosine kinase inhibitors and pharmaceutical use thereof
EP3130588B1 (en) Polysubstituted pyridine compound, preparation method, use and pharmaceutical composition
WO2013107225A1 (zh) N-((4-氯-3-三氟甲基)苯基)-n&#39;-(2-氟-4-((2-羟甲基氨基甲酰基)-4-吡啶基氧)苯基)脲及其作为抗癌药物的应用
TWI462738B (zh) N-〔4-(1-氰基環戊基)苯基〕-2-(4-吡啶甲基)胺基-3-吡啶甲醯胺的鹽
WO2022033471A1 (zh) 含邻氨基吡啶炔基的化合物的盐及其制备方法和应用
JP2013518828A (ja) ピロロ窒素複素環誘導体の薬学的に許容される塩、その調製法、および医学的使用
CN109400604B (zh) 2,3,4,9-四氢-1H-吡啶并[3,4-b]吲哚类化合物及用途
CN114957137A (zh) N-(1,2,3,6-四氢嘧啶-4-基)-2-苯基乙酰胺类化合物及其制备与应用
CN110294706A (zh) 抗肿瘤药物及其制法和用途
JP2010018601A (ja) 複素環化合物、その製造法および用途