RU2488429C2 - Абсорбент, способ его получения и его применение - Google Patents

Абсорбент, способ его получения и его применение Download PDF

Info

Publication number
RU2488429C2
RU2488429C2 RU2011119092/05A RU2011119092A RU2488429C2 RU 2488429 C2 RU2488429 C2 RU 2488429C2 RU 2011119092/05 A RU2011119092/05 A RU 2011119092/05A RU 2011119092 A RU2011119092 A RU 2011119092A RU 2488429 C2 RU2488429 C2 RU 2488429C2
Authority
RU
Russia
Prior art keywords
amino acid
absorbent
carbon dioxide
acid salt
mixture
Prior art date
Application number
RU2011119092/05A
Other languages
English (en)
Other versions
RU2011119092A (ru
Inventor
Ральф ЙОХ
Рюдигер ШНАЙДЕР
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2011119092A publication Critical patent/RU2011119092A/ru
Application granted granted Critical
Publication of RU2488429C2 publication Critical patent/RU2488429C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к абсорбенту, для удаления диоксида углерода из дымовых газов, образующихся в работающей на ископаемом топливе установке для сжигания. Абсорбент содержит двухкомпонентную смесь из свободной аминокислоты и соли аминокислоты. В пересчете на молярную концентрацию свободная кислота присутствует в смеси в избыточном количестве по сравнению с солью аминокислоты. Благодаря этому целенаправленно обеспечивается непостоянный pkB-показатель, который может достигаться при различных температурах процесса абсорбции и десорбции. Изобретение позволяет создать абсорбент, способный обеспечить заметное улучшение энергетического баланса. 3 н. и 17 з.п. ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к абсорбенту, в частности для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива. Кроме того, изобретение относится к способу получения абсорбента, а также к его применению.
Уровень техники
В энергоустановках для выработки электрической энергии в промышленном масштабе, работающих на природном ископаемом топливе, при сжигании этого топлива образуются отходящие газы, содержащие диоксид углерода. Наряду с диоксидом углерода, отходящие газы содержат и другие продукты сгорания, такие как, например, газы - азот, диоксид серы, оксид азота и водяной пар, а также твердые частицы, пыль и сажу. Отходящие газы после последующего удаления твердых частиц выбрасываются в атмосферу; накапливающийся в атмосфере диоксид углерода задерживает тепловое излучение нашей Земли и в результате так называемого парникового эффекта благоприятствует повышению температуры земной поверхности.
Снизить выбросы диоксида углерода от работающих на природном топливе энергоустановок можно, если удалить диоксид углерода из отходящих газов.
Известны (в частности, из химической промышленности) различные методы удаления диоксида углерода из газовой смеси. В частности, известно удаление диоксида углерода из отходящих газов после сжигания топлива абсорбционно-десорбционным методом или низкотемпературным (криогенным) методом.
В промышленном масштабе вышеописанное удаление диоксида углерода абсорбционно-десорбционным методом проводится с применением промывного средства. В классическом процессе абсорбции-десорбции отходящий газ в абсорбционной колонне приводится в контакт с селективным растворителем в качестве промывного средства, при котором происходит поглощение диоксида углерода химическим или физическим методом.
Нагруженный диоксидом углерода растворитель поступает в десорбционную колонну для извлечения из него диоксида углерода и регенерации растворителя, причем указанное извлечение в десорбционной колонне может осуществляться термически. При этом из нагруженного растворителя удаляется газопаровая смесь из газообразного диоксида углерода и переведенного в пар растворителя. Затем переведенный в пар растворитель отделяется от газообразного диоксида углерода. Далее диоксид углерода может подвергаться стадиям сжатия, охлаждения и сжижения, после чего диоксид углерода в жидком или замороженном состоянии может направляться на хранение или утилизацию. Регенерированный растворитель возвращается в абсорбционную колонну, где он вновь может использоваться для поглощения диоксида углерода из отходящего газа, содержащего диоксид углерода.
Основной проблемой существующих способов удаления диоксида углерода из газовой смеси являются, в частности, очень высокий расход энергии, требующейся в форме тепловой энергии для проведения десорбции. Для решения этой проблемы предложен ряд технических решений, известных в уровне техники.
Для промывки газа в химической промышленности зачастую применяются физические промывные средства. Однако в случае использования физических промывных средств для удаления CO2 придется мириться с такими недостатками, как сравнительно невысокий потенциал и селективность абсорбента. Поэтому промывка физическими средствами возможна только при сравнительно высоком парциальном давлении и подходит скорее для процессов улавливания CO2 после сжигания топлива. При применении так называемых химических промывных средств может иметь место повышенная нагрузка абсорбента диоксидом углерода как следствие участия последнего в химических реакциях. При этом углекислый газ - диоксид углерода - связывается с основанием. В качестве щелочного реагента могут выступать, например, аминосоединения. При этом решающую роль для CO2-потенциала и энергии десорбции играет основность (щелочность) или показатель силы основания (pkB-показатель). Чем выше pkB-показатель, тем больше равновесие реакции смещается в сторону образования карбамата и бикарбоната/гидрокарбоната. Однако следствием этого является более прочная связь и обусловленная этим повышенная энтальпия реакции, и эти факторы также следует учитывать при десорбции. Результат этих прямо противоположных явлений до настоящего времени приходилось всегда признавать как приемлемый, так что при использовании, в частности, реакционно-активных промывных средств или растворителей на процесс десорбции в десорбционной колонне вынужденно затрачивалось большое количество энергии, за что приходилось "расплачиваться" снижением производительности энергоустановки.
Раскрытие изобретения
Поэтому задачей изобретения является создание абсорбента, который по сравнению с известными в уровне техники абсорбентами способен обеспечить заметное улучшение энергетического баланса. Другая задача изобретения состоит в разработке способа получения абсорбента. Следующая задача состоит в применении абсорбента.
Задача, направленная на создание абсорбента, решается согласно изобретению посредством того, что предлагается абсорбент, в частности, для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива, который содержит смесь из одновременно содержащихся соли аминокислоты и свободной аминокислоты.
При этом изобретение основывается на том, что изобретателями было обнаружено, что особенно многообещающим классом аминосоединений для абсорбции диоксида углерода являются такие аминокислоты, которые при добавлении эквимолярного количества неорганического основания (как правило, гидроксида калия (КОН)) переводятся в соответствующую соль аминокислоты. Аминокислоты, а точнее говоря -аминокарбоновые кислоты, составляют класс малых органических соединений, по меньшей мере, с одной карбоксильной группой (-СООН) и, по меньшей мере, с одной аминогруппой (-NH2). Под аминогруппой в органической химии понимается функциональная группа (-NH2) первичных аминов и аминокислот. Аминогруппа является щелочной функциональной группой, так как свободная электронная пара на атоме азота - так же, как и в молекуле аммиака, - способна присоединять протон кислоты. В водном растворе аминокислоты находятся в виде так называемых цвиттер-ионов, т.е. аминогруппа протонируется, а карбоксильная группа депротонируется. При этом аминогруппа действует как основание, поскольку она присоединяет протон (акцептор протона), а карбоксильная группа действует как кислота, поскольку она отдает протон (донор протона). Это особое свойство аминокислот выгодно используется в настоящем изобретении.
Свободная, т.е. не замещенная гидроксидом калия, аминокислота может функционировать и как кислота, и как основание и характеризуется непостоянным pkB-показателем. Настоящее изобретение выгодно использует то, что pkB-показатель аминокислот зависит от температуры. Если в абсорбенте, наряду с уже введенной чистой солью аминокислоты, присутствует еще и свободная аминокислота, то благодаря температурным различиям между абсорбером и десорбером обеспечивается варьирование pkB-показателя абсорбента. При этом в холодном абсорбере достигается высокий pkB-показатель, что благоприятствует абсорбции, а в горячем десорбере достигается низкий pkB-показатель, вследствие чего на десорбцию будет затрачиваться меньше энергии. Благодаря одновременному существованию в смеси соли аминокислоты и свободной аминокислоты возможно регулирование pkB-показателя путем изменения температуры. При этом целенаправленно используется характерный для экзотермических процессов растворения эффект ухудшения растворимости с повышением температуры.
В особенно предпочтительном варианте своего воплощения абсорбент содержит неэквимолярную смесь соли аминокислоты со свободной аминокислотой. При этом свободная аминокислота предпочтительно содержится в смеси в избыточной концентрации по отношению к концентрации соли аминокислоты. В еще более предпочтительном варианте смесь находится в водном растворе.
В предпочтительном варианте своего воплощения абсорбент демонстрирует уменьшение силы основания (pkB-показатель) с повышением температуры.
В особенно предпочтительном варианте воплощения соль аминокислоты содержит заместитель, причем заместитель выбран из группы, состоящей из водорода, алкила, гидроксиалкила или аминоалкила.
Предпочтительно соль аминокислоты содержит дополнительные заместители, которые выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила.
В другом предпочтительном варианте своего воплощения абсорбент отличается тем, что соль аминокислоты является солью металла, в частности, солью щелочного металла, выбранного из группы, состоящей из калия или натрия, причем водород карбоксильной группы в молекуле соли аминокислоты замещен металлом.
В следующем предпочтительном варианте воплощения абсорбента аминокислота содержит дополнительные заместители, причем дополнительные заместители выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила.
Таким образом, аминокислоты, применяемые согласно изобретению, можно описать общепринятой формулой. При этом вышеназванные заместители соли аминокислоты и аминокислоты при добавлении дополнительной аминокислоты к смеси из соли аминокислоты и свободной аминокислоты не обязательно идентичны, т.е. в специфическом абсорбенте соль аминокислоты и находящаяся в избытке аминокислота могут присутствовать с совершенно разными заместителями. Благодаря воплощению абсорбента в виде смеси из соли аминокислоты и свободной аминокислоты, которые предпочтительно одновременно находятся в водном растворе, впервые удалось получить абсорбент, который особенно выгодным образом можно использовать в абсорбционно-десорбционном методе удаления диоксида углерода из дымовых газов. При этом достигается особенно благоприятный энергетический баланс общего процесса очистки в зонах абсорбции и десорбции.
Задача изобретения, направленная на способ получения абсорбента, решается посредством того, что благодаря эквимолярному добавлению щелочи к аминокислоте аминокислота полностью переводится в соль аминокислоты, а благодаря последующему добавлению аминокислоты образуется смесь из соли аминокислоты и свободной аминокислоты, в которой соль аминокислоты и свободная аминокислота находятся одновременно.
Предпочтительно способ проводится в водном растворе таким образом, чтобы водный раствор одновременно содержал совместимые соль аминокислоты и свободную кислоту в избытке.
Вместо проведения полной конверсии аминокислоты в соль аминокислоты путем эквимолярного добавления щелочи, смесь из соли аминокислоты и свободной аминокислоты можно приготовить также путем добавления к смеси небольшого количества щелочи. Другой возможностью является добавление дополнительной аминокислоты в уже полученную эквимолярную смесь. Благодаря одновременному нахождению смеси соли аминокислоты и свободной аминокислоты обеспечивается непостоянный pkB-показатель, что благоприятствует абсорбции диоксида углерода при низкой температуре и улучшает десорбцию при высокой температуре.
Задача изобретения, направленная на применение, решается посредством применения абсорбента, содержащего смесь из одновременно содержащихся соли аминокислоты и свободной аминокислоты, для абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива.
При применении абсорбент сначала приводится в контакт с отходящим газом, содержащим диоксид углерода, в результате чего диоксид углерода растворяется в абсорбенте, так что образуется нагруженный абсорбент, а затем из нагруженного абсорбента термически десорбируется диоксид углерода.
В особенно предпочтительном варианте своего воплощения применение абсорбента для абсорбции диоксида углерода из дымовых газов проводится при более низкой температуре, чем десорбция. В таком особенно предпочтительном варианте применения достигается то, что при температурно-зависимом pkB-показателе абсорбента в процессе абсорбции или десорбции создается особенно благоприятный энергетический баланс. Это делает возможным встраивание устройства для отделения диоксида углерода в энергоустановку при достижении сравнительно высокого кпд.
В особенно предпочтительном варианте своего воплощения применение имеет целью абсорбцию диоксида углерода из дымовых газов, образующихся в паросиловой установке, работающей на ископаемом топливе; из отходящих газов газотурбинной установки или из отходящих газов комбинированной газопаротурбинной установки либо IGCC-установки (газопаротурбинная установка с интегрированным циклом газификации топлива).
Краткое описание чертежей
Ниже примеры практического осуществления изобретения раскрываются более подробно со ссылкой на прилагаемые фигуры, из которых:
фиг.1 показывает общепринятую формулу соли аминокислоты как составной части смеси абсорбента согласно изобретению,
фиг.2 показывает общепринятую формулу свободной аминокислоты как другой составной части смеси абсорбента согласно изобретению,
фиг.3 показывает схематическое изображение устройства для удаления диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива.
Осуществление изобретения
На фиг.1 представлена соль аминокислоты, которая содержит заместители R, R1 и R2. Заместитель R выбран из группы, состоящей из водорода, алкила, гидроксиалкила или аминоалкила. Дополнительные заместители R1, R2 выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила. Соль аминокислоты является солью металла (М), в частности, солью щелочного металла, выбранного из группы, состоящей из калия и натрия, причем водород (Н) в карбоксильной группе соли аминокислоты замещен металлом (М).
На фиг.2 представлена в химической номенклатуре свободная аминокислота, которая вводится в смесь для абсорбента в качестве второй составной части. Аминокислота содержит карбоксильную группу (-СООН) и, по меньшей мере, одну аминогруппу (-NH2). Свободная аминокислота содержит заместитель R, который выбран из группы, состоящей из водорода, алкила, гидроксиалкила или аминоалкила.
Свободная аминокислота содержит дополнительные заместители R1, R2, причем дополнительные заместители R1, R2 выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила.
Получение абсорбента может осуществляться способом, в котором сначала аминокислота полностью переводится в соль аминокислоты путем эквимолярного добавления щелочи, например, гидроксида калия. На следующем этапе при дополнительном добавлении аминокислоты получается смесь из соли аминокислоты и свободной аминокислоты, в которой соль аминокислоты и свободная кислота находятся одновременно. В варианте, альтернативном эквимолярному добавлению щелочи и полному превращению в соль аминокислоты, смесь из соли аминокислоты и свободной аминокислоты можно также получить, добавив небольшое количество щелочи. Другая возможность состоит в добавлении дополнительной аминокислоты. Такая неэквимолярная смесь из соли аминокислоты и свободной аминокислоты показывает непостоянный pkB-показатель, температурная зависимость которого благоприятствует абсорбции CO2 при низкой температуре и энергетически заметно улучшает десорбцию при высокой температуре.
На фиг.3 схематически представлено разделительное устройство 1. Разделительное устройство 1 включает абсорбционную установку 3 и соединенную с абсорбционной установкой 3 десорбционную установку 5. Десорбционная установка 5 подключена к ребойлеру 25 (теплообменник для дистилляционных/десорбционных колонн), в который в процессе работы подается технологический пар (D) для генерации тепловой энергии. Десорбционная установка 5 содержит верхнюю (головную) часть 17 десорбера, к которой подключен газопровод 19 для CO2-обогащенного газа. В газопроводе 19 предусмотрен теплообменник 21, а также (тепло)обменник 80 после компрессорного устройства 23 для сжатия диоксида углерода или газа, обогащенного диоксидом углерода. Абсорбционная установка 3 связана трубопроводом 13 с десорбционной установкой 5. Десорбционная установка 5 связана трубопроводом 15 через ребойлер 25 с абсорбционной установкой 3.
При запуске разделительного устройства 1 дымовые газы (RG) из установки для сжигания ископаемого топлива (не показана на фиг.3) сначала охлаждаются в охладителе для дымовых газов 7, а затем по транспортирующему устройству 9 поступают в абсорбционную установку 3. По принципу противотока в абсорбционную установку 3 в направлении, обратном направлению потока дымовых газов (RG), подается регенерированный абсорбент (А). При этом регенерированный абсорбент (А) подается по трубопроводу 15, который оптимально связывает в гидродинамическом отношении ребойлер 25 с абсорбционной установкой 3. Именно благодаря этому регенерированный абсорбент (А) из ребойлера 25 может поступать в абсорбционную установку 3. Абсорбент содержит в водном растворе смесь из соли аминокислоты и свободной аминокислоты, так что при температуре абсорбции (TA) в процессе абсорбции достигается основность (щелочность), благодаря чему обеспечивается соответственно высокая растворимость диоксида углерода из дымовых газов (RG) в абсорбенте (А). В результате одновременного нахождения в смеси соли аминокислоты и свободной аминокислоты достигается непостоянный pkB-показатель, который благоприятствует абсорбции диоксида углерода при низкой температуре (TA) в абсорбционной установке 3 и улучшает десорбцию при высокой температуре (TD) в десорбционной установке 5. При этом выгодно используется характерный для экзотермических процессов растворения эффект снижения растворимости с повышением температуры. Полученный согласно изобретению абсорбент (А), содержащий смесь из соли аминокислоты и свободной аминокислоты, особенно пригоден для указанного абсорбционно-десорбционного процесса, так что при встраивании разделительного устройства 1 в энергоустановку может достигаться высокий кпд. При этом эффективность удаления CO2 заметно повышается по сравнению с традиционными абсорбентами. Освобожденный от диоксида углерода отходящий газ 11 удаляется из абсорбционной установки через дымовую трубу (не показана).
В процессе абсорбции абсорбентом (А) в абсорбционной установке 3 абсорбент (А) нагружается диоксидом углерода (CO2), так что образуется нагруженный абсорбент (А'). Этот нагруженный абсорбент (А') по трубопроводу 13 поступает из абсорбционной установки 3 в десорбционную установку 5. В десорбционной установке 5 нагруженный диоксидом углерода абсорбент (А') вновь освобождается от диоксида углерода. Процесс десорбции обычно осуществляется путем термического удаления диоксида углерода из абсорбента (А'). Обогащенный диоксидом углерода газ сначала отводится по газопроводу 19 из верхней части 17 десорбционной установки 5, а затем пропускается через теплообменник 21, а также через подключенное к теплообменнику компрессорное устройство 23. Выделенный таким путем диоксид углерода подвергается сжатию в компрессорном устройстве 23, а затем утилизируется, например, закачивается в водоносный слой или в соответствующий CO2-накопитель.
Процесс десорбции в десорбционной установке 5 происходит при температуре десорбции (TD), которая выше температуры абсорбции (TA). С помощью абсорбента (А) изобретения достигается непостоянный pkB-показатель, который варьирует в зависимости от температуры процесса таким образом, что в зоне абсорбции pkB-показатель выше, чем в зоне десорбции. Благодаря этому процесс абсорбции оптимизируется, а более низкий pkB-показатель в нагретом десорбере обеспечивает возможность снижения энергозатрат на процесс десорбции. Поэтому термическое удаление диоксида углерода из нагруженного абсорбента (А') может происходить при заметно сниженном расходе энергии.
Описанное выше разделительное устройство 1 с абсорбентом (А) изобретения особенно пригодно для энергоустановок, таких как, например, паросиловые установки, газотурбинные установки, комбинированные газопаротурбинные установки или газопаротурбинные установки с интегрированным циклом газификации угля. На пути к созданию свободных от выбросов СО2 энергоустановок изобретение, благодаря выбору абсорбента, показывает, как можно наиболее эффективным образом интегрировать абсорбционно-десорбционный процесс в существующие энергоустановки. Это особенно выгодно проводить в рамках модернизации и совершенствования энергоустановок, когда традиционные энергоустановки с высокой CO2-эмиссией можно оборудовать или переоборудовать дополнительно встроенным разделительным устройством для удаления диоксида углерода экологически безопасным образом.

Claims (20)

1. Абсорбент для селективной абсорбции диоксида углерода, который содержит: смесь из одновременно содержащихся соли аминокислоты и свободной аминокислоты, в котором соль аминокислоты и свободная аминокислота содержат различные заместители.
2. Абсорбент по п.1, который пригоден для использования для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива.
3. Абсорбент по п.1, в котором смесь из соли аминокислоты и свободной аминокислоты является неэквимолярной.
4. Абсорбент по п.1, в котором свободная аминокислота в смеси находится в избытке.
5. Абсорбент по п.1, в котором смесь находится в водном растворе.
6. Абсорбент по п.5, в котором с повышением температуры понижается сила основности раствора.
7. Абсорбент по п.1, в котором соль аминокислоты содержит первый заместитель, который выбран из группы, состоящей из водорода, алкила, гидроксиалкила или аминоалкила.
8. Абсорбент по п.1, в котором соль аминокислоты содержит дополнительные заместители: второй заместитель и третий заместитель, которые выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила.
9. Абсорбент по п.1, в котором соль аминокислоты является солью металла, причем водород в карбоксильной группе соли аминокислоты замещен металлом.
10. Абсорбент по п.9, в котором соль аминокислоты является солью щелочного металла, выбранного из группы, состоящей из калия и натрия.
11. Абсорбент по п.1, в котором свободная аминокислота содержит первый заместитель, который выбран из группы, состоящей из водорода, алкила, гидроксиалкила или аминоалкила.
12. Абсорбент по п.1, в котором свободная аминокислота содержит дополнительные заместители: второй заместитель и третий заместитель, которые выбраны из группы, состоящей из водорода, алкила, гидроксиалкила или галогеналкила.
13. Способ получения абсорбента для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива, в котором
(a) аминокислоту полностью переводят в соль аминокислоты путем эквимолярного добавления щелочи,
(b) затем добавляют аминокислоту, которая содержит заместители, отличные от заместителей соли аминокислоты, для образования смеси, которая одновременно содержит соль аминокислоты и свободную аминокислоту.
14. Способ по п.13, который проводят в водном растворе.
15. Способ по п.13, в котором полученный абсорбент пригоден для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива, в которой абсорбент сначала приводят в контакт с дымовым газом, содержащим диоксид углерода, таким образом, что диоксид углерода растворяется в абсорбенте, в результате чего образуется нагруженный абсорбент, и в которой диоксид углерода затем термически десорбируют из нагруженного абсорбента.
16. Способ по п.15, в котором абсорбцию диоксида углерода из дымового газа абсорбентом проводят при более низкой температуре, чем десорбцию.
17. Способ получения абсорбента для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива, в котором
(a) аминокислоту полностью переводят в соль аминокислоты путем добавления щелочи,
(b) затем добавляют аминокислоту, которая содержит заместители, отличные от заместителей соли аминокислоты, для образования смеси, которая одновременно содержит соль аминокислоты и свободную аминокислоту.
18. Способ по п.17, который проводят в водном растворе.
19. Способ по п.17, в котором полученный абсорбент пригоден для селективной абсорбции диоксида углерода из дымовых газов, образующихся в установке для сжигания топлива, в которой абсорбент сначала приводят в контакт с дымовым газом, содержащим диоксид углерода, таким образом, что диоксид углерода растворяется в абсорбенте, в результате чего образуется нагруженный абсорбент, и в которой диоксид углерода затем термически десорбируют из нагруженного абсорбента.
20. Способ по п.19, в котором абсорбцию диоксида углерода из дымового газа абсорбентом проводят при более низкой температуре, чем десорбцию.
RU2011119092/05A 2008-10-13 2009-09-14 Абсорбент, способ его получения и его применение RU2488429C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08017913.8 2008-10-13
EP08017913A EP2174700A1 (de) 2008-10-13 2008-10-13 Absorptionsmittel, Verfahren zur Herstellung eines Absorptionsmittels sowie Verwendung eines Absorptionsmittels
PCT/EP2009/061860 WO2010043459A1 (de) 2008-10-13 2009-09-14 Absorptionsmittel, verfahren zur herstellung eines absorptionsmittels sowie verwendung eines absorptionsmittels

Publications (2)

Publication Number Publication Date
RU2011119092A RU2011119092A (ru) 2012-11-20
RU2488429C2 true RU2488429C2 (ru) 2013-07-27

Family

ID=40020212

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011119092/05A RU2488429C2 (ru) 2008-10-13 2009-09-14 Абсорбент, способ его получения и его применение

Country Status (5)

Country Link
US (1) US9067170B2 (ru)
EP (2) EP2174700A1 (ru)
CN (1) CN102245278B (ru)
RU (1) RU2488429C2 (ru)
WO (1) WO2010043459A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2803959C (en) 2010-06-30 2021-01-19 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems
WO2012003277A2 (en) 2010-06-30 2012-01-05 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
US8420364B2 (en) 2010-06-30 2013-04-16 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
EP2481468A1 (de) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Lösungsmittel, Verfahren zur Bereitstellung einer Absorptionsflüssigkeit, sowie Verwendung des Lösungsmittels
AU2012339061B2 (en) 2011-11-14 2016-10-13 Evonik Degussa Gmbh Method and device for the separation of acidic gases from a gas mixture
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
KR20150036067A (ko) * 2012-07-17 2015-04-07 지멘스 악티엔게젤샤프트 니트로사민의 형성이 감소되는 이산화탄소 흡수용 세척 용액
JP2016515936A (ja) * 2013-04-15 2016-06-02 シーメンス アクティエンゲゼルシャフト 吸収媒体、吸収媒体を製造するための方法、並びに酸性ガスから硫化水素を分離するための方法及び装置
CN106310874A (zh) * 2015-06-17 2017-01-11 中国石油化工股份有限公司 用于捕集二氧化碳的吸收剂
DE102015212749A1 (de) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016204931A1 (de) 2016-03-24 2017-09-28 Evonik Degussa Gmbh Verfahren, Absorptionsmedien zur Absorption von CO2 aus Gasmischungen
DE102016210484A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
EP3257568B1 (de) 2016-06-14 2019-09-18 Evonik Degussa GmbH Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten
DE102016210483A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen
EP3257843A1 (en) 2016-06-14 2017-12-20 Evonik Degussa GmbH Method of preparing a high purity imidazolium salt
DE102016210478A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
TWI646050B (zh) * 2016-12-02 2019-01-01 國立成功大學 二氧化碳收集方法
CN116773514A (zh) * 2023-08-15 2023-09-19 之江实验室 一种二氧化碳检测装置及防护口罩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB960648A (en) * 1960-10-12 1964-06-10 Pintsch Bamag Ag Process for the removal of carbon dioxide from gases
DE2525780A1 (de) * 1975-06-10 1976-12-16 Basf Ag Verfahren zur entfernung von co tief 2 und/oder h tief 2 s aus spaltgasen
RU2176240C2 (ru) * 1995-12-18 2001-11-27 Дегусса-Хюльс Акциенгезельшафт Способ получения d,l-метионина или его соли (варианты)
WO2007134994A2 (de) * 2006-05-18 2007-11-29 Basf Se Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1078145A (en) * 1975-06-10 1980-05-27 Erwin Hartert Removal of co2 and/or h2s from cracked gases
US4405579A (en) * 1981-11-13 1983-09-20 Exxon Research And Engineering Co. Sterically hindered amino acids and tertiary amino acids as promoters in acid gas scrubbing processes
EP2024059B1 (de) * 2006-05-18 2018-05-09 Basf Se Entfernen saurer gase aus einem fluidstrom bei verminderter coabsorption von kohlenwasserstoffen und sauerstoff
KR100768383B1 (ko) * 2006-11-29 2007-10-18 한국전력공사 이산화탄소 분리용 혼합 흡수제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB960648A (en) * 1960-10-12 1964-06-10 Pintsch Bamag Ag Process for the removal of carbon dioxide from gases
DE2525780A1 (de) * 1975-06-10 1976-12-16 Basf Ag Verfahren zur entfernung von co tief 2 und/oder h tief 2 s aus spaltgasen
RU2176240C2 (ru) * 1995-12-18 2001-11-27 Дегусса-Хюльс Акциенгезельшафт Способ получения d,l-метионина или его соли (варианты)
WO2007134994A2 (de) * 2006-05-18 2007-11-29 Basf Se Kohlendioxid-absorptionsmittel mit verringertem regenerations-energiebedarf

Also Published As

Publication number Publication date
CN102245278A (zh) 2011-11-16
CN102245278B (zh) 2015-02-18
EP2337623A1 (de) 2011-06-29
US9067170B2 (en) 2015-06-30
RU2011119092A (ru) 2012-11-20
US20110309295A1 (en) 2011-12-22
EP2174700A1 (de) 2010-04-14
WO2010043459A1 (de) 2010-04-22

Similar Documents

Publication Publication Date Title
RU2488429C2 (ru) Абсорбент, способ его получения и его применение
AU2007322451B2 (en) Absorbent regeneration with flashed lean solution and heat integration
EP1781400B1 (en) Cleaning of combustion gas including the removal of co2
JP5134578B2 (ja) Co2回収装置及びその方法
Wolsky et al. CO2 capture from the flue gas of conventional fossil‐fuel‐fired power plants
JP5663479B2 (ja) Co2枯渇煙道ガスの処理
JP5559067B2 (ja) ガスからの二酸化炭素の除去方法
Cau et al. Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems
Zhuang et al. Ammonia-based carbon dioxide capture technology: issues and solutions
JP2013533426A (ja) 炭素捕捉を有するジェットエンジン
CN110152453B (zh) 使用溶剂吸收法捕集气体混合物中酸性气体的方法和设备
KR20130032377A (ko) 배기 가스 중의 이산화탄소를 효율적으로 흡수 및 회수하는 수용액
US8940261B2 (en) Contaminant-tolerant solvent and stripping chemical and process for using same for carbon capture from combustion gases
AU2013225124A1 (en) Removing acid gases from water vapour-containing fluid streams
Toro-Molina et al. Comparison of post-combustion CO2 capture by solutions of ammonia and organic amines: Assessment using direct and indirect contactors
CN104607016A (zh) 热电厂二氧化碳回收工艺
Mohebbi Impact of Implementing CCS Technology on a Biomass Power Plant
Padurean et al. TECHNICAL ASSESSMENT OF CO 2 CAPTURE USING ALKANOLAMINES SOLUTIONS.
Ionel et al. POST COMBUSTION REMOVAL OF CARBON DIOXIDE FROM FLUE GASES
WO2023041541A1 (en) Method for capturing co2 from a flue gas from a district heating plant
IONEL et al. Carbon dioxide separation from flue gas using amine-based system
Jones et al. JV Task 106-Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers
AU2006274437A1 (en) Recovery of carbon dioxide from flue gases
Diaz CO2 Capture for Power Plants: An Analysis of the Energetic Requirements by Chemical Absorption
Shames et al. SIMULATION OF SEIZING CARBON DIOXIDE EMITTED FROM SIMPLE GAS TURBINE AND COMBINED CYCLES POWER PLANTS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170915