RU2470934C1 - Новое трициклическое производное или его фармацевтически приемлемые соли, способ их получения и содержащая их фармацевтическая композиция - Google Patents

Новое трициклическое производное или его фармацевтически приемлемые соли, способ их получения и содержащая их фармацевтическая композиция Download PDF

Info

Publication number
RU2470934C1
RU2470934C1 RU2011123799/04A RU2011123799A RU2470934C1 RU 2470934 C1 RU2470934 C1 RU 2470934C1 RU 2011123799/04 A RU2011123799/04 A RU 2011123799/04A RU 2011123799 A RU2011123799 A RU 2011123799A RU 2470934 C1 RU2470934 C1 RU 2470934C1
Authority
RU
Russia
Prior art keywords
tetrahydrobenzo
methyl
naphthyridine
naphthyridin
dihydrochloride
Prior art date
Application number
RU2011123799/04A
Other languages
English (en)
Inventor
Миунг-Хва КИМ
Сеунг-Хиун КИМ
Сае-Кванг КУ
Чун-Хо ПАРК
Бо-Янг ДЗОЕ
Кванг-Воо ЧУНЬ
Ин-Хае Е
Дзонг-Хее ЧОЙ
Донг-Хиу РИУ
Дзи-Сеон ПАРК
Хан-Чанг ЛИ
Дзи-Со ЧОЙ
Янг-Чул КИМ
Original Assignee
Дзе Ил Фармасьютикал Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Ил Фармасьютикал Ко., Лтд. filed Critical Дзе Ил Фармасьютикал Ко., Лтд.
Application granted granted Critical
Publication of RU2470934C1 publication Critical patent/RU2470934C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings

Abstract

Настоящее изобретение относится к новому трициклическому производному, представленному химической формулой 1, или к его фармацевтически приемлемым солям:формула 1где Y, Yи Yнезависимо представляют собой H, C-Cалкил с линейной или разветвленной цепью, гидрокси, C-Cалкокси, -CCOR, -NRRили -A-B; A представляет собой -O-, -CH-, -CH(CH)-, -CH=N- или -CONH-; B представляет собой -(CH)n-Z, -(CH)n-NRRили -(CH)n-OR; Z представляет собой C-Cарил, незамещенный или замещенный Rи избирательно R, C-Cциклоалкил, незамещенный или замещенный Rи избирательно R, C-Cгетероциклическое соединение, незамещенное или замещенное Rи избирательно R; Rпредставляет собой H или C-Cалкил с линейной или разветвленной цепью; Rи Rнезависимо представляют собой H, C-Cалкил с линейной или разветвленной цепью или -(CH)nR; Rпредставляет собой H, C-Cалкил с линейной или разветвленной цепью, C-Cарил или C-Cгетероциклическое соединение; Rпредставляет собой H или C-Cалкил с линейной или разветвленной цепью; Rпредставляет собой -NRR, -COOR, -OR, -CF, -CN, галоген или Z; Rи Rнезависимо представляют собой H или C-Cалкил с линейной или разветвленной цепью; n-nпредставляют собой соответственно целое от 0 до 15; Yпредставляет собой H или C-Cалкил с линейной или разветвленной цепью. Также изобретение относится к способам получения соединения формулы 1, к композициям, содержащим описанное выше соединение и с эффективной ингибирующей активностью относительно поли(АДФ-рибоза)полимераз (PARP). Технический результат: получены и описаны новые соединения, которые могут быть пригодными для предотвращения или лечения заболеваний, вызванных избыточной PARP активностью, особенно нейропатической боли, нейродегенеративных заболеваний, сердечно-сосудисты�

Description

Область техники, к которой относится настоящее изобретение
Настоящее изобретение относится к новому трициклическому производному, обладающему превосходной ингибирующей активностью поли(АДФ-рибоза)полимеразы, или его фармацевтически приемлемым солям, способу их получения и содержащей их фармацевтической композиции.
Уровень техники
Поли(АДФ-рибоза)полимеразу (PARP), которая представляет собой фермент в ядрах клеток, обнаруживают в большинстве эукариотических клеток, и она катализирует перенос АДФ-рибозного фрагмента к белку ядерного рецептора, используя никотинамидадениндинуклеотид (NAD+) в качестве субстрата, и вызывает образование гомо-АДФ-рибозного полимера, отходящего от белок-связанной линии. PARP состоит из 7 изозимов, включающих PARP-1, PARP-2, PARP-3, PARP-4 (Vault-PARP), танкилазу, такую как PARP-5 (TANK-1, TANK-2 и TANK-3), PARP-7 и PARP-10 [de la Lastra CA., et al., Curr Pharm Des., 13(9), 933-962, 2007]. Среди вышеуказанных, ядерный фермент поли(АДФ-рибоза)полимераза-1 (PARP-1) представляет собой основной фермент и составляет 97% поли(АДФ-рибоза)полимеразы, синтезируемой в мозге [Strosznajder R.P., et al. Mol Neurobiol., 31, (1-3), 149-167, 2005]. Среди многих функций PARP, в особенности PARP-1, основная функция заключается в содействии репарации ДНК путем АДФ-рибозилирования и регулировании ряда белков репарации ДНК. PARP активация в клетках огромным рядом повреждений ДНК приводит в результате к значительному снижению концентрации и значительной нехватке NDA+. PARP-1 представляет собой 116 кДа нуклеопротеин, который содержит три домена, которые включают N-концевой ДНК-связывающий домен, содержащий два цинковых пальца, домен самопроизвольной модификации и C-концевой каталитический домен. Поли(АДФ-рибоза)полимеразный фермент синтезирует поли(АДФ-рибозу), которая представляет собой полимер с разветвленной структурой, который может состоять из 200 или более фрагментов АДФ-рибозы. Поли(АДФ-рибоза)белковый рецептор может участвовать в прямом или косвенном поддержании целостности ДНК. Это включает гистон, топоизомеразу, ДНК и РНК полимеразу, ДНК лигазу, и Ca2+ и Mg2+-зависимую эндонуклеазу. PARP белки экспрессируются во многих тканях, особенно с большой концентрацией в иммунной системе, сердце, мозге и клеточных линиях микроорганизмов. Хотя PARP белки все-таки обладают минимальной PARP активностью в обычных биологических состояниях, PARP активность увеличивается вплоть до 500 раз при повреждении ДНК.
PARP активация и образование поли(АДФ-рибозных) реакционных продуктов вызывается разрушением ДНК после проведения химиотерапии, воздействия ионизирующего излучения, свободных кислородных радикалов или монооксида азота (NO). При повреждении ДНК, вызванном радиотерапией или химиотерапией, процесс переноса АДФ-рибозы клеток может способствовать устойчивости, которая может возникать в различных типах в процессе лечения рака, поскольку она связана с репарацией поврежденной ДНК. Следовательно, PARP ингибирование может сдерживать репарацию ДНК повреждения в клетках и может усиливать противораковый эффект терапии рака. Более того, недавно сообщалось, что танкираза, которая связывается с теломерным белком TRF-1, фактором негативного контроля длины теломера, имеет каталитический домен со значительной гомогенностью с PARP и обладает in vitro PARP активностью. Кроме того, предполагается, что функция теломера в клетках человека регулируется поли(АДФ-рибозил)ированием. PARP ингибитор является пригодным в качестве средства изучения функции регулирования длины теломера при регулировании теломерной активности танкиразой [BA., et al., Int J Biochem Cell Biol., 37, 1043-1053, 2005]. Например, PARP ингибитор можно применять для лечения рака сокращением жизненного цикла иммортализованных раковых клеток или применять в качестве регулятора жизненного цикла клетки или лекарственного средства против старения ввиду взаимосвязи между длиной теломера и старением клетки.
Также сообщалось, что PARP ингибирование может увеличивать устойчивость при повреждении мозга. Ишемическое повреждение мозга порождается обеднением NAD+, опосредованным поли(АДФ-рибоза)полимеразной активностью, и приводит в результате к недостатку энергии [Endres M., et al., J. Cereb Blood Flow Metab., 17(11), 1143-1151, 1997]. Рассматривая ишемию головного мозга, активация PARP в зависимости от ДНК повреждения действует на апоптоз, вызванный пароксизмом, повреждением мозга и нейродегенеративными заболеваниями. Считается, что апоптоз возникает в результате снижения энергии, соответствующего NAD+ потреблению в результате PARP реакции, катализируемой ферментами, и ДНК повреждение возникает в результате избыточного количества монооксида азота, генерируемого по мере активации синтетазы монооксида азота продуктами, возникшими в результате высвобождения глутаминовой кислоты из деполяризованных нервных окончаний. Недостаток кислорода в нейронах вызывает инсульт или ишемическое повреждение мозга, и затем нейрон высвобождает большое количество глутамата. Избыточное количество глутамата вызывает гиперстимуляцию (эксайтотоксичность) N-метил-D-аспартата (MMDA), альфа-амино-3-гидрокси-5-метил-4-изоксазолпропионовой кислоты (AMPA), каинита и метаботропного рецептора глутамата (MGR), который открывает ионный канал и таким образом обеспечивает нерегулируемый поток ионов (например, допускающий Ca2+ и Na+ в клетки, вызывая K+ высвобождение из клеток), вызывая гиперстимуляцию нейронов. Гиперстимулированные нейроны вызывают большее высвобождение глутамата, генерируя цикл обратной связи или эффект «домино» и в конечном счете вызывая повреждение или смерть клетки с помощью генерирования протеазы, липазы и свободных радикалов. Чрезмерная активация глутаматных рецепторов связана с рядом невропатических заболеваний, включая эпилепсию, инсульт, болезнь Альцгеймера, болезнь Паркинсона, амиотрофический латеральный склероз (ALS), болезнь Хантингтона, шизофрению, хроническую боль, ишемию, повреждение нейронов после гипоксии, внешнее повреждение и нейрональное повреждениенейрональное повреждение.
PARP ингибитор можно применять для лечения не только заболеваний центральной нервной системы, но также заболеваний периферической нервной системы, таких как невропатическая боль, вызванная хронической компрессией (CCI) обычного седалищного нерва [Di Cesare Mannelli L., et al., Eur J Neurosci., 26(4), 820-827, 2007]. Точный механизм эффективности PARP ингибитора при лечении невропатической боли полностью еще не объяснен, но рассматривается положительно.
PARP ингибитор также оказывает влияние на лечение воспалительных симптомов, таких как артрит [SzabC., et al., Proc. Natl. Acid. Sci. USA 95(7), 3867-3872, 1998]. Поли(АДФ-рибоза) синтез участвует в индуцированной экспрессии многих генов, которые являются существенными для воспалительных реакций. PARP ингибитор ингибирует образование макрофагоцита, индуцируемой синтазы оксида азота (iNOS) из P-типа селектина и молекулы межклеточной адгезии (1cAM-1) на эндотелиальных клетках. Вышеуказанная активность является основой для сильного противовоспалительного эффекта PARP ингибитором. Более того, PARP ингибирование может ослаблять некроз, препятствуя транслокации и инфильтрации нейтрофилов в поврежденные ткани. Соответственно, PARP ингибитор является пригодным для лечения воспалительных симптомов.
PARP ингибирование является пригодным для защиты от ишемии миокарда [SzabC., Curr Vase Pharmacol., 3(3), 301-303, 2005] и реперфузионного повреждения [Zingarelli B., Cardiovascular Research, 36, 205-215, 1997]. Считается, что основная причина повреждений тканей заключается в сопутствующем образовании свободных радикалов в процессе реперфузии. В процессе ишемии и реперфузии некоторое типичное АТФ снижение во многих организмах может быть связано с NAD+ недостатком, который является результатом превращения поли(АДФ-рибозы). Соответственно, ожидается, что PARP ингибирование будет сохранять уровень клеточной энергии и впоследствии увеличивать выживаемость ишемической ткани после повреждения. Соответственно, PARP ингибитор является пригодным для лечения сердечно-сосудистых заболеваний.
Недавно было выдвинуто предположение об эффективности PARP ингибитора для лечения диабетической нейропатии [Obrosova IG., Diabetes. 54(12), 3435-3441, 2005].
До настоящего времени о разработке поли(АДФ-рибоза)полимеразы (PARP) сообщалось в следующих документах: INO-1001 (Inotek Pharmaceuticals) разрабатывается для лечения сердечно-сосудистых заболеваний и злокачественной меланомы. AG014699 (Pfizer) разрабатывается для лечения злокачественной меланомы. BS-201 и Bs-401 (Bipar Sciences) разрабатываются для лечения рака и рака поджелудочной железы соответственно. Кроме того, AstraZeneca разрабатывает AZD2281 для лечения рака молочной железы, и MGI Pharma проводит исследования сенсибилизирующего агента для радиотерапии и химиотерапия [News, Nature biotechnology, 24(10), 1179-1180, 2006].
Однако разработка ингибиторов поли(АДФ-рибоза)полимеразы (PARP) в связи с нейродегенеративными заболеваниями, которая не проведена в исследованиях до настоящего времени, весьма необходима, принимая во внимание увеличение популяции пожилого населения и для улучшения качества жизни.
Соответственно, первоочередным требованием является разработка ингибитора поли(АДФ-рибоза)полимеразы (PARP), который сможет снизить до минимума побочные эффекты, в частности на текущий момент, когда не разработаны достойные внимания способы лечения вышеупомянутых заболеваний.
Авторы настоящего изобретения исследовали низкомолекулярный PARP ингибитор, который можно применять для лечения различных заболеваний, являющихся результатом чрезмерной активации поли(АДФ-рибоза)полимеразы (PARP), получили новые трициклические производные, подтвердили превосходную PARP ингибирующую активность упомянутой композиции и таким образом завершили настоящее изобретение.
Техническая задача
Задача настоящего изобретения заключается в обеспечении новыми трициклическими производными с превосходной ингибирующей активностью поли(АДФ-рибоза)полимеразы, или их фармацевтически приемлемыми солями, способом их получения и содержащей их фармацевтической композицией.
Техническое решение
Для того чтобы достигнуть вышеупомянутой цели, настоящее изобретение обеспечивает новые трициклические производные или их фармацевтически приемлемые соли.
Кроме того, настоящее изобретение обеспечивает способ получения новых трициклических производных.
Кроме того, настоящее изобретение обеспечивает фармацевтическую композицию, содержащую новые трициклические производные или их фармацевтически приемлемые соли в качестве активного ингредиента, для предотвращения или лечения заболеваний, являющихся результатом чрезмерной активации поли(АДФ-рибоза)полимеразы.
Полезные эффекты
Трициклические производные согласно настоящему изобретению ингибируют активность поли(АДФ-рибоза)полимеразы (PARP), посредством чего они могут быть пригодны для предотвращения или лечения заболеваний, являющихся результатом чрезмерной активации PARP, и в частности, нейропатической боли, нейродегенеративных заболеваний, сердечно-сосудистых заболеваний, диабетической нейропатии, воспалительного заболевания, остеопороза и рака.
Краткое описание чертежей
ФИГ.1 является графическим представлением количества NAD(P)H в зависимости от концентрации соединения варианта осуществления настоящего изобретения.
ФИГ.2 является графическим представлением объема инфаркта в зависимости от дозы соединения варианта осуществления настоящего изобретения.
Лучший вариант осуществления
Ниже настоящее изобретение будет объяснено более подробно.
Настоящее изобретение относится к новым трициклическим производным или их фармацевтически приемлемым солям, представленным химической формулой 1.
Химическая формула 1
Figure 00000001
где каждый Y1, Y2 и Y3 независимо представляет собой H, С110 алкил с линейной или разветвленной цепью, гидрокси, С110 алкокси, -COOR1, -NR2R3 или -A-B;
A представляет собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
B представляет собой -(CH2)n1-Z, -(CH2)n2-NR2R3 или -(CH2)n3-OR1;
Z представляет собой C5-C20 арил, незамещенный или замещенный R5 и избирательно R6, C3-C10 циклоалкил, незамещенный или замещенный R5 и избирательно R6, C1-C20 гетероциклическое соединение, незамещенное или замещенное R5 и избирательно R6;
R1 представляет собой H или С110 алкил с линейной или разветвленной цепью;
каждый R2 и R3 независимо представляет собой H, С110 алкил с линейной или разветвленной цепью или -(CH2)n4R7;
R5 представляет собой H, С110 алкил с линейной или разветвленной цепью, C5-C20 арил или C1-C20 гетероциклическое соединение;
R6 представляет собой H или С110 алкил с линейной или разветвленной цепью;
R7 представляет собой -NR8R9, -COOR1 , -OR1, -CF3, -CN, галоген или Z;
R8 и R9 независимо представляют собой H или С110 алкил с линейной или разветвленной цепью;
n1-n4 представляют собой целое от 0 до 15 соответственно;
Y4 представляет собой H или С110 алкил с линейной или разветвленной цепью.
Предпочтительно, Y1 и Y2 независимо представляют собой H, C1-C5 алкил с линейной или разветвленной цепью, гидрокси, C1-C5 алкокси, -COOR1, -NR2R3 или -A-B,
где A представляет собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
B представляет собой -(CH2)n1-Z, -(CH2)n2-NR2R3 или -(CH2)n3-OR1;
Z представляет собой группу, выбранную из группы, состоящей из структурных формул, представленных ниже:
Figure 00000002
где R1 представляет собой H или C1-C5 алкил с линейной или разветвленной цепью;
R2 и R3 независимо представляют собой H, C1-C5 алкил с линейной или разветвленной цепью или -(CH2)n4R7;
R5 представляет собой H, C1-C5 алкил с линейной или разветвленной цепью, фенил или морфолино;
R6 представляет собой H или C1-C5 алкил с линейной или разветвленной цепью;
R7 представляет собой -NR8R9, -COOR1, -OR1, -CF3, -CN, F, Cl или Z;
R8 и R9 независимо представляют собой H или C1-C5 алкил с линейной или разветвленной цепью;
n1-n4 представляют собой целое от 0 до 10 соответственно;
Y3 представляет собой H, гидрокси, C1-C5 алкокси или -O(CH2)n3-OR1;
Y4 представляет собой H или C1-C5 алкил с линейной или разветвленной цепью.
Более предпочтительно, Y1 и Y2 независимо представляют собой H, метил, этил, гидрокси, метокси, этокси, -COOR1, -NR2R3 или -A-B,
где A представляют собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
B представляют собой -(CH2)n1-Z, -(CH2)n2-NR2R3 или - (CH2)n3-OR1;
Z представляет собой группу, выбранную из группы, состоящей из структурных формул, представленных ниже:
Figure 00000003
Figure 00000003
R1 представляет собой H, метил, этил или изопропил;
R2 и R3 независимо представляют собой H, метил, этил, пропил, изопропил, трет-бутил или -(CH2)n4R7;
R5 представляет собой H, метил, этил, пропил, фенил или морфолино;
R6 представляет собой H, метил или этил;
R7 представляет собой -NR8R9, -COOR1, -OR1, -CF3, -CN, F, Cl или Z;
R8 и R9 независимо представляют собой H или метил;
n1-n4 представляют собой соответственно целое от 0 до 5;
Y3 представляет собой H, гидрокси, метокси, этокси, пропокси или метоксиэтокси; и
Y4 представляет собой H, метил, этил или пропил.
Предпочтительно, соединение трициклических производных, представленных химической формулой 1 настоящего изобретения, включает:
1) 8-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
2) 10-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
3) 9-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
4) 9-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
5) Этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилат;
6) 9-Метокси-1-пропил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
7) 1-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
8) 9-Метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
9) 1-Этил-9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
10) 1-Метил-9-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
11) 9-(1-Пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
12) 9-(1-Метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
13) 1-Метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
14) 1-Метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
15) 5-Оксо-N-[2-(пиперидин-1-ил)этил]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамид;
16) 9-[2-(Диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
17) 9-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
18) 9-(2-Метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
19) 9-[2-(Пиперазин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
20) 9-Этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
21) 9-[3-(Пиперидин-1-ил)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
22) 9-(2-Аминоэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
23) 9-[2-(4-Фенилпиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
24) 9-(2-Гидроксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
25) 9-Пентокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
26) 9-[2-(Диэтиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
27) 9-(2-Морфолиноэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
28) 1,1-Диэтил-4-[2-(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси]этил)пиперазин-1-ий;
29) 9-[4-(Пиперидин-1-ил)бутокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
30) 1-Метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
31) 9-[2-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
32) 8-[2-(Диметиламино)этокси]-1,2,3,4,-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
33) 9-[3-(Диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
34) 8-[2-(Диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамид;
35) 8-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
36) 8-[3-(Диметиламино)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
37) 8-(Диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
38) 8-[1-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
39) 8-[1-(Метиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
40) 8-Этил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
41) 8-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
42) 8-[(Диэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
43) 8-[(Этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
44) 8-(Пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
45) 8-[(Изопропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
46) 8-[(Пропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
47) 8-{[Этил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
48) 8-(Пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
49) 8-(Морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
50) 9-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
51) 8-{[Бензил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
52) 8-[(Метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
53) 8-{[(2-Гидроксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
54) 8-{[(2-(Диметиламиноэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
55) 8-[(4-Метилпиперазин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
56) 8-[(Метил(пропил)амино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
57) Этил-3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионат;
58) 3-{Метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил) метил]амино}пропановая кислота;
59) 8-{[Изопропил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
60) 8-{[(2-Метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
61) Этил-3-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]пропионат;
62) 8-[(2,2,2-Трифторэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
63) 2-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]ацетонитрил;
64) 8-[(1H-Имидазол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
65) 8-[(1H-Пиррол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
66) 8-[(Диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
67) 1-Метил-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
68) 8-[(Диэтиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
69) 1-Метил-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
70) 1-Метил-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
71) 8-{[Этил(метил)амино]метил}-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
72) 8-[(Диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
73) 10-Метокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
74) 10-Метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
75) 8-[(Этиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
76) 8-{[Этил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
77) 10-Метокси-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
78) 10-Метокси-8-[(4-оксопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
79) 8-{[4-(Гидроксиимино)пиперидин-1-ил]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
80) 10-Метокси-8-[(4-(метоксиимино)пиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
81) 10-Метокси-8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
82) 8-[(2,5-Дигидро-1H-пиррол-1-ил)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
83) 8-{[(2-Изопропоксиэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
84) 10-Метокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
85) 8-{[(2-Хлорэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
86) 8-[(Диэтиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
87) 8-[(трет-Бутиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
88) 8-[(Изопропиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
89) 8-[(Циклопентиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
90) 8-[(2,6-диметилморфолино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
91) Хлорид N-[(10-метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]-N,N-диметилциклопентанаминия;
92) 8-{[Циклопентил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
93) 8-{[Изопропил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
94) 8-{[(2-Фторэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
95) 8-[(1H-Тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
96) 10-Метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
97) 10-Метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
98) (E)-10-Метокси-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
99) 8-[(Диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-он;
100) 8-[(Диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
101) 10-Этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
102) 10-Этокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
103) 10-Этокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он,
104) 10-Этокси-8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
105) 8-(Гидроксиметил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
106) 10-Метокси-8-(тиоморфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
107) 10-Метокси-8-[(2-морфолиноэтиламино)метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
108) 10-Метокси-8-[(4-морфолинопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
109) 8-(Аминометил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
110) 8-[(Диметиламино)метил)]-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
111) 8-(Морфолинометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
112) 8-(Аминометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
113) 8-(Аминометил)-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
114) 8-(Аминометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
115) 10-Метокси-8-{[метил(тетрагидро-2H-пиран-4-ил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
116) 8-[(Диметиламино)метил]-10-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
117) 10-(2-Метоксиэтокси)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он; и
118) 1-[(10-Метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]-1H-пиррол-2,5-дион.
Настоящее изобретение обеспечивает способ получения соединения, представленного химической формулой 1.
Настоящее изобретение обеспечивает способ получения трициклических производных, представленных химической формулой 1. Предпочтительно, соединение химической формулы 1 можно получить, следуя реакционным схемам, описанным ниже, но не ограничиваясь ими. Соответственно, специалистам в данной области техники вполне понятно, что соединение химической формулы 1 настоящего изобретения можно получить различными способами известных технологий.
Следующие реакционные формулы относятся к последовательным стадиям способа получения соединений настоящего изобретения, и различные соединения настоящего изобретения можно получить, заменяя или модифицируя реагент, растворитель или последовательности реакций, используемых в процессе получения. Некоторые из соединений настоящего изобретения получали способами, которые не включены в объем формул реакций, описанных ниже, и конкретные способы получения данных соединений описаны соответственно в каждом из примеров, приведенных ниже.
Способ получения 1
В одном варианте осуществления, трициклические производные или их фармацевтически приемлемые соли согласно настоящему изобретению можно получить способом, представленным реакционной формулой 1 ниже, способ включает стадии:
1) превращения карбоновой кислоты 2-хлорникотиновой кислоты, представленной химической формулой 2, в хлорангидрид карбоновой кислоты, представленный химической формулой 3 (стадия 1);
2) получения соединения химической формулы 5 реакцией амидирования хлорангидрида карбоновой кислоты химической формулы 3, полученного на стадии 1, анилином химической формулы 4, замещенным в мета- и/или пара-положении (стадия 2);
3) введения защитной группы в соединение химической формулы 5, полученное на стадии 2, для того чтобы получить N-защищенное соединение химической формулы 6 (стадия 3);
4) получения соединения химической формулы 7 циклизацией соединения химической формулы 6, полученного на стадии 3, в условиях металлического катализатора (стадия 4);
5) получения соединения химической формулы 8 путем восстановления ароматического кольца соединения химической формулы 7, полученного на стадии 4, в газообразном водороде в присутствии палладиевого (Pd) катализатора, или путем восстановления ароматического кольца соединения химической формулы 7, полученного на стадии 4, в газообразном водороде в присутствии палладиевого (Pd) катализатора и затем путем взаимодействия алкилгалогенидного соединения или арилгалогенидного соединения и основания (стадия 5); и
6) снятия защиты соединения химической формулы 8, полученного на стадии 5, для того чтобы получить трициклическое соединение химической формулы 1 (стадия 6).
Реакционная формула 1
Figure 00000004
где Y1-Y4 такие, как определено в формуле 1, и 'pro' представляет собой защитную группу, такую как арильная группа, бензильная группа, бензилоксиметильная группа, пара-метоксибензильная группа или метоксиметильная группа, предпочтительно пара-метоксибензильная группа или метоксиметильная группа.
Каждая стадия будет объяснена более подробно ниже.
На стадии 1 хлорангидрид кислоты (3) получают превращением коммерчески доступной 2-хлорникотиновой кислоты (2) в хлорангидрид кислоты, применяя реагент, такой как тионилхлорид или оксалилхлорид. Для реакции стадии 1 растворитель не применяют или применяют растворитель, такой как дихлорметан, хлороформ или толуол, который не оказывает отрицательного эффекта на реакцию. Температура реакции специально не ограничена, но в общем реакцию проводят при от комнатной температуры до повышенной температуры и желательно при повышенной температуре.
На стадии 2 соединение химической формулы 5 получают реакцией амидирования хлорангидрида кислоты химической формулы 3 и анилина химической формулы 4, замещенного в мета- и/или пара-положении. На данной стадии реакцию проводят без основания или в присутствии органического амина, такого как пиридин, триэтиламин, диэтилизопропиламин, который обычно применяют для реакции амидирования, используя дихлорметан, хлороформ, тетрагидрофуран, диэтиловый эфир, толуол или N,N-диметилформамид, который не оказывает отрицательного эфекта на реакцию. Температура реакции конкретно не ограничена, но обычно реакцию проводят при от пониженной температуры до комнатной температуры.
На стадии 3 защитную группу вводят в соединение химической формулы 5, полученное на стадии 2, для синтезирования N-защищенного амидного промежуточного продукта химической формулы 6. Введенная защитная группа может включать алкоксиметил, включая метоксиметил (MOM), бензилоксиметил (BOM) или бензил (Bn) или п-метоксибензил (PMB). Основание, применяемое в реакции, может представлять собой гидрид натрия, трет-бутоксид калия, карбонат калия, и растворитель может представлять собой тетрагидрофуран, N,N-диметилформамид, ацетонитрил или толуол, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но обычно реакцию предпочтительно проводят при от пониженной температуры до повышенной температуры, и более предпочтительно, при пониженной температуре.
На стадии 4 лактам химической формулы 7 получают путем проведения циклизаций N-защищенного амидного промежуточного продукта, полученного на стадии 3, в присутствии металлического катализатора. На данной стадии палладий (0) обычно используют в качестве металлического катализатора, и можно использовать тетракистрифенилфосфин палладия(0) ((PPh3)4Pd), ацетат палладия (II) (Pd(OAc)2), трис(дибензилиденацетон) дипалладия(0) (Pd2dba3) и дихлорид бис(трифенилфосфин)палладия (II) (PdCl2(PPh3)2) отдельно или в комбинации с трибутилфосфином (Bu3P). Реакцию можно проводить без лиганда или с лигандом, обычно применяемым для циклизации в условиях металлического катализатора, включая, например, трифенилфосфин ((PPh3)4), 1,2-бис(дифенилфосфино)пропан (DPPP), (R)-2,2'-бис(дифенилфосфино)-1,1'-бинафтил ((R)-BiNAP). Можно применять основание, включая карбонат калия, карбонат натрия, карбонат серебра, или диэтилизопропиламин для реакции, и реакцию проводят, используя растворитель, включая N,N-диметилформамид, бензол, ксилол или ацетонитрил, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от комнатной температуры до повышенной температуры, и предпочтительно при повышенной температуре.
На стадии 5, пиперидин-лактам (8) получают восстановлением ароматического кольца пиридин-лактама (7), полученного на стадии 4, в газообразном водороде в присутствии палладиевого (Pd) катализатора. На данной стадии можно применять органический растворитель, включая спирт, хлороформ, дихлорметан или этилацетат, который не оказывает отрицательного эффекта на реакцию, или их смесь. Температура реакции конкретно не ограничена, но реакцию обычно проводят при комнатной температуре.
Далее, кроме того, полученный пиперидин-лактам (8) и алкилгалогенидное соединение или арилгалогенидное соединение могут взаимодействовать в присутствии основания, такого как карбонат калия, для получения N-замещенного пиперидин-лактама (Y4=алкил или арил). Реакцию проводят в присутствии основания, которое применяют при стандартном алкилировании или аллилировании аминового соединения, и алкилгалогенида или арилгалогенида. Основание может быть одним из гидрида натрия, карбоната калия, карбоната натрия, карбоната цезия, алкоксида натрия или калия. Далее, реакцию желательно проводить в присутствии растворителя, который не оказывает отрицательного эффекта на реакцию, и растворитель может включать дихлорметан, хлороформ, тетрагидрофуран, диэтиловый эфир, толуол, N,N-диметилформамид или ацетонитрил. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до повышенной температуры, и предпочтительно, при комнатной температуре.
На стадии 6 трициклическое соединение химической формулы 1 получают снятием защиты пиперидин-лактама (8), полученного на стадии 5, способом, обычно известным в области органической химии.
Способ получения 2
В одном варианте осуществления, трициклические производные или их фармацевтически приемлемые соли можно получить способом, представленным реакционной формулой 2 ниже, причем способ включает стадии:
1) деметилирования соединения (7a), полученного на стадии 4, реакционной формулы 1 трибромидом бора для получения гидроксильного соединения (7a-1) (стадия 1);
2) взаимодействия гидроксильного соединения (7a-1), полученного на стадии 1, с алкилгалогенидным соединением, включая 4-бромпиперидин, или 2-хлорэтилпиперидином в присутствии основания, включая карбонат калия и каталитическое количество йодида натрия, для получения алкоксисоединения (7a-2) (стадия 2);
3) получения пиперидин-лактама (8a) восстановлением ароматического кольца пиридин-лактамного соединения (7a-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора (стадия 3); и
4) снятия защиты соединения (8a), полученного на стадии 3, в кислых условиях, таких как хлороводородная кислота, для получения соединения химической формулы (1a) (стадия 4).
Реакционная формула 2
Figure 00000005
где 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу, пара-метоксибензильную (PMB) группу, R1 представляет собой такой, как определено в химической формуле 1, X обозначает уходящую группу, включая галоген, метансульфонильную группу, п-толуолсульфонильную группу или трифторметансульфонильную группу, и предпочтительно, галоген (хлор, бром, йод) или метансульфонильную группу, и формулу 1a включают в химическую формулу 1 по настоящему изобретению.
Согласно реакционной формуле 2 настоящего изобретения для получения соединения химической формулы (1a), вначале, на стадии 1, деметилилированное гидроксильное соединение (7a-1) получают, используя соединение (7a), полученное на стадии 4 реакционной формулы 1, применяя трибромид бора. Можно применять органический растворитель, такой как дихлорметан или хлороформ, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до повышенной температуры, и предпочтительно, при комнатной температуре.
На стадии 2 алкоксисоединение (7a-2) получают добавлением каталитического количества йодида натрия к гидроксисоединению (7a-1), полученному на стадии 1, и алкилгалогенидного соединения, такого как 4-бромпиперидин или 2-хлорэтилпиперидин, в присутствии основания, такого как карбонат калия. Вышеуказанная реакция обычно представляет собой этерификацию между спиртовым соединением и алкилгалогенидом и ее проводят в присутствии основания, которое можно применять для этерификации. Основание, применяемое в вышеуказанной реакции, может включать гидрид натрия, карбонат калия, карбонат натрия, карбонат цезия или алкоксид натрия или калия. Можно применять в реакции растворитель, не оказывающий отрицательный эффект на реакцию, такой как дихлорметан, хлороформ, тетрагидрофуран, диэтиловый эфир, толуол, N,N-диметилформамид или ацетонитрил. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до повышенной температуры, и, предпочтительно, при от комнатной температуры до повышенной температуры.
На стадии 3 пиперидин-лактам (8a) получают восстановлением ароматического кольца пиридин-лактама (7a-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора. Вышеуказанную реакцию проводят в тех же условиях, как условия для восстановления ароматического кольца для превращения соединения химической формулы 7 в соединение химической формулы 8 в реакционной формуле 1.
На стадии 4 соединение химической формулы (1a) получают проведением реакции снятия защиты соединения (8a), полученного на стадии 3, в кислых условиях, таких как хлороводородная кислота.
Способ получения 3
В одном варианте осуществления трициклические производные или их фармацевтически приемлемые соли можно получить способом, представленным реакционной формулой 3 ниже, причем способ включает стадии:
1) гидролиза соединения (7b), полученного на стадии 4 реакционной формулы 1, медленным добавлением по каплям водного раствора гидроксида калия или гидроксида натрия к соединению (7b) для получения карбоновой кислоты (7b-1) (стадия 1);
2) амидирования карбоновой кислоты (7b-1), полученной на стадии 1, аминами, применяя конденсирующий реагент, для получения соединения химической формулы (7b-2) (стадия 2);
3) получения пиперидин-лактама (8b) восстановлением ароматического кольца пиридин-лактама (7b-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора (стадия 3); и
4) снятия защиты соединения (8b), полученного на стадии 3, в кислых условиях, таких как хлороводородная кислота, для получения соединения химической формулы (1b) (стадия 4).
Реакционная формула 3
Figure 00000006
где 'Alk' представляет собой C1-C10 алкил с линейной или разветвленной цепью, 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу или пара-метоксибензильную (PMB) группу, R2 и R3 такие, как определено в химической формуле 1, и химическая формула 1b включена в химическую формулу 1 настоящего изобретения.
Согласно реакционной формуле 3 для получения соединения химической формулы (1b) согласно настоящему изобретению, на стадии 1 получают карбоновую кислоту (7b-1), которую гидролизуют медленным добавлением по каплям водного раствора гидроксида калия или гидроксида натрия к соединению (7b), полученному на стадии 4 реакционной формулы 1. Реакцию проводят в присутствии спиртового растворителя, такого как метанол или этанол, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до повышенной температуры, и, предпочтительно, при от комнатной температуры до повышенной температуры. Реакцию можно проводить в стандартных условиях гидролиза эфира.
На стадии 2 соединение химической формулы (7b-2) получают стандартной реакцией амидирования, в которой карбоновая кислота (7b-1), полученная на стадии 1, и аминосоединение взаимодействуют друг с другом в присутствии конденсирующего агента. Обычно конденсирующий агент может представлять собой коммерчески доступный (1-(3-диметиламинопропил)-3-этилкарбодиимид (EDCI), 1,3-дициклогексилкарбодиимид (DCC), 1,1-карбонилдиимидазол. Реакцию стадии 2 можно проводить без применения основания, или в присутствии основания, которое обычно используют в реакции амидирования, такого как 4-диметиламинопиридин, пиридин, триэтиламин, диэтилизопропиламин, N-метилморфолин или диметилфениламин, применяя растворитель, не оказывающий отрицательного эффекта на реакцию, такой как ацетонитрил, диметилформамид или дихлорметан. Температура реакции конкретно не ограничена, но реакцию проводят при от пониженной температуры до повышенной температуры, и, предпочтительно, при от пониженной температуры до комнатной температуры.
На стадии 3 пиперидин-лактам (8b) получают восстановлением ароматического кольца пиридин-лактама (7b-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора.
Реакцию обычно проводят в тех же условиях, как и реакцию восстановления ароматического кольца, которая превращает соединение химической формулы 7 реакционной формулы 1 в соединение химической формулы 8.
На стадии 4 соединение (8b), полученное на стадии 3, превращают в соединение химической формулы (1b) реакцией снятия защиты в кислых условиях, включая хлороводородную кислоту.
Способ получения 4
В одном варианте осуществления трициклические производные или их фармацевтически приемлемые соли согласно настоящему изобретению можно получить способом, представленным реакционной формулой 4 ниже, причем способ включает стадии:
1) восстановления лактамного соединения (8c), полученного на стадии 6 реакционной формулы 1, до соответствующего спирта (8c-1), применяя восстанавливающий агент, включая литийалюмогидрид (LAH) (стадия 1);
2) получения диаминолактамного соединения (8c-2) галогенированием и аминированием спиртового соединения (8c-1), полученного на стадии 1 (стадия 2); и
3) снятия защиты соединения (8c-2), полученного на стадии 2, в кислых условиях, таких как хлороводородная кислота, для получения трициклического соединения химической формулы (1c) (стадия 3).
Реакционная формула 4
Figure 00000007
где 'Alk' представляет собой C1-C10 алкил с линейной или разветвленной цепью, 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу, или пара-метоксибензильную (PMB) группу, R1-R3 такие, как определено в химической формуле 1, и химическая формула 1c включена в химическую формулу 1 настоящего изобретения.
Согласно реакционной формуле 4 для получения соединения химической формулы (1c) настоящего изобретения, на стадии 1 лактамное соединение (8c), полученное на стадии 6 реакционной формулы 1, восстанавливают до соответствующего спирта (8c-1), применяя восстанавливающий агент, такой как литийалюмогидрид (LAH). Обычно можно применять коммерчески доступный восстанавливающий агент, включая, например, литийалюмогидрид (LAH), натрийборгидрид (NaBH4) или диизобутилалюмогидрид (DIBAL-H). Реакцию можно проводить в присутствии растворителя, который не оказывает отрицательного эффекта на реакцию, такого как тетрагидрофуран, диэтиловый эфир или спирт. Температура реакции конкретно не ограничена, но реакцию проводят обычно при от пониженной температуры до повышенной температуры и, предпочтительно, при пониженной температуре.
На стадии 2 диаминолактамное соединение (8c-2) получают галогенированием и аминированием спиртового соединения (8c-1), полученного на стадии 1. Превращение в галогеновое соединение проводят, применяя трибромид фосфора, тетрабромметан или тионилхлорид, который обычно превращает гидроксильную группу в галоген, в присутствии растворителя, такого как хлороформ, ацетонитрил или дихлорметан, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до комнатной температуры. Далее, превращение галогенового соединения в диаминолактамное соединение (8c-2) можно проводить стандартной реакцией аминирования. Реакцию обычно проводят в присутствии органического амина, такого как пиридин, триэтиламин или диэтилизопропиламин или карбонат калия, который представляет собой основание, обычно применяемое в реакции аминирования, применяя спирт, такой как метанол или этанол, дихлорметан, хлороформ, тетрагидрофуран, диэтиловый эфир, толуол или N,N-диметилформамид, который не оказывает отрицательного эффекта на реакцию. Температура реакции конкретно не ограничена, но реакцию обычно проводят при от пониженной температуры до повышенной температуры и, предпочтительно, при от комнатной температуры до повышенной температуры.
На стадии 3 трициклическое соединение химической формулы (1c) получают реакцией снятия защиты соединения (8c-2), полученного на стадии 2, в кислых условиях, таких как хлороводородная кислота.
Способ получения 5
В одном варианте осуществления трициклические производные или их фармацевтически приемлемую соль можно получить способом, представленным реакционной формулой 5 ниже, причем способ включает стадии:
1) получения амино-лактамного соединения химической формулы (8d-1) стандартной реакцией аминирования лактамного соединения (8d) реакционной формулы 1, полученного на стадии 5, и замещенного-амина; и
2) получения трициклического соединения химической формулы (1d) реакцией снятия защиты соединения (8d-1), полученного на стадии 1, в кислых условиях, таких как хлороводородная кислота.
Реакционная формула 5
Figure 00000008
где R1 представляет собой H или -(CH2)n-X, 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу, пара-метоксибензильную (PMB) группу, R2, R3 и n определены в химической формуле 1, и химическая формула 1d включена в химическую формулу 1 настоящего изобретения.
Согласно реакционной формуле 5 для получения соединения химической формулы (1d) настоящего изобретения, на стадии 1 амино-лактамное соединение химической формулы (8d-1) получают стандартной реакцией аминирования лактамного соединения (8d), полученного на стадии 5 реакционной формулы 1, с замещенным амином. Реакцию стадии 1 проводят в тех же условиях реакции аминирования, как условия стадии 2 реакционной формулы 4 стадии 2, которая превращает галогеновое соединение химической формулы (8c-1) в соединение химической формулы (8c-2).
На стадии 2 трициклическое соединение химической формулы (1d) получают реакцией снятия защиты соединения (8d-1), полученного на стадии 1, в кислых условиях, таких как хлороводородная кислота.
Целевые соединения, полученные в реакционных формулах, можно очищать общепринятыми способами, такими как, например, колоночная хроматография или перекристаллизация.
Соединение химической формулы 1 настоящего изобретения можно получить в виде фармацевтически приемлемой соли и сольватов общепринятыми способами, как известно в данной области техники.
Можно эффективно применять соль присоединения кислоты, которая образуется из фармацевтически приемлемой свободной кислоты. Соль присоединения кислоты можно получить общепринятым способом, например растворением соединения в избыточном количестве кислого водного раствора, и осаждением соединения с помощью водорастворимого органического растворителя, включая метанол, этанол, ацетон или ацетонитрил. То же количество соединения и кислоты в воде или спирте (например, гликольмонометиловом эфире) нагревают, и смесь упаривают досуха, или соль, экстрагированную из смеси, можно отсасывать и фильтровать.
Свободная кислота может представлять собой органическую кислоту и неорганическую кислоту. Неорганическая кислота может представлять собой хлороводородную кислоту, фосфорную кислоту, серную кислоту или азотную кислоту, и органическая кислота может представлять собой метансульфокислоту, п-толуолсульфокислоту, уксусную кислоту, трифторуксусную кислоту, малеиновую кислоту, янтарную кислоту, щавелевую кислоту, бензойную кислоту, винную кислоту, фумаровую кислоту, миндальную кислоту, пропионовую кислоту, лимонную кислоту, молочную кислоту, гликолевую кислоту, глюконовую кислоту, галактуроновую кислоту, глютаминовую кислоту, глутаровую кислоту, глюкуроновую кислоту, аспарагиновую кислоту, аскорбиновую кислоту, карбоновую кислоту, ванилиновую кислоту или йодоводородную кислоту, но не ограничиваясь ими.
Далее, фармацевтически приемлемую соль металла можно получить, применяя основание. Соли щелочного и щелочноземельного металла можно получить растворением соединения в избыточном количестве водного раствора гидроксида щелочного металла или гидроксида щелочноземельного металла, фильтрацией нерастворимой соли соединения и упариванием и сушкой оставшегося растворителя.
Соль металла может предпочтительно представлять собой соль натрия, калия или кальция, которая является пригодной для фармацевтического препарата, но не ограничиваясь ими. Далее, можно получить соответствующую соль серебра путем взаимодействия солей щелочного или щелочноземельного металла с подходящей солью серебра (например, нитратом серебра).
Фармацевтически приемлемая соль соединения химической формулы 1 включает, если не указано особо, соль кислой или щелочной группы, которая может содержаться в соединении химической формулы 1. Например, фармацевтически приемлемая соль может включать соль натрия, кальция и калия гидроксильной группы, и другая фармацевтически приемлемая соль аминогруппы может включать гидробромид, сульфат, гидросульфат, фосфат, гидрофосфат, дигидрофосфат, ацетат, сукцинат, цитрат, тартрат, лактат, манделат, метансульфонат (мезилат) или п-толуолсульфонат (тозилат), и их можно получить способами получения солей, известными в данной области техники.
В одном варианте осуществления, фармацевтически приемлемая соль трициклического производного формулы 1 включает:
1) 8-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
2) 10-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
3) 9-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
4) 9-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
5) Этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилат гидрохлорид;
6) 9-Метокси-1-пропил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
7) 1-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
8) 9-Метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
9) 1-Этил-9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
10) 1-Метил-9-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
11) 9-(1-Пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
12) 9-(1-Метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
13) 1-Метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
14) 1-Метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
15) 5-Оксо-N-[2-(пиперидин-1-ил)этил]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамид дигидрохлорид;
16) 9-[2-(Диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
17) 9-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
18) 9-(2-Метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
19) 9-[2-(Пиперазин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
20) 9-Этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
21) 9-[3-(Пиперидин-1-ил)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
22) 9-(2-Аминоэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
23) 9-[2-(4-Фенилпиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
24) 9-(2-Гидроксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
25) 9-пентокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
26) 9-[2-(Диэтиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
27) 9-(2-Морфолиноэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
28) 1,1-Диэтил-4-[2-(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси]этил)пиперазин-1-ий дигидрохлорид;
29) 9-[4-(Пиперидин-1-ил)бутокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
30) 1-Метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
31) 9-[2-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
32) 8-[2-(Диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
33) 9-[3-(Диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
34) 8-[2-(Диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамид дигидрохлорид;
35) 8-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
36) 8-[3-(Диметиламино)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
37) 8-(Диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
38) 8-[1-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
39) 8-[1-(Метиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
40) 8-Этил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
41) 8-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
42) 8-[(Диэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
43) 8-[(Этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
44) 8-(Пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
45) 8-[(Изопропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
46) 8-[(Пропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
47) 8-{[Этил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
48) 8-(Пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
49) 8-(Морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
50) 9-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
51) 8-{[Бензил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
52) 8-[(Метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
53) 8-{[(2-Гидроксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
54) 8-{[(2-(Диметиламиноэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
55) 8-[(4-Метилпиперазин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
56) 8-[(Метил(пропил)амино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
57) Этил-3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионат дигидрохлорид;
58) 3-{Метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропиновая кислота дигидрохлорид;
59) 8-{[Изопропил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
60) 8-{[(2-Метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
61) Этил-3-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]пропионат дигидрохлорид;
62) 8-[(2,2,2-Трифторэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
63) 2-[(5-Оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]ацетонитрил дигидрохлорид;
64) 8-[(1H-Имидазол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
65) 8-[(1H-Пиррол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
66) 8-[(Диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
67) 1-Метил-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
68) 8-[(Диэтиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
69) 1-Метил-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
70) 1-Метил-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
71) 8-{[Этил(метил)амино]метил}-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
72) 8-[(Диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
73) 10-Метокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
74) 10-Метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
75) 8-[(Этиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
76) 8-{[Этил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
77) 10-Метокси-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
78) 10-Метокси-8-[(4-оксопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
79) 8-{[4-(Гидроксиимино)пиперидин-1-ил]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
80) 10-Метокси-8-[(4-(метоксиимино)пиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
81) 10-Метокси-8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
82) 8-[(2,5-Дегидро-1H-пиррол-1-ил)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
83) 8-{[2-Изопропоксиэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
84) 10-Метокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
85) 8-{[(2-Хлорэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
86) 8-[(Диэтиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
87) 8-[(трет-Бутиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
88) 8-[(Изопропиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
89) 8-[(Циклопентиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
90) 8-[(2,6-диметилморфолино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
91) N-[(10-Метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]-N,N-диметилциклопентанаминийхлорид гидрохлорид;
92) 8-{[Циклопентил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
93) 8-{[Изопропил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
94) 8-{[(2-Фторэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
95) 8-[(1H-Тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
96) 10-Метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
97) 10-Метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
98) (E)-10-Метокси-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
99) 8-[(Диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-он дигидрохлорид;
100) 8-[(Диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
101) 10-Этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
102) 10-Этокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
103) 10-Этокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
104) 10-Этокси-8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
105) 8-(Гидроксиметил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид;
106) 10-Метокси-8-(тиоморфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
107) 10-Метокси-8-[(2-морфолиноэтиламино)метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
108) 10-Метокси-8-[(4-морфолинопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид;
109) 8-(Аминометил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
110) 8-[(Диметиламино)метил)]-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
111) 8-(Морфолинометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
112) 8-(Аминометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
113) 8-(Аминометил)-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
114) 8-(Аминометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
115) 10-Метокси-8-{[метил(тетрагидро-2H-пиран-4-ил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
116) 8-[(Диметиламино)метил]-10-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид;
117) 10-(2-Метоксиэтокси)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид; и
118) 1-[(10-Метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]-1H-пиррол-2,5-дион дигидрохлорид.
Далее, поскольку соединение химической формулы 1 имеет асимметрический центр, соединение может существовать в виде различных зеркальных изомерных форм, и все оптические изомеры соединения химической формулы 1 и стереомеры R или S типа и их смеси также включены в объем настоящего изобретения. Настоящее изобретение включает все рацемические формы, одну или более зеркальных изомерных форм, одну или более диастереомерных форм или их смеси, и оно также включает известные способы разделения или способ получения изомеров.
Более того, настоящее изобретение обеспечивает фармацевтическую композицию для предотвращения или лечения заболеваний, являющихся результатом чрезмерной активации PARP, которая содержит трициклическое производное химической формулы 1 или его фармацевтически приемлемую соль.
Заболевания, являющиеся результатом чрезмерной активации PARP, могут включать нейропатическую боль; нейродегенеративные заболевания, включая эпилепсию, инсульт, болезнь Альцгеймера, болезнь Паркинсона, амиотрофический латеральный склероз (ALS), болезнь Хантингтона, шизофрению, хроническую и острую боль, ишемию, повреждение нейронов после гипоксии, внешнее повреждение и нейрональное повреждение; сердечно-сосудистые заболевания, включая атеросклероз, гиперлипидемию, повреждение сердечной ткани, болезнь коронарных артерий, инфаркт миокарда, стенокардию, кардиогенный шок; диабетическую нейропатию; воспалительное заболевание, такое как остеоартрит, остеопороз, или рак.
Трициклическое производное настоящего изобретения ингибирует активности поли(АДФ-рибоза)полимеразы и может использоваться для предотвращения или лечения заболеваний, вызванных чрезмерной активацией PARP, и особенно нейропатической боли, нейродегенеративного заболевания, сердечно-сосудистого заболевания, диабетической нейропатии, воспалительного заболевания, остеопороза или рака.
Кроме того, фармацевтическая композиция, содержащая соединение согласно варианту осуществления, может дополнительно содержать подходящий носитель, эксципиент или разбавители, подходящие для применения в способах, известных в данной области техники. Носитель, эксципиент и разбавители могут включать лактозу, декстрозу, сахарозу, сорбит, маннит, ксилит, эритрит, мальтит, крахмал, латекс из акации, альгинат, желатин, фосфат кальция, силикат кальция, целлюлозу, метилцеллюлозу, микрокристаллическую целлюлозу, поливинилпирролидон, воду, метилгидроксибензоат, пропилгидроксибензоат, тальк, стеарат магния или минеральное масло.
Композиция, содержащая соединение согласно варианту осуществления, можно быть получена в дозированной форме, включая, например, пероральный препарат, включая порошок, гранулы, таблетку, капсулу, суспензию, эмульсию, сироп или аэрозоль, препараты для внешнего применения, суппозиторий или стерильный раствор для инъекции.
Конкретно, композицию согласно варианту осуществления можно быть получена в дозированной форме, используя разбавители или эксципиенты, такие как наполнитель, сухой наполнитель, связующее, смачивающий агент, разрыхлитель или поверхностно-активное вещество. Твердую дозированную форму можно получить смешиванием соединения, по меньшей мере, с одним или более эксципиентами, такими как, например, крахмал, карбонат кальция, сахароза, лактоза или желатин. Далее, можно применять смазывающее вещество, такое как стеарат магния или тальк, в добавление к простому эксципиенту. Жидкая дозированная форма для перорального введения может включать суспензию, жидкость для внутреннего применения, эмульсию или сироп, и она может содержать различные эксципиенты, отличные от простых разбавителей, таких как вода или парафиновое масло, такие как, например, смачивающий агент, подсластитель, ароматизирующее вещество или консервант. Жидкая дозированная форма для неперорального введения может включать стерильный водный раствор, неводный растворитель, суспензию, эмульсию, лиофилизированный состав и суппозиторий. Неводный растворитель и суспензия могут включать растительное масло, такое как пропиленгликоль, полиэтиленгликоль или оливковое масло, или эфир для применения инъекцией, такой как этилолеат. Витепсол, макрогол, твин, масло какао, масло клена или глицерин-желатин можно применять в качестве основы для суппозиториев.
Хотя дозы соединения по настоящему изобретению могут изменяться в зависимости от состояния или веса пациента, тяжести заболевания, дозированной формы, пути или продолжительности введения, дозы могут быть соответствующим образом выбраны специалистом в данной области техники. Однако для требуемого эффекта, соединение химической формулы по настоящему изобретению можно вводить в дозе 0,0001-1000 мг/кг, или желательно 0,01-500 мг/кг от одного до нескольких раз в день. В одном варианте осуществления соединение химической формулы 1 можно смешивать до 0,0001-50% по весу относительно суммарного количества композиции.
Далее, фармацевтическая форма для введения соединения настоящего изобретения может содержать фармацевтически приемлемую соль соединения, и применение соединения в отдельности или в комбинации с другими фармацевтически активными соединениями.
Фармацевтическую композицию настоящего изобретения можно вводить млекопитающему, включая мышь, домашних животных, или человека, различными путями. Все способы введения, которые могут включать пероральную, ректальную или внутривенную, внутримышечную, подкожную, внутриутробную, эпидуральную или внутримозговую инъекцию, являются прогнозируемыми.
Вариант исполнения настоящего изобретения
Настоящая изобретательская техническая концепция будет объяснена более полно ниже на основе примеров и экспериментальных данных, которые не следует истолковывать как ограничивающие настоящую изобретательскую концепцию.
<Пример 1> Получение гидрохлорида 8-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 2-Хлор-N-(3-метоксифенил)никотинамида
Figure 00000009
К перемешиваемому раствору 2-хлорникотиновой кислоты (500 мг, 3,17 ммоль) в безводном дихлорметане (10 мл) добавляли по каплям оксалилхлорид (0,407 мл, 4,76 ммоль) при комнатной температуре. Добавляли каплю безводного N,N-диметилформамида, и реакционную смесь перемешивали в течение 2 часов при комнатной температуре. После завершения реакции промежуточный продукт, т.е. 2-хлорникотинилхлорид, получали при концентрировании в вакууме. Добавляли безводный дихлорметан (10 мл) и затем к раствору вышеуказанной смеси добавляли по каплям при 0°C 3-анизидин (0,390 мл, 3,49 ммоль) в безводном дихлорметане (5 мл). Добавляли триэтиламин (0,885 мл, 6,347 ммоль) и смесь перемешивали в течение одного часа при 0°C. После завершения реакции добавляли воду и полученную в результате смесь экстрагировали дихлорметаном. Отделенный органический слой сушили над безводным сульфатом магния и растворитель концентрировали при пониженном давлении с получением указанного в заголовке соединения (970 мг, кремовое масло).
1H ЯМР (400 МГц, CDCl3); δ 8,49 (дд, J=2,0 Гц, 4,8 Гц, 1H), 8,26 (с, 1H), 8,14 (дд, J=1,6 Гц, 7,2 Гц, 1H), 7,40 (с, 1H), 7,41-7,37 (м, 1H), 7,28 (т, J=8,0 Гц, 1H), 7,13-7,10 (м, 1H), 6,75 (дд, J=2,4 Гц, 8,4 Гц, 1H), 3,84 (с, 3H).
Стадия 2: Получение 2-Хлор-N-(4-метоксибензил)-N-(3-метоксифенил)никотинамида
Figure 00000010
N,N-Диметилформамид добавляли к соединению (972,4 мг, 3,1736 ммоль), полученному на стадии 1, и смесь охлаждали до 0°C. Медленно добавляли гидрид натрия (380 мг, 9,52 ммоль) и полученную в результате смесь перемешивали при 0°C в течение 20 минут. Добавляли при 0°C п-метоксибензилхлорид (0,646 мл, 4,76 ммоль) и смесь перемешивали в течение 3 часов при комнатной температуре. После завершения реакции добавляли дихлорметан и воду, органический слой сушили над сульфатом магния, и растворитель концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=2,5:l) с получением указанного в заголовке соединения (1,01 г, выход: 84%, кремовое масло).
1H ЯМР (400 МГц, CDCl3); δ 8,20 (дд, J=1,6 Гц, 4,4 Гц, 1H), 7,44 (дд, J=1,6 Гц, 7,6 Гц, 1H), 7,25 (д, J=8,8 Гц, 2H), 7,05 (дд, J=4,8 Гц, 7,2 Гц, 1H), 7,01 (т, J=7,6 Гц, 1H), 6,84 (д, J=8,8 Гц, 2H), 6,64 (дд, J=2,8 Гц, 8,4 Гц, 1H), 6,55-6,53 (м, 1H), 6,50 (с, 1H), 5,03 (с, 2H), 3,80 (с, 3H), 3,61 (с, 3H).
Стадия 3: Получение 8-Метокси-6-(4-метоксибензил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000011
К перемешиваемому раствору соединения (873 мг, 2,28 ммоль), полученного на стадии 2, в N,N-диметилформамиде (6,0 мл) добавляли последовательно ацетат палладия (II) (153,6 мг, 0,684 ммоль), 1,3-бис(дифенилфосфино)пропан (282 мг, 0,684 ммоль), трибутилфосфин (0,563 мл, 2,28 ммоль) и карбонат калия (630 мг, 4,56 ммоль), и смесь кипятили с обратным холодильником в течение четырех часов при 120°C. После завершения реакции реакционную смесь охлаждали до комнатной температуры и экстрагировали дихлорметаном. Органический слой сушили над безводным сульфатом магния и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат:дихлорметан=1:1:1) с получением указанного в заголовке соединения (192,4 мг, выход: 24%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 8,96 (дд, J=1,6 Гц, 4,4 Гц, 1H), 8,771 (д, J=8,8 Гц, 1H), 8,767 (д, J=8,0 Гц, 1H), 7,46 (дд, J=4,4 Гц, 8,4 Гц, 1H), 7,24 (д, J=8,8 Гц, 2H), 6,91 (дд, J=2,0 Гц, 8,8 Гц, 1H), 6,85 (с, 1H), 6,84 (д, J=8,8 Гц, 2H), 5,55 (с, 2H), 3,81 (с, 3H), 3,76 (с, 3H).
В данной реакции 10-метокси-6-(4-метоксибензил)бензо[h][1,6]нафтиридин-5(6H)-он (243,8 мг, выход: 31%, белое твердое вещество) получали в качестве побочного продукта.
1H ЯМР (400 МГц, CDCl3); δ 9,15 (м, 1H), 8,88 (м, 1H), 7,53 (м, 1H), 7,43 (т, J=8,4 Гц, 1H), 7,20 (д, J=8,4 Гц, 2H), 7,05 (д, J=8,4 Гц, 1H), 6,92 (д, J=8,4 Гц, 1H), 6,84 (д, J=8,4 Гц, 2H), 5,55 (с, 2H), 4,10 (с, 3H), 3,76 (с, 3H).
Стадия 4: Получение 8-Метокси-6-(4-метоксибензил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000012
К перемешиваемому раствору соединения 8-метокси-6-(4-метоксибензил)бензо[h][1,6]нафтиридин-5(6H)-она (192,4 мг, 0,555 ммоль), полученного на стадии 3, в смеси этилацетат/дихлорметан/метанол, добавляли 10%-палладий (Pd) (20 мг), и смесь перемешивали в течение 18 часов в газообразном водороде. После завершения реакции 10%-палладий (Pd) отфильтровывали и фильтрат концентрировали при пониженном давлении с получением указанного в заголовке соединения (192,7 мг, выход: 99%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, CDCl3); δ 7,40 (д, J=8,4 Гц, 1H), 7,09 (д, J=8,8 Гц, 2H), 6,72 (д, J=8,8 Гц, 2H), 6,63 (с, 1H), 6,62 (д, J=8,4 Гц, 1H), 5,37 (с, 2H), 3,66 (с, 3H), 3,65 (с, 3H), 3,39-3,34 (м, 2H), 2,68-2,65 (м, 2H), 1,90-1,87 (м, 2H).
Стадия 5: Получение 8-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000013
Трифторуксусную кислоту (2 мл) добавляли к соединению (102,9 мг, 0,294 ммоль), полученному на стадии 4, и смесь перемешивали в герметизированной пробирке в течение 20 часов при 100°C. После завершения реакции реакционную смесь охлаждали до комнатной температуры и экстрагировали дихлорметаном. Органический слой промывали водным раствором бикарбоната натрия, сушили над безводным сульфатом магния и концентрировали при пониженном давлении. Остаток перемешивали в смеси этилацетат/гексан/диэтиловый эфир, и полученное в результате твердое вещество фильтровали. Отфильтрованное твердое вещество промывали диэтиловым эфиром и сушили в вакууме с получением указанного в заголовке соединения (57,8 мг, выход: 85,5%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, ДМСО-d6); δ 10,65 (с, 1H), 7,69 (д, J=9,6 Гц, 1H), 6,85 (с, 1H), 6,70 (с, 1H), 6,70-6,68 (м, 1H), 3,76 (с, 3H), 3,27 (м, 2H), 2,40-2,36 (м, 2H), 1,78-1,75 (м, 2H).
Стадия 6: Получение гидрохлорида 8-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000014
Соединение (57,8 мг, 0,251 ммоль), полученное на стадии 5, растворяли в 1,4-диоксане (1 мл), добавляли 3,6 н. 1,4-диоксановый раствор хлороводородной кислоты (1 мл) и затем перемешивали в течение 24 часов. После завершения реакции растворитель удаляли при пониженном давлении и соответственно полученный остаток перемешивали в течение 30 минут в смеси этилацетат/диэтиловый эфир. Полученное в результате твердое вещество фильтровали и промывали диэтиловым эфиром с получением указанного в заголовке соединения (38,1 мг, выход: 56,9%, зеленое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,78 (с, 1H), 7,95 (д, J=8,8 Гц, 1H), 6,93 (с, 1H), 6,94-6,90 (м, 1H), 3,82 (с, 3H), 3,37-3,35 (м, 2H), 2,55-2,52 (м, 2H), 1,83-1,80 (м, 2H).
<Пример 2> Получение гидрохлорида 10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000015
10-Метокси-6-(4-метоксибензил)бензо[h][1,6]нафтиридин-5(6H)-он (244 мг, 0,70 ммоль), полученный на стадии 3 примера 1, взаимодействовал таким же образом, как на стадиях 4-6 примера 1, с получением указанного в заголовке соединения (115 мг, выход: 61%, белое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 12,02 (с, 1H), 8,46 (ушир., 1H), 7,48 (т, J=8,0 Гц, 1H), 7,05 (дд, J=0,8 Гц, 8,4 Гц, 1H), 6,84 (дд, J=0,8 Гц, 8,4 Гц, 1H), 3,94 (с, 3H), 3,42-3,40 (м, 2H), 2,57-2,54 (м, 2H), 1,80-1,77 (м, 2H).
<Пример 3> Получение гидрохлорида 9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000016
За исключением того, что 4-анизидин использовали вместо 3-анизидина на стадии 1, применяли тот же способ, как и в примере 1, с получением указанного в заголовке соединения.
1H ЯМР (400 МГц, ДМСО-d6); δ 11,76 (с, 1H), 7,83 (ушир., 2H), 7,50 (д, J=2,0 Гц, 1H), 7,36 (д, J=8,8 Гц, 1H), 7,20 (дд, J=9,2 Гц, 2,4 Гц, 1H), 3,81 (с, 3H), 3,90 (т, J=5,2 Гц, 2H), 2,55 (т, J=5,6 Гц, 2H), 1,84-1,81 (м, 2H).
<Пример 4> Получение гидрохлорида 9-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000017
За исключением того, что метоксиметилхлорид (MOM-Cl) использовали вместо п-метоксибензилхлорида на стадии 2, применяли тот же способ, как и в примере 1, с получением указанного в заголовке соединения.
1H ЯМР (400 МГц, ДМСО-d6); δ 11,72 (с, 1H), 7,79 (с, 1H), 7,36 (д, J=8,4 Гц, 1H), 7,30 (д, J=8,4 Гц, 1H), 3,34 (т, J=5,6 Гц, 2H), 2,52 (т, J=6,0 Гц, 2H), 2,53 (с, 3H), 1,80 (т, J=5,2 Гц, 2H).
<Пример 5> Получение гидрохлорида этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилата
Стадия 1: Получение этил 4-(2-хлорникотинамидо)бензоата
Figure 00000018
2-Хлорникотиновую кислоту (500 мг, 3,17 ммоль) растворяли в дихлорметане (10 мл), добавляли оксалилхлорид (0,41 мл, 4,76 ммоль) и N,N-диметилформамид (кат. 1 капля) надлежащим образом и затем перемешивали в течение 3 часов при комнатной температуре. Реакционную смесь концентрировали при пониженном давлении и остаток растворяли в дихлорметане (5 мл). Добавляли при комнатной температуре этил 4-аминобензоат (576 мг, 3,48 ммоль) и триэтиламин (0,88 мл, 6,34 ммоль) и затем смесь перемешивали в течение одного часа. Смесь выливали в ледяную воду, экстрагировали дихлорметаном и затем промывали соляным раствором. Органический слой сушили над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (1,04 г, выход: количественный выход, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 8,54-8,53 (м, 1H), 8,40 (ушир.с, 1H), 8,23 (м, 1H), 8,09 (д, J=8,8 Гц, 2H), 7,75 (д, J=8,4 Гц, 2H), 7,44-7,41 (м, 1H), 4,40-4,35 (м, 2H), 1,40 (т, J=7,1 Гц, 3H).
Стадия 2: Получение этил 4-[2-хлор-N-(4-метоксибензил)аминоникотинамидо]бензоата
Figure 00000019
К перемешиваемому раствору соединения (800 мг, 2,62 ммоль), полученного на стадии 1, в N,N-диметилформамиде (10 мл), добавляли карбонат калия (1,09 г, 7,87 ммоль) и 4-метоксибензилхлорид (0,43 мл, 3,15 ммоль) при комнатной температуре. Смесь нагревали при 90°C в течение ночи. Смесь выливали в ледяную воду и экстрагировали хлороформомом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (990 мг, выход: 89%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 8,21 (м, 1H), 7,81 (д, J=8,4 Гц, 2H), 7,47-7,43 (м, 1H), 7,27-7,19 (м, 2H), 7,03-7,00 (м, 3H), 6,83 (д, J=8,4 Гц, 2H), 5,07 (ушир.с, 2H), 4,30-4,24 (м, 2H), 3,79 (с, 3H), 1,33 (т, J=7,1 Гц, 3H).
Стадия 3: Получение этил 6-(4-метоксибензил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-карбоксилата
Figure 00000020
Соединение (45 мг, 0,10 ммоль), полученное на стадии 2, растворяли в N,N-диметилформамиде (10 мл) и добавляли 1,3-бис(дифенилфосфино)пропан (13 мг, 0,031 ммоль), ацетат палладия (II) (7 мг, 0,031 ммоль), трибутилфосфин (26 мкл, 0,10 ммоль) и карбонат калия (29 мг, 0,21 ммоль). Смесь перемешивали в течение одного часа при 140°C. Смесь выливали в ледяную воду и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=2:l) с получением указанного в заголовке соединения (34,7 мг, выход: 89%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 9,56 (с, 1H), 9,09-9,08 (м, 1H), 8,84-8,81 (м, 1H), 8,18-8,16 (м, 1H), 7,61-7,58 (м, 1H), 7,44 (д, J=8,8 Гц, 1H), 7,22 (д, J=8,4 Гц, 2H), 6,85 (д, J=8,0 Гц, 2H), 5,62 (ушир.с, 2H), 4,44 (кв, J=7,3, 6,9 Гц, 2H), 3,76 (с, 3H), 1,43 (т, J=7,1 Гц, 3H).
Стадия 4: Получение этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилата
Figure 00000021
Соединение (27 мг, 0,069 ммоль), полученное на стадии 3, растворяли в метаноле (5 мл) и дихлорметане (5 мл) и добавляли 10%-палладий. Смесь перемешивали в течение 18 часов при комнатной температуре в газообразном водороде. После завершения реакции 10%-палладий (Pd) удаляли фильтрацией через целит и фильтрат концентрировали при пониженном давлении. Остаток растворяли в трифторуксусной кислоте (TFA, 2 мл) и к полученной в результате смеси добавляли анизол (0,64 мл, 0,58 ммоль) и 12 н. водный раствор серной кислоты (0,097 мл, 1,17 ммоль). Реакционную смесь перемешивали в течение 18 часов при 100°C. Смесь перемешивали в течение одного часа при 140°C. Смесь выливали в холодный водный раствор бикарбоната натрия и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=7:1) с получением указанного в заголовке соединения (7,5 мг, выход: 47%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 8,25 (с, 1H), 8,08 (д, J=8,4 Гц, 1H), 7,23 (д, J=8,8 Гц, 1H), 4,41 (кв, J=7,3 Гц, 2H), 3,48 (т, 5,5 Гц, 2H), 2,67 (т, J=6,2 Гц, 2H), 2,00-1,94 (м, 2H), 1,42 (т, J=7,1 Гц, 3H).
Стадия 5: Получение гидрохлорида этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилата
Figure 00000022
Соединение (7,5 мг, 0,027 ммоль), полученное на стадии 4, растворяли в 1,4-диоксане (1 мл), добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты (1 мл) и затем перемешивали в течение 18 часов при комнатной температуре. После завершения реакции образовавшееся твердое вещество фильтровали, промывали этилацетатом и сушили в вакууме с получением указанного в заголовке соединения (4,5 мг, выход: 25%, белое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,17 (с, 1H), 8,48 (с, 1H), 7,95 (д, J=8,8 Гц, 1H), 7,26 (д, J=8,8 Гц, 1H), 4,35-4,29 (м, 2H), 3,31-3,28 (м, 2H), 2,46-2,44 (м, 2H), 1,81-1,74 (м, 2H), 1,35-1,32 (м, 3H).
<Пример 6> Получение гидрохлорида 9-метокси-1-пропил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 9-метокси-6-(4-метоксибензил)-1-пропил-1,2,3,4-тетрагидробензо[h][ 1,6]нафтиридин-5(6H)-она
Figure 00000023
Соединение 9-метокси-6-(4-метоксибензил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он (100 мг, 0,285 ммоль), полученное на стадии 4 примера 3, растворяли в N,N-диметилформамиде (5 мл), добавляли гидрид натрия (17 мг, 0,428 ммоль) при 0°C. Реакционную смесь перемешивали в течение 1 часа при комнатной температуре. После чего добавляли 1-бромпропан (0,039 мл, 0,428 ммоль) и смесь перемешивали в течение еще одного часа при комнатной температуре. Смесь выливали в воду, экстрагировали хлороформом. Органический слой промывали насыщенным водным раствором бикарбоната натрия, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (56 мг, выход: 50%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 7,26-7,14 (м, 4H), 6,98-6,95 (м, 1H), 6,82-6,81 (м, 2H), 5,45 (ушир., 2H), 3,83 (с, 3H), 3,75 (с, 3H), 3,17-3,15 (м, 2H), 3,01-2,97 (м, 2H), 2,71 (т, J=6,8 Гц, 2H), 1,94-1,85 (м, 4H), 0,981 (т, J=6,8 Гц, 3H).
Стадия 2: Получение 9-метокси-1-пропил-1,2,3,4-тетрагидро[h][1,6]нафтиридин-5(6H)-она
Figure 00000024
Соединение (56 мг, 0,142 ммоль), полученное на стадии 1, растворяли в трифторуксусной кислоте (3 мл) и полученную в результате смесь перемешивали при 100°C в течение одного дня. После завершения реакции смесь концентрировали при пониженном давлении и остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=15:l) с получением указанного в заголовке соединения (31 мг, выход: 82%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,62 (с, 1H), 7,30 (д, J=4,4 Гц 1H), 7,13 (с, 1H), 7,07-7,04 (м, 1H), 3,85 (с, 3H), 3,17-3,14 (м, 2H), 3,04-3,00 (м, 2H), 2,70 (т, J=6,8 Гц, 2H), 1,92-1,83 (м, 5H), 0,99 (т, J=7,2 Гц, 3H).
Стадия 3: Получение гидрохлорида 9-метокси-1-пропил-1,2,3-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000025
Соединение (31 мг, 0,114 ммоль), полученное на стадии 2, растворяли в 1,4-диоксане (1 мл), добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты (1 мл) и затем перемешивали в течение одного дня при комнатной температуре. После завершения реакции смесь концентрировали при пониженном давлении и промывали этилацетатом с получением указанного в заголовке соединения (24 мг, выход: 70%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,39 (с, 1H), 9,25-8,66 (ушир., 1H), 7,25 (д, J=8,8 Гц, 1H), 3,78 (с, 3H), 3,08 (м, 2H), 2,95 (т, J=7,6 Гц, 2H), 2,43 (т, J=6,8 Гц, 2H), 1,88-1,83 (м, 2H), 1,73 (м, 2H), 0,93 (т, J=7,6 Гц, 3H).
Следуя реакции примера 6, получали следующие соединения.
<Пример 7> гидрохлорид 1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 8> гидрохлорид 9-метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 9> гидрохлорид 1-Этил-9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 10> гидрохлорид 1-метил-9-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Соединение, полученное в примере 9, растворяли в дихлорметане (2 мл) и 1M дихлорметановом растворе трибромида бора (4,2 мл). Смесь перемешивали в течение ночи при комнатной температуре. Реакционную смесь выливали в ледяную воду и осадок фильтровали с получением указанного в заголовке соединения.
Пример Химическая структура Данные ЯМР-спектра
7
Figure 00000026
1H ЯМР (400 МГц, ДМСО-d6) δ 11,55 (с, 1H), 10,11 (ушир., 1H), 7,76 (д, J=8,0 Гц, 1H), 7,41 (м, 1H), 7,29 (д, J=8,4 Гц, 1H), 7,15 (м, 1H), 3,11 (м, 2H), 2,96 (с, 3H), 2,43 (т, J=6,0 Гц, 2H), 1,76 (м, 2H)
8
Figure 00000027
1H ЯМР (400 МГц, ДМСО-d6) δ 11,51 (с, 1H), 7,26 (д, J=8,8 Гц, 1H), 7,19 (с, 1H), 7,11 (д, J=8,8 Гц, 1H), 3,80 (с, 3H), 3,12 (м, 2H), 2,96 (с, 3H), 2,45 (т, J=6,0 Гц, 2H), 1,76 (м, 2H)
9
Figure 00000028
1H ЯМР (400 МГц, ДМСО-d6)δ 11,38 (с, 1H), 7,24 (д, J=8,8 Гц, 1H), 7,09 (д, J=8,8 Гц, 1H), 7,02 (с, 1H), 3,79 (с, 3H), 3,06 (м, 4H), 2,42 (т, J=6,0 Гц, 2H), 1,72 (м, 2H), 1,34 (т, J=6,4 Гц, 3H)
10
Figure 00000029
1H ЯМР (400 МГц, ДМСО-d6) δ 11,12 (с, 1H), 9,29 (с, 1H), 7,09 (д, J=8,8 Гц, 1H), 7,07 (д, J=2,4 Гц, 1H), 6,88 (дд, J=8,8 Гц, 2,4 Гц, 1H), 3,05-3,02 (м, 2H), 2,85 (с, 3H), 2,39 (т, J=6,4 Гц, 2H), 1,75-1,72 (м, 2H)
<Пример 11> Получение дигидрохлорида 9-(1-пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 9-метоксибензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000030
9-Метокси-6-(4-метоксибензил)бензо[h][1,6]нафтиридин-5(6H)-он (50 мг, 0,14 ммоль), полученный на стадии 3 примера 3, растворяли в трифторуксусной кислоте (5 мл), последовательно добавляли анизол (157 мкл, 1,44 ммоль) и 12 н. серную кислоту (240 мкл, 2,89 ммоль). Смесь перемешивали в течение одного дня при 90°C. Реакционную смесь охлаждали до комнатной температуры и выливали в холодный насыщенный водный раствор бикарбоната натрия. После экстракции хлороформом органический слой промывали соляным раствором и сушили над безводным сульфатом натрия. После упаривания растворителя остаток промывали этилацетатом, фильтровали и сушили в вакууме с получением указанного в заголовке соединения (25 мг, выход: 77%, белое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,83 (с, 1H), 9,06 (д, J=6,0 Гц, 1H), 8,61 (дд, J=8,0 Гц, 2,8 Гц, 1H), 8,09 (д, J=2,4 Гц, 1H), 7,71-7,67 (м, 7,34 (д, J=8,8 Гц, 1H), 7,23 (дд, J=8,8 Гц, 2,4 Гц, 1H), 3,86 (с, 3H).
Стадия 2: Получение 9-гидроксибензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000031
Соединение (190 мг, 0,84 ммоль), полученное на стадии 1, растворяли в дихлорметане (2 мл), добавляли 1 M дихлорметановый раствор трехбромистого бора (4,2 мл). Смесь перемешивали в течение ночи при комнатной температуре. Реакционную смесь выливали в ледяную воду и осадок собирали фильтрацией с получением указанного в заголовке соединения (125 мг, выход: 70%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,70 (с, 1H), 9,56 (с, 1H), 9,03 (м, 1H), 8,58 (д, J=7,6 Гц, 1H), 7,99 (с, 1H), 7,65 (дд, J=7,6 Гц, 1,2 Гц, 7,24 (д, J=8,8 Гц, 1H), 7,05 (дд, J=8,8 Гц, 1,6 Гц, 1H).
Стадия 3: Получение трет-бутил 4-(5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-илокси)пиперидин-1-карбоксилата
Figure 00000032
Соединение (60 мг, 0,28 ммоль), полученное на стадии 2, и карбонат калия (120 мг, 0,85 ммоль) растворяли в смеси ацетонитрил (6 мл)/N,N-диметилформамид (3 мл), добавляли трет-бутил 4-(метилсульфонилокси)пиперидин-1-карбоксилат (240 мг, 0,85 ммоль). Полученную в результате смесь перемешивали в течение 3 дней при 100-110°C и охлаждали до комнатной температуры. После экстракции хлороформом реакционную смесь промывали соляным раствором и сушили над безводным сульфатом натрия. Растворитель удаляли при пониженном давлении и остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:l) с получением указанного в заголовке соединения (65 мг, выход: 58%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 11,06 (с, 1H), 9,03 (м, 1H), 8,80 (д, J=7,6 Гц, 1H), 8,27 (д, J=2,4 Гц, 1H), 7,56 (м, 1H), 7,34 (д, J=8,8 Гц, 1H), 7,20 (дд, J=8,8 Гц, 2,4 Гц, 1H), 4,67 (м, 1H), 3,75-3,70 (м, 2H), 3,42-3,36 (м, 2H), 1,98-1,97 (м, 2H), 1,83-1,81 (м, 2H), 1,47 (с, 9H).
Стадия 4: Получение 9-(пиперидин-4-илокси)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000033
Соединение (110 мг, 0,28 ммоль), полученное на стадии 3, растворяли в 1,4-диоксане, добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты. Полученную в результате смесь перемешивали в течение ночи при комнатной температуре и осадок собирали фильтрацией с получением указанного в заголовке соединения (90 мг, выход: 98%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,89 (с, 1H), 9,10 (ушир., 2H), 9,06 (м, 1H), 8,64 (дд, J=8,0 Гц, 1,6 Гц, 1H), 8,20 (с, 1H), 7,71 (дд, J=7,6 Гц, 4,0 Гц, 1H), 7,37 (д, J=8,8 Гц, 1H), 7,31 (дд, J=8,8 Гц, 3,2 Гц, 1H), 4,78-4,76 (м, 1H), 3,24-3,23 (м, 2H), 3,12-3,10 (м, 2H), 2,16-2,12 (м, 2H), 1,93-1,88 (м, 2H).
Стадия 5: Получение 9-(1-пропилпиперидин-4-илокси)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000034
Соединение (55 мг, 0,17 ммоль), полученное на стадии 4, и карбонат калия (70 мг, 0,50 ммоль) растворяли в ацетонитриле (10 мл), добавляли 1-бромпропан (53 мкл, 0,058 моль) при комнатной температуре. Полученную в результате смесь перемешивали в течение ночи при 60°C и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=5:1) с получением указанного в заголовке соединения (34 мг, выход: 61%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3); δ 10,59 (с, 1H), 9,04 (м, 1H), 8,80 (дд, J=8,0 Гц, 2,0 Гц, 1H), 8,27 (д, J=2,4 Гц, 1H), 7,56 (дд, J=8,0 Гц, 4,8 Гц, 1H), 7,29 (д, J=8,8 Гц, 1H), 7,21 (дд, J=8,8 Гц, 2,4 Гц, 1H), 4,56 (м, 1H), 2,82 (м, 2H), 2,41 (м, 4H), 2,14 (м, 2H), 1,95 (м, 2H), 1,58 (м, 2H), 0,93 (т, J=7,2 Гц, 3H).
Стадия 6: Получение 9-(1-пропилпиперидин-4-илокси)-1,2,3,4- тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000035
Соединение (30 мг, 0,09 ммоль), полученное на стадии 5, растворяли в смеси этанол (4 мл)/дихлорметан (2 мл), добавляли 10%-палладий (Pd) (6 мг) при комнатной температуре. Полученную в результате смесь перемешивали в течение одного дня в газообразном водороде. Применяя целит, удаляли 10%-палладий (Pd), и фильтрат концентрировали при пониженном давлении. Добавляли этилацетат и осадок собирали фильтрацией с получением указанного в заголовке соединения (28 мг, выход: 92%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3 + CD3OD); δ 7,18-7,14 (м, 2H), 7,05 (д, J=8,8 Гц, 1H), 4,64 (м, 1H), 3,44 (м, 2H), 2,66 (м, 2H), 2,35 (м, 2H), 2,12-2,09 (м, 2H), 1,98-1,92 (м, 2H), 1,80 (м, 2H), 1,00 (т, J=7,2 Гц, 3H).
Стадия 7: Получение дигидрохлорида 9-(1-пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000036
Соединение (28 мг, 0,08 ммоль), полученное на стадии 6, растворяли в смеси этанол/1,4-диоксан, добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты. Полученную в результате смесь перемешивали в течение ночи при комнатной температуре. После завершения реакции смесь концентрировали при пониженном давлении и промывали этилацетатом. Органический слой сушили над безводным сульфатом натрия и концентрировали при пониженном давлении с получением указанного в заголовке соединения (27 мг, выход: 79%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,77 (м, 1H), 10,73 (ушир., 2H), 7,75 (м, 1H), 7,39-7,36 (м, 1H), 7,27-7,23 (м, 1H), 4,81-4,69 (м, 1H), 3,53 (м, 2H), 3,38 (м, 2H), 3,15-3,05 (м, 4H), 2,54 (м, 2H), 2,23-2,19 (м, 2H), 2,08-2,00 (м, 2H), 1,82 (м, 2H), 1,73 (м, 2H), 0,91 (т, J=7,2 Гц, 3H).
<Пример 12> Получение дигидрохлорида 9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000037
За исключением того, что 1-бромметан использовали вместо бромпропана на стадии 5 примера 11, осуществляли тот же способ, как и в примере 11, с получением указанного в заголовке соединения.
1H ЯМР (400 МГц, ДМСО-d6); δ 11,52 (д, J=12,0 Гц, 1H), 10,60 (с, 1H), 7,65 (с, 1H), 7,34-7,31 (м, 1H), 7,25-7,20 (м, 1H), 4,76-4,59 (м, 1H), 3,50-3,29 (м, 4H), 3,15-3,06 (м, 2H), 2,67 (м, 4H), 2,23-2,04 (м, 3H), 1,88-1,80 (м, 4H).
<Пример 13> Получение дигидрохлорида 1-метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение трет-бутил 4-(1-метил-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси)пиперидин-1-карбоксилата
Figure 00000038
9-Гидрокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он (60 мг, 0,26 ммоль), полученный в примере 10, растворяли в смеси ацетонитрил (8 мл)/N,N-диметилформамид (4 мл), добавляли трет-бутил 4-(метилсульфонилокси)пиперидин-1-карбоксилат (220 мг, 0,78 ммоль) при комнатной температуре. Полученную в результате смесь перемешивали в течение четырех дней при 90-100°C и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия, концентрировали при пониженном давлении. Затем остаток очищали колоночной флэш-хроматографией (хлороформ:метанол=20:1) с получением указанного в заголовке соединения (70 мг, выход: 65%, коричневое масло).
1H ЯМР (400 МГц, CDCl3); δ 11,35 (с, 1H), 7,27 (м, 2H), 7,06 (дд, J=8,8 Гц, 3,2 Гц, 1H), 4,49-4,44 (м, 1H), 3,75-3,68 (м, 2H), 3,38-3,31 (м, 2H), 3,17-3,15 (м, 2H), 2,98 (с, 3H), 2,69 (т, J=6,4 Гц, 2H), 1,95-1,75 (м,6H), 1,47 (с, 9H).
Стадия 2: Получение 1-метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000039
Соединение (70 мг, 0,17 ммоль), полученное на стадии 1, растворяли в 1,4-диоксане (3 мл), добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты. Полученную в результате смесь перемешивали в течение ночи при комнатной температуре и осадок собирали фильтрацией с получением указанного в заголовке соединения (56 мг, выход: 86%, коричневое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,35 (с, 1H), 8,97-8,83 (м, 2H), 7,24-7,22 (м, 2H), 7,15 (д, J=8,8 Гц, 1H), 4,64 (м, 1H), 3,20 (м, 2H), 3,07 (м, 4H), 2,90 (с, 3H), 2,42 (т, J=6,4 Гц, 2H), 2,08 (м, 2H), 1,86-1,77 (м, 4H).
<Пример 14> Получение дигидрохлорида 1-метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 1-метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000040
Соединение (45 мг, 0,13 ммоль), полученное на стадии 2 примера 13, растворяли в смеси метанол (3 мл)/дихлорметан (3 мл), последовательно добавляли формальдегид (29 мкл, 0,38 ммоль), уксусную кислоту (12 мкл, 0,22 ммоль) и триацетоксиборгидрид натрия (108 мг, 0,51 ммоль) при комнатной температуре. Полученную в результате смесь перемешивали в течение ночи при комнатной температуре и выливали в охлажденный 2 н. водный раствор гидроксида натрия. Смесь экстрагировали хлороформом и промывали соляным раствором. Органический слой сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=5:1) с получением указанного в заголовке соединения (28 мг, выход: 66%, желтое масло).
1H ЯМР (400 МГц, CDCl3); δ 10,99 (3, 1H), 7,26-7,22 (м, 2H), 7,06 (дд, J=8,8 Гц, 2,0 Гц, 1H), 4,36 (м, 1H), 3,17-3,15 (м, 2H), 2,98 (с, 3H), 2,76 (м, 2H), 2,68 (т, J=6,4 Гц, 2H), 2,43-2,32 (м, 5H), 2,07 (м, 2H), 1,91-1,87 (м, 4H).
Стадия 2: Получение дигидрохлорида 1-метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000041
Соединение (25 мг, 0,08 ммоль), полученное на стадии 1, растворяли в 1,4-диоксане (3 мл), добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты. Полученную в результате смесь перемешивали в течение 3 дней при комнатной температуре и осадок собирали фильтрацией с получением указанного в заголовке соединения (524 мг, выход: 79%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,48 (с, 1H), 10,90 (м, 1H), 7,32-7,14 (м, 3H), 4,75-4,54 (м, 1H), 3,45-3,42 (м, 1H), 3,24-3,11 (м, 5H), 2,93 (с, 3H), 2,76-2,71 (м, 3H), 2,44 (м, 2H), 2,22-1,90 (м, 4H), 1,79 (м, 2H).
<Пример 15> Получение дигидрохлорида 5-оксо-N-[2-(пиперидин-1-ил)этил]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида
Стадия 1: Получение 6-(4-метоксибензил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-карбоновой кислоты
Figure 00000042
Соединение (200 мг, 0,51 ммоль), полученное на стадии 3 примера 5, растворяли в метаноле, добавляли 1 н. гидроксид натрия (5 мл). Полученную в результате смесь кипятили с обратным холодильником в течение 18 часов, охлаждали до комнатной температуры. Смесь концентрировали при пониженном давлении и добавляли воду. Водный слой подкисляли 1 н. хлороводородной кислотой и экстрагировали этилацетатом. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Получали заявленное в заголовке соединение (140 мг, выход: 76%, белое твердое вещество) без стадии очистки.
1H ЯМР (400 МГц, CDCl3): δ 9,37 (с, 1H), 9,14-9,13 (м, 1H), 8,73 (д, J=8,0 Гц, 1H), 8,09 (д, J=8,0 Гц, 1H), 7,78-7,75 (м, 1H), 7,60 (д, J=8,4 Гц, 1H), 7,24 (д, J=7,7 Гц, 2H), 6,87 (д, J=7,3 Гц, 2H), 5,58 (ушир.с, 2H), 3,69 (с, 3H).
Стадия 2: Получение 6-(4-метоксибензил)-5-оксо-N-[2-пиперидин-1-ил)этил]-5,6-дигидробензо[h][1,6]нафтиридин-9-карбоксамида
Figure 00000043
Соединение (30 мг, 0,09 ммоль), полученное на стадии 1, гидрохлорид 1-этил-3-(3-диметиламинопропил)карбодиимида (EDC, 48 мг, 0,25 ммоль) и гидрат 1-гидроксибензотриазола (HOBt, 34 мг, 0,25 ммоль) растворяли в N,N-диметилформамиде (5 мл) и добавляли 1-(2-аминоэтил)пиперидин (0,033 мл, 0,23 ммоль) при комнатной температуре. Полученную в результате смесь перемешивали в течение 18 часов и выливали в ледяную воду. После экстракции хлороформом органический слой сушили над безводным сульфатом натрия и концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол =7:1) с получением указанного в заголовке соединения (82 мг, выход: 92%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,26 (с, 1H), 9,02-9,00 (м, 1H), 8,80-8,78 (м, 1H), 8,05-8,02 (м, 1H), 7,57-7,54 (м, 1H), 7,42 (д, J=8,8 Гц, 1H), 7,32 (ушир.с, 1H), 7,21 (д, J=8,4 Гц, 2H), 6,84 (д, J=8,8 Гц, 2H), 5,58 (ушир.с, 2H), 3,75 (с, 3H), 3,62-3,57 (м, 2H), 2,64 (т, J=6,2 Гц, 2H), 2,51 (ушир.с, 4H), 1,68-1,62 (м, 4H), 1,49-1,48 (м, 2H).
Стадия 3: Получение гидрохлорида 5-оксо-N-(2-(пиперидин-1-ил)этил)-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида
Figure 00000044
Соединение (82 мг, 0,17 ммоль), полученное на стадии 2, взаимодействовало таким же образом, как на стадии 4 и 5 примера 1, с получением указанного в заголовке соединения (9,1 мг, выход: 15%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6); δ 11,28 (с, 1H), 9,99 (ушир.с, соль), 8,94-8,92 (м, 1H), 8,83 (с, 1H), 7,97 (д, J=8,4 Гц, 1H), 7,28 (д, J=8,8 Гц, 1H), 3,70-3,68 (м, 2H), 3,56-3,53 (м, 2H), 3,33-3,25 (м, 4H), 2,92-2,87 (м, 2H), 2,47-2,45 (м, 2H), 1,82-1,78 (м, 6H), 1,71-1,68 (м, 1H), 1,39-1,36 (м, 1H).
<Пример 16> Получение дигидрохлорида 9-[2-(диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 4-аминофенил трет-бутилкарбоната
Figure 00000045
4-Нитрофенол (2 г, 14,37 ммоль) растворяли в дихлорметане (25 мл), добавляли ди-трет-бутилдикарбонат (3,76 г, 17,25 ммоль) и 4-диметиламинопиридин (2,28 г, 18,68 ммоль). Полученную в результате смесь перемешивали в течение 10 часов при комнатной температуре и выливали в воду. После экстракции хлороформом органический слой промывали соляным раствором, сушили над безводным сульфатом магния и концентрировали при пониженном давлении. Остаток растворяли в этилацетате (30 мл) и добавляли 10%-палладий (Pd) (300 мг). Затем смесь перемешивали в атомосфере газообразного водорода в течение одного дня при комнатной температуре. После завершения реакции 10%-палладий (Pd) удаляли фильтрацией через целит и фильтрат концентрировали досуха. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=3:1) с получением указанного в заголовке соединения (2,7 г, выход: 90%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 6,94 (д, J=4,4 Гц, 2H), 6,64 (д, J=4,4 Гц, 2H), 3,62 (ушир., 2H), 1,54 (с, 9H).
Стадия 2: Получение трет-бутил 4-(хлорникотинамино)фенилкарбоната
Figure 00000046
К перемешиваемому раствору 2-хлорникотиновой кислоты (1 г, 6,35 ммоль) в дихлорметане добавляли по каплям оксалилхлорид и каталитическое количество N,N-диметилформамида при 0°C. Полученную в результате смесь кипятили с обратным холодильником в течение 3 часов и концентрировали в вакууме. Затем остаток растворяли в дихлорметане, добавляли соединение 4-аминофенил трет-бутилкарбоната (1,46 г, 7 ммоль), полученное на стадии 1, и триэтиламин при 0°C. Смесь перемешивали в течение 12 часов при комнатной температуре и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:1) с получением указанного в заголовке соединения (2,05 г, выход: 93%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,54-8,52 (м, 1H), 8,21-8,19 (м, 1H) 8,17 (ушир., 1H), 7,57 (д, J=4,2 Гц, 2H), 7,42-7,39 (м, 1H), 7,24 (д, J=4,2 Гц, 2H), 1,54 (с, 9H).
Стадия 3: Получение трет-бутил 4-[2-хлор-N-(метоксиметил)никотинамино]фенилкарбоната
Figure 00000047
Соединение (2 г, 5,09 ммоль), полученное на стадии 2, растворяли в N,N-диметилформамиде, медленно добавляли при 0°C гидрид натрия (407 мг, 10,02 ммоль). После перемешивания в течение 30 минут хлорметилметиловый эфир добавляли по каплям и перемешивание продолжали в течение 1 часа при комнатной температуре. После завершения реакции добавляли хлороформ и воду и смесь экстрагировали. Органический слой промывали соляным раствором, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (гексан:этилацетат=2:1) с получением указанного в заголовке соединения (1,16 г, выход: 52%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,24-8,22 (м, 1H), 7,47-7,45 (м, 7,12-7,04 (м, 5H), 5,26 (с, 3H), 3,59 (с, 3H), 1,54 (с, 9H).
Стадия 4: Получение трет-бутил 6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-илкарбоната
Figure 00000048
Соединение (1,16 г, 3,23 ммоль), полученное на стадии 3, растворяли в N,N-диметилформамиде, последовательно добавляли ацетат палладия(II) (218 мг, 0,97 ммоль), 1,3-бис(дифенилфосфино)пропан (400 мг, 0,97 ммоль), трибутилфосфин (0,80 мл, 3,23 ммоль) и карбонат калия (894 мг,6,47 ммоль). Полученную в результате смесь кипятили с обратным холодильником в течение 5 часов и охлаждали до комнатной температуры. Добавляли воду и дихлорметан и смесь экстрагировали. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=3:1) с получением указанного в заголовке соединения (580 мг, выход: 55%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,01-9,00 (м, 1H), 8,78-8,75 (м, 1H), 8,36 (д, J=1,4 Гц, 1H), 7,58-7,52 (м, 2H), 7,29-7,26 (м, 2H), 5,82 (с, 2H), 3,47 (с, 3H), 1,54 (с, 3H).
Стадия 5: Получение 9-гидрокси-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000049
Соединение (580 мг, 1,627 ммоль), полученное на стадии 4, растворяли в 1,4-диоксане (10 мл), добавляли 3,7 н. 1,4-диоксановый раствор хлороводородной кислоты (6 мл). Полученную в результате смесь перемешивали в течение одного дня при комнатной температуре и осадок собирали фильтрацией с получением указанного в заголовке соединения (410 мг, выход: 98%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 9,60-9 ,15 (ушир., 1H), 9,07-9,05 (с, 1H), 8,66-8,64 (м, 1H), 8,14 (с, 1H), 7,70-7,67 (м, 1H), 7,47 (д, J=4,6 Гц, 1H), 7,15-7,12 (м, 1H), 5,71 (с, 2H), 3,32 (с, 3H).
Стадия 6: Получение 9-[2-(диметиламино)этокси]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000050
Соединение (60 мг, 0,234 ммоль), полученное на стадии 5, растворяли в N,N-диметилформамиде (5 мл), добавляли карбонат калия (161 мг, 1,17 ммоль) и йодид калия (8 мг, 0,047 ммоль). После перемешивания в течение 30 минут добавляли при комнатной температуре гидрохлорид N,N-диметиламиноэтилхлорида и полученную в результате смесь перемешивали в течение еще одного дня при 70°C. Смесь экстрагировали хлороформом, сушили над безводным сульфатом магния, концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:1) с получением указанного в заголовке соединения (40 мг, выход: 53%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,01-9,00 (м, 1H), 8,78-8,75 (м, 1H), 8,36 (д, J=1,4 Гц, 1H), 7,57-7,52 (м, 2H), 7,29-7,26 (м, 2H), 5,82 (с, 2H), 4,26 (т, J=5,6 Гц, 2H), 3,47 (с, 3H), 2,81 (т, J=5,2 Гц, 2H), 2,38 (с, 6H).
Стадия 7: Получение 9-[2-(диметиламино)этокси]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000051
Соединение (40 мг, 0,122 ммоль), полученное на стадии 6, растворяли в смеси дихлорметан/метанол (5 мл), добавляли 10%-палладий (Pd) (4 мг). Полученную в результате смесь перемешивали в газообразном водороде в течение одного дня при комнатной температуре. После завершения реакции раствор фильтровали через целит и фильтрат концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:1) с получением указанного в заголовке соединения (40 мг, выход: 99%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,47-7,44 (м, 2H), 7,08-7,06 (м, 1H), 5,75 (ушир., 1H), 5,71 (с, 2H), 4,53 (т, J=5,6 Гц, 2H), 3,48 (м, 2H), 3,40 (с, 3H), 3,22 (т, J=5,6 Гц, 2H), 2,78 (с, 6H), 2,69 (т, J=6,4 Гц, 2H), 1,95 (м, 2H).
Стадия 8: Получение гидрохлорида 9-[2-(диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000052
Соединение (40 мг, 0,120 ммоль), полученное на стадии 7, растворяли в этаноле (3 мл), добавляли 12 н. хлороводородную кислоту (2 мл). Полученную в результате смесь кипятили с обратным холодильником в течение 12 часов при 90°C. После завершения реакции смесь концентрировали при пониженном давлении и остаток промывали этилацетатом с получением указанного в заголовке соединения (36 мг, выход: 84%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,70 (с, 1H), 10,61 (ушир., 1H), 7,99-7,80 (ушир., 1H), 7,69 (8, 1H), 7,38 (д, J=4,4 Гц, 1H), 7,24 (д, J=4,8 Гц, 1H), 4,43 (т, J=4,4 Гц, 2H), 3,54-3,53 (м, 2H), 3,38 (м, 1H), 2,86 (с, 3H), 2,85 (с, 3H), 2,56-2,51 (м, 2H), 1,82 (м, 2H).
По реакции примера 16 получали следующие соединения.
<Пример 17> 9-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 18> 9-(2-Метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид
<Пример 19> 9-[2-(Пиперазин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он тригидрохлорид
<Пример 20> 9-Этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид
<Пример 21> 9-[3-(Пиперидин-1-ил)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 22> 9-(2-Аминоэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 23> 9-[2-(4-Фенилпиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 24> 9-(2-Гидроксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он гидрохлорид
<Пример 25> 9-Пентокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 26> 9-[2-(Диэтиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 27> 9-(2-Морфолиноэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
<Пример 28> Хлорид 1,1-диэтил-4-[2-(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси]этил)пиперазин-1-ия
<Пример 29> 9-[4-(Пиперидин-1-ил)бутокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он дигидрохлорид
Пример Химическая структура Данные ЯМР-спектра
17
Figure 00000053
1H ЯМР (400 МГц, ДМСО-d6): δ 12,03 (c, 1H), 10,87 (ушир., 1H), 7,78 (c, 1H), 7,45 (м, 1H), 7,28 (м, 1H), 4,53 (м, 2H), 3,56-3,39 (м, 6H), 3,01 (м, 2H), 2,57 {м, 2H), 1,80-1,71 (м, 7H), 1,38 (м, 1H)
18
Figure 00000054
1H ЯМР (400 МГц, ДМСО-d6): δ 11,73 (м, 1H), 7,75 (ушир., 1H), 7,51 (c, 1H), 7,35 (д, J=4,8 Гц, 1H), 7,21 (д, J=6,0 Гц, 1H), 4,14 (т, J=3,6 Гц, 2H), 3,69 (т, J=5,2 Гц, 2H), 3,38-3,37 (м, 2H), 3,32 (c, 3H), 2,55-2,53 (м, 2H), 1,84-1,81 (м, 2H)
19
Figure 00000055
1H ЯМР (400 МГц, CD3OD): δ 7,70 (c, 1H), 7,53 (м, 2H), 4,58 (c, 2H), 3,79-3,48 (м, 6H), 2,71 (м, 2H), 2,01 (т, J=7,6 Гц, 2H)
20
Figure 00000056
1H ЯМР (400 МГц, ДМСО-d6): δ 11,93 (c, 1H), 7,97 (ушир., 2H), 7,52 (c, 1H), 7,38 (д, J=8,8 Гц, 1H), 7,20 (д, J=8,4 Гц, 1H), 4,06 (кв.т, J=6,4 Гц, 2H), 3,37 (м, 2H), 2,54 (м, 2H), 1,81 (м, 2H), 1,33 (т, J=6,4 Гц, 3H)
21
Figure 00000057
1H ЯМР (400 МГц, ДМСО-d6): δ 10,30 (ушир.с, 1H), 7,23-7,20 (м, 2H), 6,87-6,94 (м, 1H), 5,06 (ушир.с, 2H), 4,04 (т, J=6,7 Гц, 2H), 3,47-3,43 (м, 2H), 2,76-2,72 (м, 2H), 2,64-2,56 (м, 6H), 2,07-2,02 (м, 4H), 1,69-1,63 (м, 4H), 1,47-1,42 (м, 2H)
22
Figure 00000058
1H ЯМР (400 МГц, ДМСО-d6): δ 12,02 (c, 1H), 8,13 (ушир., 3H), 7,79 (c, 1H), 7,47 (д, J=8,8Гц, 1H), 7,25 (м, 1H), 4,47 (м, 2H), 3,50 (м, 2H), 3,41 (м, 2H), 2,52 (м, 2H), 1,85 (м, 2H)
23
Figure 00000059
1H ЯМР (400 МГц, ДМСО-d6): δ 11,10 (c, 1H), 10,34 (ушир., 1H), 7,51 (c, 1H), 7,35-7,31 (м, 3H), 7,24-7,22 (м, 3H), 7,18-7,16 (м, 1H), 4,43 (c, 2H), 3,67-3,64 (м, 4H), 3,36-3,33 (м, 2H), 3,19-3,14 (м, 4H), 2,86-2,78 (м, 2H), 2,06-2,00 (м, 4H), 1,79-1,78 (м, 2H)
24
Figure 00000060
1H ЯМР (400 МГц, ДМСО-d6); δ 11,54 (c, 1H), 7,72-7,46 (ушир., 1H), 7,46 {с, 1H), 7,31 (д, J=4,0 Гц, 1H), 7,17 (д, J=4,8 Гц, 1H), 4,02-4,01 (м, 2H), 3,74-3,73 (м, 2H), 3,36 (м, 2H), 2,54 (10, 2H), 1,82 (м, 2H)
25
Figure 00000061
1H ЯМР (400 МГц, ДМСО-d6): δ 12,08 (c, 1H), 8,07 (ушир., 2H), 7,57 (д, J=2,4 Гц, 1H), 7,43 (д, J=9,2 Гц, 1H), 7,36-7,29 (м, 4H), 7,25-7,16 (м, 2H), 4,22 (т, J=6,8 Гц, 2H), 3,38-3,36 (м, 2H), 3,07 (т, J=6,8 Гц, 2H), 2,57 (т, J=6,0 Гц, 2H), 1,83-1,80 (м, 2H)
26
Figure 00000062
1H ЯМР (400 МГц, ДМСО-d6): δ 12,00 (c, 1H), 10,76 (c, 1H), 8,28 (ушир., 2H), 7,78 (д, J=2,0 Гц, 1H), 7,45 (д, 7=8,8 Гц, 1H), 7,27 (дд, J=8,8 Гц, 1,6 Гц, 1H), 4,48 (т, J=4,8 Гц, 2H), 3,52 (м, 2H), 3,40 (м, 2H), 3,23-3,20 (м, 4H), 2,57 (т, J=5,8 Гц, 2H), 1,83 (м, 2H), 1,26 (т, J=7,2 Гц, 6H)
27
Figure 00000063
1H ЯМР (400 МГц, ДМСО-d6): δ 11,78 (c, 1H), 11,40 (c, 1H), 7,69 (д, J=2,4 Гц, 1H), 7,49 (д, J=8,8 Гц, 1H), 7,25 (дд, J=2,4 Гц, 8,8 Гц, 1H), 4,51 (т, J=4,8 Гц, 2H), 3,97 (д, J=12 Гц, 2H), 3,84 (т, J=12 Гц, 2H), 3,57 (м, 2H), 3,51 (д, J=12 Гц, 2H), 3,40-3,37 (м, 2H), 3,23-3,20 (м, 2H), 2,56-2,53 (м, 2H), 1,84-1,81 (м, 2H)
28
Figure 00000064
1H ЯМР (400 МГц, ДМСО-d6): δ 11,86 (c, 1H), 7,75 (c, 1H), 7,40 (д, J=8,8 Гц, 1H), 7,26 (д, J=7,6 Гц, 1H), 4,51 (c, 2H), 3,79 (c, 8H), 3,71 (c, 2H), 3,54 (ушир.с, 4H), 3,39 (т, J=7,2 Гц, 2H), 2,54 (c, 2H), 1,81 (с, 2H), 1,21 (т, J=6,4 Гц, 6H)
29
Figure 00000065
1H ЯМР (400 МГц, ДМСО-d6): δ 11,56 (м, 1H), 10,03 (д, J=17,6 Гц, 1H), 8,57 (ушир., 1H), 7,75 (ушир., 1H), 7,53 (д, J=7,4 Гц, 1H), 7,32 (д, J=4,8 Гц, 1H), 7,17 (д, J=4,4 Гц, 1H), 4,06-4,04 (м, 2H), 3,43-3,37 (м, 6H), 3,11-3,04 (м, 1H), 3,01-2,94 (м, 1H), 2,88-2,75 (м, 2H), 1,81-1,70 (м, 10H), 1,5 (м, 2H)
<Пример 30> Получение дигидрохлорида 1-метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 9-метокси-6-(4-метоксибензил)-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000066
9-Метокси-6-(4-метоксибензил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он (500 мг, 1,36 ммоль) растворяли в N,N-диметилформамиде (10 мл), добавляли гидрид натрия (140 мг, 2,04 ммоль) при 0°C. После перемешивания в течение 30 минут добавляли йодметан (0,13 мл, 2,04 ммоль) и полученную в результате смесь перемешивали в течение 3 часов при 0°C. После завершения смесь выливали в ледяную воду и экстрагировали этилацетатом. Объединенный органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (445 мг, выход: 90%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,32-7,31 (м, 1H), 7,22-7,20 (м, 1H), 7,17 (д, J=8,8 Гц, 2H), 6,98-6,95 (м, 1H), 6,83 (д, J=8,8 Гц, 1H), 3,84 (с, 3H), 3,75 (с, 3H), 3,18-3,15 (м, 2H), 2,97 (с, 3H), 2,71 (т, J=6,6 Гц, 2H), 1,93 (м, 2H).
Стадия 2: Получение 9-Метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000067
Соединение (440 мг, 1,20 ммоль), полученное на стадии 1, растворяли в избытке трифторуксусной кислоты (3 мл) и полученную в результате смесь нагревали при 100°C в течение 18 часов в герметизированной пробирке. Смесь выливали в ледяную воду и подщелачивали 2 н. водным раствором гидроксида натрия. После нейтрализации 2 н. водным раствором хлороводородной кислоты необработанный раствор экстрагировали дихлорметаном и промывали соляным раствором. Органический слой сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=10:1) с получением указанного в заголовке соединения (260 мг, выход: 88%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,89 (ушир.с, 1H), 7,24-7,21 (м, 1H), 7,15 (д, J=8,8 Гц, 1H), 7,06-7,03 (м, 1H), 3,87 (с, 3H), 3,18-3,15 (м, 2H), 3,00 (с, 3H), 2,67 (т, J=6,4 Гц, 2H), 1,91-1,85 (м, 2H).
Стадия 3: Получение дигидрохлорида 1-метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000068
Соединение (50 мг, 0,20 ммоль), полученное на стадии 2, растворяли в дихлорметане (3 мл), добавляли 1 M дихлорметановый раствор трехбромистого бора (0,61 мл, 0,61 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение 18 часов при комнатной температуре и выливали в охлажденный водный раствор бикарбоната натрия. Смесь экстрагировали этилацетатом, сушили над безводным сульфатом натрия и концентрировали досуха. И затем остаток растворяли в N,N-диметилформамиде (10 мл), добавляли карбонат калия (72 мг, 10 0,52 ммоль) и 1-(2-хлорэтил)пиперидин (48 мг, 0,26 ммоль). Полученную в результате смесь перемешивали в течение 18 часов при 90°C и охлаждали до комнатной температуры. Смесь экстрагировали хлороформом, сушили над безводным сульфатом натрия и концентрировали досуха. Остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=7:1) с получением указанного в заголовке соединения (24,7 мг, выход: 34%, белое твердое вещество). Полученное соединение (23 мг, 0,067 ммоль) взаимодействовало таким же образом, как на стадии 5 примера 5, с получением указанного в заголовке соединения (21 мг, выход: 73%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,41 (ушир.с, 1H), 10,42 (ушир.с, соль), 7,27-7,22 (м, 2H), 7,16-7,14 (м, 1H), 4,45-4,43 (м, 2H), 3,56-3,46 (м, 4H), 3,09-3,02 (м, 2H), 2,99-2,94 (м, 2H), 2,92 (с, 3H), 2,45-2,41 (м, 2H), 1,79-1,67 (м, 4H), 1,39-1,35 (м, 2H).
<Пример 31> Получение дигидрохлорида 9-[2-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение трет-бутилдиметил (4-нитрофенэтокси)силана
Figure 00000069
4-Нитрофенэтиловый спирт (1,0 г, 5,98 ммоль) растворяли в тетрагидрофуране (20 мл), последовательно добавляли трет-бутилдиметилсилилхлорид (990 мг, 6,58 ммоль) и имидазол (450 мг, 6,58 ммоль). Полученную в результате смесь перемешивали в течение одного дня и экстрагировали этилацетатом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (этилацетат:гексан=1:8) с получением указанного в заголовке соединения (1,65 г, выход: 98%, желтое масло).
1H ЯМР (400 МГц, CDCl3): δ 8,19 (д, J=8,8 Гц, 2H), 7,43 (д, J=8,8 Гц, 2H), 3,90 (т, J=6,4 Гц, 2H), 2,96 (т, J=6,4 Гц, 2H), 0,89 (с, 9H), 0,00 (с, 6H).
Стадия 2: Получение 4-[2-(трет-Бутилдиметилсилилокси)этил]анилина
Figure 00000070
Соединение (1,65 г, 5,86 ммоль), полученное на стадии 1, растворяли в этилацетате (20 мл), добавляли 10%-палладий (Pd) (165 мг) при комнатной температуре. Реакционную смесь перемешивали в течение 3 дней в газообразном водороде. Удаляли 10%-палладий (Pd), применяя фильтр с целитом, и фильтрат концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (этилацетат:гексан=1:4) с получением указанного в заголовке соединения (1,4 г, выход: 95%, бесцветное масло).
1H ЯМР (400 МГц, CDCl3): δ 7,00 (д, J=8,0 Гц, 2H), 6,63 (д, J=8,0 Гц, 2H), 3,74 (т, J=7,4 Гц, 2H), 3,57 (с, 2H), 2,72 (т, J=7,4 Гц, 2H), 0,89 (с, 9H), 0,00 (с, 6H).
Стадия 3: Получение 9-[2-(трет-бутилметилсилилокси)этил]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000071
Осуществляли тот же способ, как и на стадиях 2-4 примера 16, используя 2-хлорникотиновую кислоту (800 мг, 5,08 ммоль), с получением указанного в заголовке соединения (950 мг, выход (4 стадии): 47%, желтое масло).
1H ЯМР (400 МГц, CDCl3): δ 9,01 (дд, J=4,4 Гц, 2,0 Гц, 1H), 8,75 (дд, J=8,0 Гц, 2,0 Гц, 1H), 8,70 (д, J=2,0 Гц, 1H), 7,56-7,48 (м, 3H), 5,83 (с, 2H), 3,88 (т, J=6,8 Гц, 2H), 3,46 (с, 3H), 2,98 (т, J=6,8 Гц, 2H), 0,87 (с, 9H), 0,00 (с, 6H).
Стадия 4: Получение 9-(2-гидроксиэтил)-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000072
Соединение (850 мг, 2,13 ммоль), полученное на стадии 3, растворяли в растворе 3,7 н. хлороводородная кислота/1,4-диоксан, и раствор перемешивали в течение ночи при комнатной температуре. После завершения реакции осадок собирали фильтрацией с получением указанного в заголовке соединения (540 мг, выход: 89%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6 + CDCl3): δ 9,06-9,04 (м, 1H), 8,83-8,79 (м, 2H), 7,66 (дд, J=8,0 Гц, 4,8 Гц, 1H), 7,59-7,54 (м, 2H), 5,81 (с, 2H), 3,85 (т, J=6,8 Гц, 2H), 3,44 (с, 3H), 2,99 (т, J=6,8 Гц, 2H).
Стадия 5: Получение 2-[6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-ил]ацетальдегида
Figure 00000073
Соединение (50 мг, 0,18 ммоль), полученное на стадии 4, растворяли в дихлорметане (10 мл), добавляли периодинан Десс-Мартина (112 мг, 0,26 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение 90 минут при комнатной температуре и выливали в насыщенный водный раствор бикарбоната натрия. Смесь экстрагировали дихлорметаном и промывали соляным раствором. Органический слой сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (этилацетат:гексан=1:1) с получением указанного в заголовке соединения (25 мг, выход: 50%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,85 (с, 1H), 9,01 (дд, J=4,4 Гц, 1,6 Гц, 1H), 8,78-8,74 (м, 2H), 7,64 (д, J=8,8 Гц, 1H), 7,55 (дд, J=8,0 Гц, 4,4 Гц, 1H), 7,46 (дд, J=8,8 Гц, 2,0 Гц, 1H), 5,84 (с, 2H), 3,88 (с, 2H), 3,47 (с, 3H).
Стадия 6: Получение 9-([2-(диметиламино)этил]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Соединение (35 мг, 0,12 ммоль), полученное на стадии 5, растворяли в метаноле (5 мл), последовательно добавляли диметиламин (0,52 мл, 1,04 ммоль), цианоборгидрид натрия (8 мг, 0,13 ммоль), хлорид цинка (II) (8 мг, 0,06 ммоль) и 1,25 н. метанольный раствор хлороводородной кислоты (0,58 мл, 0,72 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение одного часа при 0°C и выливали в водный раствор бикарбоната натрия. Смесь экстрагировали хлороформом и промывали соляным раствором. Органический слой сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=5:1) с получением указанного в заголовке соединения (22 мг, выход: 59%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,02 (дд, J=4,4 Гц, 1,6 Гц, 1H), 8,76 (дд, J=8,0 Гц, 1,6 Гц, 1H), 8,69 (д, J=2,4 Гц, 1H), 7,58-7,47 (м, 3H), 5,83 (с, 2H), 3,47 (с, 3H), 2,97 (т, J=8,0 Гц, 2H), 2,67 (т, J=8,0 Гц, 2H), 2,36 (с, 6H).
Стадия 7: Получение 9-[2-(диметиламино)этил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000075
Соединение (22 мг, 0,07 ммоль), полученное на стадии 6, растворяли в смеси этанол (4 мл)/дихлорметан (2 мл), добавляли 10%-палладий (Pd) (5 мг) при комнатной температуре. Полученную в результате смесь перемешивали в течение одного дня в газообразном водороде и фильтровали, применяя целит, для удаления 10%-палладия (Pd). Затем фильтрат концентрировали при пониженном давлении с получением указанного в заголовке соединения (20 мг, выход: 90%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,58 (с, 1H), 7,46 (д, J=8,8 Гц, 1H), 7,29 (дд, J=8,8 Гц, 1,6 Гц, 1H), 5,71 (с, 2H), 5,36 (с, 1H), 3,46 (м, 2H), 3,40 (с, 3H), 3,07 (м, 2H), 2,97 (м, 2H), 2,68 (т, J=6,4 Гц, 2H), 2,59 (с, 6H), 1,99-1,93 (м, 2H).
Стадия 8: Получение дигидрохлорида 9-[2-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000076
Соединение (20 мг, 0,06 ммоль), полученное на стадии 7, растворяли в этаноле (4 мл) и добавляли конц. хлороводородную кислоту (0,5 мл). Полученную в результате смесь перемешивали в течение 8 часов при 80°C и охлаждали до комнатной температуры. Затем смесь концентрировали при пониженном давлении с получением указанного в заголовке соединения (18 мг, выход: 82%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,91 (с, 1H), 10,97 (с, 1H), 8,12 (с, 1H), 7,46-7,43 (м, 2H), 3,37 (м, 4H), 3,09 (м, 2H), 2,79 (с,6H), 2,55 (м, 2H), 1,81 (м, 2H).
<Пример 32> Получение дигидрохлорида 8-[2-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000077
Применяли тот же способ, как и способ примера 31, с получением указанного в заголовке соединения.
1H ЯМР (400 МГц, ДМСО-d6): δ 10,99 (с, 1H), 10,76 (ушир., 1H), 8,79 (ушир., 1H), 7,83-7,81 (м, 1H), 7,22-7,19 (м, 1H), 6,92-6,80 (м, 1H), 4,37-4,35 (м, 2H), 3,37-3,34 (м, 2H), 3,06-3,02 (м, 2H), 2,82 (с, 6H), 2,46-2,43 (м, 2H), 1,79-1,78 (м, 2H).
<Пример 33> Получение дигидрохлорида 9-[3-(диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение этил 3-(4-аминофенил)пропионата
Figure 00000078
Этил 3-(4-нитрофенил)акрилат (3 г, 13,56 ммоль) растворяли в смеси метанол/тетрагидрофуран (20 мл), добавляли 10%-палладий (Pd) (300 мг). Полученную в результате смесь перемешивали в течение одного дня в газообразном водороде при комнатной температуре и фильтровали, применяя целит, для удаления 10%-палладия (Pd). Затем фильтрат концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=3:1) с получением указанного в заголовке соединения (2,14 г, выход: 82%, бесцветная жидкость).
1H ЯМР (400 МГц, ДМСО-d6): δ 6,99 (д, J=4,0 Гц, 2H), 6,62 (д, J=4,2 Гц, 2H), 4,12 (кв, J=3,6 Гц, 2H), 3,58 (ушир., 2H), 2,84 (т, J=8,0, 2H), 2,56 (т, J=7,6 Гц, 2H), 1,24 (т, J=6,4 Гц, 3H).
Стадия 2: Получение этил 3-[4-(2-хлорникотинамидо)фенил]пропионата
Figure 00000079
2-Хлорникотиновую кислоту (1 г, 6,35 ммоль) растворяли в дихлорметане и добавляли оксалилхлорид и каталитическое количество N,N-диметилформамида при 0°C. Полученную в результате смесь кипятили с обратным холодильником в течение 3 часов и концентрировали при пониженном давлении и затем полученный хлорангидрид кислоты растворяли в дихлорметане и охлаждали до 0°C. Добавляли этил 3-(4-нитрофенил)акрилат (1,35 г, 7 ммоль), полученный на стадии 1, и триэтиламин, и реакционную смесь перемешивали при комнатной температуре в течение 12 часов. Смесь экстрагировали хлороформом, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (хлороформ:метанол=10:1) с получением указанного в заголовке соединения (2,1 г, выход: 92%, бесцветная жидкость).
1H ЯМР (400 МГц, CDCl3): δ 8,53-8,51 (м, 1H), 8,21-8,19 (м, 3H) 8,15 (ушир., 1H), 7,57 (д, J=3,4 Гц, 2H), 7,43-7,39 (м, 1H), 7,30-7,22 (м, 2H), 4,15-4,09 (м, 2H), 2,96 (т, J=8,0 Гц, 2H), 2,62 (т, J=8,0 Гц, 2H), 1,25 (м, 3H).
Стадия 3: Получение этил 3-{4-[2-хлор-N-(метоксиметил)никотинамидо]фенил}пропионата
Figure 00000080
Соединение (100 мг, 0,31 ммоль), полученное на стадии 2, растворяли в N,N-диметилформамиде (3 мл), добавляли гидрид натрия (407 мг, 10,02 ммоль) при 0°C. После перемешивания в течение 30 минут добавляли по каплям хлорметилметиловый эфир и полученную в результате смесь перемешивали в течение 8 часов. Смесь выливали в ледяную воду и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=2:1) с получением указанного в заголовке соединения (57 мг, выход: 50%, желтая жидкость).
1H ЯМР (400 МГц, CDCl3): δ 8,24 (м, 1H), 7,47-7,45 (м, 1H), 7,12-7,04 (м, 5H), 5,26 (с, 2H), 4,09 (кв, J=3,6 Гц, 2H), 3,59 (с, 3H), 2,83 (т, J=8,4 Гц, 2H), 2,51 (т, J=7,6 Гц, 2H), 1,21 (т, J=7,2 Гц, 3H).
Стадия 4: Получение этил 3-[6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-ил]пропионата
Figure 00000081
Соединение (55 мг, 0,146 ммоль), полученное на стадии 3, растворяли в N,N-диметилформамиде (3 мл), последовательно добавляли ацетат палладия (II) (9,83 мг, 0,0438 ммоль), 1,3-бис(дифенилфосфино)пропан (18 мг, 0,0438 ммоль), трибутилфосфин (0,036 мл, 0,146 ммоль) и карбонат калия (40 мг, 0,292 ммоль). Полученную в результате смесь кипятили с обратным холодильником в течение 5 часов. Добавляли к вышеуказанному раствору воду и смесь экстрагировали хлороформом. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (гексан:этилацетат=3:1) с получением указанного в заголовке соединения (31 мг, выход: 64%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,02-9,00 (м, 1H), 8,77-8,71 (м, 2H), 7,57-7,48 (м, 3H), 5,83 (с, 2H), 4,15 (кв, J=3,6 Гц, 2H), 3,47 (с, 3H), 3,11 (т, J=8,0 Гц, 2H), 2,73 (т, J=7,6 Гц, 2H), 1,26 (т, J=6,8 Гц, 3H).
Стадия 5: Получение 3-[6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-ил]пропаноновой кислоты
Figure 00000082
Соединение (1,15 г, 3,38 ммоль), полученное на стадии 4, растворяли в смеси дихлорметан/метанол (20 мл), добавляли 4 н. водный раствор гидроксида натрия при комнатной температуре. Полученную в результате смесь перемешивали в течение 12 часов и подкисляли 4 н. хлороводородной кислотой. Затем осадок собирали фильтрацией с получением указанного в заголовке соединения (780 мг, выход: 74%, белое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 12,17 (с, 1H), 9,06-9,05 (м, 1H), 8,64-8,58 (м, 2H), 7,69-7,67 (м, 1H), 7,53 (м, 2H) 5,73 (с, 2H), 3,31 (с, 3H),2,95 (т, J=7,6 Гц, 2H), 2,61 (т, J=7,6 Гц, 2H).
Стадия 6: Получение 9-(3-гидроксипропил)-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000083
Соединение (780 мг, 2,50 ммоль), полученное на стадии 5, растворяли в тетрагидрофуране, добавляли по каплям 2 M тетрагидрофурановый раствор комплекса диметилсульфида и борана (6,24 мл, 12,49 ммоль). Полученную в результате смесь перемешивали в течение 3 часов при комнатной температуре и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=15:1) с получением указанного в заголовке соединения (45 мг, выход: 75%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,02-9,00 (м, 1H), 8,78-8,70 (м, 2H), 7,58-7,47 (м, 3H), 5,84 (с, 2H), 3,73 (т, J=6,4 Гц, 2H), 3,48 (с, 3H), 2,88 (т, J=7,6 Гц, 2H), 2,02-1,98 (м, 2H).
Стадия 7: Получение 3-[6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-9-ил]пропаналя
Figure 00000084
Соединение (200 мг, 0,67 ммоль), полученное на стадии 6, растворяли в дихлорметане, добавляли хлорхромат пиридиния (289 мг, 1,34 ммоль) и силикагель (289 мг) при комнатной температуре. Полученную в результате смесь перемешивали в течение 2 часов при комнатной температуре и фильтровали для удаления силикагеля. Фильтрат экстрагировали дихлорметаном, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=15:1) с получением указанного в заголовке соединения (151 мг, выход: 76%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,87 (с, 1H), 9,02-9,00 (м, 1H), 8,77-8,70 (м, 2H), 7,58-7,46 (м, 3H), 5,83 (с, 2H), 3,47 (с, 3H), 3,14-3,10 (м, 2H), 2,93-2,89 (м, 2H).
Стадия 8: Получение 9-[3-(диметиламино)пропил]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000085
Соединение (151 мг, 0,51 ммоль), полученное на стадии 7, растворяли в метаноле, последовательно добавляли 2 M диметиламин (2,18 мл, 4,38 ммоль), цианоборгидрид натрия (35 мг, 0,56 ммоль), хлорид цинка (II) (35 мг, 0,255 ммоль) и 1,25 M хлороводородную кислоту (2,44 мл, 3,06 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение одного часа при комнатной температуре. Смесь выливали в ледяную воду и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=15:1) с получением указанного в заголовке соединения (152 мг, выход: 92%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,03-9,01 (м, 1H), 8,76-8,75 (м, 1H), 8,69 (м, 1H), 7,57-7,48 (м, 3H), 5,83 (с, 2H), 3,48 (с, 3H), 2,80 (т, J=7,6 Гц, 2H), 2,58 (с,6H), 2,36 (т, J=7,6 Гц, 2H), 1,92-1,87 (м, 2H).
Стадия 9: Получение 9-[3-(диметиламиноамино)пропил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000086
Соединение (110 мг, 0,67 ммоль), полученное на стадии 8, растворяли в смеси дихлорметан/метанол (10 мл), добавляли 10%-палладий (11 мг). Полученную в результате смесь перемешивали в течение одного дня при комнатной температуре в газообразном водороде. После завершения реакции раствор фильтровали через целит и фильтрат концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:1) с получением указанного в заголовке соединения (112 мг, выход: 99%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,87 (с, 1H), 7,44 (д, J=4,4 Гц, 1H), 7,23 (д, J=4,2 Гц, 2H), 6,42 (с, 1H), 5,72 (с, 2H), 3,49 (м, 2H), 3,41 (с, 3H), 2,93-2,89 (м, 4H), 2,77 (с, 6H), 2,68 (т, J=6,0 Гц, 2H), 2,39-2,36 (м, 2H), 1,95-1,93 (м, 2H).
Стадия 10: Получение дигидрохлорида 9-[3-(диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000087
Соединение (112 мг, 0,34 ммоль), полученное на стадии 9, растворяли в этаноле (3 мл) и добавляли 12 н. хлороводородную кислоту (2 мл). Полученную в результате смесь кипятили с обратным холодильником в течение 12 часов. После завершения реакции смесь концентрировали и перекристаллизовывали из смеси метанол/этилацетат с получением указанного в заголовке соединения (110 мг, выход: 90%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,79 (с, 1H), 10,62 (с, 1H), 7,97 (с, 1H), 7,44 (д, J=4,2 Гц, 1H), 7,37 (д, J=4,2 Гц, 1H), 3,37 (м, 2H), 3,01 (м, 2H), 2,73 (с, 3H), 2,72 (с, 3H), 2,70-2,68 (м, 2H), 2,56-2,53 (м, 2H), 2,07-2,04 (м, 1H), 1,83-1,80 (м, 2H).
<Пример 34> Получение дигидрохлорида 8-[2-(диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида
Стадия 1: Получение 8-[2-(диметиламино)этокси]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000088
8-Гидрокси-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-он (58 мг, 0,22 ммоль) и карбонат калия (94 мг, 0,67 ммоль) растворяли в N,N-диметилформамиде (5 мл) и добавляли 2-(диметиламино)этилхлорид (39 мг, 0,27 ммоль). Полученную в результате смесь перемешивали в течение 2 часов при 90°C и выливали в ледяную воду. Смесь экстрагировали хлороформом, сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=6:1) с получением указанного в заголовке соединения (53 мг, выход: 73%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,97-8,82 (м, 1H), 8,77-8,72 (м, 1H), 8,70-8,67 (м, 1H), 7,46-7,42 (м, 1H), 7,18 (с, 1H), 7,02-6,98 (м, 1H), 5,79 (ушир., 2H), 4,22-4,17 (м, 2H), 3,43 (с, 3H), 2,83-2,78 (м, 2H), 2,38 (с, 6H).
Стадия 2: Получение дигидрохлорида 8-[2-(диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида
Figure 00000089
Для получения промежуточного продукта применяли тот же способ, как и на стадии 4 примера 6, используя соединение (50 мг, 0,15 ммоль), полученное на стадии 1. Промежуточный продукт растворяли в этаноле (5 мл) и добавляли конц. хлороводородную кислоту (1 мл). Полученную в результате смесь кипятили с обратным холодильником в течение 18 часов и охлаждали до комнатной температуры. Смесь концентрировали при пониженном давлении и перекристаллизовывали из смеси метанол/этилацетат с получением указанного в заголовке соединения (51 мг, выход: 94%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,09 (с, 1H), 10,21 (ушир.с, соль), 7,83 (д, J=9,1 Гц, 1H), 6,85 (д, J=8,8 Гц, 1H), 6,80 (с, 1H), 4,37-4,35 (м, 2H), 3,59-3,44 (м, 2H), 3,32-3,29 (м, 2H), 2,85 (с, 3H), 2,84 (с, 3H), 2,46-2,43 (м, 2H), 1,79-1,78 (м, 2H).
По реакции примера 34 получали следующие соединения.
<Пример 35> Дигидрохлорид 8-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 36> Дигидрохлорид 8-[3-(диметиламино)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Пример Химическая структура Данные ЯМР-спектра
335
Figure 00000090
1H ЯМР (400 МГц, ДМСО-d6); δ 11,29 (c, 1H), 10,41 (c, 1H), 7,87 (д, J=8,8 Гц, 1H), 6,86-6,84 (м, 2H), 4,43 (т, J=4,6 Гц, 2H), 3,50-3,49 (м, 4H), 3,32 (м, 2H), 3,04-2,95 (м, 2H), 2,47 (м, 2H), 1,79 (м, 6H), 1,71-1,67 (м, 1H), 1,38 (м, 1H)
336
Figure 00000091
1H ЯМР (400 МГц, ДМСО-d6); δ 11,65 (c, 1H), 10,59 (c, 1H), 7,94 (д, J=4,4 Гц, 1H), 7,90-7,61 (ушир., 1H), 6,90-6,88 (м, 2H), 4,11 (т, J=6,0 Гц, 2H), 3,34 (м, 2H), 3,25-3,18 (м, 2H), 2,78 (c, 3H), 2,77 (c, 3H), 2,53-2,51 (м, 2H), 2,20-2,16 (м, 2H), 1,82-1,79 (м, 2H)
<Пример 37> Получение гидрохлорида 8-(диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение N,N-диметил-3-нитроанилина
Figure 00000092
3-Нитроанилин (1,0 г, 7,25 ммоль) растворяли в N,N-диметилформамиде (50 мл), добавляли гидрид натрия (1,7 г, 21,7 ммоль) и йодметан (2,7 мл, 21,7 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение 4 часов при комнатной температуре и выливали в ледяную воду. Смесь экстрагировали этилацетатом, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (2,0 г, выход: 86%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,53-7,48 (м, 1H), 7,33 (т, J=8,0 Гц, 1H), 6,96 (д, J=8,0 Гц, 1H), 3,04 (с, 6H).
Стадия 2: Получение N',N'-диметилбензол-1,3-диамина
Figure 00000093
Соединение (1,0 г, 6,08 ммоль), полученное на стадии 1, растворяли в метаноле (25 мл) и добавляли 10%-палладий (Pd) (100 мг). Смесь гидрировали в течение 15 часов при комнатной температуре в газообразном водороде. После завершения реакции 10%-палладий (Pd) удаляли, применяя фильтр с целитом, и фильтрат концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (гексан:этилацетат=1:1) с получением указанного в заголовке соединения (700 мг, выход: 90%, бесцветная жидкость).
1H ЯМР (400 МГц, CDCl3): δ 7,04 (т, J=7,6 Гц, 1H), 6,2 (д, J=8,0 Гц, 1H), 6,11-6,08 (м, 1H), 3,60 (ушир.с, 2H), 2,92 (с, 6H).
Стадия 3: Получение 8-(диметиламино)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000094
Используя 2-хлорникотиновую кислоту (700 мг, 8,9 ммоль), осуществляли тот же способ, как и на стадиях 2-4 примера 16, с получением указанного в заголовке соединения (1,08 г, выход (4 стадии): 43%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,64 (д, J=9,2 Гц, 1H), 6,90 (с, 1H), 6,63 (д, J=8,8 Гц, 1H), 6,50 (с, 1H), 5,54 (с, 2H), 3,25 (с, 2H), 3,21 (с, 3H), 2,96 (с, 6H), 2,42 (т, J=6,0 Гц, 2H), 1,76 (т, J=5,2 Гц, 2H).
Стадия 4: Получение гидрохлорида 8-(диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000095
Соединение (100 мг, 0,34 ммоль), полученное на стадии 3, растворяли в этаноле (5 мл) и добавляли конц. хлороводородную кислоту (1,0 мл). Смесь перемешивали в течение ночи при 80°C, охлаждали до комнатной температуры и концентрировали при пониженном давлении с получением указанного в заголовке соединения (89,6 мг, выход: 92%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 12,22 (с, 1H), 7,99 (д, J=9,6 Гц, 1H), 6,95 (д, J=9,6 Гц, 1H), 6,65 (с, 1H), 3,38 (т, J=5,2 Гц, 2H), 3,01 (с, 6H), 2,58 (т, J=6,4 Гц, 2H), 1,81 (т, J=5,2 Гц, 2H).
<Пример 38> Получение дигидрохлорида 8-[1-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 1-(3-аминофенил)этанола
Figure 00000096
3-Аминоацетофенон (2,0 г, 14,80 ммоль) растворяли в этаноле (25 мл) и добавляли боргидрид натрия (1,4 г, 36,99 ммоль) при 0°C. Полученную в результате смесь перемешивали в течение 3 часов и выливали в ледяную воду. Смесь нейтрализовали 2 н. водным раствором хлороводородной кислоты и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении с получением указанного в заголовке соединения (1,7 г, выход: 84%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,13 (т, J=8,0 Гц, 1H), 6,76-6,72 (м, 2H), 6,60 (дд, J=8,0 Гц, 2,4 Гц, 1H), 4,81 (м, 1H), 1,46 (д, J=6,8 Гц, 3H).
Стадия 2: Получение 3-[1-(трет-бутилдиметилсилилокси)этил]анилина
Figure 00000097
Соединение (1,7 г, 12,39 ммоль), полученное на стадии 1, растворяли в тетрагидрофуране (30 мл), последовательно добавляли трет-бутилдиметилсилилхлорид (2,8 г, 18,59 ммоль) и имидазол (1,26 г, 18,59 ммоль). Полученную в результате смесь перемешивали в течение ночи и экстрагировали хлороформом. Органический слой промывали соляным раствором, сушили над безводным сульфатом натрия, концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=4:1) с получением указанного в заголовке соединения (2,2 г, выход: 72%, желтое масло).
1H ЯМР (400 МГц, CDCl3): δ 7,08 (т, J=7,8 Гц, 1H), 6,71-6,69 (м, 2H), 6,55 (дд, J=7,8 Гц, 2,4 Гц, 1H), 4,77 (кв.т, J=6,4 Гц, 1H), 3,63 (ушир., 2H), 1,37 (д, J=6,0 Гц, 3H), 0,90 (с, 9H), 0,04 (с, 3H), 0,01 (с, 3H).
Стадия 3: Получение 8-[1-(трет-бутилдиметилсилилокси)этил]-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000098
Используя 2-хлорникотиновую кислоту (1,0 г, 6,35 ммоль), осуществляли тот же способ, как и на стадиях 2-4 примера 16, с получением указанного в заголовке соединения (1,06 г, выход (4 стадии): 42%, желтое масло).
1H ЯМР (400 МГц, CDCl3): δ 8,99 (дд, J=4,4 Гц, 2,0 Гц, 1H), 8,79 (д, J=8,4 Гц, 1H), 8,74 (дд, J=8,0 Гц, 2,0 Гц, 1H), 7,67 (с, 1H), 7,49 (дд, J=8,0 Гц, 4,4 Гц, 1H), 7,34 (д, J=8,4 Гц, 1H) 5,89-5,79 (м, 2H), 5,02 (кв.т, J=6,4 Гц, 1H), 3,47 (с, 3H), 1,49 (д, J=7,0 Гц, 3H), 0,93 (с, 9H), 0,09 (с, 3H), 0,02 (с, 3H).
Стадия 4: Получение 8-(1-гидроксиэтил)-6-(метоксиметил)бензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000099
Соединение (1,04 г, 2,61 ммоль), полученное на стадии 3, растворяли в 3,7 н. 1,4-диоксановом растворе хлороводородной кислоты и перемешивали в течение ночи при комнатной температуре. После завершения реакции осадок собирали фильтрацией и сушили в вакууме с получением указанного в заголовке соединения (760 мг, выход: 100%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,33 (дд, J=8,0 Гц, 1,6 Гц, 1H), 9,26-9,22 (м, 2H), 8,02 (дд, J=8,0 Гц, 5,6 Гц, 1H), 7,76 (с, 1H), 7,56 (д, J=8,8 Гц, 1H) 5,85 (с, 2H), 5,04 (м, 1H), 3,50 (с, 3H), 1,54 (д, J=6,8 Гц, 3H).
Стадия 5: Получение 8-(1-гидроксиэтил)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000100
Соединение (650 мг, 2,29 ммоль), полученное на стадии 4, растворяли в смеси этанол (10 мл)/дихлорметан (10 мл) и добавляли 10%-палладий (Pd) (200 мг) при комнатной температуре. Полученную в результате смесь перемешивали в течение одного дня в газообразном водороде и 10%-палладий удаляли, применяя фильтр с целитом. Фильтрат концентрировали при пониженном давлении и остаток очищали колоночной флэш-хроматографией (хлороформ:метанол=30:1) с получением указанного в заголовке соединения (320 мг, выход: 49%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,48 (с, 1H), 7,41 (д, J=8,4 Гц, 1H), 7,26-7,23 (м, 1H), 5,69 (с, 2H), 4,99 (м, 1H), 4,86 (с, 1H), 3,45 (м, 2H), 3,40 (с, 3H), 2,68 (т, J=6,4 Гц, 2H), 1,97 (м, 2H), 1,53 (д, J=6,4 Гц, 3H).
Далее, в данной реакции получали 8-этил-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он (140 мг, выход: 22%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,36-7,33 (м, 2H), 7,06 (д, J=8,4 Гц, 1H), 5,73 (с, 2H), 4,85 (с, 1H), 3,44 (м, 2H), 3,42 (с, 3H), 2,75 (кв.т, J=7,6 Гц, 2H), 2,69 (д, J=6,4 Гц, 2H), 1,97 (м, 2H), 1,28 (т, J=7,6 Гц, 3H).
Стадия 6: Получение 8-[1-(диметиламино)этил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000101
Соединение (50 мг, 0,17 ммоль), полученное на стадии 5, растворяли в тетрагидрофуране (5 мл), последовательно добавляли пиридин (56 мкл, 0,69 ммоль) и трибромид фосфора (33 мкл, 0,35 ммоль) при комнатной температуре. Полученную в результате смесь перемешивали в течение 3 часов и выливали в охлажденный насыщенный водный раствор бикарбоната натрия. Смесь экстрагировали дихлорметаном, промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток растворяли в тетрагидрофуране (4 мл) и добавляли по каплям 2,0 M тетрагидрофурановый раствор диметиламина (1,7 мл, 3,47 ммоль). Полученную в результате смесь перемешивали в течение ночи при комнатной температуре и концентрировали досуха. Остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=10:1) для получения заявленного в заголовке соединение (15 мг, выход (2 стадии): 27%, бесцветное масло).
1H ЯМР (400 МГц, CDCl3): δ 7,44 (с, 1H), 7,41 (д, J=8,4 Гц, 1H), 7,24 (д, J=8,4 Гц, 1H), 5,74 (с, 2H), 4,88 (с, 1H), 3,45 (м, 2H), 3,42 (с, 3H), 2,69 (т, J=6,4 Гц, 2H), 2,24 (с, 6H), 1,97 (м, 2H), 1,42 (д, J=6,0 Гц, 3H).
Стадия 7: Получение дигидрохлорида 8-[1-(диметиламино)этил])-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000102
Соединение (15 мг, 0,05 ммоль), полученное на стадии 6, растворяли в этаноле (4 мл) и добавляли конц. хлороводородную кислоту (0,5 мл). Смесь перемешивали в течение ночи при 80°C и осадок собирали фильтрацией с получением указанного в заголовке соединения (14 мг, выход: 86%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,28 (с, 1H), 10,85 (с, 1H), 7,95 (д, J=8,8 Гц, 1H), 7,45 (д, J=8,8 Гц, 1H), 7,30 (с, 1H), 4,48 (м, 1H), 3,32 (м, 2H), 2,74 (с, 3H), 2,50 (м, 5H), 1,79 (м, 2H), 1,63 (д, J=6,8 Гц, 3H).
<Пример 39> Получение дигидрохлорида 8-[1-(метиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000103
Заявленное в заголовке соединение получали, применяя тот же способ, как и в примере 38.
1H ЯМР (400 МГц, ДМСО-d6): δ 11,10 (с, 1H), 9,41 (с, 1H), 9,05 (с, 1H), 7,88 (д, J=8,0 Гц, 1H), 7,29 (д, J=8,0 Гц, 1H), 7,21 (с, 1H), 4,29 (м, 1H), 3,29 (м, 2H), 2,43-2,38 (м, 5H), 1,76-1,73 (м, 2H), 1,53 (д, J=6,4 Гц, 3H).
<Пример 40> Получение гидрохлорида 8-этил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000104
8-Этил-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он (130 мг, 0,48 ммоль), полученный на стадии 5 примера 38, растворяли в этаноле (8 мл) и добавляли конц. раствор хлороводородной кислоты (2,5 мл). Смесь перемешивали в течение ночи при 80°C и осадок собирали фильтрацией с получением указанного в заголовке соединения (120 мг, выход: 95%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,88 (с, 1H), 8,18 (ушир., 2H), 7,95 (д, J=8,4 Гц, 1H), 7,26 (с, 1H), 7,17 (д, J=8,4 Гц, 1H), 3,37 (т, J=5,6 Гц, 2H), 2,68 (кв.т, J=7,8 Гц, 2H), 2,55 (т, J=6,0 Гц, 2H), 1,82 (м, 2H), 1,20 (т, J=7,8 Гц, 3H).
<Пример 41> Получение дигидрохлорида 8-[(диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение этил 3-(2-хлорникотинамидо)бензоата
Figure 00000105
К перемешиваемому раствору 2-хлорникотиновой кислоты (500 мг, 3,17 ммоль) в безводном дихлорметане (10 мл) добавляли оксалилхлорид (0,407 мл, 4,76 ммоль) и каплю безводного N,N-диметилформамида при комнатной температуре. Полученную в результате смесь перемешивали при комнатной температуре в течение 2,5 часов и концентрировали в вакууме. Затем остаток растворяли в безводном дихлорметане (10 мл) и добавляли по каплям при 0°C этил 3-аминобензоат (0,521 мл, 3,49 ммоль) в безводном дихлорметане (5 мл) и триэтиламин (0,885 мл, 6,337 ммоль). Смесь перемешивали в течение 1 часа при комнатной температуре и экстрагировали дихлорметаном. Органический слой сушили над безводным сульфатом магния и концентрировали при пониженном давлении с получением указанного в заголовке соединения (1,16 г, выход: количественный, бежевое масло).
1H ЯМР (400 МГц, CDCl3): δ 8,53 (дд, J=1,6 Гц, 4,4 Гц, 1H), 8,41 (с, 1H), 8,21 (дд, J=2,0 Гц, 8,0 Гц, 1H), 8,14 (с, 1H), 8,08-8,05 (м, 1H), 7,89-7,87 (м, 1H), 7,49 (т, J=8,0 Гц, 1H), 7,42 (дд, J=4,8 Гц, 7,2 Гц, 1H), 4,37 (кв, J=6,8 Гц, 2H), 1,38 (т, J=6,8 Гц, 3H)
Стадия 2: Получение этил 3-[2-хлор-N-(метоксиметил)никотинамидо]бензоата
Figure 00000106
Соединение (1,017 г, 3,337 ммоль), полученное на стадии 1, растворяли в безводном тетрагидрофуране (10 мл), медленно добавляли при 0°C трет-бутоксид калия (749 мг, 6,674 ммоль). После перемешивания в течение 30 минут добавляли хлорметилметиловый эфир (0,379 мл, 4,995 ммоль), и перемешивание продолжали в течение 1 часа при комнатной температуре. После завершения реакции добавляли этилацетат и воду и смесь экстрагировали. Органический слой сушили над безводным сульфатом магния и концетрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (дихлорметан:этилацетат=9:1) с получением указанного в заголовке соединения (981 мг, выход: 84%, бесцветное масло).
1H ЯМР (400 МГц, CDCl3): δ 8,24 (д, J=4,8 Гц, 1H), 7,87-7,85 (м, 2H), 7,53-7,41 (м, 2H), 7,31 (т, J=8,0 Гц, 1H), 7,12-7,09 (м, 1H), 5,30 (с, 2H), 4,34 (кв, J=6,8 Гц, 2H), 3,55 (с, 3H), 1,38 (т, J=6,8 Гц, 3H).
Стадия 3: Получение этил 6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000107
Соединение (981 мг, 2,81 ммоль), полученное на стадии 2, растворяли в N,N-диметилформамиде (10,0 мл), добавляли ацетат палладия (II) (206 мг, 0,844 ммоль), 1,3-бис(дифенилфосфино)пропан (348 мг, 0,844 ммоль), трибутилфосфин (0,693 мл, 2,81 ммоль) и карбонат калия (777 мг, 5,62 ммоль). Полученную в результате смесь кипятили с обратным холодильником в течение 5 часов при 120°C и охлаждали до комнатной температуры. Смесь экстрагировали дихлорметаном, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:этилацетат=5:1) с получением указанного в заголовке соединения (657,3 мг, выход: 75%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,05 (дд, J=2,0 Гц, 4,4 Гц, 1H), 8,93-8,91 (м, 1H), 8,78-8,74 (м, 1H), 8,30 (с, 1H), 8,05-8,03 (м, 1H), 7,59 (дд, J=4,4 Гц, 8,0 Гц, 1H), 5,88 (с, 2H), 4,46 (кв, J=6,8 Гц, 2H), 3,50 (с, 3H), 1,46 (т, J=6,8 Гц, 1H)
Далее, этил 6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-10-карбоксилат получали в вышеуказанной реакции.
1H ЯМР (400 МГц, CDCl3): δ 8,93-8,91 (м, 1H), 8,78-8,74 (м, 1H), 7,72 (д, J=8,8 Гц, 1H), 7,64 (т, J=7,6 Гц, 1H), 7,53 (дд, J=4,8 Гц, 8,0 Гц, 1H), 7,34 (д, J=7,6 Гц, 1H), 5,85 (с, 2H), 4,52 (кв, J=6,8 Гц, 2H), 3,46 (с, 3H), 1,40 (т, J=6,8 Гц, 3H).
Стадия 4: Получение этил 6-(метоксиметил)-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000108
Соединение (639 мг, 2,047 ммоль), полученное на стадии 3, растворяли в дихлорметане и метаноле, добавляли 10%-палладий (Pd) (70,0 мг). Полученную в результате смесь перемешивали при комнатной температуре в течение 20 часов в газообразном водороде. После завершения 10%-палладий (Pd) удаляли фильтрацией через целит и растворитель концентрировали при пониженном давлении. Затем остаток очищали колоночной флэш-хроматографией (дихлорметан:этилацетат=3:1) с получением указанного в заголовке соединения (423 мг, выход: 65,3%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,22 (д, J=1,2 Гц, 1H), 7,86 (дд, J=1,2 Гц, 8,4 Гц, 1H), 7,49 (д, J=8,4 Гц, 1H), 5,78 (с, 2H), 4,42 (кв, J=7,2 Гц, 2H), 3,49-3,46 (м, 1H), 3,43 (с, 3H), 2,72 (т, J=6,4 Гц, 1H), 2,00-1,98 (м, 1H), 1,43 (т, J=7,2 Гц, 3H).
Стадия 5: Получение 8-(гидроксиметил)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000109
К перемешиваемому раствору литийалюмогидрида (72,9 мг, 1,92 ммоль) в безводном тетрагидрофуране (5 мл) добавляли при 0°C соединение (405 мг, 1,28 ммоль), полученное на стадии 4. Полученную в результате смесь перемешивали при 0°C в течение 1 часа и гасили водным раствором хлорида аммония. Смесь экстрагировали этилацетатом, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=7:1) с получением указанного в заголовке соединения (339 мг, выход: 94%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, CDCl3 + CD3OD): δ 7,73 (д, J=8,0 Гц, 1H), 7,55 (д, J=1,6 Гц, 1H), 7,26 (дд, J=1,6 Гц, 8,0 Гц, 1H), 5,74 (с, 2H), 4,75 (с, 2H), 3,46-3,41 (м, 1H), 3,40 (с, 3H), 2,65 (т, J=6,4 Гц, 1H), 1,98-1,95 (м, 1H).
Стадия 6: Получение 8-(хлорметил)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000110
Безводный дихлорметан (10 мл) добавляли к соединению (50,0 мг, 0,182 ммоль), полученному на стадии 5, и добавляли по каплям при комнатной температуре тионилхлорид (0,016 мл, 0,219 ммоль). Полученную в результате смесь перемешивали при комнатной температуре в течение 2 часов и выливали в водный раствор бикарбоната натрия. Смесь экстрагировали дихлорметаном, сушили над безводным сульфатом магния и концентрировали при пониженном давлении с получением указанного в заголовке соединения (51,4 мг, выход: 96%, белое твердое вещество). Соединение применяли в следующей реакции без дополнительной очистки.
1H ЯМР (400 МГц, CDCl3): δ 7,54 (с, 1H), 7,43 (д, J=8,4 Гц, 1H), 7,25 (д, J=8,4 Гц, 1H), 5,74 (с, 2H), 4,68 (с, 2H), 3,47-3,45 (м, 2H), 3,43 (с, 3H), 2,70 (т, J=6,4 Гц, 2H), 1,99-1,95 (м, 2H).
Стадия 7: Получение 8-[(диметиламино)метил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000111
Соединение (25,3 мг, 0,0864 ммоль), полученное на стадии 6, растворяли в метаноле (3,0 мл), добавляли 2,0 M диметиламин (0,864 мл, метанольный раствор). Полученную в результате смесь перемешивали при комнатной температуре в течение 19 часов и концентрировали при пониженном давлении. Добавляли к концентрированному остатку водный раствор бикарбоната натрия и смесь экстрагировали дихлорметаном. Органический слой сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (дихлорметан:метанол=7:1) с получением указанного в заголовке соединения (17,8 мг, выход: 68%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,46 (с, 1H), 7,39 (д, J=8,0 Гц, 1H), 7,22 (д, J=8,0 Гц, 1H), 5,75 (с, 2H), 4,96 (с, 1H), 3,54 (с, 2H), 3,47-3,44 (м, 2H), 3,42 (с, 3H), 2,70 (т, J=6,8 Гц, 2H), 2,28 (с, 6H), 1,99-1,96 (м, 2H).
Стадия 8: Получение дигидрохлорида 8-[(диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000112
Соединение (57,8 мг, 0,192 ммоль), полученное на стадии 7, растворяли в этаноле (3 мл), добавляли 12 н. водный раствор хлороводородной кислоты (3,0 мл). Полученную в результате смесь нагревали до 90°C и перемешивали в течение 3 часов. Смесь концентрировали досуха и растворяли в этилацетате. После перемешивания в течение 30 минут осадок фильтровали и промывали диэтиловым эфиром с получением указанного в заголовке соединения (53,5 мг, выход: 84,5%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, ДМСО): δ 11,50 (с, 1H), 10,80 (с, 1H), 7,98 (д, J=8,4 Гц, 1H), 7,43 (д, J=8,4 Гц, 1H), 7,36 (с, 1H), 4,31 (д, J=5,2 Гц, 1H), 3,35-3,33 (м, 1H), 2,69 (8, 3H), 2,68 (с, 3H), 1,82-1,79 (м, 1H).
Следующие соединения получали, применяя реакцию примера 41.
<Пример 42> дигидрохлорид 8-[(диэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 43> дигидрохлорид 8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 44> дигидрохлорид 8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 45> дигидрохлорид 8-[(изопропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 46> дигидрохлорид 8-[(пропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 47> дигидрохлорид 8-{[этил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 48> дигидрохлорид 8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 49> дигидрохлорид 8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 50> дигидрохлорид 9-[(диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 51> дигидрохлорид 8-{[бензил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][ 1,6]нафтиридин-5(6H)-она
<Пример 52> дигидрохлорид 8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 53> дигидрохлорид 8-{[(2-гидроксиэтил)(метил)амино]метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 54> тригидрохлорид 8-{[(2-(диметиламиноэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 55> тригидрохлорид 8-[(4-метилпиперазин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 56> дигидрохлорид 8-[(метил(пропил)амино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 57> дигидрохлорид этил-3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионата
<Пример 58> дигидрохлорид 3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионовой кислоты
<Пример 59> дигидрохлорид 8-{[изопропил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 60> дигидрохлорид 8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4- тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 61> дигидрохлорид этил-3-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]пропионата
<Пример 62> дигидрохлорид 8-[(2,2,2-трифторэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 63> дигидрохлорид 2-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]ацетонитрила
<Пример 64> гидрохлорид 8-[(1H-имидазол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 65> гидрохлорид 8-[(1H-пиррол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Пример Химическая структура Данные ЯМР-спектра
42
Figure 00000113
1H ЯМР (400 МГц, ДМСО-d6): δ 11,49 (с, 1H), 9,61 (ушир.с, 1H), 7,88 (д, J=8,4 Гц, 1H), 7,27 (с, 1H), 7,14 (ушир.с, 1H), 4,32-4,30 (м, 2H), 3,34-3,31 (м, 2H), 3,07-3,03 (м, 4H), 1,90-1,79 (м, 2H), 1,22 (т, J=6,9 Гц, 6H)
43
Figure 00000114
1H ЯМР (400 МГц, ДМСО-d6): δ 11,20 (с, 1H), 9,12 (ушир.с, 1H), 7,88 (д, J=8,0 Гц, 1H), 7,32 (д, J=8,4 Гц, 1H), 7,27 (с, 1H), 4,13 (т, J=6,0 Гц, 2H), 3,32 (ушир.с, 2H), 2,98-2,94 (м, 2H), 2,46-2,44 (м, 2H), 1,79-ушир.с, 2H), 1,22 (т, J=7,1 Гц, 3H)
44
Figure 00000115
1H ЯМР (400 МГц, ДМСО-d6): δ 11,33 (с, 1H), 10,82 (с, 1H), 7,93 (д, J=4,2 Гц, 1H), 7,43 (д, J=3,6 Гц, 1H), 7,33 (с, 1H), 6,20-5,80 (ушир.с, 1H), 4,37 (д, J=3,0 Гц, 2H), 3,34-3,32 (м, 4H), 3,06-3,02 (м, 2H), 2,51-2,47 (м, 2H), 2,03-2,01 (м, 2H), 1,88 (м, 4H)
45
Figure 00000116
1H ЯМР (400 МГц, ДМСО-d6): δ 11,17 (с, 1H), 9,02 (с, 1H), 8,54 (ушир., 1H), 7,89 (д, J=4,2 Гц, 1H), 7,32 (д, J=4,0 Гц, 1H), 7,28 (с, 1H), 7,22-7,03 (ушир., 1H), 4,15 (м, 2H), 3,32 (м, 2H), 2,53 2,52 (м, 2H), 2,46-2,45 (м, 1H), 1,80 (м, 2H), 1,3 (с, 3H), 1,29 (с, 3H)
46
Figure 00000117
1H ЯМР (400 МГц, ДМСО-d6): δ 11,41 (с, 1H), 9,28 (с, 2H), 7,94 (д, J=8,4 Гц, 1H), 7,38 (д, J=8,4 Гц, 1H), 7,33 (с, 1H), 4,14 (т, J=5,4 Гц, 2H), 3,33 (т, J=5,0 Гц, 2H), 2,84 (м, 2H), 2,48 (м, 2H), 1,80 (т, J=5,4 Гц, 2H), 1,69-1,63 (м, 2H), 0,89 (т, J=7,4 Гц, 3H)
47
Figure 00000118
1H ЯМР (400 МГц, ДМСО-d6): δ 11,48 (с, 1H), 10,74 (с, 1H), 7,98 (д, J=8,0 Гц, 1H), 7,47 (д, J=8,0 Гц, 1H), 7,38 (с, 1H), 4,39 (м, 1H), 4,23 (м, 1H), 3,16-3,10 (м, 1H), 3,34 (т, J=5,2 Гц, 2H), 3,04-2,98 (м, 1H), 2,60 (д, J=4,8 Гц, 3H), 2,50-2,49 (м, 2H), 1,80 (т, J=5,2 Гц, 2H), 1,27 (т, J=7,0 Гц, 3H)
48
Figure 00000119
1H ЯМР (400 МГц, ДМСО-d6): δ 7,47 (с, 1H), 7,38 (д, J=8,4 Гц, 1H), 7,32 (д, J=8,4 Гц, 1H), 5,74 (с, 2H), 4,87 (с, 1H), 3,58 (с, 2H), 3,46-3,43 (м, 2H), 3,42 (с, 3H), 2,69 (т, J=6,4 Гц, 2H), 2,41 (ушир., 4H), 1,98-1,95 (м, 2H), 1,60-1,56 (м, 4H), 1,42-1,44 (м, 2H)
49
Figure 00000120
1H ЯМР (400 МГц, ДМСО-d6): δ 7,49 (с, 1H), 7,40 (д, J=8,0 Гц, 1H), 7,27-7,21 (м, 1H), 5,74 (с, 2H), 4,94 (с, 1H), 3,72 (т, J=4,4 Гц, 4H), 3,60 (с, 2H), 3,48-3,44 (м, 2H), 3,42 (с, 3H), 2,69 (т, J=4,6 Гц, 2H), 2,47 (ушир., 4H), 2,00-1,94 (м, 2H)
50
Figure 00000121
1H ЯМР (400 МГц, ДМСО-d6): δ 11,09 (с, 1H), 10,98 (ушир.с, соль), 8,00 (с, 1H), 7,58 (д, J=8,4 Гц, 1H), 7,27 (д, J=8,4 Гц, 1H), 4,22-4,20 (м, 2H), 3,33-3,30 (м, 2H), 2,70-с, 3H), 2,69 (с, 3H), 2,46-2,44 (м, 2H), 1,98-1,79 (м, 2H)
51
Figure 00000122
1H ЯМР (400 МГц, ДМСО-d6): δ 11,22 (с, 1H), 10,70 (ушир., 1H), 7,92 (д, J=8,4 Гц, 1H), 7,61-7,58 (м, 2H), 7,48-7,46 (м, 3H), 7,39 (д, J=8,4 Гц, 1H), 7,32 (с, 1H), 4,42-4,39 (м, 2H), 4,26-4,21 (м, 2H), 3,32 (ушир., 2H), 2,47-2,45 (м, 2H), 1,79 (ушир., 2H)
52
Figure 00000123
1H ЯМР (400 МГц, ДМСО-d6): δ 11,45 (с, 1H), 9,30 (с, 1H), 7,95 (д, J=3,4 Гц, 1H), 7,35 (д, J=8,4 Гц, 1H), 7,33 (с, 1H), 4,14 (т, J=5,6 Гц, 2H), 3,35-3,32 (м, 2H), 2,55-2,47 (м, 5H), 1,81-1,79 (м, 2H)
53
Figure 00000124
1H ЯМР (400 МГц, ДМСО-d6): δ 11,55 (с, 1H), 10,45 (с, 1H), 8,01 (д, J=8,4 Гц, 1H), 7,45 (д, J=8,4 Гц, 1H), 7,41 (с, 1H), 4,46-4,41 (м, 1H), 4,36-4,31 (м, 1H), 3,77 (м, 2H), 3,34 (т, J=5,2 Гц, 2H), 3,10 (м, 2H), 2,71 (д, J=4,8 Гц, 3H), 2,52 (м, 2H), 1,80 (м, 2H)
54
Figure 00000125
1H ЯМР (400 МГц, ДМСО-d6): δ 11,37 (с, 1H), 11,29 (ушир., 1H), 11,02 (ушир., 1H), 7,97 (д, J=4,2 Гц, 1H), 7,51 (д, J=4,4 Гц, 1H), 7,38 (с, 1H), 4,61-4,58 (м, 1H), 4,34-4,31 (м, 1H), 3,64-3,52 (м, 4H), 3,34 (с, 2H), 2,83 (с, 6H), 2,68 (с, 3H), 2,48 (с, 2H), 1,80 (с, 2H)
55
Figure 00000126
1H ЯМР (400 МГц, ДМСО-d6): δ 11,70 (ушир., 1H), 11,31 (с, 1H), 7,93 (д, J=8,4 Гц, 1H), 7,44 (д, J=8,4 Гц, 1H), 7,34 (с, 1H), 4,39 (ушир., 2H), 3,63-3,33 (м, 10H), 2,79 (ушир., 3H), 2,48-2,46 (м, 2H), 1,82-1,79 (м, 2H)
56
Figure 00000127
1H ЯМР (400 МГц, ДМСО-d6): δ 11,20 (с, 1H), 10,36 (с, 1H), 7,89 (д, J=8,0 Гц, 1H), 7,35 (д, J=8,0 Гц, 1H), 7,28 (с, 1H), 4,39-4,34 (м, 1H), 4,24-4,19 (м, 1H), 3,30 (м, 2H), 2,97-2,80 (м, 2H), 2,61 (д, J=4,8 Гц, 3H), 2,45 (м, 2H), 1,77 (м, 2H), 1,70 (м, 2H), 0,85 (т, J=7,6 Гц, 3H)
57
Figure 00000128
1H ЯМР (400 МГц, ДМСО-d6): δ 11,32 (с, 1H), 10,70 (ушир., 1H), 7,93 (д, J=4,0 Гц, 1H), 7,41 (д, J=4,0 Гц, 1H), 7,33 (с, 1H), 4,46-4,28 (м, 2H), 4,11-4,06 (м, 2H), 3,37-3,22 (м, 4H), 2,94 (т, J=7,2 Гц, 2H), 2,65 (д, J=2,2 Гц, 3H), 2,48 (м, 2H), 1,80 (м, 2H), 1,22-1,15 (м, 3H)
58
Figure 00000129
1H ЯМР (400 МГц, ДМСО-d6): δ 11,37 (с, 1H), 10,58 (ушир., 1H), 7,95 (д, J=4,2 Гц, 1H), 7,41 (д, J=4,2 Гц, 1H), 7,34 (с, 1H), 4,45-4,28 (м, 2H), 3,33 (ушир., 3H), 3,23-3,20 (м, 1H), 2,85 (т, J=7,6 Гц, 2H), 2,65 (д, ,J=2,0 Гц, 3H), 2,53 (м, 2H), 1,82 (ушир., 2H)
59
Figure 00000130
1H ЯМР (400 МГц, ДМСО-d6): δ 11,47 (с, 1H), 10,44 (ушир., 1H), 7,99 (д, J=4,2 Гц, 1H), 7,52 (д, J=3,8 Гц, 1H), 7,41 (с, 1H), 4,42-4,17 (м, 2H), 3,47-3,42 (м, 1H), 3,35-3,33 (м, 2H), 2,54 (д, J=2,6 Гц, 3H), 1,80 (т, J=4,8 Гц, 2H), 1,32-1,28 (м, 6H)
60
Figure 00000131
1H ЯМР (400 МГц, ДМСО-d6): δ 11,57 (с, 1H), 10,69 (с, 1H), 8,01 (д, J=7,6 Гц, 1H), 7,46 (д, J=7,6 Гц, 1H), 7,41 (с, 1H), 4,44-4,40 (м, 1H), 4,33-4,28 (м, 1H), 3,72 (м, 2H), 3,34 (м, 2H), 3,27 (с, 3H), 3,22 (м, 2H), 2,68 (с, 3H), 2,51 (м, 3H), 1,80 (м, 2H)
61
Figure 00000132
1H ЯМР (400 МГц, ДМСО-d6): δ 11,57 (с, 1H), 9,56 (с, 2H), 7,96 (с, 1H), 7,39 (с, 1H), 7,35 (с, 1H), 4,16 (с, 2H), 4,05 (с, 2H), 3,31 (с, 2H), 3,11 (с, 2H), 2,80 (с, 2H), 1,77 (с, 2H), 1,15 (с, 3H)
62
Figure 00000133
1H ЯМР (400 МГц, ДМСО-d6): δ 11,35 (с, 1H), 10,09 (ушир., 1H), 7,93 (д, J=4,0 Гц, 1H), 7,38-7,35 (м, 2H), 4,25 (с, 2H), 4,01 (д, J=4,6 Гц, 2H), 3,33 (м, 2H), 1,80 (м, 2H)
63
Figure 00000134
1H ЯМР (400 МГц, ДМСО-d6): δ 11,43 (с, 1H), 7,83 (д, J=4,0 Гц, 1H), 7,30 (с, 1H), 7,09 (д, J=4,0 Гц, 1H), 4,54 (с, 2H), 3,36 (с, 2H), 3,32 (м, 2H), 2,53 (м, 2H), 1,79 (м, 2H)
64
Figure 00000135
1H ЯМР (400 МГц, ДМСО-d6): δ 11,58 (с, 1H), 9,36 (с, 1H), 8,02 (д, J=8,4 Гц, 1H), 7,80 (с, 1H), 7,74 (с, 1H), 7,22 (с, 1H), 7,16 (д, J=1,6 Гц, 1H), 5,53 (с, 2H), 3,32 (с, 2H), 2,49 (с, 2H), 1,78 (с, 2H)
65
Figure 00000136
1H ЯМР (400 МГц, ДМСО-d6): δ 11,49 (с, 1H), 7,86 (д, J=7,6 Гц, 1H), 7,09 (с, 1H), 6,94 (д, J=8,4 Гц, 1H), 6,78 (м, 2H), 6,01 (м, 2H), 5,15 (с, 2H), 3,30 (м, 2H), 2,47 (м, 2H), 1,77 (м, 2H)
<Пример 66> Получение дигидрохлорида 8-[(диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 8-[(диметиламино)метил]-6-(метоксиметил)-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000137
Указанное в заголовке соединение (16 мг, выход: 56%, желтое твердое вещество) получали проведением реакции 8-[(диметиламино)метил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она (30 мг, 0,09 ммоль) тем же способом, как и на стадии 1 примера 30.
1H ЯМР (400 МГц, CDCl3): δ 7,80 (д, J=8,4 Гц, 1H), 7,47 (с, 1H), 7,24-7,22 (м, 1H), 5,75 (ушир.с, 2H), 3,57 (с, 2H), 3,43 (с, 3H), 3,17-3,14 (м, 2H), 2,99 (с, 3H), 2,63 (т, J=6,6 Гц, 2H), 2,31 (с,6H), 1,89-1,86 (м, 2H).
Стадия 2: Получение гидрохлорида 8-[(диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000138
Реакцию соединения (16 мг, 0,05 ммоль), полученного на стадии 1, осуществляли тем же способом, как на стадии 2 примера 34, с получением указанного в заголовке соединения (18 мг, выход: 99%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,71 (с, 1H), 10,70 (ушир.с, 1H), 10,62 (с, 1H), 8,01 (д, J=8,0 Гц, 1H), 7,41 (д, J=8,0 Гц, 1H), 7,34 (с, 1H), 4,33-4,32 (м, 2H), 2,69 (с, 9H), 1,78-1,71 (м, 2H).
Следующие соединения получали, применяя реакцию примера 66.
<Пример 67> дигидрохлорид 8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 68> дигидрохлорид 8-[(диэтиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 69> дигидрохлорид 1-метил-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 70> дигидрохлорид 1-метил-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 71> дигидрохлорид 8-{[этил(метил)амино]метил}-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Пример Химическая структура Данные ЯМР-спектра
67
Figure 00000139
1H ЯМР (400 МГц, ДМСО-d6): δ 11,69 (с, 1H), 11,09 (ушир., 1H), 10,60 (ушир., 1H), 7,99 (д, J=4,0 Гц, 1H), 7,47 (д, J=4,2 Гц, 1H), 7,36-7,34 (м, 1H), 3,33 (ушир., 2H), 3,16 (ушир., 2H), 2,85 (ушир., 2H), 2,66-2,64 (м, 2H), 2,44-2,43 (м, 2H), 2,00 (ушир., 2H), 1,87-1,77 (м, 4H)
68
Figure 00000140
1H ЯМР (400 МГц, ДМСО-d6): δ 11,67 (с, 1H), 10,62 (ушир.с, 1H), 8,78 (ушир.с, 1H), 7,99 (д, J=8,4 Гц, 1H), 7,49 (д, J=8,3 Гц, 1H), 7,39 (с, 1H), 5,76 (с, 1H), 4,35-4,33 (м, 2H), 3,03-2,91 (м, 4H), 2,85 (ушир.с, 2H), 2,67-2,64 (м, 2H), 1,79-1,77 (м, 2H), 1,26-1,23 (м, 6H)
69
Figure 00000141
1H ЯМР (400 МГц, ДМСО-d6): δ 11,69 (с, 1H), 10,61 (м, 2H), 7,99 (д, J=8,4 Гц, 1H), 7,47 (д, ,7=8,4 Гц, 1H), 7,35 (с, 1H), 4,29 (м, 2H), 3,24 (м, 2H), 2,91-2,84 (м, 4H), 2,66 (т, 7=6,8 Гц, 2H), 2,50 (м, 3H), 1,76 (м, 6H), 1,69-1,65 (м, 1H), 1,33 (м, 1H)
70
Figure 00000142
1H ЯМР (400 МГц, ДМСО-d6): δ 11,60 (с, 1H), 11,14 (с, 1H), 7,78 (д, J=8,4 Гц, 1H), 7,44 (д, J=8,4 Гц, Hi), 7,36 (с, HI), 4,37 (д, J=4,8 Гц, 2H), 3,94-3,77 (м, 4H), 3,24-3,09 (м, 6H), 2,92 (с, 3H), 2,43 (т, J=6,4 Гц, 2H), 1,77 (м, 2H)
71
Figure 00000143
1H ЯМР (400 МГц, ДМСО-d6): δ 11,69 (с, 1H), 10,68 (с, 1H), 10,62 (с, 1H), 8,00 (д, J=8,4 Гц, 1H), 7,45 (д, J=8,4 Гц, 1H), 7,36 (с, 1H), 4,43-4,38 (м, 1H), 4,27-4,22 (м, 1H), 3,13-3,00 (м, 2H), 2,84 (м, 2H), 2,66 (т, J=6,8 Гц, 2H), 2,60 (с, 3H), 2,52 (м, 3H), 1,80-1,77 (м, 2H)
<Пример 72> Получение дигидрохлорида 8-[(диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 3-метокси-5-нитробензойной кислоты
Figure 00000144
К перемешиваемому раствору 3,5-динитробензойной кислоты (2,0 г, 9,42 ммоль) в 2,6-диметилциклогексаноне (20,0 мл) добавляли метоксид лития (1,43 г, 37,8 моль). Полученную в результате смесь перемешивали при комнатной температуре в течение 20 часов и выливали в охлажденный разбавленный водный раствор серной кислоты. Смесь экстрагировали диэтиловым эфиром, сушили над безводным сульфатом магния и концентрировали при пониженном давлении с получением указанного в заголовке соединения (1,31 г, выход: 70,25%, красновато-коричневое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,36 (с, 1H), 7,97 (с, 1H), 7,90 (с, 1H), 4,03 (с, 3H).
Стадия 2: Получение этил 3-метокси-5-нитробензоата
Figure 00000145
Соединение (5,33 г, 27,0 ммоль), полученное на стадии 1, растворяли в абсолютном этаноле (55,0 мл), добавляли по каплям тионилхлорид (2,96 мл, 40,55 ммоль) при 0°C. Полученную в результате смесь кипятили с обратным холодильником в течение 6 часов. После завершения реакционную смесь концентрировали при пониженном давлении и смешивали с водным раствором бикарбоната натрия. Смесь экстрагировали дихлорметаном, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:гексан=4:1) с получением указанного в заголовке соединения (5,1 г, выход: 85,6%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, CDCl3): δ 8,45 (с, 1H), 7,91 (с, 1H), 7,88 (с, 1H), 4,43 (т, J=7,2 Гц, 2H), 3,95 (с, 3H), 1,44 (т, J=7,2 Гц, 3H).
Стадия 3: Получение этил 3-амино-5-метоксибензоата
Figure 00000146
Соединение (5,1 г, 23,1 ммоль), полученное на стадии 2, растворяли в этилацетате (50,0 мл), добавляли 10%-палладий (Pd) (100 мг). Затем полученную в результате смесь перемешивали при комнатной температуре в течение 24 часов в присутствии газообразного водорода. После завершения 10%-палладий (Pd) удаляли фильтрацией через целит и фильтрат концентрировали досуха. Остаток очищали колоночной флеш-хроматографией 15 (гексан:этилацетат=2:1) с получением указанного в заголовке соединения (4,36 г, выход: 96,8%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 6,99 (м, 2H), 6,41 (с, 1H), 4,34 (кв, J=7,2 Гц, 2H), 3,79 (с, 3H), 1,37 (т, J=7,2 Гц, 3H).
Стадия 4: Получение этил 3-(2-хлорникотинамидо)-5-метоксибензоата
Figure 00000147
К перемешиваемому раствору 2-хлорникотиновой кислоты (410 мг, 2,60 ммоль) в безводном дихлорметане (10 мл) добавляли оксалилхлорид (0,667 мл, 7,80 ммоль) и каплю безводного N,N-диметилформамида при комнатной температуре. Полученную в результате смесь перемешивали при комнатной температуре в течение 2 часов. После завершения смесь концентрировали при пониженном давлении и сушили в вакууме. Безводный дихлорметановый раствор (5 мл) соединения (760 мг, 3,90 ммоль), полученного на стадии 3, добавляли по каплям при 0°C и затем последовательно добавляли триэтиламин (1,36 мл, 9,75 ммоль). Перемешивание продолжали в течение 1 часа при 0°C и смесь экстрагировали дихлорметаном. Органический слой сушили над безводным сульфатом магния и концентрировали при пониженном давлении с получением указанного в заголовке соединения (1,24 г, выход: 95,3%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, CDCl3): δ 8,53 (с, 1H), 8,49 (д, J=4,8 Гц, 1H), 8,14 (д, J=7,6 Гц, 1H), 7,78 (с, 1H), 7,66 (с, 1H), 7,40-7,37 (м, 2H), 4,33 (кв.т, J=7,6 Гц, 2H), 3,88 (с, 3H), 1,38 (т, J=7,6 Гц, 3H).
Стадия 5: Получение этил 3-[2-хлор-N-(метоксиметил)никотинамидо]-5-метоксибензоата
Figure 00000148
Соединение (1,24 г, 3,72 ммоль), полученное на стадии 4, растворяли в безводном тетрагидрофуране (20 мл), медленно добавляли при 0°C трет-бутоксид калия (834 мг, 7,43 ммоль). После перемешивания в течение 30 минут добавляли бромметилметиловый эфир (0,455 мл, 5,57 ммоль) и перемешивание продолжали в течение 1 часа при комнатной температуре. После завершения реакции добавляли дихлорметан и воду и смесь экстрагировали. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флэш-хроматографией (дихлорметан:этилацетат=10:1) с получением указанного в заголовке соединения (1,11 г, выход: 79,0%, бежевое масло).
1H ЯМР (400 МГц, CDCl3): δ 8,25 (д, J=4,0 Гц, 1H), 8,14 (д, J=7,6 Гц, 1H), 7,42 (с, 1H), 7,36 (8, 1H), 7,10 (дд, J=4,0 Гц, 7,6 Гц, 1H), 6,98 (с, 1H), 5,29 (с, 2H), 4,30 (кв.т, J=7,2 Гц, 2H), 3,75 (с, 3H), 3,56 (с, 3H), 1,36 (т, J=7,6 Гц, 3H).
Стадия 6: Получение этил 10-метокси-6-(метоксиметил)-5-оксо-5,6-дигидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000149
Соединение (1,11 г, 2,94 ммоль), полученное на стадии 5, растворяли в N,N-диметилформамиде (10,0 мл), добавляли ацетат палладия (II) (215 мг, 0,881 ммоль), 1,3-бис(дифенилфосфино)пропан (363 мг, 0,881 ммоль), трибутилфосфин (0,724 мл, 2,94 ммоль) и карбонат калия (812 мг, 5,87 ммоль). Полученную в результате смесь кипятили с обратным холодильником в течение 3 часов и охлаждали до комнатной температуры. Добавляли воду и дихлорметан и смесь экстрагировали. Органический слой сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:этилацетат=4:l) с получением указанного в заголовке соединения (776,5 мг, выход: 77,3%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 9,17-9,15 (м, 1H), 8,83 (тд, J=2,0 Гц, 8,0 Гц, 1H), 8,00 (с, 1H), 7,63 (с, 1H), 7,57-7,54 (м, 1H), 5,87 (с, 2H), 4,46 (кв.т, J=6,8 Гц, 2H), 4,17 (с, 3H), 3,51 (с, 3H), 1,46 (т, J=6,8 Гц, 3H).
Стадия 7: Получение этил 10-метокси-6-(метоксиметил)-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-карбоксилата
Figure 00000150
Соединение (776,5 мг, 2,27 ммоль), полученное на стадии 6, растворяли в дихлорметане и метаноле, добавляли 10%-палладий (Pd) (80,0 мг). Полученную в результате смесь перемешивали при комнатной температуре в течение 20 часов в газообразном водороде. После завершения 10%-палладий (Pd) удаляли фильтрацией через целит и растворитель концентрировали при пониженном давлении. Затем остаток очищали колоночной флэш-хроматографией (дихлорметан:этилацетат=3:1) с получением указанного в заголовке соединения (458 мг, выход: 58,2%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,89 (с, 1H), 7,34 (с, 1H), 5,76 (с, 2H), 4,42 (кв, J=7,2 Гц, 2H), 4,04 (с, 3H), 3,44 (с, 3H), 3,44-3,41 (м, 2H), 2,75 (т, J=6,0 Гц, 2H), 1,94-1,91 (м, 2H), 1,43 (т, J=7,2 Гц, 3H).
Стадия 8: Получение 8-(гидроксиметил)-10-метокси-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000151
Тетрагидрофуран (10,0 мл) добавляли к литийалюмогидриду (125 мг, 3,30 ммоль) и охлаждали до 0°C. Соединение (457 мг, 1,32 ммоль), полученное на стадии 7, растворяли в тетрагидрофуране (10,0 мл) и медленно добавляли по каплям при 0°C и полученную в результате смесь перемешивали при той же температуре в течение 1 часа. После завершения добавляли водный раствор хлорида аммония и смесь экстрагировали этилацетатом. Органический слой промывали соляным раствором, сушили над безводным сульфатом магния и концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=10:l) с получением указанного в заголовке соединения (399 мг, 15 выход: 99,2%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, CDCl3): δ 7,47 (с, 1H), 6,97 (с, 1H), 6,77 (с, 1H), 5,70 (с, 2H), 4,70 (с, 2H), 3,97 (с, 3H), 3,40-3,36 (м, 2H), 3,35 (с, 3H), 2,66 (т, J=6,0 Гц, 2H), 1,93-1,87 (м, 2H).
Стадия 9: Получение дигидрохлорида 8-[(диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000152
Соединение, полученное на стадии 8, взаимодействовало таким же образом, как на стадиях 6-8 примера 41, с получением указанного в заголовке соединения (30,5 мг, выход: 96,1%, твердое вещество кремового цвета).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,37 (с, 1H), 10,75 (с, 1H), 7,14 (с, 1H), 6,90 (с, 1H), 4,26 (д, J=4,8 Гц, 2H), 3,95 (с, 3H), 3,34 (м, 2H), 2,70 (с, 3H), 2,69 (с, 3H), 2,50-2,46 (м, 2H), 1,77-1,75 (м, 2H).
Следующие соединения получали, применяя реакцию примера 72.
<Пример 73> дигидрохлорид 10-метокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 74> дигидрохлорид 10-метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 75> дигидрохлорид 8-[(этиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 76> 8-{[этил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он
<Пример 77> дигидрохлорид 10-метокси-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 78> дигидрохлорид 10-метокси-8-[(4-оксопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 79> тригидрохлорид 8-{[4-(гидроксиимино)пиперидин-1-ил]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 80> тригидрохлорид 10-метокси-8-[(4-(метоксиимино)пиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 81> дигидрохлорид 10-метокси-8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 82> дигидрохлорид 8-[(2,5-дигидро-1H-пиррол-1-ил)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 83> дигидрохлорид 8-{[(2-изопропоксиэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 84> дигидрохлорид 10-метокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 85> дигидрохлорид 8-{[(2-хлорэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 86> дигидрохлорид 8-[(диэтиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 87> дигидрохлорид 8-[(трет-бутиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 88> дигидрохлорид 8-[(изопропиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 89> дигидрохлорид 8-[(циклопентиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 90> дигидрохлорид 8-[(2,6-диметилморфолино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 91> гидрохлорид хлорида N-[(10-метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]-N,N-диметилциклопентенаминия
<Пример 92> дигидрохлорид 8-{[циклопентил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 93> дигидрохлорид 8-{[изопропил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 94> дигидрохлорид 8-{[(2-фторэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Пример Химическая структура Данные ЯМР-спектра
73
Figure 00000153
1H ЯМР (400 МГц, ДМСО-d6): δ 11,35 (с, 1H), 8,42 (с, 2H), 6,96 (с, 1H), 6,86 (с, 1H), 3,97 (м, 2H), 3,91 (с, 3H), 3,32 (м, 2H), 2,53-2,43 (м, 5H), 1,73 (м, 2H)
74
Figure 00000154
1H ЯМР (400 МГц, ДМСО-d6): δ 11,40 (с, 1H), 11,38 (ушир., 1H), 7,81 (ушир., 1H), 7,24 (с, 1H), 6,92 (с, 1H), 4,31 (м, 2H), 3,96 (с, 3H), 3,93-3,81 (м, 4H), 3,34 (м, 2H), 3,22-3,09 (м, 4H), 2,47 (м, 2H), 1,75 (м, 2H)
75
Figure 00000155
1H ЯМР (400 МГц, ДМСО-d6): δ 11,33 (с, 1H), 9,206 (с, 1H), 7,07 (с, 1H), 6,90 (с, 1H), 4,10-4,07 (м, 2H), 3,95 (с, 3H), 3,34 (м, 2H), 2,99-2,95 (м, 2H), 2,49-2,45 (м, 2H), 1,75 (м, 2H), 1,23 (т, J=7,6 Гц, 3H)
76
Figure 00000156
1H ЯМР (400 МГц, CDCl3): δ 10,82 (ушир., 1H), 7,34 (с, 1H), 6,85 (с, 1H), 6,79 (ушир., 1H), 3,97 (с, 3H), 3,59 (с, 2H), 3,40 (с, 2H), 2,72 (м, 2H), 2,57 (м, 2H), 2,29 (с, 3H), 1,94-1,90 (м, 1H), 1,18-1,15 (м, 3H)
77
Figure 00000157
1H ЯМР (400 МГц, ДМСО-d6): δ 11,82 (с, 1H), 11,47 (с, 1H), 7,35 (с, 1H), 7,01 (с, 1H), 3,97 (с, 3H), 3,37-3,32 (м, 4H), 3,00 (т, J=8,4 Гц, 2H), 2,52 (с, 2H), 1,99-1,74 (м, 6H)
78
Figure 00000158
1H ЯМР (400 МГц, ДМСО-d6): δ 11,88 & 11,17 (с, 1H), 11,50 (д, J=13,2 Гц, 1H), 7,34 (с, 1H), 6,96 (с, 1H), 4,41 & 4,32 (с, 2H), 3,98 (д, J=7,6 Гц, 3H), 3,53-3,11 (м, 4H), 3,41-3,36 (м, 2H), 2,96-2,94 (м, 2H), 1,76 (м, 2H), 1,17-1,01 (м, 4H)
79
Figure 00000159
1H ЯМР (400 МГц, ДМСО-d6): δ 11,38 (ушир., соль), 7,77 (ушир.с, 1H), 7,23 (ушир.с, 1H), 6,86 (ушир., 1H), 4,38 (ушир., 2H), 3,33-3,22 (м, 4H), 3,18-2,93 (м, 4H), 1,76-1,74 (м, 2H)
80
Figure 00000160
1H ЯМР (400 МГц, ДМСО-d6): δ 11,38 (ушир., соль), 7,79 (ушир., 1H), 7,26 (ушир., 1H), 6,97 (ушир., 1H), 4,31-4,28 (м, 2H), 3,97 (с, 3H), 3,76 (с, 3H), 3,40-3,34 (м, 4H), 3,15-2,93 (м, 4H), 1,76-1,74 (м, 2H)
81
Figure 00000161
1H ЯМР (400 МГц, ДМСО-d6): δ 11,67 (с, 1H), 11,00 (с, 1H), 7,28 (с, 1H), 6,99 (с, 1H), 4,41-4,36 (м, 1H), 4,28-4,25 (м, 1H), 3,96 (с, 3H), 3,75 (м, 2H), 3,36 (м, 2H), 3,28 (с, 311), 3,23 (м, 2H), 2,69 (с, 3H), 2,49 (м, 2H), 1,76 (м, 2H)
82
Figure 00000162
1H ЯМР (400 МГц, ДМСО-d6): δ 11,59 (ушир., 1H) , 11,30 (с, 1H), 7,78 (ушир., 1H), 7,19 (с, 1H), 6,93 (с, 1H), 5,92 (с, 2H), 4,46 (д, J=2,8 Гц, 2H), 4,11-4,05 (м, 2H), 3,96 (с, 3H), 3,91-3,90 (м, 2H), 1,77-1,74 (м, 2H)
83
Figure 00000163
1H ЯМР (400 МГц, CD3OD): δ 7,35 (с, 1H), 7,26 (с, 1H), 4,60 (м, 1H), 4,51 (м, 1H), 4,15 (с, 3H), 3,85 (м, 2H), 3,72 (м, 1H), 3,59 (м, 2H), 3,41 (м, 2H), 2,94 (с, 3H), 2,71 (м, 2H), 1,98 (м, 2H), 1,21 (с, 6H)
84
Figure 00000164
1H ЯМР (400 МГц, ДМСО-d6): δ 12,15 (с, 1H), 11,26 (с, 1H), 7,52 (с, 1H), 7,09 (с, 1H), 4,27 (м, 2H), 4,00 (с, 3H), 3,40 (м, 2H), 3,22 (м, 2H), 2,92-2,84 (м, 2H), 2,55 (м, 2H), 1,90-1,86 (м, 2H), 1,75-1,67 (м, 5H), 1,35-1,32 (м, 1H)
85
Figure 00000165
1H ЯМР (400 МГц, ДМСО-d6): δ 11,82 (с, 1H), 11,56 (с, 1H), 7,36 (с, 1H), 7,03 (с, 1H), 4,50-4,47 (м, 1H), 4,31-4,26 (м, 1H), 4,11 (т, J=6,8 Гц, 2H), 3,98 (с, 3H), 3,45 (м, 2H), 3,38 (м, 2H), 2,71 (с, 3H), 2,52 (м, 2H), 1,77 (м, 210
86
Figure 00000166
1H ЯМР (400 МГц, ДМСО-d6): δ 11,74 (с, 1H), 11,07 (с, 1H), 7,40 (с, 1H), 7,02 (с, 1H), 4,28 (д, J=5,6 Гц, 2H), 3,97 (с, 3H), 3,36 (т, J=4,8 Гц, 2H), 3,04-2,98 (м, 2H), 2,51 (с, 2H), 1,75 (т, J=5,6 Гц, 2H), 1,23 (т, J=7,6 Гц, 6H)
87
Figure 00000167
1H ЯМР (400 МГц, ДМСО-d6): δ 11,23 (с, 1H), 9,05 (ушир., 2H), 7,10 (с, 1H), 6,91 (с, 1H), 4,07-4,05 (м, 210, 3,96 (с, 3H), 3,33 (м, 2H), 2,50-2,44 (м, 2H), 1,75 (м, 2H)
88
Figure 00000168
1H ЯМР (400 МГц, ДМСО-d6): δ 11,41 (с, 1H), 9,23 (ушир.с, 1H), 7,16 (с, 1H), 6,94 (с, 1H), 4,12-4,09 (м, 2H), 3,96 (с, 3H), 3,36-3,28 (м, 3H), 2,47-2,45 (м, 2H), 1,77-1,74 (м, 2H), 1,31 (с, 3H), 1,29 (с, 3H)
89
Figure 00000169
1H ЯМР (400 МГц, ДМСО-d6): δ 11,54 (с, 1H), 9,45 (с, 2H), 7,19 (с, 1H), 6,96 (с, 1H), 4,09 (т, J=5,2 Гц, 2H), 3,95 (с, 3H), 3,43 (с, 1H), 3,34 (т, J=4,8 Гц, 2H), 2,48 (с, 2H), 1,97 (c, 2H), 1,76-1,71 (м, 6H), 1,50 (с, 2H)
90
Figure 00000170
1H ЯМР (400 МГц, ДМСО-d6): δ 11,99 (с, 1H), 11,77 (с, 1H), 7,44 (с, 1H), 7,00 (с, 1H), 4,37 (м, 2H), 4,27-4,26 (м, 1H), 4,10-4,04 (м, 1H), 3,99 (с, 3H), 3,37 (м, 2H), 3,21-3,18 (м, 2H), 2,71-2,63 (м, 2H), 2,53 (м, 2H), 1,76 (м, 2H), 1,09 (с, 3H), 1,08 (с, 3H)
91
Figure 00000171
1H ЯМР (400 МГц, ДМСО-d6): δ 11,35 (с, 1H), 7,06 (с, 1H), 6,92 (с, 1H), 4,47 (с, 2H), 3,94 (с, 3H), 3,87 (т, J=7,6 Гц, 1H), 3,33 (с, 2H), 2,90 (с, 6H), 2,48 (с, 2H), 1,99 (с, 4H), 1,73 (с, 4H), 1,56 (с, 2H)
92
Figure 00000172
1H ЯМР (400 МГц, ДМСО-d6): δ 11,51 (с, 1H), 11,06 (с, 1H), 7,27 (с, 1H), 6,96 (с, 1H), 4,44 (д, J=9,6 Гц, 2H), 3,96 (с, 3H), 3,55 (кв, J=7,6 Гц, 1H), 3,34 (т, J=4,8 Гц, 2H), 2,52 (д, J=4,8 Гц, 3H), 2,48 (с, 2H), 2,08-2,06 (м, 2H), 1,94-1,89 (м, 2H), 1,73 (с, 4H), 1,57-1,49 (м, 2H)
93
Figure 00000173
1H ЯМР (400 МГц, ДМСО-d6): δ 11,61 (ушир.с, 1H), 10,84 (ушир.с, 1H), 7,38 (с, 2H), 7,02 (с, 2H), 4,37-4,33 (м, 1H), 4,18-4,13 (м, 1H), 3,98 (с, 3H), 3,38-3,34 (м, 4H), 2,53 (с, 3H), 1,77-1,75 (м, 2H), 1,34 (с, 3H), 1,29 (с, 3H), 1,22-1,19 (м, 1H)
94
Figure 00000174
1H ЯМР (400 МГц, ДМСО-d6): δ 11,46 (с, 1H), 11,21 (с, 1H), 7,20 (с, 1H), 6,93 (с, 1H), 4,98-4,82 (м, 2H), 4,42-4,21 (м, 2H), 3,94 (с, 3H), 3,48-3,40 (м, 2H), 3,33 (м, 2H), 2,70 (с, 3H), 2,46 (м, 2H), 1,74 (м, 2H)
<Пример 95> Получение гидрохлорида 8-[(1H-тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 2-[6-(метоксиметил)-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил]ацетонитрила
Figure 00000175
8-(Гидроксиметил)-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-он (100 мг, 0,36 ммоль), полученный на стадии 5 примера 41, растворяли в дихлорметане (105 мл), добавляли по каплям тионилхлорид (66 мкл, 0,91 ммоль) при 0°C. Полученную в результате смесь перемешивали при комнатной температуре в течение 4 часов и выливали в насыщенный водный раствор бикарбоната натрия. Смесь экстрагировали дихлорметаном, промывали соляным раствором, сушили над безводным сульфатом натрия и концентрировали досуха. Затем остаток растворяли в N,N-диметилформамиде (5 мл) добавляли и цианид натрия (55 мг, 1,09 ммоль). Полученную в результате смесь перемешивали при комнатной температуре в течение ночи и выливали в ледяную воду. Смесь экстрагировали хлороформом и органический слой промывали соляным раствором. Раствор сушили над безводным сульфатом натрия и растворитель удаляли при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (хлороформ:метанол=30:1) с получением указанного в заголовке соединения (70 мг, выход: 69%, белое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,46-7,44 (м, 2H), 7,22 (д, J=8,4 Гц, 1H), 5,72 (с, 2H), 4,87 (с, 1H), 3,86 (с, 2H), 3,47 (м, 2H), 3,42 (с, 3H), 2,69 (т, J=6,4 Гц, 2H), 1,98 (м, 2H).
Стадия 2: Получение 8-[(1H-тетразол-5-ил)метил]-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000176
Соединение (65 мг, 0,23 ммоль), полученное на стадии 1, растворяли в N,N-диметилформамиде (5 мл), последовательно добавляли азид натрия (75 мг, 1,15 ммоль) и хлорид аммония (61 мг, 1,15 ммоль). Полученную в результате смесь кипятили с обратным холодильником в течение 48 часов и охлаждали до комнатной температуры. Смесь промывали хлороформом и водный слой концентрировали досуха. Затем остаток промывали метанолом и фильтровали. Фильтрат очищали колоночной флеш-хроматографией (хлороформ:метанол=5:1) с получением указанного в заголовке соединения (34 мг, выход: 45%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,75 (д, J=8,0 Гц, 1H), 7,50 (с, 1H), 7,14 (д, J=8,4 Гц, 1H), 5,67 (с, 2H), 4,41 (с, 2H), 3,40 (м, 2H), 3,33 (с, 3H), 2,60 (т, J=6,4 Гц, 2H), 1,92 (м, 2H).
Стадия 3: Получение гидрохлорида 8-[(1H-тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000177
Соединение (34 мг, 0,10 ммоль), полученное на стадии 2, растворяли в этаноле (5 мл), добавляли конц. хлороводородную кислоту (1,0 мл). Полученную в результате смесь перемешивали при 80°C в течение 10 часов. После завершения реакции смесь концентрировали при пониженном давлении и фильтровали с получением указанного в заголовке соединения (28 мг, выход: 84%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,09 (с, 1H), 7,80 (д, J=8,4 Гц, 1H), 7,10 (с, 1H), 7,03 (д, J=8,0 Гц, 1H), 4,33 (с, 2H), 3,30 (м, 2H), 2,45 (м, 2H), 1,78 (м, 2H).
<Пример 96> Получение тригидрохлорида 10-метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 10-метокси-6-(метоксиметил)-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-карбальдегида
Figure 00000178
К перемешиваемому раствору соединения, полученного на стадии 8 примера 73 (100 мг, 0,32 ммоль), в безводном дихлорметане (5 мл) добавляли по каплям периодинан Десс-Мартина (209 мг, 0,49 ммоль) при 0°C. Полученную в результате смесь перемешивали при комнатной температуре в течение 3 часов и выливали в ледяную воду. Смесь экстрагировали дихлорметаном, сушили над безводным сульфатом магния и концентрировали при пониженном давлении с получением указанного в заголовке соединения (95 мг, выход: 96%, желтое твердое вещество). Полученное соединение применяли в следующей реакции без дополнительной очистки.
1H ЯМР (400 МГц, CDCl3): δ 10,02 (с, 1H), 7,68 (с, 1H), 7,47 (ушир.с, 1H), 7,19 (с, 1H), 5,76 (ушир.с, 2H), 4,04 (с, 3H), 3,44 (с, 3H), 3,43-3,40 (м, 2H), 2,70 (т, J=6,2 Гц, 2H), 1,92 (т, J=5,7 Гц, 2H).
Стадия 2: Получение (E)-10-метокси-6-(метоксиметил)-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000179
Соединение (95 мг, 0,31 ммоль), полученное на стадии 1, растворяли в толуоле (10 мл), добавляли 4-аминоморфолин (0,031 мл, 0,31 ммоль) при комнатной температуре. Затем полученную в результате смесь нагревали и кипятили с обратным холодильником с ловушкой Дина-Старка в течение 5 часов. После охлаждения до комнатной температуры растворитель удаляли при пониженном давлении и остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=20:1) с получением указанного в заголовке соединения (109 мг, выход: 89%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,58 (с, 1H), 7,45 (ушир.с, 1H), 7,19 (с, 1H), 7,15 (с, 1H), 5,72 (ушир.с, 2H), 4,00 (с, 3H), 3,91-3,89 (м, 4H), 3,43 (с, 3H), 3,40-3,38 (м, 2H), 3,24-3,21 (м, 4H), 2,68 (т, J=6,4 Гц, 2H), 1,94-1,88 (м, 2H).
Стадия 3: Получение 10-метокси-6-(метоксиметил)-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000180
Соединение (50 мг, 0,12 ммоль), полученное на стадии 2, растворяли в тетрагидрофуране (2 мл), медленно добавляли цианоборгидрид натрия (4 мг, 0,06 ммоль) и 1,25 н. метанольный раствор хлороводородной кислоты (5 мл). Полученную в результате смесь перемешивали при комнатной температуре в течение 2 часов и концентрировали при пониженном давлении для удаления растворителя. Остаток подщелачивали 1 н. водным раствором гидроксида натрия и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом натрия и растворитель концентрировали досуха. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=20:1) с получением указанного в заголовке соединения (18 мг, выход: 38%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,44 (ушир.с, 1H), 7,16 (с, 1H), 6,76 (с, 1H), 5,69 (ушир.с, 2H), 4,02 (с, 2H), 3,96 (с, 3H), 3,75-3,72 (м, 4H), 3,41 (с, 3H), 3,41-3,38 (м, 2H), 2,74-2,66 (м,6H), 1,93-1,89 (м, 2H).
Стадия 4: Получение тригидрохлорида 10-метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000181
Соединение (18 мг, 0,046 ммоль), полученное на стадии 3, растворяли в этаноле (1 мл), и добавляли 12 н. водный раствор хлороводородной кислоты (1,5 мл). Реакционную смесь перемешивали при 75°C в течение 2 часов. Растворитель концентрировали при пониженном давлении и остаток растворяли в этилацетате. Осадок фильтровали, промывали этилацетат и сушили в вакууме с получением указанного в заголовке соединения (20,1 мг, выход: 96%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,51 (ушир.с, 1H), 11,05 (ушир.с, 1H), 7,13 (с, 1H), 6,99 (с, 1H), 4,31 (с, 2H), 3,98-3,71 (м, 6H), 3,36-3,34 (м, 2H), 3,15 (ушир.с, 2H), 2,48-2,46 (м, 2H), 1,77-1,76 (м, 2H).
<Пример 97> Получение тригидрохлорида 10-метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение 10-метокси-6-(метоксиметил)-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000182
Соединение (40 мг, 0,10 ммоль), полученное на стадии 3 примера 96, и карбонат калия (22 мг, 0,15 ммоль) растворяли в ацетонитриле (5 мл), добавляли йодметан (0,008 мл, 0,12 ммоль). Полученную в результате смесь кипятили с обратным холодильником и перемешивали в течение 18 часов. Реакционную смесь выливали в ледяную воду и экстрагировали хлороформом. Органический слой сушили над безводным сульфатом магния и концентрировали при пониженном давлении. Затем остаток очищали колоночной флеш-хроматографией (дихлорметан:метанол=15:1) с получением указанного в заголовке соединения (3 мг, выход: 8%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 7,45 (ушир.с, 1H), 7,11 (с, 1H), 6,74 (с, 1H), 5,69 (ушир.с, 2H), 3,95 (с, 3H), 3,77 (с, 2H), 3,72-3,70 (м, 4H), 3,41 (с, 3H), 3,39-3,38 (м, 2H), 2,78-2,76 (м, 4H), 2,67 (т, J=6,4 Гц, 2H), 2,37 (с, 3H), 1,92-1,89 (м, 2H).
Стадия 2: Получение тригидрохлорида 10-метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000183
Соединение (3 мг, 0,0075 ммоль), полученное на стадии 1, взаимодействовало таким же образом, как на стадии 4 примера 96, с получением указанного в заголовке соединения (2,6 мг, выход: 75%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 11,05 (ушир.с, 1H), 8,88 (ушир.с, 1H), 7,36 (ушир.с, 1H), 7,16 (с, 1H), 6,90 (с, 1H), 4,24 (ушир.с, 2H), 3,98-3,71 (м,6H), 3,36-3,34 (м, 2H), 3,15 (ушир., 2H), 2,82-2,74 (м, 2H), 1,77-1,76 (м, 2H).
<Пример 98> Получение тригидрохлорида (E)-10-метокси-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000184
Соединение (15 мг, 0,038 ммоль), полученное на стадии 2 примера 96, взаимодействовало таким же образом, как на стадии 4 примера 96, с получением указанного в заголовке соединения (2,6 мг, выход: 75%, желтое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 7,69 (с, 1H), 7,22 (ушир.с, 1H), 7,08 (с, 1H), 4,02 (с, 3H), 3,89-3,87 (м, 4H), 3,42-3,37 (м, 2H), 3,20-3,17 (м, 4H), 2,66 (т, J=6,4 Гц, 2H), 1,90-1,89 (м, 2H).
<Пример 99> Получение дигидрохлорида 8-[(диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Стадия 1: Получение 8-[(диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000185
8-[(Диметиламино)метил]-10-метокси-6-(метоксиметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-он (28 мг, 0,084 ммоль), полученный в примере 72, растворяли в дихлорметане (10 мл) и добавляли по каплям трехбромистый бор (0,6 ммоль, 152 мг) при 0°C. Смесь перемешивали при комнатной температуре в течение 2 часов и затем осторожно добавляли воду. Раствор промывали хлороформом, водный слой концентрировали при пониженном давлении и остаток очищали колоночной флеш-хроматографией (хлороформ:этанол=1:5) с получением указанного в заголовке соединения (14 мг, выход: 58%, белое твердое вещество).
1H ЯМР (400 МГц, CD3OD): δ 6,53 (с, 1H), 6,41 (с, 1H), 3,40-3,36 (м, 2H), 2,55-2,53 (м, 4H), 2,26 (с, 6H), 1,87-1,84 (м, 2H).
Стадия 2: Получение дигидрохлорида 8-[(диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она
Figure 00000186
Указанное в заголовке соединение (13,6 мг, выход: 78%, желтое твердое вещество) получали, используя 8-[(диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-он (14 мг, 0,051 моль), полученный на стадии 1.
1H ЯМР (400 МГц, ДМСО-d6): δ 11,71 (с, 1H), 11,25 (с, 1H), 10,88 (с, 1H), 8,01 (ушир., 1H), 6,83 (с, 2H), 4,17-4,16 (м, 2H), 3,36-3,34 (м, 2H), 2,67 (д, J=2,4 Гц, 6H), 2,47-2,45 (м, 2H), 1,76-1,74 (м, 2H).
<Пример 100> Получение дигидрохлорида 8-[(диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Стадия 1: Получение этил 3-этокси-5-нитробензоата
Figure 00000187
3-Метокси-5-нитробензойную кислоту (10 г, 50,7 ммоль), полученную на стадии 1 примера 72, растворяли в дихлорметане (200 мл), добавляли 1 M дихлорметановый раствор трехбромистого бора. Реакционную смесь перемешивали при комнатной температуре в течение 8 часов. Смесь выливали в ледяную воду и промывали дихлорметаном. Водный слой концентрировали при пониженном давлении и сушили в вакууме. Остаток растворяли в N,N-диметилформамиде (150 мл), добавляли по каплям карбонат калия (42 г, 304 ммоль) и йодэтан (20,2 мл, 253 ммоль). Затем смесь перемешивали в течение одного дня при 60°C и выливали в ледяную воду. Раствор экстрагировали этилацетатом, промывали соляным раствором и сушили над безводным сульфатом магния. Растворитель удаляли при пониженном давлении и остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=5:1) с получением указанного в заголовке соединения (8,49 г, выход: 70%, желтое твердое вещество).
1H ЯМР (400 МГц, CDCl3): δ 8,44 (с, 1H), 7,90-7,88 (м, 2H), 4,43 (кв, J=3,6 Гц, 2H), 4,16 (кв, J=3,4 Гц, 2H) 1,48 (т, J=7,2 Гц, 3H), 1,43 (т, J=7,2 Гц, 3H).
Стадия 2: Получение этил 3-амино-5-этоксибензоата
Figure 00000188
Соединение (8,49 г, 35,49 ммоль), полученное на стадии 1, растворяли в этилацетате, добавляли 10%-палладий (Pd) (900 мг). Реакционную смесь перемешивали при комнатной температуре в течение одного дня в газообразном водороде. После завершения реакции раствор фильтровали через целит и фильтрат концентрировали при пониженном давлении. Остаток очищали колоночной флеш-хроматографией (гексан:этилацетат=3:1) с получением указанного в заголовке соединения (6,98 г, выход: 94%, желтая жидкость).
1H ЯМР (400 МГц, CDCl3): δ 6,98 (м, 2H), 6,41 (м, 1H), 4,34 (кв, J=3,6 Гц, 2H), 4,03 (кв, J=3,6 Гц, 2H) 3,76 (ушир., 2H), 1,42-1,36 (м, 6H).
Стадия 3: Получение дигидрохлорида 8-[(диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000189
Указанное в заголовке соединение (85 мг, выход: 11,4% (общий выход), желтое твердое вещество) получали тем же способом, как и на стадиях 4-9 примера 72, используя этил 3-амино-5-этоксибензоат (415 мг, 1,98 ммоль), полученный на стадии 2.
1H ЯМР (400 МГц, CDCl3): δ 11,71 (с, 1H), 11,19 (с, 1H), 7,91 (ушир., 1H), 7,29 (с, 1H) 6,97 (с, 1H), 4,34-4,27 (м, 4H), 3,39 (м, 2H), 2,68 (д, J=2,0 Гц,6H), 2,51-2,49 (м, 2H), 1,77 (м, 2H), 1,44 (т, J=6,8 Гц, 3H).
Следующие соединения получали, применяя реакцию примера 100.
<Пример 101> дигидрохлорид 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 102> дигидрохлорид 10-этокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 103> дигидрохлорид 10-Этокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 104> дигидрохлорид 10-этокси-8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 105> гидрохлорид 8-(гидроксиметил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 106> дигидрохлорид 10-метокси-8-(тиоморфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 107> тригидрохлорид 10-метокси-8-[(2-морфолиноэтиламино)метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 108> тригидрохлорид 10-метокси-8-[(4-морфолинопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 109> дигидрохлорид 8-(аминометил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 110> дигидрохлорид 8-[(диметиламино) метил)]-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 111> дигидрохлорид 8-(морфолинометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 112> дигидрохлорид 8-(аминометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 113> дигидрохлорид 8-(аминометил)-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 114> дигидрохлорид 8-(аминометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 115> дигидрохлорид 10-метокси-8-{[метил(тетрагидро-2H-пиран-4-ил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 116> дигидрохлорид 8-[(диметиламино)метил]-10-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 117> дигидрохлорид 10-(2-метоксиэтокси)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
<Пример 118> дигидрохлорид 1-[(10-метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]-1H-пиррол-2,5-диона
Пример Химическая структура Данные ЯМР-спектра
101
Figure 00000190
1H ЯМР (400 МГц, ДМСО-d6) δ 11,39 (ушир., 1H), 11,35 (с, 1H), 7,64 (ушир., 1H), 7,26 (с, 1H), 6,91 (с, 1H) 4,32-4,26 (м, 4H), 3,97-3,82 (м, 4H), 3,39-3,34 (м, 2H), 3,22-3,08 (м, 4H), 2,47-2,45 (м, 2H), 1,78-1,75 (м, 2H), 1,44 (т, J=7,2 Гц, 3H),
102
Figure 00000191
1H ЯМР (400 МГц, ДМСО-d6) δ 11,41 (с, 1H), 10,74 (с, 1H), 7,78 (ушир., 1H), 7,28 (с, 1H), 6,91 (с, 1H) 4,29 (кв, J=6,8 Гц, 2H), 4,23-4,21 (м, 2H), 3,36 (м, 2H), 3,25-3,22 (м, 2H), 2,88-2,85 (м, 2H), 2,49-2,48 (м, 2H), 1,91-1,68 (м, 6H), 1,50 (т, J=6,8 Гц, 3H), 1,36-1,33 (м, 2H)
103
Figure 00000192
1H ЯМР (400 МГц, ДМСО-d6) δ 11,34 (с, 1H), 9,26 (с, 1H), 7,64 (ушир., 1H), 7,05 (с, 1H), 6,88 (с, 1H), 4,26 (кв, J=3,4 Гц, 2H), 4,09-4,06 (м, 2H), 3,37-3,34 (м, 2H), 2,60-2,57 (м, 3H), 2,49-2,45 (м, 2H), 1,78-1,75 (м, 2H), 1,50 (т, J=5,2 Гц, 3H),
104
Figure 00000193
1H ЯМР (400 МГц, ДМСО-d6): δ 11,39 (с, 1H), 9,28 (ушир., 1H), 7,70 (ушир., 1H), 7,11 (с, 1H), 6,91 (с, 1H), 4,27 (кв, J=3,4 Гц, 2H), 4,08 (ушир., 2H), 3,36 (ушир., 1H), 2,95 (ушир., 2H), 2,47 (ушир., 2H), 1,77 (ушир., 2H), 1,45 (т, J=6,4 Гц, 3H), 1,23 (т, J=7,6 Гц, 3H)
105
Figure 00000194
1H ЯМР (400 МГц, ДМСО-d6): δ 11,77 (с, 1H), 8,23 (ушир., 1H), 6,99 (с, 1H), 6,74 (с, 1H), 4,53 (с, 2H), 3,93 (с, 3H), 3,39 (т, J=5,6 Гц, 2H), 2,54-2,52 (м, 2H), 1,78 (т, J=5,2 Гц, 2H)
106
Figure 00000195
1H ЯМР (400 МГц, ДМСО-d6): δ 11,42 (с, 1H), 11,30 (ушир., 1H), 7,82 (ушир., 1H), 7,30 (с, 1H), 6,92 (с, 1H), 4,34-4,33 (м, 2H), 3,97 (с, 3H), 3,55-3,52 (м, 2H), 3,35-3,33 (м, 2H), 3,29-3,23 (м, 2H), 3,18-3,12 (м, 2H), 1,75 (т, J=5,6 Гц, 2H)
107
Figure 00000196
1H ЯМР (400 МГц, ДМСО-d6): δ 11,83 (с, 1H), 11,39 (ушир., 1H), 9,99 (ушир., 1H), 7,28 (с, 1H), 7,03 (с, 1H), 4,22 (ушир., 2H), 4,02-3,97 (м, 5H), 3,84-3,81 (м, 2H), 3,56-3,52 (м, 6H), 3,43-3,38 (м, 2H), 3,21-3,10 (м, 2H), 2,53-2,50 (м, 2H), 1,77 (т, J=4,4 Гц, 2H)
108
Figure 00000197
1H ЯМР (400 МГц, ДМСО-d6): δ 11,33 (ушир., 1H), 11,29 (с, 1H), 11,14 (ушир., 1H), 7,71 (ушир., 1H), 7,19 (с, 1H), 6,89 (с, 1H), 4,27 (ушир., 1H), 3,99-3,96 (м, 5H), 3,85-3,80 (м, 2H), 3,47-3,34 (м, 6H), 3,08-2,98 (м, 4H), 2,55 (м, 1H), 2,48-2,45 (м, 2H), 2,33-2,30 (м, 2H), 1,77-1,74 (м, 2H)
109
Figure 00000198
1H ЯМР (400 МГц, ДМСО-d6): δ 11,44 (с, 1H), 8,48 (ушир., 3H), 7,01 (с, 1H), 6,90 (с, 1H), 4,00 (кв, J=3,2 Гц, 2H), 3,94 (с, 3H), 3,35 (ушир., 2H), 2,48-2,46 (м, 2H), 1,76 (м, 2H)
110
Figure 00000199
1H ЯМР (400 МГц, ДМСО-d6): δ 11,36 (с, 1H), 10,8 (ушир., 1H), 7,62 (ушир., 1H), 7,16 (с, 1H), 6,89 (с, 1H), 4,25 (д, J=2,6 Гц, 2H), 4,17 (т, J=6,8 Гц, 2H), 3,36 (ушир., 2H), 2,70 (с, 3H), 2,69 (с, 3H), 2,48-2,46 (м, 2H), 1,86 (кв, J=3,6 Гц, 2H), 1,79-1,77 (м, 2H), 1,01 (т, J=7,6 Гц, 3H)
111
Figure 00000200
1H ЯМР (400 МГц, ДМСО-d6): δ 11,24 (м, 2H), 7,54 (ушир., 1H), 7,21 (с, 1H), 6,89 (с, 1H), 4,30-4,29 (м, 2H), 4,19-4,16 (м, 2H), 3,94-3,91 (м, 2H), 3,84-3,78 (м, 2H), 3,38-3,34 (м, 2H), 3,22-3,19 (м, 2H), 3,14-3,10 (м, 2H), 2,49-2,46 (м, 2H), 1,89-1,83 (м, 2H), 1,76-1,75 (м, 2H), 1,01 (т, J=7,2 Гц, 3H)
112
Figure 00000201
1H ЯМР (400 МГц, ДМСО-d6): δ 11,45 (с, 1H), 8,52 (ушир., 3H), 7,96 (с, 1H), 7,31 (с, 1H), 4,05 (д, J=2,6 Гц, 2H), 3,34-3,32 (м, 2H), 2,53-2,48 (м, 2H), 1,81-1, 79 (м, 2H)
113
Figure 00000202
1H ЯМР (400 МГц, ДМСО-d6): δ 11,43 (с, 1H), 8,47 (ушир., 3H), 7,72 (ушир., 1H), 7,01 (с, 1H), 6,89 (с, 1H), 4,26 (кв, J=3,4 Гц, 2H), 3,99 (д, J=2,8 Гц, 2H), 3,37 (м, 2H), 2,49-2,46 (м, 2H), 1,77 (м, 2H), 1,44 (т, J=7,2 Гц, 3H)
114
Figure 00000203
1H ЯМР (400 МГц, ДМСО-d6): δ 11,09 (с, 1H), 8,29 (ушир., 3H), 7,45 (ушир., 1H), 6,88 (с, 1H), 6,81 (с, 1H), 4,10 (т, J=6,8 Гц, 2H), 3,97-3,95 (м, 2H), 3,32 (м, 2H), 2,46-2,41 (м, 2H), 1,86-1, 83 (м, 2H), 1,74 (м, 2H), 0,99 (т, J=7,2 Гц, 3H)
115
Figure 00000204
1H ЯМР (400 МГц, ДМСО-d6): δ 11,25 (с, 1H), 10,76 (ушир., 1H), 7,69 (ушир., 1H), 7,19 (с, 1H), 6,93 (с, 1H), 4,49-4,45 (м, 1H), 4,20 (ушир., 1H), 4,16-3,99 (м, 1H), 4,02-3, 97 (м, 2H), 3,96 (с, 3H), 3,36-3,29 (м, 6H), 2,60-2, 56 (м, 3H), 2,49-2,46 (м, 2H), 2,12-2,00 (м, 2H), 1,85-1,82 (м, 2H)
116
Figure 00000205
1H ЯМР (400 МГц, ДМСО-d6): δ 11,43 (с, 2H), 10,94 (ушир., 1H), 7,81 (ушир., 1H), 7,23 (с, 1H), 6,93 (с, 1H), 4,32-4,30 (м, 2H), 4,30-4,25 (м, 2H), 3,79-3,77 (м, 2H), 3,38 (с, 3H), 3,35-3,33 (м, 2H), 2,69 (с, 3H), 2,68 (с, 3H), 2,49-2,47 (м, 2H), 1,79-1,77 (м, 2H)
117
Figure 00000206
1H ЯМР (400 МГц, ДМСО-d6): δ 11,25 (ушир., 2H), 7,71 (ушир., 1H), 7,24 (с, 1H), 6,91 (с, 1H), 4,31-4,29 (м, 4H), 3,93-3,91 (м, 2H), 3,84-3,78 (м, 4H), 3,38 (с, 3H), 3,33 (ушир., 2H), 3,23-3, 20 (м, 2H), 3,12-3,09 (м, 2H), 2,49-2,45 (м, 2H), 1,76-1,75 (м, 2H)
118
Figure 00000207
1H ЯМР (400 МГц, ДМСО-d6): δ 11,51-11,36 (м, 1H), 11,01 (ушир., 1H), 8,12 (ушир., 1H), 7,05-7, 02 (м, 1H), 6,86-6,85 (м, 1H), 6,74-6,71 (м, 1H), 5,10 (т, J=12,4 Гц, 2H), 3,91-3,88 (м, 3H), 3,36-3,30 (м, 2H), 2,49-2,46 (м, 2H), 2,09-2,05 (м, 3H), 1,76-1,75 (м, 2H)
<Пример 119> Получение 8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она
Figure 00000208
Дихлорметан (60 мл) и метанол (60 мл) добавляли к дигидрохлориду 8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она (13 г, 31,2 ммоль), полученному в примере 49, и затем добавляли по каплям при комнатной температуре триэтиламин (13,05 мл, 93,6 ммоль). После перемешивания при комнатной температуре в течение 30 минут осадок собирали фильтрацией, промывали этилацетатом (20 мл) и сушили в вакууме с получением указанного в заголовке соединения (10 г, выход: 93%, белое твердое вещество).
1H ЯМР (400 МГц, ДМСО-d6): δ 10,77 (с, 1H), 7,72 (д, J=8,4 Гц, 1H), 7,14 (с, 1H), 7,00 (д, J=8,4 Гц, 1H), 6,91 (с, 1H), 3,57-3,55 (м, 4H), 3,44 (с, 2H), 3,28 (м, 2H), 2,43 (т, J=6,0 Гц, 2H), 2,33 (м, 4H), 1,77 (т, J=5,2 Гц, 2H).
Следующие соединения получали, применяя реакцию примера 119.
<Пример 120> 8-[(Метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он
<Пример 121> 8-[(Диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он
<Пример 122> 10-Метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он
<Пример 123> 10-Этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он
Пример Химическая структура Данные ЯМР-спектра
120
Figure 00000209
1H ЯМР (400 МГц, ДМСО-d6): δ 10,97 (с, 1H), 7,84 (д, J=4,2 Гц, 1H), 7,26 (д, J=4,0 Гц, 1H), 7,05 (с, 1H), 4,02 (с, 2H), 3,29 (ушир., 2H), 2,47 (с, 3H), 2,49-2,42 (м, 2H), 1,78 (ушир., 2H)
121
Figure 00000210
1H ЯМР (400 МГц, ДМСО-d6): δ 10,92 (с, 1H), 7,45 (с, 1H), 7,07 (ушир., 1H), 6,80 (с, 1H), 4,11 (ушир., 2H), 3,93 (с, 3H), 3,30 (ушир., 2H), 2,60 (ушир., 6H), 2,42 (т, J=6,4 Гц, 2H), 1,73 (ушир., 2H)
122
Figure 00000211
1H ЯМР (400 МГц, ДМСО-d6): δ 10,68 (с, 1H), 7,41 (с, 1H), 6,77 (с, 1H), 6,57 (с, 1H), 3,87 (с, 3H), 3,58 (м, 4H), 3,41 (с, 2H), 3,29 (м, 2H), 2,41 (т, J=6,0 Гц, 2H), 2,35 (м, 4H), 1,72 (т, J=5,2 Гц, 2H)
123
Figure 00000212
1H ЯМР (400 МГц, CDCl3-d6): δ 10,68 (с, 1H), 7,36 (с, 1H), 6,76 (с, 1H), 6,59 (с, 1H), 4,17 (кв, J=3,6 Гц, 2H), 3,59-3,57 (м, 4H), 3,41 (с, 2H), 3,31 (ушир., 2H), 2,41 (т, J=6,0 Гц, 2H), 2,35 (ушир., 4H), 1,76-1,73 (м, 2H), 1,41 (т, J=6,8 Гц, 3H)
<Экспериментальный пример 1> Ингибирующая активность фермента поли(АДФ-рибоза)полимеразы [PARP-1]
Активность соединений согласно настоящему изобретению на ингибирование PARP-1 фермента исследовали, применяя PARP набор реактивов (4671-096-K), приобретенный у Trevigen. Данный анализ осуществляли, следуя модифицированному ранее опубликованному способу Lee et al [Methods Find, Exp. Clin. Pharmacol., 27, 617-622, 2005].
Гистон наносили в виде покрытия на 384-луночный планшет, который представляет собой PS планшет небольшого объема (784101) Greiner Bio-One, и оставляли при 25°C в течение 2 часов. После этого планшет промывали четыре раза PBS (7,5 мМ Na2HPO4, 2,5 мМ NaH2PO4, 145 мМ NaCl, pH 7,4) и для того чтобы предотвратить неспецифическую реакцию, добавляли Strep-разбавитель (из набора Trevigen) и оставляли при 25°C в течение одного часа. Через один час планшет снова промывали PBS четыре раза и соединения примеров при различных концентрациях помещали в реактант, содержащий PARP-1 фермент (0,12 единиц/лунка), 2 × PARP коктейль (1,95 мМ NAD+, 50 мкМ биотинилированный NAD+ и активированная ДНК в 50 мМ Tris pH 8,0, 25 мМ MgCl2) и оставляли реагировать при 25°C в течение 30 минут. Через 30 минут каждую лунку промывали PBS четыре раза и для того чтобы измерить степень рибозилирования PARP ферментом, добавляли стрептавидин-связанную пероксидазу (Strep-HRP, 1:1000 разбавленную) и оставляли реагировать при 37°C в течение 30 минут. Планшет промывали PBS четыре раза и добавляли TACS-Sapphire субстрат и оставляли реагировать при 25°C в течение 10 минут так, чтобы протекала цветная реакция. Наконец, реакцию прекращали добавлением 0,2 н. HCl. Степень рибозилирования гистона, осуществленного PARP-1 ферментом, количественно измеряли при 450 нм, применяя Wallac EnVision™ (PerkinElmer Oy, Turku, Finland). Полученные результаты в зависимости от различных концентраций соединений настоящего изобретения представляют собой средние величины, полученные из трех лунок, и результаты анализировали расчетом IC50 величин соединений, применяя SigmaPlot 10 (Systat Software Inc., USA). Далее, коммерчески доступный DPQ (Sigma) применяли в качестве контроля в сравнительном эксперименте.
Результаты приведены в таблице 1.
Таблица 1
Пример PARP-1 ингибирующая активность IC50 (мкМ) Пример PARP-1 ингибирующая активность IC50 (мкМ) Пример PARP-1 ингибирующая активность IC50 (мкМ)
1 >4 2 0,60 3 0,50
6 >4 7 >4 8 >4
9 >4 10 >4 11 1,03
12 1,07 13 3,85 14 >4
15 1,05 16 0,37 17 0,46
18 1,52 19 1,48 20 1,54
21 >4 22 1,16 23 1,43
24 1,08 25 >4 26 0,39
27 2,64 28 >4 29 2,85
30 3,11 31 1,07 32 0,23
33 0,93 34 1,62 35 3,54
36 3,02 37 >4 38 0,05
39 0,10 40 >4 41 0,04
42 0,22 43 0,16 44 0,06
45 0,26 46 0,59 47 0,07
48 0,13 49 0,62 50 0,32
51 0,93 52 0,07 53 0,05
54 0,93 55 1,72 56 0,18
57 0,48 58 0,92 59 0,19
60 0,12 61 0,54 62 >4
63 1,02 64 0,54 65 1,54
66 0,09 67 0,76 68 1,19
69 >4 70 1,09 71 3,00
72 0,08 73 0,10 74 0,23
75 0,05 76 0,05 77 0,05
78 0,11 79 0,18 80 0,14
81 0,11 82 0,06 83 0,32
84 0,15 85 0,18 86 0,11
87 0,61 88 0,11 89 0,27
90 0,78 91 0,29 92 0,19
93 0,14 94 0,17 95 0,49
96 0,77 97 0,90 99 0,75
100 0,06 101 0,56 102 0,18
103 0,12 104 0,06 105 0,19
106 0,09 107 0,07 108 0,14
109 0,07 110 0,08 111 0,96
112 0,17 113 0,10 114 0,19
115 0,41 116 0,18 117 0,61
Контроль
(DPQ)
2,51
Как видно из таблицы 1 выше, соединение согласно настоящему изобретению проявляет PARP-1 ингибирующую активность 0,04-4 мкМ и является специфичным, соединения примеров 2, 3, 16, 17, 26, 32, 33, 38, 39, 41-54, 56-61, 64, 66, 67, 72-117 проявляют PARP-1 ингибирующую активность, меньшую, чем 1 мкМ. Соответственно, по сравнению с контролем (например, DPQ (2,51 мкМ)) соединения настоящего изобретения показывают превосходную PARP-1 ингибирующую активность. Соответственно, соединения согласно настоящему изобретению эффективно ингибируют PARP-1 и таким образом их можно эффективно применять для предотвращения или лечения заболеваний, являющихся результатом чрезмерной активации PARP, включая нейропатическую боль, нейродегенеративные заболевания, сердечно-сосудистые заболевания, диабетическую нейропатию, воспалительное заболевание, остеопороз и рак.
<Экспериментальный пример 2> Внутриклеточная PARP ингибирующая активность
Для того чтобы проверить способность соединений настоящего изобретения ингибировать PARP-1 ферментативную активность, измеряли количество NAD(P)H, накопленного в среде культуры клеток.
Клетки яичника китайского хомячка (CHO-K1) выращивали в RPMI1640 культуральной среде, содержащей 10% фетальную телячью сыворотку (FBS). Выращенные CHO-K1 клетки высевали в 96-луночном планшете с 2,9×103 клеток/лунка и выращивали в течение 16 часов в условиях культивирования 37°C, 5% CO2. После выращивания клетки обрабатывали соединениями примеров при различных концентрациях и выращивали при 37°C в течение 2 часов. После этого метилметансульфонат (MMS) в качестве агента, повреждающего ДНК, обрабатывали до 1,5 мМ для каждого, и CCK-8 (Cell count kit-8) раствор (CK01-13 DOJINDO) одновременно обрабатывали с целью проявления цвета. Количество NND(P)H, высвободившееся в культуральную среду через 3, 4, 5 часов после обработки MMS, измеряли при 450 нм, применяя Wallac EnVisionTM (PerkinElmer Oy, Turku, Finland). Переводные коэффициенты соединений при различных концентрациях согласно настоящему изобретению представляют собой средние величины, полученные в четырех лунках, и результаты рассчитывали, применяя регрессионный анализ. Далее, коммерчески доступный DPQ (Sigma) применяли в качестве контроля в сравнительном эксперименте.
Клетки яичника китайского хомячка (CHO-K1) обрабатывали соединениями при различных концентрациях согласно настоящему изобретению и измеряли количество NAD(P)H, высвободившееся в культуральную среду через 4 часа после MMS обработки. Результаты приведены в таблице 2 и на Фиг.1.
Таблица 2
Пример PARP-1 ингибирующая активность IC50 (мкМ) Пример PARP-1 ингибирующая активность IC50 (мкМ)
2 0,92 3 0,87
17 1,63 18 3,71
20 1,30 25 3,18
32 3,16 37 4,86
38 0,14 39 1,56
41 0,05 42 0,85
43 1,77 44 0,34
45 1,16 47 0,25
48 0,43 49 0,51
52 0,17 53 0,29
56 0,47 66 0,32
72 0,09 73 1,39
74 1,48 77 0,82
87 0,82 88 0,27
100 0,06 101 1,94
102 0,50 103 0,82
104 1,65 105 1,21
106 0,29 107 2,22
108 0,11 109 0,94
110 0,09 111 1,33
112 2,65 113 1,43
114 1,92 115 1,22
116 0,52 117 6,32
Контроль (DPQ) 12,40
Как видно из таблицы 2 и Фиг.1, трициклические производные согласно настоящему изобретению проявляют PARP-1 ингибирующую активность 0,05-6,32 мкМ и таким образом обеспечивают превосходную PARP-1 ингибирующую активность по сравнению с контрольным соединением (например, DPQ (12,40 pM)).
<Экспериментальный пример 3> Ингибирование клеточного роста линий раковых клеток
Следующие испытания проводили для подтверждения способности соединений настоящего изобретения ингибировать клеточный рост линий раковых клеток.
Испытания на ингибирующую активность относительно роста клеток проводили по отношению к A549 (US, ATCC), SK-OV-3 (Korea Research Institute of Chemical Technology; KRICT), HT-29 (US, ATCC), MCF-7 клетке (US, ATCC), применяя сульфородамин-B <SRB> анализ (1989, US National Cancer Institute (NCI)), который разрабатывался для измерения противораковой активности лекарственного средства in vitro. Клетки, которые применяли в испытаниях, отделяли от присоединенной поверхности 0,25% трипсин-EDTA раствором, полученным в 1,5×104-7×104 клеток/мл клеточной суспензии, добавляли в 96-луночные планшеты до 200 мкл на лунку и выращивали при 37°C, 5% CO2 культуральной среде в течение 24 часов. Образцы соединений примеров согласно настоящему изобретению применяли для испытаний, и до испытаний образцы растворяли в диметилсульфоксиде и разбавляли культуральной средой (RPMI 1640), которую применяли. Конечная концентрация образца изменялась в диапазоне 0,3-100 мкМ.
После удаления культуральной среды из 96-луночных планшетов разбавленный раствор образца добавляли до 100 мкл и выращивали в 37°C, 5% CO2 культуральной среде в течение 72 часов. Планшеты с нулевым моментом времени (Tz) собирали в момент времени добавления образца. После завершения выращивания среду удаляли из каждой лунки вместе с Tz планшетом, затем добавляли охлажденную 10% трихлоруксусную кислоту (TCA) до 100 мкл на лунку.
Лунки оставляли при 4°C в течение 1 часа так, чтобы клетки были зафиксированы на дне планшетов. После фиксации клеток планшеты промывали водой 5-6-раз для удаления оставшегося раствора трихлоруксусной кислоты и влагу полностью удаляли при комнатной температуре. Клетки окрашивали в течение 30 минут добавлением раствора красителя, в котором 0,4% сульфородамин-B растворяли в 1% растворе уксусной кислоты, до 100 мкл на высушенные лунки. Планшеты промывали снова 1% раствором уксусной кислоты 5-6 раз для обеспечения удаления сульфородамина-B, который не связался с клетками. Планшеты снова сушили при комнатной температуре. Затем добавляли 100 мкл 10 мМ трис-буфера для растворения красителя и оптическую плотность (OD) при 520 нм измеряли считывающим устройством для микропланшетов. GI50 раковой клетки образца измеряли, как объясняется ниже. Получали величину в нулевой момент (Tz), контрольную величину (C) и испытуемую величину (T), в которых Tz соответствовало OD величине момента времени, в который наносили образец и начинали выращивание, C соответствует OD величине лунки, в которой клетки выращивали без обработки образцом, и T соответствует OD величине лунки, которую обрабатывают образцом и затем выращивают в ней клетки. Степень ингибирования роста клеток образца измеряли, применяя:
Математическая формула 1
Если T≤Tz, (T-Tz)/(C-Tz)×100
Если T≥Tz, (T-Tz)/Tz×100
На основании результатов расчетов математической формулы концентрацию ингибирования роста (GI50), которая представляет собой концентрацию лекарственного средства для ингибирования роста раковой клетки на 50%, рассчитывали, применяя регрессионный анализ Lotus программы. Далее, определяли способность соединений примеров 2, 42, 49, 52, 72, 74, 101 усиливать эффект темозоломида и SN-38 ингибировать рост при 2 мкМ.
PF50 рассчитывали:
Математическая формула 2
GI50 с обработкой только темозоломидом или SN-38/GI50 с обработкой темозоломидом или SN-38 + 2 мкМ соединением
Результаты расчетов показаны в таблицах 3-6.
Таблица 3
A549 клеточная линия
Пример GI50 (мкМ) Темозоломид PF50 SN-38 PF50
2 59 2,4 2,2
42 >100 2,3 1,6
29 >100 2,0 1,5
52 >100 1,5 2,2
72 >100 3,4 3,8
74 75 3,2 2,2
101 55 3,2 2,6
Таблица 4
SK-OV-3 клеточная линия
Пример GI50 (мкМ) Темозоломид PF50 SN-38 PF50
2 50 >3,2 1,2
42 >100 >2,1 1,6
29 >100 >1,7 1,5
52 >100 >2,2 1,4
72 >100 >10,2 1,8
74 52 >5,0 2,2
101 19 >3,9 2,8
Таблица 5
HT-29 Клеточная линия
Пример GI50 (мкМ) Темозоломид PF50 SN-38 PF50
2 70 >1,5 1,4
42 81 >1,4 2,1
29 91 >1,2 1,5
52 90 >1,3 1,4
72 >100 >5,2 2,2
74 30 >2,8 3,5
101 20 >1,9 4,0
Таблица 6
MCF-7 Клеточная линия
Пример GI50 (мкМ) Темозоломид PF50 SN-38 PF50
2 51 1,7 1,4
42 75 1,6 1,6
29 >100 2,1 2,2
52 >100 1,5 1,1
72 54 1,7 2,6
74 45 6,3 3,0
101 11 5,9 3,0
Как показано в таблицах 3-6, при добавлении 2 мкМ трициклического производного согласно настоящему изобретению, GI50 величина темозоломида или SN-38 снижалась в 1,5-3,8 раза в A549 клеточной линии, 1,2-10,2 раза в SK-OV-3 клеточной линии, 1,2-5,2 раза в HT-29 клеточной линии и 1,1-6,3 раза в MCF-7 клеточной линии.
<Экспериментальный пример 4> Нейропротекторный эффект на животной модели крыс с окклюзией средней церебральной артерии (MCAO)
Изобретатели настоящего изобретения провели следующее испытание для подтверждения нейропротекторной способности соединений согласно настоящему изобретению.
Испытание осуществляли на мужских особях крыс линии Спраг Доули (KOATECH Co., Ltd., South Korea), весящих 280-340 г. Животным давали пищу и воду ad libitum и адаптировали к условиям испытания в течение 1 недели. Модифицированный способ внутрисосудистого филамента, как описано Zea Longa et al. (Stroke, 20:84-91, 1989), применяли для того, чтобы вызвать MCAO. У крыс развивались ишемические области в результате недостаточного потока крови в полосатом теле и височной доле, которые являются доменной областью средней церебральной артерии, и недостаток кислорода и источников энергии после окклюзии средней церебральной артерии. Для закупорки средней церебральной артерии способом внутрипросветного сшивания, 4-0 нейлоновую нить нарезали на 22 мм и 2 мм на конце закругляли нагреванием на огне. Для того чтобы увеличить эффект предотвращения повреждения и окклюзии в просвете, пробу покрывали оксидом кремния на 0,3 мм.
Крыс анестезировали изофлураном (3% для вводного наркоза и 2% для хирургической операции) в смеси кислород/оксид азота (30%/70%). Левую общую сонную артерию (CCA) обнажали с помощью нижнего срединного разреза на шее. Наружную сонную артерию (ECA), внутреннюю сонную артерию (ICA) и CCA осторожно отделяли и придавали Y-форму, используя шелковую нить. Верхнюю наружную сонную артерию блокировали нитью и небольшое отверстие прокалывали на 1 мм ниже места, в котором внешняя и внутренняя сонные артерии разделяются из общей сонной артерии. Зонд вставляли в небольшое отверстие и фиксировали нитью. Разрез на шее закрывали и каждому животному позволяли оправиться от анестезии. Через 120 минут после MCA окклюзии каждое животное повторно анестезировали и разрез на шее открывали для удаления нити. Вместе с реперфузией вводили внутривенно соединение примера 74. Через 22 часа после реперфузии животных умерщвляли удушением CO2, обезглавливали и получали шесть коронарных срезов 2 мм толщиной, используя ткани мозга грызунов. Коронарные срезы инкубировали в фосфатно-солевом буферном растворе (PBS), содержащем 2% хлорид 2,3,5-трифенилтетразолия (TTC, Sigma), при 37°C в течение 30 мин и затем фиксировали в 4% фосфат-буферном формалине. После фиксации данные коронарные срезы сканировали, применяя сканер планшетного типа. Площадь инфаркта определяли с помощью image J (NIH image version 1,59) и общий объем инфаркта рассчитывали:
Математическая формула 3
Объем инфаркта (мм3) = площадь инфаркта (мм2) × толщина слоя (2 мм)
Статистический анализ снижения объема инфаркта осуществляли тестом Манна-Уитни (*:p<0,05, **:p<0,01). Результаты испытания показаны в таблице 7 и на Фиг.2.
Таблица 7
Группа Количество мышей Доза (мг/кг) Объем инфаркта (мм3) Процент снижения инфаркта (%) p
1 10 - (Контрольная группа) 263,23 - -
2 10 10 252,38 4 0,65
3 12 20 124,68 53 0,003**
4 11 30 162,88 38 0,024*
Как показано в таблице 7 и на Фиг.2, по сравнению с контрольной группой, группа, в которой мышам вводили соединение настоящего изобретения с дозой 10 мг/кг, не показала значительного снижения объема инфаркта. Однако группа, в которой мышам вводили соединение настоящего изобретения с дозой 20 мг/кг и 30 мг/кг соответственно, показала значительное снижение площади инфаркта, на 53% и 38%, соответственно, по сравнению с контрольной группой.
Соответственно, трициклические производные согласно настоящему изобретению показывают превосходную ингибирующую активность на поли(АДФ-рибоза)полимеразу, в частности превосходную PARP-1 ингибирующую активность по сравнению с DPQ в качестве общепринятого ингибитора поли(АДФ-рибоза)полимеразы, увеличивают ингибирующий эффект роста раковых клеток темозоломида или SN-38 и проявляют превентативный эффект при фокальной ишемии белых мышей, используя окклюзию средней церебральной артерии (MCAO), и таким образом их можно эффективно применять для предотвращения или лечения заболеваний, вызванных чрезмерной активацией PARP, включая, в частности, нейропатическую боль, нейродегенеративные заболевания, сердечно-сосудистые заболевания, диабетическую нейропатию, воспалительное заболевание, остеопороз и рак.
При этом трициклические производные согласно настоящему изобретению можно составлять в различные формы в зависимости от целей. Соответственно, идея настоящего изобретения не ограничивается несколькими примерами рецептур, содержащих производные в качестве эффективных компонентов, описанных в настоящем изобретении.
<Примерная рецептура 1> Получение фармацевтического лекарственного препарата
1. Рецептура таблетки
Соединение химической формулы 1 100 мг
Кукурузный крахмал 100 мг
Лактоза 100 мг
Стеарат магния 2 мг
Вышеупомянутые компоненты смешивали друг с другом и получали таблетки, применяя прессование согласно общепринятому способу получения таблеток.
2. Рецептура капсулы
Соединение химической формулы 1 100 мг
Кукурузный крахмал 100 мг
Лактоза 100 мг
Стеарат магния 2 мг
Вышеупомянутые компоненты смешивали и капсулу получали наполнением смеси в желатиновые капсулы согласно общепринятым способам получения капсул.

Claims (13)

1. Трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли
Химическая формула 1
Figure 00000213

где Y1, Y2 и Y3 независимо представляют собой H, C110алкил с линейной или разветвленной цепью, гидрокси, C1-C10алкокси, -CCOR1, -NR2R3 или -A-B;
A представляет собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
B представляет собой -(CH2)n1-Z, -(CH2)n2-NR2R3 или -(CH2-)n3-OR1;
Z представляет собой C5-C20арил, незамещенный или замещенный R5 и избирательно R6, C3-C10циклоалкил, незамещенный или замещенный R5 и избирательно R6, C1-C20гетероциклическое соединение, незамещенное или замещенное R5 и избирательно R6;
R1 представляет собой H или C1-C10алкил с линейной или разветвленной цепью;
R2 и R3 независимо представляют собой H, C1-C10алкил с линейной или разветвленной цепью или -(CH2)n4R7;
R5 представляет собой H, C1-C10алкил с линейной или разветвленной цепью, C5-C20арил или C1-C20гетероциклическое соединение;
R6 представляет собой H или C1-C10алкил с линейной или разветвленной цепью;
R7 представляет собой -NR8R9, -COOR1, -OR1, -CF3, -CN, галоген или Z;
R8 и R9 независимо представляют собой H или C1-C10алкил с линейной или разветвленной цепью;
n1-n4 представляют собой соответственно целое от 0 до 15;
Y4 представляет собой H или C1-C10алкил с линейной или разветвленной цепью.
2. Трициклическое производное или его фармацевтически приемлемые соли по п.1, где
Y1 и Y2 независимо представляют собой H, C1-C5алкил с линейной или разветвленной цепью, гидрокси, C1-C5алкокси, -COOR1, -NR2R3 или -A-B;
где A представляет собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
В представляет собой -(CH2)n1-Z, -(CH2)n2-NR2R3 или - (-CH2)n3-OR1;
Z представляет собой одно основание, выбранное из группы, состоящей из
Figure 00000214
,
Figure 00000215
,
Figure 00000216
,
Figure 00000217
,
Figure 00000218
,
Figure 00000219
,
Figure 00000220
,
Figure 00000221
,
Figure 00000222
,
Figure 00000223
,
Figure 00000224
,
Figure 00000225
,
Figure 00000226
,
Figure 00000227
,
Figure 00000228
,
Figure 00000229
,
Figure 00000230
и
Figure 00000231
,
где R1 представляет собой H или C1-C5алкил с линейной или разветвленной цепью;
R2 и R3 независимо представляют собой H, C1-C5алкил с линейной или разветвленной цепью или -(CH2)n4R7;
R5 представляет собой H, C1-C5алкил с линейной или разветвленной цепью, фенил или морфолино;
R6 представляет собой H или C1-C5алкил с линейной или разветвленной цепью;
R7 представляет собой -NR8R9, -COOR1, -OR1, -CF3, -CN, F, Cl или Z;
R8 и R9 независимо представляют собой H или C1-C5алкил с линейной или разветвленной цепью;
n1-n4 представляют собой целое от 0 до 10 соответственно;
Y3 представляет собой H, гидрокси, C1-C5алкокси или -O(CH2)n3-OR1;
Y4 представляет собой H или C1-C5алкил с линейной или разветвленной цепью.
3. Трициклическое производное или его фармацевтически приемлемые соли по п.1, где
Y1 и Y2 независимо представляют собой H, метил, этил, гидрокси, метокси, этокси, -COOR1, -NR2R3 или -A-B;
где A представляет собой -O-, -CH2-, -CH(CH3)-, -CH=N- или -CONH-;
B представляет -(CH2)n1-Z, -(CH2)n2-NR2R3 или -(CH2)n3-OR1;
Z представляет собой одно основание, выбранное из группы, состоящей из
Figure 00000232
,
Figure 00000233
,
Figure 00000234
,
Figure 00000235
,
Figure 00000236
,
Figure 00000237
,
Figure 00000238
,
Figure 00000239
,
Figure 00000240
,
Figure 00000241
,
Figure 00000242
,
Figure 00000243
,
Figure 00000244
,
Figure 00000245
,
Figure 00000246
, ,
Figure 00000248
и
Figure 00000249
,
R1 представляет собой H, метил, этил или изопропил;
R2 и R3 независимо представляют собой H, метил, этил, пропил, изопропил, трет-бутил или -(CH2)n4R7;
R5 представляет собой H, метил, этил, пропил, фенил или морфолино;
R6 представляет собой H, метил или этил;
R7 представляет собой -NR8R9, -COOR1, -OR1, -CF3, -CN, F, Cl или Z;
R8 и R9 независимо представляют собой H или метил;
n1-n4 представляют собой соответственно целое от 0 до 5;
Y3 представляет собой H, гидрокси, метокси, этокси, пропокси или метоксиэтокси; и
Y4 представляет собой H, метил, этил или пропил.
4. Трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по п.1, выбранное из группы, состоящей из:
1) 8-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
2) 10-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
3) 9-Метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
4) 9-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
5) Этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилата;
6) 9-Метокси-1-пропил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
7) 1-Метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
8) 9-Метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
9) 1-Этил-9-метокси-1,2,3,4-тетрагидробензо [h][1,6]нафтиридин-5(6H)-она;
10) 1-Метил-9-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
11) 9-(1-Пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
12) 9-(1-Метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
13) 1-Метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
14) 1-Метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
15) 5-Оксо-N-[2-(пиперидин-1-ил)этил]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида;
16) 9-[2-(Диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
17) 9-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
18) 9-(2-Метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
19) 9-[2-(Пиперазин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
20) 9-Этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
21) 9-[3-(Пиперидин-1-ил)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
22) 9-(2-Аминоэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
23) 9-[2-(4-Фенилпиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
24) 9-(2-Гидроксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
25) 9-Пентокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
26) 9-[2-(Диэтиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
27) 9-(2-Морфолиноэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
28) 1,1-Диэтил-4-[2-(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси]этил)пиперазин-1-ия;
29) 9-[4-(Пиперидин-1-ил)бутокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
30) 1-Метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
31) 9-[2-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
32) 8-[2-(Диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
33) 9-[3-(Диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
34) 8-[2-(Диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида;
35) 8-[2-(Пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h] [1,6]нафтиридин-5(6H)-она;
36) 8-[3-(Диметиламино)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
37) 8-(Диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
38) 8-[1-(Диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
39) 8-[1-(Метиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
40) 8-Этил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
41) 8-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
42) 8-[(Диэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
43) 8-[(Этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
44) 8-(Пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
45) 8-[(Изопропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
46) 8-[(Пропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
47) 8-{[Этил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
48) 8-(Пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
49) 8-(Морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
50) 9-[(Диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
51) 8-{[Бензил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
52) 8-[(Метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
53) 8-{[(2-Гидроксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
54) 8-{[(2-(Диметиламиноэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
55) 8-[(4-Метилпиперазин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
56) 8-[(Метил(пропил)амино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
57) Этил-3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионата;
58) 3-{Метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропановой кислоты;
59) 8-{[Изопропил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
60) 8-{[(2-Метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
61) Этил-3-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]пропионата;
62) 8-[(2,2,2-Трифторэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
63) 2-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метилмино]ацетонитрила;
64) 8-[(1H-Имидазол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
65) 8-[(1H-Пиррол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
66) 8-[(Диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
67) 1-Метил-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
68) 8-[(Диэтиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
69) 1-Метил-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
70) 1-Метил-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
71) 8-{[Этил(метил)амино]метил}-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
72) 8-[(Диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
73) 10-Метокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
74) 10-Метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
75) 8-[(Этиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
76) 8-{[Этил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
77) 10-Метокси-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
78) 10-Метокси-8-[(4-оксопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
79) 8-{[4-(Гидроксиимино)пиперидин-1-ил]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
80) 10-Метокси-8-[(4-(метоксиимино)пиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
81) 10-Метокси-8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
82) 8-[(2,5-Дигидро-1H-пиррол-1-ил)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-он;
83) 8-{[(2-Изопропоксиэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
84) 10-Метокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
85) 8-{[(2-Хлорэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
86) 8-[(Диэтиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
87) 8-[(трет-Бутиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
88) 8-[(Изопропиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
89) 8-[(Циклопентиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
90) 8-[(2,6-Диметилморфолино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
91) Хлорида N-[(10-метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]-N,N-диметилциклопентанаминия;
92) 8-{[Циклопентил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
93) 8-{[Изопропил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
94) 8-{[(2-Фторэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
95) 8-[(1H-Тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
96) 10-Метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
97) 10-Метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
98) (E)-10-Метокси-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
99) 8-[(Диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
100) 8-[(Диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
101) 10-Этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
102) 10-Этокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
103) 10-Этокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
104) 10-Этокси-8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
105) 8-(Гидроксиметил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
106) 10-Метокси-8-(тиоморфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
107) 10-Метокси-8-[(2-морфолиноэтиламино)метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
108) 10-Метокси-8-[(4-морфолинопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
109) 8-(Аминометил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
110) 8-[(Диметиламино)метил)]-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
111) 8-(Морфолинометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
112) 8-(Аминометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
113) 8-(Аминометил)-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
114) 8-(Аминометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
115) 10-Метокси-8-{[метил(тетрагидро-2Н-пиран-4-ил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
116) 8-[(Диметиламино)метил]-10-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
117) 10-(2-Метоксиэтокси)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
118) 1-[(10-Метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]-1H-пиррол-2,5-диона;
119) Гидрохлорида 8-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
120) Гидрохлорида 10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
121) Гидрохлорида 9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
122) Гидрохлорида 9-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
123) Гидрохлорида этил 5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксилата;
124) Гидрохлорида 9-метокси-1-пропил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
125) Гидрохлорида 1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
126) Гидрохлорида 9-метокси-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
127) Гидрохлорида 1-этил-9-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
128) Гидрохлорида 1-Метил-9-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
129) Дигидрохлорида 9-(1-пропилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
130) Дигидрохлорида 9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
131) Дигидрохлорида 1-метил-9-(пиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
132) Дигидрохлорида 1-метил-9-(1-метилпиперидин-4-илокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
133) Дигидрохлорида 5-оксо-N-[2-(пиперидин-1-ил)этил]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида;
134) Дигидрохлорида 9-[2-(диметиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
135) Дигидрохлорида 9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
136) Гидрохлорида 9-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
137) Тригидрохлорида 9-[2-(пиперазин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
138) Гидрохлорида 9-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
139) Дигидрохлорида 9-[3-(пиперидин-1-ил)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
140) Дигидрохлорида 9-(2-аминоэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
141) Дигидрохлорида 9-[2-(4-фенилпиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
142) Гидрохлорида 9-(2-Гидроксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
143) Гидрохлорида 9-пентокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
144) Дигидрохлорида 9-[2-(диэтиламино)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
145) Дигидрохлорида 9-(2-морфолиноэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
146) Дигидрохлорида 1,1-диэтил-4-[2-(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-илокси]этил)пиперазин-1-ия;
147) Дигидрохлорида 9-[4-(пиперидин-1-ил)бутокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
148) Дигидрохлорида 1-метил-9-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
149) Дигидрохлорида 9-[2-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
150) Дигидрохлорид 8-[2-(диметиламино)этокси]-1,2,3,4,-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
151) Дигидрохлорида 9-[3-(диметиламино)пропил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
152) Дигидрохлорида 8-[2-(диметиламино)этокси]-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-9-карбоксамида;
153) Дигидрохлорида 8-[2-(пиперидин-1-ил)этокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
154) Дигидрохлорида 8-[3-(диметиламино)пропокси]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
155) Гидрохлорида 8-(диметиламино)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
156) Дигидрохлорида 8-[1-(диметиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
157) Дигидрохлорида 8-[1-(Метиламино)этил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
158) Гидрохлорида 8-Этил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
159) Дигидрохлорида 8-[(диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
160) Дигидрохлорида 8-[(диэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
161) Дигидрохлорида 8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
162) Дигидрохлорида 8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
163) Дигидрохлорида 8-[(изопропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
164) Дигидрохлорида 8-[(пропиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
165) Дигидрохлорида 8-{[этил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
166) Дигидрохлорида 8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
167) Дигидрохлорида 8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
168) Дигидрохлорида 9-[(диметиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
169) Дигидрохлорида 8-{[бензил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
170) Дигидрохлорида 8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
171) Дигидрохлорида 8-{[(2-гидроксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
172) Тригидрохлорида 8-{[(2-(диметиламиноэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
173) Тригидрохлорида 8-[(4-метилпиперазин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
174) Дигидрохлорида 8-[(метил(пропил)амино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
175) Дигидрохлорида этил-3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропионата;
176) Дигидрохлорида 3-{метил[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]амино}пропановой кислоты;
177) Дигидрохлорида 8-{[изопропил(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
178) Дигидрохлорида 8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
179) Дигидрохлорида этил-3-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]пропионата;
180) Дигидрохлорида 8-[(2,2,2-трифторэтиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
181) Дигидрохлорида 2-[(5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]ацетонитрила;
182) Гидрохлорида 8-[(1H-имидазол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
183) Гидрохлорида 8-[(1H-пиррол-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
184) Дигидрохлорида 8-[(диметиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
185) Дигидрохлорида 1-метил-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
186) Дигидрохлорида 8-[(диэтиламино)метил]-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
187) Дигидрохлорида 1-метил-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
188) Дигидрохлорида 1-метил-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
189) Дигидрохлорида 8-{[этил(метил)амино]метил}-1-метил-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
190) Дигидрохлорида 8-[(диметиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
191) Дигидрохлорида 10-метокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
192) Дигидрохлорида 10-метокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
193) Дигидрохлорида 8-[(этиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
194) 8-{[Этил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
195) Дигидрохлорида 10-метокси-8-(пирролидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
196) Дигидрохлорида 10-метокси-8-[(4-оксопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она,
197) Тригидрохлорида 8-{[4-(гидроксиимино)пиперидин-1-ил]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
198) Тригидрохлорида 10-метокси-8-[(4-(метоксиимино)пиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H}-она;
199) Дигидрохлорида 10-метокси-8-{[(2-метоксиэтил)(метил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
200) Дигидрохлорида 8-[(2,5-дегидро-1H-пиррол-1-ил)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
201) Дигидрохлорида 8-{[(2-изопропоксиэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
202) Дигидрохлорида 10-метокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
203) Дигидрохлорида 8-{[(2-хлорэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
204) Дигидрохлорида 8-[(диэтиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
205) Дигидрохлорида 8-[(трет-бутиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
206) Дигидрохлорида 8-[(изопропиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
207) Дигидрохлорида 8-[(циклопентиламино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
208) Дигидрохлорида 8-[(2,6-диметилморфолино)метил]-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
209) Гидрохлорида хлорида N-[(10-метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метил]-N,N-диметилциклопентанаминия;
210) Дигидрохлорида 8-{[циклопентил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
211) Дигидрохлорида 8-{[изопропил(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
212) Дигидрохлорида 8-{[(2-фторэтил)(метил)амино]метил}-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
213) Гидрохлорида 8-[(1H-тетразол-5-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
214) Тригидрохлорида 10-метокси-8-[(морфолиноамино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
215) Тригидрохлорида 10-метокси-8-{[метил(морфолино)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
216) Тригидрохлорида (E)-10-метокси-8-[(морфолиноимино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
217) Дигидрохлорида 8-[(диметиламино)метил]-10-гидрокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5-(6H)-она;
218) Дигидрохлорида 8-[(диметиламино)метил]-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
219) Дигидрохлорида 10-этокси-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
220) Дигидрохлорида 10-этокси-8-(пиперидин-1-илметил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
221) Дигидрохлорида 10-этокси-8-[(метиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
222) Дигидрохлорида 10-этокси-8-[(этиламино)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
223) Гидрохлорида 8-(гидроксиметил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
224) Дигидрохлорида 10-метокси-8-(тиоморфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
225) Тригидрохлорида 10-метокси-8-[(2-морфолиноэтиламино)метил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
226) Тригидрохлорида 10-метокси-8-[(4-морфолинопиперидин-1-ил)метил]-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
227) Дигидрохлорида 8-(аминометил)-10-метокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
228) Дигидрохлорида 8-[(диметиламино)метил)]-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
229) Дигидрохлорида 8-(морфолинометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
230) Дигидрохлорида 8-(аминометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
231) Дигидрохлорида 8-(аминометил)-10-этокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
232) Дигидрохлорида 8-(аминометил)-10-пропокси-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
233) Дигидрохлорида 10-метокси-8-{[метил(тетрагидро-2Н-пиран-4-ил)амино]метил}-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
234) Дигидрохлорида 8-[(диметиламино)метил]-10-(2-метоксиэтокси)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она;
235) Дигидрохлорида 10-(2-метоксиэтокси)-8-(морфолинометил)-1,2,3,4-тетрагидробензо[h][1,6]нафтиридин-5(6H)-она; и
236) Дигидрохлорида 1-[(10-Метокси-5-оксо-1,2,3,4,5,6-гексагидробензо[h][1,6]нафтиридин-8-ил)метиламино]-1H-пиррол-2,5-диона.
5. Способ получения трициклического производного, представленного химической формулой 1, или его фармацевтически приемлемых солей по п.1, включающий стадии:
1) превращения карбоновой кислоты 2-хлорникотиновой кислоты формулы 2 в хлорангидрид карбоновой кислоты формулы 3 (стадия 1);
2) получения соединения химической формулы 5 реакцией амидирования хлорангидрида карбоновой кислоты формулы 3, полученного на стадии 1, анилином формулы 4, замещенным в мета- и/или пара-положении (стадия 2);
3) введения защитной группы в соединение формулы 5, полученное на стадии 2, для получения N-защищенного соединения формулы 6 (стадия 3);
4) получения соединения формулы 7 циклизацией соединения формулы 6, полученного на стадии 3, в условиях металлического катализатора (стадия 4);
5) получения соединения формулы 8 восстановлением ароматического кольца соединения формулы 7, полученного на стадии 4, в условиях водород-палладиевого (Pd) катализатора или восстановлением ароматического кольца соединения формулы 7, полученного на стадии 4, в условиях водород-палладиевого (Pd) катализатора и затем реакцией алкилгалогенидного соединения или арилгалогенидного соединения и основания (стадия 5); и
6) снятия защиты соединения формулы 8, полученного на стадии 5, для получения трициклического соединения формулы 1 (стадия 6)
Figure 00000250

где Y1-Y4 определены в формуле 1, и 'pro' представляет собой защитную группу, такую как арильная группа, бензильная группа, бензилоксиметильная группа, пара-метоксибензильная группа или метоксиметильная группа.
6. Способ получения трициклического производного, представленного химической формулой 1, или его фармацевтически приемлемых солей по п.1, включающий стадии:
1) деметилирования соединения (7a) трехбромистым бором для получения гидроксильного соединения (7a-1) (стадия 1),
2) взаимодействия гидроксильного соединения (7a-1), полученного на стадии 1, с алкилгалогенидным соединением в присутствии основания и каталитического количества йодида натрия для получения алкоксисоединения (7a-2) (стадия 2);
3) получения пиперидин-лактама (8a) восстановлением ароматического кольца пиридин-лактамного соединения (7a-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора (стадия 3); и
4) снятия защиты соединения (8a), полученного на стадии 3, в кислых условиях, таких как хлороводородная кислота, для получения соединения формулы (1a) (стадия 4)
Figure 00000251

где 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу или пара-метоксибензильную (РМВ) группу, R1 определен в химической формуле 1, Х обозначает уходящую группу, включая галоген, метансульфонильную группу, п-толуолсульфонильную группу или трифторметансульфонильную группу,
и химическая формула 1а включена в химическую формулу 1 по п.1.
7. Способ получения трициклического производного, представленного химической формулой 1, или его фармацевтически приемлемых солей по п.1, включающий стадии:
1) гидролиза соединения (7b) медленным добавлением по каплям водного раствора гидроксида калия или гидроксида натрия к соединению (7b) для получения соединения (7b-1), представляющего собой карбоновую кислоту (стадия 1);
2) амидирования соединения (7b-1), являющегося карбоновой кислотой, полученного на стадии 1, аминами с использованием конденсирующего агента, для получения соединения формулы (7b-2) (стадия 2);
3) получения пиперидин-лактама (8b) восстановлением ароматического кольца пиридин-лактама (7b-2), полученного на стадии 2, в газообразном водороде в присутствии палладиевого (Pd) катализатора (стадия 3); и
4) снятия защиты соединения (8b), полученного на стадии 3, в кислых условиях, таких как хлороводородная кислота, для получения соединения формулы (1b) (стадия 4)
Figure 00000252

где 'Alk' представляет собой C1-C10алкил с линейной или разветвленной цепью, 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу или пара-метоксибензильную (РМВ) группу, R2 и R3 определены в химической формуле 1, и химическая формула 1b включена в химическую формулу 1 по п.1.
8. Способ получения трициклического производного, представленного химической формулой 1, или его фармацевтически приемлемых солей по п.1, включающий стадии:
1) восстановления лактамного соединения (8c) до соответствующего спирта (8c-1) с использованием восстанавливающего агента (стадия 1);
2) получения диамино-лактамного соединения (8c-2) галогенированием и аминированием спиртового соединения (8c-1), полученного на стадии 1 (стадия 2); и
3) снятия защиты соединения (8c-2), полученного на стадии 2, в кислых условиях, таких как хлороводородная кислота, для получения трициклического соединения формулы (1c) (стадия 3)
Figure 00000253

где 'Alk' представляет собой C1-C10алкил с линейной или разветвленной цепью, 'pro' представляет собой метоксиметильную (MOM) группу, бензильную группу или пара-метоксибензильную (РМВ) группу, R1-R3 определены в химической формуле 1, и химическая формула 1с включена в химическую формулу 1 по п.1.
9. Композиция, содержащая трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по одному из пп.1-4 в качестве активного ингредиента, композиция для предотвращения или лечения заболевания, являющегося результатом PARP чрезмерной экспрессии, которое выбирают из группы, состоящей из: нейропатической боли, эпилепсии, удара, болезни Альцгеймера, болезни Паркинсона, амиотрофического латерального склероза (ALS), болезни Хантингтона, шизофрении, хронической и острой боли, ишемии, повреждения нейронов после гипоксии, внешнего повреждения и нейронального повреждения.
10. Композиция, содержащая трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по одному из пп.1-4 в качестве активного ингредиента, композиция для предотвращения или лечения заболевания, являющегося результатом PARP чрезмерной экспрессии, которое выбирают из группы, состоящей из: атеросклероза, гиперлипидемии, повреждения тканей сердца, болезни коронарных артерий, инфаркта миокарда, стенокардии и кардиогенного шока.
11. Композиция, содержащая трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по одному из пп.1-4 в качестве активного ингредиента, композиция для предотвращения или лечения заболевания, являющегося результатом PARP чрезмерной экспрессии, которое выбирают из группы, состоящей из: диабетической нейропатии, остеоартрита и остеопороза.
12. Композиция, содержащая трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по одному из пп.1-4 в качестве активного ингредиента, композиция для предотвращения или лечения диабетической нейропатии, являющейся результатом PARP чрезмерной экспрессии.
13. Композиция, содержащая трициклическое производное, представленное химической формулой 1, или его фармацевтически приемлемые соли по одному из пп.1-4 в качестве активного ингредиента, композиция для предотвращения или лечения рака, являющегося результатом PARP чрезмерной экспрессии.
RU2011123799/04A 2008-11-11 2009-11-11 Новое трициклическое производное или его фармацевтически приемлемые соли, способ их получения и содержащая их фармацевтическая композиция RU2470934C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20080111808 2008-11-11
KR10-2008-0111808 2008-11-11
PCT/KR2009/006618 WO2010056038A2 (ko) 2008-11-11 2009-11-11 신규한 트리시클릭 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물

Publications (1)

Publication Number Publication Date
RU2470934C1 true RU2470934C1 (ru) 2012-12-27

Family

ID=42170514

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011123799/04A RU2470934C1 (ru) 2008-11-11 2009-11-11 Новое трициклическое производное или его фармацевтически приемлемые соли, способ их получения и содержащая их фармацевтическая композиция

Country Status (16)

Country Link
US (1) US8815891B2 (ru)
EP (1) EP2364983B1 (ru)
JP (1) JP5403709B2 (ru)
KR (1) KR100968175B1 (ru)
CN (1) CN102245612B (ru)
AU (1) AU2009314760B2 (ru)
BR (1) BRPI0915273B1 (ru)
CA (1) CA2743257C (ru)
DK (1) DK2364983T3 (ru)
ES (1) ES2443127T3 (ru)
HK (1) HK1164292A1 (ru)
MX (1) MX2011004957A (ru)
PL (1) PL2364983T3 (ru)
PT (1) PT2364983E (ru)
RU (1) RU2470934C1 (ru)
WO (1) WO2010056038A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2602503C1 (ru) * 2015-09-23 2016-11-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургская государственная химико-фармацевтическая академия" Министерства здравоохранения Российской Федерации (ГБОУ ВПО СПХФА) Трициклические соединения, обладающие противобактериальной активностью, способ их получения и содержащее их фармацевтическое средство
RU2715413C2 (ru) * 2015-06-09 2020-02-28 Дзе Ил Фармасьютикал Ко., Лтд. Трициклическое производное соединение, способ его получения и фармацевтическая композиция, содержащая такое соединение

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827444B1 (ko) * 2012-02-01 2018-02-08 제일약품주식회사 트리사이클로 유도체 화합물의 신규한 결정형 산부가염 또는 이의 수화물 및 이의 제조방법
WO2015089842A1 (en) * 2013-12-20 2015-06-25 Merck Sharp & Dohme Corp. Novel tricyclic calcium sensing receptor antagonists for the treatment of osteoporosis
US20150320706A1 (en) 2014-05-12 2015-11-12 Chiesi Farmaceutici S.P.A. Formulations and methods of treating alzheimer's disease and other proteinopathies by combination therapy
US10183934B2 (en) 2015-02-02 2019-01-22 Forma Therapeutics, Inc. Bicyclic [4,6,0] hydroxamic acids as HDAC inhibitors
MY191591A (en) 2015-02-02 2022-06-30 Forma Therapeutics Inc 3-alkyl-4-amido-bicyclic [4,5,0] hydroxamic acids as hdac inhibitors
KR101775356B1 (ko) 2015-07-06 2017-09-06 재단법인 아산사회복지재단 Parp 및 탄키라제 동시 저해제에 대한 감수성 결정 방법
US10555935B2 (en) 2016-06-17 2020-02-11 Forma Therapeutics, Inc. 2-spiro-5- and 6-hydroxamic acid indanes as HDAC inhibitors
KR20180062804A (ko) * 2016-12-01 2018-06-11 사회복지법인 삼성생명공익재단 트리시클릭 유도체 또는 이의 약학적으로 허용 가능한 염을 포함하는 허혈성 급성 신손상 예방 또는 치료용 약학적 조성물
JP7091336B2 (ja) 2016-12-22 2022-06-27 グローバル ブラッド セラピューティクス インコーポレイテッド ヒストンメチルトランスフェラーゼ阻害剤
CN110997671A (zh) 2017-06-09 2020-04-10 全球血液疗法股份有限公司 作为组蛋白甲基转移酶抑制剂的氮杂吲哚化合物
ES2939776T3 (es) * 2018-04-13 2023-04-26 Cancer Research Tech Ltd Inhibidores de BCL6
US11485734B2 (en) 2018-10-02 2022-11-01 Northwestern University Beta-carbolines as positive allosteric modulators of the human serotonin receptor 2C (5-HT2C)
US20220110936A1 (en) * 2019-02-02 2022-04-14 Shanghai Institute Of Organic Chemistry, Chinese Academy Of Sciences Pharmaceutical composition for treatment of neurodegenerative diseases or diseases caused by abnormality of rna binding protein and applications thereof
MX2022001200A (es) * 2019-07-29 2022-02-21 Jeil Pharmaceutical Co Ltd Metodo para el tratamiento de accidente cerebrovascular usando un derivado triciclico.
KR20210014024A (ko) 2019-07-29 2021-02-08 제일약품주식회사 트리사이클릭 유도체를 이용한 뇌졸중의 치료 방법
KR20220149268A (ko) * 2021-04-30 2022-11-08 주식회사 온코크로스 트리사이클로 유도체 화합물을 포함하는 대사질환 예방 또는 치료용 조성물
CN115554303A (zh) * 2021-09-18 2023-01-03 上海科技大学 一种三环类化合物、其制备方法及其应用
WO2023061406A1 (zh) * 2021-10-12 2023-04-20 微境生物医药科技(上海)有限公司 含三并环结构的parp抑制剂、及其制备方法和医药用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391554A (en) * 1992-09-09 1995-02-21 Warner-Lambert Company Dihydro- and tetrahydronaphthyridines
JP2000239273A (ja) * 1999-02-16 2000-09-05 Nippon Kayaku Co Ltd 4−アミノ−5,6,7,8−テトラヒドロ〔1,6〕ナフチリジン誘導体の新規製造法
EP1225173A1 (en) * 1999-10-25 2002-07-24 Yamanouchi Pharmaceutical Co. Ltd. Naphthyridine derivatives
WO2005123687A1 (de) * 2004-06-16 2005-12-29 Sanofi-Aventis Deutschland Gmbh Substituierte tetrahydro-2h-isochinolin-1-on-derivate, verfahren zu ihrer herstellung und ihre verwendung als medikament
RU2326881C2 (ru) * 2002-09-30 2008-06-20 Байер Фармасьютикалс Корпорейшн Конденсированные производные азолпиримидина, обладающие свойствами ингибитора фосфатидилинозитол-3-киназы (pi3k)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197785B1 (en) * 1997-09-03 2001-03-06 Guilford Pharmaceuticals Inc. Alkoxy-substituted compounds, methods, and compositions for inhibiting PARP activity
US20020022636A1 (en) * 1997-09-03 2002-02-21 Jia-He Li Oxo-substituted compounds, process of making, and compositions and methods for inhibiting parp activity
AUPS137402A0 (en) * 2002-03-26 2002-05-09 Fujisawa Pharmaceutical Co., Ltd. Novel tricyclic compounds
RU2008136784A (ru) * 2006-02-15 2010-03-20 Абботт Лаборэтриз (Us) Пиразолохинолоновые соединения, фармацевтическая композиция на их основе, способ ингибирования поли(адф-рибоза)полимеразы (parp) и способы лечения воспаления, сепсиса, септического шока и рака
WO2008028168A2 (en) * 2006-09-01 2008-03-06 Cylene Pharmaceuticals, Inc. Serine-threonine protein kinase and parp modulators
KR101179753B1 (ko) 2007-11-06 2012-09-04 제일약품주식회사 신규한 트리시클릭 유도체 또는 이의 약학적으로허용가능한 염, 이의 제조방법 및 이를 포함하는 약학조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391554A (en) * 1992-09-09 1995-02-21 Warner-Lambert Company Dihydro- and tetrahydronaphthyridines
JP2000239273A (ja) * 1999-02-16 2000-09-05 Nippon Kayaku Co Ltd 4−アミノ−5,6,7,8−テトラヒドロ〔1,6〕ナフチリジン誘導体の新規製造法
EP1225173A1 (en) * 1999-10-25 2002-07-24 Yamanouchi Pharmaceutical Co. Ltd. Naphthyridine derivatives
RU2326881C2 (ru) * 2002-09-30 2008-06-20 Байер Фармасьютикалс Корпорейшн Конденсированные производные азолпиримидина, обладающие свойствами ингибитора фосфатидилинозитол-3-киназы (pi3k)
WO2005123687A1 (de) * 2004-06-16 2005-12-29 Sanofi-Aventis Deutschland Gmbh Substituierte tetrahydro-2h-isochinolin-1-on-derivate, verfahren zu ihrer herstellung und ihre verwendung als medikament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715413C2 (ru) * 2015-06-09 2020-02-28 Дзе Ил Фармасьютикал Ко., Лтд. Трициклическое производное соединение, способ его получения и фармацевтическая композиция, содержащая такое соединение
RU2602503C1 (ru) * 2015-09-23 2016-11-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургская государственная химико-фармацевтическая академия" Министерства здравоохранения Российской Федерации (ГБОУ ВПО СПХФА) Трициклические соединения, обладающие противобактериальной активностью, способ их получения и содержащее их фармацевтическое средство

Also Published As

Publication number Publication date
HK1164292A1 (en) 2012-09-21
EP2364983A4 (en) 2012-05-09
WO2010056038A2 (ko) 2010-05-20
BRPI0915273B1 (pt) 2021-08-03
CN102245612A (zh) 2011-11-16
ES2443127T3 (es) 2014-02-17
EP2364983B1 (en) 2013-10-23
CA2743257A1 (en) 2010-05-20
US20110218193A1 (en) 2011-09-08
AU2009314760B2 (en) 2011-11-10
DK2364983T3 (da) 2013-12-09
CN102245612B (zh) 2014-11-05
JP5403709B2 (ja) 2014-01-29
KR20100053468A (ko) 2010-05-20
PT2364983E (pt) 2014-01-07
KR100968175B1 (ko) 2010-07-07
US8815891B2 (en) 2014-08-26
EP2364983A2 (en) 2011-09-14
JP2012508273A (ja) 2012-04-05
CA2743257C (en) 2014-02-11
PL2364983T3 (pl) 2014-04-30
WO2010056038A3 (ko) 2010-09-16
AU2009314760A1 (en) 2011-06-30
MX2011004957A (es) 2011-08-12
BRPI0915273A2 (pt) 2015-08-04

Similar Documents

Publication Publication Date Title
RU2470934C1 (ru) Новое трициклическое производное или его фармацевтически приемлемые соли, способ их получения и содержащая их фармацевтическая композиция
US6583135B2 (en) Substituted azepino[4,5b]indole derivatives
EP1709043B1 (de) Pyrrolopyridin-substitutierte benzol-derivate zur behandlung kardiovaskulärer erkrankungen
KR20150123812A (ko) 이미다조피리딘 화합물 및 이의 용도
KR102493943B1 (ko) 포유류 티로신 키나제 ROR1 활성의 저해제로서 유용한 2-페닐-3H-이미다조[4,5-b]피리딘 유도체
DE10230604A1 (de) Heterocyclisch substituierte Imidazotriazine
TW201920123A (zh) 作為腺苷受體拮抗劑之喹㗁啉衍生物
JP5723600B2 (ja) 疼痛症候群および他の障害の治療法
WO2009061131A2 (en) Novel tricyclic derivatives or pharmaceutically acceptable salts thereof, process for the preparation thereof and pharmaceutical composition comprising the same
KR950014867B1 (ko) 축합된 디아제피논, 이의 제조방법 및 이들 화합물을 함유하는 약제학적 조성물
JP7390401B2 (ja) 縮合環化合物、その製造方法及び用途
JP2023542548A (ja) 新規アミノピリジン及びその癌治療への使用
EP2017277A1 (en) Thiophene-imidazopyridines