RU2446151C2 - Способ получения изоцианатов - Google Patents

Способ получения изоцианатов Download PDF

Info

Publication number
RU2446151C2
RU2446151C2 RU2007117488/04A RU2007117488A RU2446151C2 RU 2446151 C2 RU2446151 C2 RU 2446151C2 RU 2007117488/04 A RU2007117488/04 A RU 2007117488/04A RU 2007117488 A RU2007117488 A RU 2007117488A RU 2446151 C2 RU2446151 C2 RU 2446151C2
Authority
RU
Russia
Prior art keywords
solvent
phosgene
solution
isocyanate
distillation
Prior art date
Application number
RU2007117488/04A
Other languages
English (en)
Other versions
RU2007117488A (ru
Inventor
Бертхольд КЕГГЕНХОФФ (DE)
Бертхольд КЕГГЕНХОФФ
Хайнрих ЛОКУМ (DE)
Хайнрих ЛОКУМ
Маттиас БЕМ (DE)
Маттиас БЕМ
Original Assignee
Байер Матириальсайенс Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Матириальсайенс Аг filed Critical Байер Матириальсайенс Аг
Publication of RU2007117488A publication Critical patent/RU2007117488A/ru
Application granted granted Critical
Publication of RU2446151C2 publication Critical patent/RU2446151C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/18Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения ди- и полиизоцианатов дифенилметанового ряда. Согласно предлагаемому способу на стадии а) получают раствор амина, выбранного из группы, включающей ди- и полиамины дифенилметанового ряда, в растворителе, и в том же растворителе получают раствор фосгена. На стадии b) раствор амина в растворителе и раствор фосгена в растворителе смешивают друг с другом, и амин подвергают взаимодействию с фосгеном с образованием соответствующего изоцианата, при этом получают реакционный раствор, содержащий изоцианат. На стадии с) из реакционного раствора, содержащего изоцианат, отделяют хлористый водород и избыточный фосген, при этом получают сырой раствор изоцианата. На стадии d) сырой раствор изоцианата разделяют с помощью дистилляции, при этом на стадии дистилляции получают поток, содержащий изоцианат, и поток, содержащий растворитель и остаточное количество фосгена, имеющий содержание диизоцианатов <100 частей на млн и остаточное количество фосгена 100-1000 частей на млн в расчете на массу потока, содержащего растворитель и остаточное количество фосгена; причем на стадии очистки растворителя полученный на стадии дистилляции поток, содержащий растворитель и остаточное количество фосгена, очищают с помощью дистилляции в отпарной колонне с получением освобожденного от фосгена потока, содержащего растворитель и имеющего содержание диизоцианатов <100 частей на млн и содержание фосгена <100 частей на млн в расчете на массу освобожденного от фосгена потока, содержащего растворитель. На стадии е) полученный на стадии d) освобожденный от фосгена поток, содержащий растворитель, по меньшей мере, частично отводят от стадии очистки растворителя на стадию а) и там используют, по меньшей мере, для получения раствора амина в растворителе. Способ позволяет уменьшить образование побочных продуктов, а также улучшить выход и качество получаемых ди- и полиизоцианатов дифенилметанового ряда за счет использования в рециркуляции более чистого растворителя. 3 з. п. ф-лы, 3 ил., 3 пр.

Description

Получение изоцианатов взаимодействием первичных аминов с фосгеном известно на протяжении многих лет из уровня техники, при этом, как правило, в реакцию вводится раствор амина в соответствующем растворителе с раствором фосгена в том же растворителе. Способы получения органических изоцианатов из первичных аминов и фосгена описаны в литературе, например, в Ullman's Encyclopedia of Industrial Chemistry, 5 th ed. Vol. A 19, p.390 ff, VCH Verlagsgesellschaft mbH, Weinheim, 1991 и в G. Oertel (Ed.) Polyurethane Handbook, 2nd Edition, Hanser Verlag, München, 1993, p.60 ff, а также в G. Wegener et al. Applied Catalysis A: General 22 (2001), p.303-335, Elsevier Science B.V.
Немецкая заявка на патент DE-A-19942299 описывает способ получения моно- и олигоцианатов с помощью фосгенирования соответствующих аминов, при этом предварительно смешивают каталитическое количество моноизоцианата в инертном растворителе с фосгеном, добавляют амин, обычно растворенный в растворителе, и полученную реакционную смесь подвергают взаимодействию с фосгеном. Способ, прежде всего, из-за добавления дополнительного количества моноизоцианата, который позднее должен быть снова отделен, сравнительно сложен. Сведения для требуемой чистоты растворителя получить невозможно.
Европейская заявка на патент ЕР-А-1073628 описывает способ получения смесей дифенилметан-диизоцианатов и полифенил-полиметилен-полиизоцианатов (так называемых полимеров MDI) с помощью двухстадийного взаимодействия смеси соответствующего амина с фосгеном в присутствии растворителя, с соблюдением выбранного соотношения фосгена и хлористого водорода на второй стадии процесса После двухстадийного взаимодействия амина с фосгеном в выбранном растворителе избыточный фосген, хлористый водород и растворитель отделяют от продукта реакции (MDI) с помощью дистилляции. При этом европейская заявка на патент ЕР-А-1073628 указывает на то, что для хорошего качества продукта предпочтительно, чтобы остаточное содержание фосгена в реакционном растворе после удаления фосгена составляло <10 частей на млн. Сведения для требуемой чистоты циркулирующего растворителя также получить невозможно.
Хотя в литературе известного уровня техники в большинстве случаев это не приводится специально, вообще известно, что отогнанный растворитель может быть введен в циркуляцию (контур) для получения раствора амина и раствора фосгена.
И вот было обнаружено, что чистота направленного в циркуляцию растворителя, который используют для получения раствора амина, вводимого на фосгенирование, имеет решающее значение для образования побочных продуктов в сыром изоцианате. Даже содержание только 100 частей на млн фосгена или 100 частей на млн диизоцианата, в расчете на массу растворителя, приводит к заметному образованию побочных продуктов в сыром изоцианате. В то время как в случае перегнанных изоцианатов, т.е. в случае изоцианатов, полученных в виде отгона из верхней части колонны, это приводит к снижению выхода, в случае изоцианатов, полученных в виде кубового остатка, например таких, как ди- и полиизоцианаты дифенилметанового ряда, имеет место тем самым нежелательное влияние на качество продукта и ход реакции.
Кроме того, было обнаружено, что растворитель, возвращенный обратно при переработке и разделении сырого раствора изоцианата, содержит несколько сотен частей на млн свободного фосгена, в расчете на массу растворителя. Это имеет место даже в том случае, когда сначала сырой раствор изоцианата освобождают от фосгена настолько, что больше не обнаруживается свободного фосгена. По-видимому, фосген также образуется или отщепляется при переработке из побочных продуктов.
Таким образом, ставится задача разработать способ получения изоцианатов с использованием рециркуляции растворителя, в котором образование побочных продуктов и тем самым потери в выходе и отрицательное влияние на качество полученного изоцианата минимизированы.
Объектом изобретения, таким образом, является способ получения, в котором
a) получают раствор амина в растворителе и раствор фосгена в том же самом растворителе, и
b) раствор амина в растворителе и раствор фосгена в растворителе смешивают друг с другом, и амин подвергают взаимодействию с фосгеном с образованием соответствующего изоцианата, при этом получают реакционный раствор, содержащий изоцианат, и
c) из реакционного раствора, содержащего изоцианат, отделяют хлористый водород и избыточный фосген, при этом получают сырой раствор изоцианата, и
d) сырой раствор изоцианата разделяют с помощью дистилляции, при этом получают поток, содержащий изоцианат, и поток, содержащий растворитель, и
e) поток, содержащий растворитель, по меньшей мере, частично отводят на стадию а) и там используют, по меньшей мере, для получения раствора амина в растворителе,
при этом поток, содержащий растворитель, отведенный на стадию е), очищают с помощью дистилляции таким образом, что поток, содержащий растворитель, имеет содержание диизоцианатов <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн и содержание фосгена <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн соответственно, в расчете на массу потока, содержащего растворитель.
В качестве органических аминов принципиально пригодными являются все первичные амины с несколькими первичными аминогруппами, которые могут реагировать с фосгеном с образованием одного или нескольких изоцианатов с несколькими изоцианатными группами. Амины содержат, по меньшей мере, две или, при необходимости, три и более аминогрупп. Так, в качестве органических первичных аминов рассматриваются алифатические, циклоалифатические, смешанные алифатические и ароматические, ароматические ди- и/или полиамины, такие как 1,4-диаминобутан, 1,6-диаминогексан, 1,8-диаминооктан, 1-амино-3,3,5-триметил-5-амино-циклогексан, лизин-этиловый эфир, лизин-аминоэтиловый эфир, 1,6,11-триаминоундекан или 1,5-нафтилендиамин, 1,4-диаминобензол, п-ксилилендиамин, исчерпывающе гидрированный 2,4- и/или 2,6-диаминотолуол, 2,2'-, 2,4'- и/или 4,4'- диаминодициклогексилметан, 2,4-, 2,6-диаминотолуол или их смеси, 4,4'-, 2,4'- или 2,2'-дифенилметан-диамин или их смеси, также как и более высокомолекулярные изомерные, олигомерные или полимерные производные названных аминов и полиаминов. Другие возможные амины известны из уровня техники.
Предпочтительными аминами для заявляемого способа являются ди- и полиамины дифенилметанового ряда (MDA, мономерные, олигомерные и полимерные амины), технологические смеси 2,4- и 4,6-диаминотолуола (TDA, толуилендиамины) в массовом соотношении 80:20, изофорондиамин и гексаметилендиамин. При фосгенировании получают соответствующие изоцианаты:диизоцианатодифенилметан (MDI, мономерные, олигомерные и полимерные изоцианаты), толуилендиизоцианат (TD)), гексаметилендиизоцианат (HDI) и изофорондиизоцианат (IPDI). Заявляемый способ особенно предпочтительно используют для получения ди- и полиизоцианатов дифенилметанового ряда (MDI).
Растворителями, подходящими для использования в заявляемом способе, являются, например, хлорированные ароматические углеводороды, например такие, как хлорбензол, о-дихлорбензол, п-дихлорбензол, трихлорбензолы, соответствующие хлортолуолы или хлорксилолы, хлорэтилбензол, монохлордифенил, α- или β-нафтилхлорид, этиловый эфир бензойной кислоты, диалкиловые эфиры фталевой кислоты, диизодиэтилфталат, толуол или ксилолы, а также метиленхлорид, перхлорэтилен, трихлорфторметан и/или бутилацетат. Смеси указанных в виде примеров растворителей могут также быть использованы. Другими примерами подходящих растворителей являются растворители известного уровня техники.
Предпочтительно в качестве растворителей используют хлорбензол, дихлорбензол и толуол.
В предпочтительной форме исполнения способа поток, содержащий растворитель, полученный на стадии d) и отведенный, по меньшей мере, частично на стадию е), на специальной стадии дистилляции освобождают от остаточных количеств фосгена. Особенно предпочтительно при указанном отделении дистилляцией остаточных количеств фосгена, полностью или частично, используют заметную теплоту возвращенного потока растворителя в качестве источника энергии для указанной стадии отделения. Это происходит, например, за счет того, что приток в дистилляционную колонну нагревают через теплообменник куба колонны. Подходящий вариант указанной формы исполнения заявляемого способа изображен на Фиг 3. Так как обычно отделяемый дистилляцией растворитель отгоняют при температуре >100°С, которая для получения раствора амина в растворителе при оптимальных условиях фосгенирования в сравнении должна быть <50°С, то, таким образом, отделение остаточных количеств фосгена может быть объединено одновременно с охлаждением растворителя.
Поток, содержащий изоцианат, предпочтительно содержит, по меньшей мере, 95 мас.% изоцианата, в расчете на массу потока, содержащего изоцианат. Поток, содержащий растворитель, предпочтительно содержит, по меньшей мере, 95 мас.% растворителя, в расчете на массу потока, содержащего растворитель.
Заявляемый способ раскрывают далее подробнее, например, на основе Фигур.
Фиг.1 - схематическое изображение заявляемого способа, и
Фиг.2 - схематическое изображение очистки потока, содержащего растворитель, дистилляцией и
Фиг.3 - схематическое изображение альтернативной, энергетически особенно благоприятной очистки потока, содержащего ' растворитель, дистилляцией.
На Фиг.1 схематически изображен заявляемый способ получения изоцианатов в виде примера.
При этом стадия 1 означает стадию перед фосгенированием (смеситель 1) и стадия 2 означает стадия фосгенирования при нагревании (реактор для фосгенироания 2). Стадии 1 и 2 соответствуют стадии b) заявляемого способа. На стадии 3 (стадия удаления фосгена) из реакционного раствора, содержащего изоцианат, отделяют хлористый водород и избыточный, фосген (стадия с). При этом технологически предпочтительно, чтобы большая часть образовавшегося хлористого водорода отделялась вместе с избыточным фосгеном уже прямо при выходе из реактора для фосгенирования 2, другая часть - в колонне удаления фосгена. На стадии 4 (стадия дистилляции 4) сырой раствор изоцианата, полученный на стадии удаления фосгена 3, перерабатывают далее и изоцианат и растворитель отделяют с помощью дистилляции (стадия d). На стадии 6 (очистка растворителя 6) происходит затем очистка потока, содержащего полученный на стадии 4 растворитель, дистилляцией для отделения остаточных количеств фосгена из циркулирующего растворителя. На стадии 5 (выпарная колонна 5) происходит переработка сырого пара, полученного на стадиях 2 и 3 (т.е. регенерация фосгена и частично растворителя).
Из свежего фосгена (поток 7) и отведенного избыточного фосгена, а также фосгенсодержащего растворителя (поток 16) получают раствор фосгена в растворителе (раствор фосгена). Параллельно этому из амина (поток 8) и отведенного потока растворителя (поток 21), в значительной степени освобожденного от изоцината и фосгена, получают раствор амина в растворителе (раствор амина). Естественно, один из растворов, по меньшей мере, частично может быть получен также из свежего растворителя. Раствор фосгена и раствор амина помещают в смеситель 1 при интенсивном перемешивании для проведения реакции, и полученная таким образом смесь (поток 9) реагирует в реакторе для фосгенирования 2 за счет разогрева при отщеплении хлористого водорода с получением реакционного раствора (поток 10), содержащего изоцианат. Этот раствор на стадии удаления фосгена 3 с помощью дистилляции освобождается от остаточных количеств фосгена и как практически свободный от фосгена, сырой раствор изоцианата (поток 11) направляют на стадию дистилляции 4. Потоки сырого пара (потоки 13 и 15), полученные на стадиях 2 и 3, т.е. в реакторе для фосгенирования 2 и стадии удаления фосгена 3, которые в основном состоят из хлористого водорода, избыточного фосгена и частей растворителя, разделяют в выпарной колонне 5 на хлористый водород (поток 14) и избыточный фосген в растворителе (поток 16). Хлористый водород (поток 14) выводят через шлюз и предпочтительно подают для другого использования.
На стадии дистилляции 4 сырой раствор изоцианата (поток 11) разделяют дистилляцией на изоцианат (поток 12, содержащий изоцианат) и регенерированный растворитель (поток 17, содержащий растворитель). Так как изоцианат обычно имеет более высокую точку кипения, чем растворитель, за счет подходящего исполнения переработки на стадии дистилляции 4 может гарантировать, что растворитель (поток 17, содержащий растворитель) имеет требуемое незначительное содержание диизоцианата <100 частей на млн предпочтительно <50 частей на млн особенно предпочтительно <20 частей на млн в расчете на массу потока, содержащего растворитель.
Но так как при переработке на стадии дистилляции 4 фосген обратно отщепляется из побочных компонент фосгенирования, то поток, содержащий растворитель (поток 17), имеет еще остаточное содержание фосгена. Он отделяется только при очистке растворителя 6 в виде обогащенного фосгеном потока растворителя (поток 18) и может быть возвращен обратно в процесс и, например, добавлен к потоку 16 (не изображен на Фиг.1). Поток 19, содержащий очищенный растворитель, с содержанием фосгена <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн и с содержанием диизоцианата <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн соответственно, в расчете на массу потока, содержащего растворитель, может быть частично выведен через шлюз в виде потока 20 и использован на другом участке процесса, однако используется, по меньшей мере, частично, предпочтительно с преимуществом, в виде потока 21 для получения раствора амина.
Взаимодействие раствора амина с раствором фосгена в стадии b) (стадии 1 и 2) происходит обычно при температурах от 20 до 240°С и абсолютных давлениях от 1 до 50 бар. Оно может быть проведена одностадийно или в несколько стадий, причем фосген используют обычно в стехиометрическом избытке. При этом на стадии 1 раствор амина и раствор фосгена, предпочтительно через статические смесительные элементы или специальные динамические элементы, объединяют и затем на стадии 2 направляют, например, снизу вверх через одну или несколько реакционных колонн, в которых смесь реагирует с образованием желаемого изоцианата. Наряду с реакционными колоннами, которые снабжены соответствующими смешивающими элементами, могут быть использованы также реакционные реакторы с перемешивающими устройствами. Подходящие статические и динамические смешивающие элементами, а также реакционные устройства известны из уровня техники.
Отделение остаточного фосгена и хлористого водорода в стадии с) из полученного реакционного раствора, содержащего изоцианат, происходит предпочтительно на стадии отделения фосгена 3, причем реакционный раствор, содержащий изоцианат, подают в дистилляционную колонну. Предпочтительно указанную стадию дистилляции проводят таким образом, что сырой раствор изоцианата, из которого удален фосген, получают в виде кубового продукта с остаточным содержанием фосгена <100 частей на млн, предпочтительно <10 частей на млн в расчете на массу сырого раствора изоцианата.
Разделение сырого раствора изоцианата дистилляцией на стадии d) проводят по способу, пригодному к соответствующим точкам кипения растворителя и изоцианата, в одноступенчатой или предпочтительно многоступенчатой последовательности ступеней дистилляции на стадии дистилляции 4. Такие последовательности дистилляции известны из уровня техники и описаны, например для TDI, в европейских заявках на патент ЕР-А 1371633 и ЕР-А 1371634.
В предпочтительном случае получения MDI с использованием монохлорбензола в качестве растворителя указанное разделение дистилляцией на стадии d) происходит предпочтительно таким образом, что сырой раствор изоцианата перерабатывают на двух стадиях в кубовый продукт, содержащий, по меньшей мере, 97 мас.% изоцианата, в расчете на массу потока, содержащего изоцианат, который затем, предпочтительно на дальнейших стадиях, освобождают от легкокипящих продуктов. При этом на первой стадии, предпочтительно за счет быстрой дистилляции при абсолютных давлениях 600-1200 мбар и температурах в кубе 110-170°С, отделяют 60-90% растворителя, содержащегося в сыром растворе изоцианата, причем сырые пары перерабатывают в дистилляционной колонне с 5-20 разделительными ступенями (теоретическими тарелками) и 10-30% рециркулирующего дистиллята (флегмы), так что получается поток, содержащий растворитель, с содержанием диизоцианата <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн в расчете на массу потока, содержащего растворитель. На второй стадии оставшийся растворитель отделяют до остаточного содержания 1-3 мас.% в кубовом продукте при абсолютных давлениях 60-140 мбар и температурах в кубе 130-190°С. Сырые пары могут также обрабатываться в дистилляционной колонне с 5-20 разделительными ступенями (теоретическими тарелками) и 10-40% флегмы, так что поток, содержащий растворитель, получают с содержанием диизоцианата <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн в расчете на массу потока; содержащего растворитель, или после конденсации снова возвращают в виде подачи (питающего потока) на первую стадию дистилляции. Таким же образом дистилляционные потоки, отделенные на следующих стадиях, снова возвращают в виде потоков на первую стадию дистилляции.
Таким образом, общий поток, содержащий растворитель, может быть отделен с требуемыми характеристиками в отношении диизоцианата (<100 частей на млн диизоцианатов, в расчете на массу потока, содержащего растворитель) предпочтительным образом. Но указанный поток, содержащий растворитель, может содержать в качестве примеси моноизоцианат (например, фенилизоцианат) с содержанием 100-1000 частей на млн, а также остаточные количества фосгена - 100-1000 частей на млн.
Если принципиально возможно также провести дистилляцию на стадии а) таким образом, чтобы поток, содержащий растворитель, отбирался, например, в виде бокового потока колонны с таким качеством, которое удовлетворяло бы требуемым свойствам как в отношении содержания диизоцианата, так и в отношении содержания фосгена (<100 частей на млн диизоцианатов, <100 частей на млн фосгена, соответственно, в расчете на массу потока, содержащего растворитель), то, как правило, более благоприятно проводить указанную дистилляцию только в отношении достигаемого содержания диизоцианата - <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн и отделить остаточное содержание фосгена, которое в таком случае составляет еще, как правило, 100-1000 частей на млн на разделительной стадии 6.
Возможное исполнение очистки растворителя дистилляцией на стадии 6 изображено на Фиг.2. Очистка растворителя включает отпарная колонну 31, испаритель куба 32 и конденсатор для отгоняемых из верхней части фракций 33. Поток 17, содержащий растворитель с незначительным содержанием фосгена, после обработки на стадии 4 (не изображено на Фиг.2) подают в отпарную колонну 31, которая предпочтительно содержит 4-20 разделительных ступеней (теоретических тарелок). Испаритель куба 32 за счет нагревания, например, горячим паром производит достаточное количество сырого пара, так что поток 19, содержащий освобожденный от фосгена растворитель, имеет еще содержание фосгена только <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн и содержание изоцианата <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн, считая, соответственно, на массу потока, содержащего растворитель, и таким образом может быть использован для получения раствора амина. Полученный поток сырого пара 36 содержит отделенный фосген, предпочтительно в количестве 1-6% мас., в расчете на массу потока сырого пара, и его предпочтительно конденсируют в конденсаторе 33; в то время, как конденсат 37 подают в процесс получения изоцианата, например, для приготовления раствора фосгена, остатки газа 38 направляют предпочтительно на обработку отходящего газа Но конденсат 37 может быть возвращен полностью или частично в качестве флегмы в отпарную колонну 31, за счет чего фосген концентрируют далее в потоке сырого пара 36. Если стадия 6 работает при давлении ниже температуры кипения растворителя в потоке 17, содержащем растворитель, то на входе в выпарную колонну 31 за счет быстрого испарения наступает уже частичное отделение фосгена. Таким образом, снижается количество энергии, подлежащее подводу к испарителю 32.
Фиг.3 показывает в заключении особенно предпочтительную, так как энергетически особенно благоприятную, форму исполнения очистки растворителя дистилляцией на стадии 6.
Поток 17, содержащий растворитель с незначительным количеством фосгена, со стадии переработки на стадии 4 (не изображена на Фиг.3) сначала в качестве нагревательного средства подают через испаритель куба 32 и затем в отпарную колонну 31, которая содержит 4-20 теоретических тарелок. Испаритель куба 32 за счет нагревания потоком, содержащим растворитель, производит достаточное количество сырого пара, так что поток 19, содержащий освобожденный от фосгена растворитель, имеет содержание фосгена только <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн и содержание изоцианата <100 частей на млн, предпочтительно <50 частей на млн, особенно предпочтительно <20 частей на млн, считая, соответственно, на массу потока, содержащего растворитель, и таким образом может быть использован для получения раствора амина. Полученный при этом поток растворителя охлаждают до 2-10°С. Полученный поток сырого пара 36 содержит отделенный фосген, предпочтительно в количестве 1-6 мас.%, в расчете на массу потока сырого пара, и предпочтительно конденсируют в конденсаторе 33, в то время, как конденсат 37 подают в процесс получения изоцианата, например, для приготовления раствора фосгена, остатки газа 38 направляют предпочтительно через вакуумную систему обработки отходящего газа. Но конденсат 37 может быть возвращен полностью или частично в качестве флегмы в отпарную колонну 31, за счет чего фосген концентрируют далее в потоке сырого пара 36. За счет регулирования давления в системе регулируется количество произведенного сырого пара и тем самым качество и чистота потока, содержащего растворитель. В общем, в этой форме исполнения отделение остаточных количеств фосгена проводят без подвода энергии со стороны, причем одновременно даже происходит обыкновенное, желательное охлаждение потока, содержащего растворитель, который используют для получения раствора амина.
Примеры
а) Получение смеси ди- и полиаминов:
Пример 1
В сосуде с мешалкой при 25°С смешивают 2600 г анилина с 1000 г формалина (30% мас.-ный водный раствор формальдегида, в расчете на массу раствора) при интенсивном перемешивании, при этом смесь нагревается до 60°С. Отключают мешалку и отделяют водную фазу, отделившуюся сверху. Затем при вновь включенном перемешивании и охлаждении добавляют 68 г 30 мас.%-ной водной соляной кислоты, при этом температуру поддерживают при 45°С. После дополнительного 15-минутного перемешивания при указанной температуре охлаждение заменяют нагреванием, и смесь равномерно нагревают в течение 120 минут при давлении 5 бар до 140°С и затем выдерживают 15 минут при этой температуре.
Затем смесь охлаждают до 100°С, доводят до нормального давления (смесь расширяется) и нейтрализуют при перемешивании за счет добавки 54 г 50 мас.%-ный водной раствор едкого натра. После отключения мешалки разделяют фазы и нижнюю водную фазу отсасывают. Затем сначала при нормальном давлении отгоняют избыточный анилин с оставшимися остатками воды и остатки анилина удаляют с помощью разгонки полученной смеси при 100 мбар и 250°С.
Получают 1900 г смеси ди- и полиаминов следующего состава:
4,4'-MDA: 60,1 мас.%,
2,4'-MDA: 6,0 мас.%,
2,2'-MDA: 0,2 мас.%,
высокомолекулярные полиамины: 33,7 мас.%, в расчете, соответственно, на массу смеси.
b) Получение смеси ди- и полиизоцианатов:
Пример 2. Использование неочищенного растворителя (не изобретение)
В реакторе с мешалкой растворяют 1900 г полученной в примере 1 смеси ди- и полиаминов в 5700 г хлорбензола с содержанием 200 частей на млн фосгена и 200 частей на млн МDI, в расчете, соответственно, на массу растворителя хлорбензола. Во втором сосуде из нержавеющей стали (DIN 1.4571) посредством растворения 3800 г фосгена в 7600 г хлорбензола при охлаждении до 0°С получают 33 мас.%-ный (в расчете на массу растворителя) раствор фосгена и при интенсивном перемешивании в этом же реакторе смешивают растворы амина и фосгена. Образовавшуюся твердую суспензию медленно нагревают, при этом образуется газ хлористый водород, который подходящим способом отводят. Отделяют растворитель с помощью дистилляции, при этом получают 2370 г смеси ди- и полиизоцианатов следующего состава:
4,4'-MDI: 59,2 мас.%,
2,4'-MDI: 5,4 мас.%,
2,2'-MDI: 0,2 мас.%,
высокомолекулярные полиизоцианаты: 35,2% мас., в расчете, соответственно, на массу смеси.
Кислотность (ASTM D 1638-74): 180 частей на млн.
Содержание железа: 10 частей на млн.
Экстинкция 2%-ного раствора в хлорбензоле (длина волны 430 нм, толщина слой 10 мм): 0,27.
Пример 3. Использование чистого растворителя (по изобретению)
В реакторе с мешалкой растворяют 1900 г полученной в примере 1 смеси ди- и полиаминов в 5700 г хлорбензола с содержанием 20 частей на млн фосгена и 20 частей на млн MDI, в расчете, соответственно, на массу растворителя хлорбензола. Во втором сосуде из нержавеющей стали (DIN 1.4571) посредством растворения 3800 г фосгена в 7600 г хлорбензола при охлаждении до 0°С получают 33 мас.%-ный (в расчете на массу растворителя) раствор фосгена и при интенсивном перемешивании смешивают растворы амина и фосгена. Образовавшуюся твердую суспензию медленно нагревают, при этом образуется газ хлористый водород, который подходящим способом отводят. При этом получается гомогенный раствор полиизоцианата.
Отделяют растворитель с помощью дистилляции, при этом получают 2370 г смеси ди- и полиизоцианатов следующего состава:
4,4'-MDI: 59,3% мас.,
2,4'-MDI: 5,5% мас.,
2,2'-MDI: 0,2% мас.,
высокомолекулярные полиизоцианаты: 35% мас., в расчете, соответственно, на массу смеси.
Кислотность (ASTM D 1638-74): 62 частей на млн.
Содержание железа: 4 части на млн.
Экстинкция 2%-ного раствора в хлорбензоле (длина волны 430 нм, толщина слоя 10 мм): 0,13.
При сравнении результатов примеров 2 и 3 оказывается, что за счет использования очищенного растворителя для получения раствора амина согласно заявляемому способу получают изоцианат с улучшенным качеством, что выражается в незначительной кислотности, незначительном содержании железа и светлой окраске (незначительная экстинкиция).

Claims (4)

1. Способ получения ди- и полиизоцианатов дифенилметанового ряда (MDI), в котором
a) получают раствор амина, выбранного из группы, включающей ди- и полиамины дифенилметанового ряда, в растворителе и в том же растворителе получают раствор фосгена, и
b) раствор амина в растворителе и раствор фосгена в растворителе смешивают друг с другом и амин подвергают взаимодействию с фосгеном с образованием соответствующего изоцианата, при этом получают реакционный раствор, содержащий изоцианат, и
c) из реакционного раствора, содержащего изоцианат, отделяют хлористый водород и избыточный фосген, при этом получают сырой раствор изоцианата, и
d) сырой раствор изоцианата разделяют с помощью дистилляции, при этом на стадии дистилляции получают поток, содержащий изоцианат, и поток, содержащий растворитель и остаточное количество фосгена, имеющий содержание диизоцианатов дифенилметанового ряда <100 млн-1 и остаточное количество фосгена 100-1000 млн-1, соответственно в расчете на массу потока, содержащего растворитель и остаточное количество фосгена, и причем
на стадии очистки растворителя полученный на стадии дистилляции поток, содержащий растворитель и остаточное количество фосгена, очищают с помощью дистилляции в отпарной колонне с получением освобожденного от фосгена потока, содержащего растворитель и имеющего содержание диизоцианатов дифенилметанового ряда <100 млн-1 и содержание фосгена <100 млн-1, соответственно в расчете на массу освобожденного от фосгена потока, содержащего растворитель, и
е) полученный на стадии d) освобожденный от фосгена поток, содержащий растворитель, по меньшей мере, частично отводят от стадии очистки растворителя на стадию а) и там используют, по меньшей мере, для получения раствора амина в растворителе.
2. Способ по п.1, в котором освобожденный от фосгена поток, содержащий растворитель, отводимый на стадию е), дополнительно используют для получения раствора фосгена в растворителе.
3. Способ по п.1, в котором в качестве растворителя используют хлорбензол, дихлорбензол и/или толуол.
4. Способ по одному из пп.1-3, в котором освобожденный от фосгена поток, содержащий растворитель, отводимый на стадию е), получают в виде кубового продукта отпарной колонны, а входящий поток отпарной колонны охлаждают за счет теплообмена с кубом отпарной колонны.
RU2007117488/04A 2006-05-13 2007-05-11 Способ получения изоцианатов RU2446151C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006022448.5 2006-05-13
DE102006022448A DE102006022448A1 (de) 2006-05-13 2006-05-13 Verfahren zur Herstellung von Isocyanaten

Publications (2)

Publication Number Publication Date
RU2007117488A RU2007117488A (ru) 2008-11-20
RU2446151C2 true RU2446151C2 (ru) 2012-03-27

Family

ID=38370797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007117488/04A RU2446151C2 (ru) 2006-05-13 2007-05-11 Способ получения изоцианатов

Country Status (11)

Country Link
US (2) US20070265465A1 (ru)
EP (1) EP1854783B1 (ru)
JP (1) JP5599129B2 (ru)
KR (1) KR101383411B1 (ru)
CN (1) CN101302174B (ru)
BR (1) BRPI0702581A (ru)
DE (1) DE102006022448A1 (ru)
ES (1) ES2527718T3 (ru)
PT (1) PT1854783E (ru)
RU (1) RU2446151C2 (ru)
TW (1) TW200808702A (ru)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260027A1 (de) * 2002-12-19 2004-07-08 Basf Ag Verfahren zur Abtrennung und Reinigung von Lösungsmittel von einem Reaktionsgemisch aus einer Isocyanatsynthese
WO2005032687A2 (en) * 2003-09-30 2005-04-14 Clark Arthur F Method for separating volatile components by dilutive distillation
DE102008009761A1 (de) * 2008-02-19 2009-08-27 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
EP2370400B2 (en) * 2008-11-26 2019-10-16 Huntsman International LLC Process for manufacturing isocyanates
FR2940283B1 (fr) * 2008-12-18 2011-03-11 Perstorp Tolonates France Utilisation d'un reacteur de type piston pour la mise en oeuvre d'un procede de phosgenation.
JP2012530749A (ja) * 2009-06-26 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア イソシアネート、好適には溶媒の再循環を伴うジイソシアネート及びポリイソシアネートの製造方法
US20120123153A1 (en) * 2010-11-17 2012-05-17 Basf Se Method for purifying mixtures comprising 4,4'-methylenediphenyl diisocyanate
CN110437108A (zh) * 2012-03-19 2019-11-12 科思创德国股份有限公司 制备异氰酸酯的方法
CN104755458B (zh) 2012-10-24 2017-06-20 巴斯夫欧洲公司 通过在液相中光气化胺制备异氰酸酯的方法
US9796669B2 (en) 2014-03-27 2017-10-24 Covestro Deutschland Ag Process for preparing isocyanates
CN106458842B (zh) 2014-06-24 2020-02-11 科思创德国股份有限公司 具有运行中断的用于制备化学产物的方法
CN104402765B (zh) * 2014-10-10 2015-09-30 青岛科技大学 一种以异氰酸酯为中间体制备农药的方法
CN108348889B (zh) 2015-09-24 2020-09-15 科思创德国股份有限公司 制备异氰酸酯的方法
JP6913083B2 (ja) 2015-09-30 2021-08-04 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag イソシアネートの製造方法
US20180305830A1 (en) 2015-10-15 2018-10-25 Covestro Deutschland Ag Method for producing amino-functional aromatic compounds
HUE049270T2 (hu) 2015-11-02 2020-09-28 Covestro Deutschland Ag Desztillációs oszlop és ennek alkalmazása izocianátok tisztítására
US10618871B2 (en) 2016-08-17 2020-04-14 Covestro Deutschland Ag Process for producing isocyanate and at least one further chemical product in an integrated production
CN109641175B (zh) * 2016-09-01 2021-07-30 科思创德国股份有限公司 制备异氰酸酯的方法
US10703713B2 (en) 2016-12-21 2020-07-07 Covestro Deutschland Ag Process for preparing an isocyanate
CN108246050A (zh) * 2016-12-29 2018-07-06 重庆长风生物科技有限公司 一种气相法制备hdi的冷却装置及方法
WO2018184980A1 (de) * 2017-04-03 2018-10-11 Covestro Deutschland Ag Reinigungsvorrichtung für gasströme aus der isocyanatherstellung
JP7218311B2 (ja) 2017-07-03 2023-02-06 コベストロ、ドイチュラント、アクチエンゲゼルシャフト H官能性反応物をホスゲンと反応させて化学製品を製造するための製造施設およびその稼働方法
EP3735405B1 (de) 2018-01-05 2021-11-24 Covestro Intellectual Property GmbH & Co. KG Verfahren zur herstellung von methylen-diphenylen-diisocyanaten und polymethylen-polyphenylen-polyisocyanaten
KR102437607B1 (ko) * 2018-06-18 2022-08-26 한화솔루션 주식회사 지방족 이소시아네이트의 제조방법
US10875827B2 (en) 2018-11-13 2020-12-29 Covestro Deutschland Ag Process for preparing an isocyanate by partly adiabatic phosgenation of the corresponding amine
US10851048B2 (en) 2018-11-13 2020-12-01 Covestro Deutschland Ag Process for preparing an isocyanate by partly adiabatically operated phosgenation of the corresponding amine
CN109651201A (zh) * 2018-12-30 2019-04-19 安徽广信农化股份有限公司 一种合成异氰酸环己酯的废料处理工艺
CN110327848B (zh) * 2019-05-29 2022-02-18 江苏蓝丰生物化工股份有限公司 一种用于光气化反应的装置、光气化反应的生产工艺
CN114423735A (zh) 2019-09-17 2022-04-29 科思创德国股份有限公司 制备异氰酸酯的方法
WO2021122625A1 (de) 2019-12-18 2021-06-24 Covestro Deutschland Ag Verfahren zur herstellung von di- und polyisocyanaten der diphenylmethanreihe
WO2021228977A1 (de) 2020-05-15 2021-11-18 Covestro Deutschland Ag Verfahren zum betreiben einer anlage zur kontinuierlichen herstellung eines isocyanats
CN114380714B (zh) * 2020-10-16 2023-08-11 万华化学集团股份有限公司 光气化反应生产中的循环溶剂及其除杂方法
WO2022077429A1 (zh) * 2020-10-16 2022-04-21 万华化学集团股份有限公司 光气化反应生产中的循环溶剂及其除杂方法
CN115490829A (zh) * 2021-06-17 2022-12-20 万华化学集团股份有限公司 一种异氰酸酯组合物及其制备方法、一种光学材料
CN114044746A (zh) * 2021-12-07 2022-02-15 万华化学集团股份有限公司 一种低pi类物质含量异氰酸酯及其制备方法
CN114149345B (zh) * 2021-12-09 2023-04-21 万华化学集团股份有限公司 一种制备异氰酸酯的方法
CN114805131A (zh) * 2022-04-26 2022-07-29 宁夏瑞泰科技股份有限公司 一种对苯二异氰酸酯的制备方法
CN115093349B (zh) * 2022-06-28 2024-06-25 万华化学集团股份有限公司 一种甲苯二异氰酸酯副产固体残渣净化溶剂的方法
CN118026893A (zh) * 2022-11-11 2024-05-14 万华化学(宁波)有限公司 一种低单苯环类杂质含量的粗异氰酸酯的生产工艺
CN116217439A (zh) * 2023-01-03 2023-06-06 万华化学集团股份有限公司 一种光气化制备mdi的循环溶剂及其提纯方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942299A1 (de) * 1999-09-04 2001-03-08 Basf Ag Verbessertes Verfahren zur Herstellung von Mono- und Oligo-Isocyanaten
EP1371636A1 (en) * 2002-06-14 2003-12-17 Bayer Ag Process for the purification of mixtures of toluenediisocyanate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887502A (en) 1972-05-12 1975-06-03 Olin Corp Preparation of rigid polyurethane foam having improved aging properties
DE3129270A1 (de) * 1981-07-24 1983-02-10 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polyisocyanaten
DE3413174A1 (de) * 1984-04-07 1985-10-17 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polyisocyanaten
US4651570A (en) * 1984-12-03 1987-03-24 Rosaen Borje O Differential pressure monitor
DE3736988C1 (de) * 1987-10-31 1989-03-23 Bayer Ag Verfahren zur kontinuierlichen Herstellung von organischen Mono- und Polyisocyanaten
DE19817691A1 (de) * 1998-04-21 1999-10-28 Basf Ag Verfahren zur Herstellung von Mischungen aus Diphenylmehandiisocyanaten und Polyphenylen-polymethylen-polyisocyanaten mit vermindertem Gehalt an chlorierten Nebenprodukten und verminderter Jodfarbzahl
JP4307588B2 (ja) * 1998-04-28 2009-08-05 三井化学株式会社 脂肪族イソシアネート化合物の製造法
EP1371633A1 (en) * 2002-06-14 2003-12-17 Bayer Ag Process for the purification of mixtures of toluenediisocyanate incorporating a dividing-wall distillation column
DE10260082A1 (de) * 2002-12-19 2004-07-01 Basf Ag Verfahren zur kontinuierlichen Herstellung von Isocyanaten
DE10260027A1 (de) * 2002-12-19 2004-07-08 Basf Ag Verfahren zur Abtrennung und Reinigung von Lösungsmittel von einem Reaktionsgemisch aus einer Isocyanatsynthese
DE10261187A1 (de) * 2002-12-20 2004-07-08 Basf Ag Verfahren zur Herstellung von Isocyanaten
US20070232827A1 (en) * 2004-05-25 2007-10-04 Basf Aktiengesellschaft Isocyanate Production Method
PT1773755E (pt) * 2004-07-28 2012-11-15 Huntsman Int Llc Processo para a produção de poliisocianatos

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942299A1 (de) * 1999-09-04 2001-03-08 Basf Ag Verbessertes Verfahren zur Herstellung von Mono- und Oligo-Isocyanaten
EP1371636A1 (en) * 2002-06-14 2003-12-17 Bayer Ag Process for the purification of mixtures of toluenediisocyanate

Also Published As

Publication number Publication date
DE102006022448A1 (de) 2007-11-15
KR101383411B1 (ko) 2014-04-08
JP2007302672A (ja) 2007-11-22
BRPI0702581A (pt) 2008-01-15
EP1854783A2 (de) 2007-11-14
PT1854783E (pt) 2015-02-04
CN101302174A (zh) 2008-11-12
JP5599129B2 (ja) 2014-10-01
RU2007117488A (ru) 2008-11-20
EP1854783B1 (de) 2014-11-19
CN101302174B (zh) 2013-10-30
KR20070110204A (ko) 2007-11-16
US20100298596A1 (en) 2010-11-25
TW200808702A (en) 2008-02-16
EP1854783A3 (de) 2009-06-03
US20070265465A1 (en) 2007-11-15
ES2527718T3 (es) 2015-01-28

Similar Documents

Publication Publication Date Title
RU2446151C2 (ru) Способ получения изоцианатов
JP4490288B2 (ja) イソシアネートを精製するための方法
JP4583596B2 (ja) ジフェニルメタンジイソシアネート及びポリフェニルポリメチレンポリイソシアネートを含み、塩素化副生物含有量及びヨウ素色数が共に低減された混合物の製造方法
US8759569B2 (en) Process for the production of isocyanates, preferably diisocyanates and polyisocyanates with solvent recirculation
EP1734035B1 (en) Process for the preparation of 4,4&#39;-diphenylmethane diisocyanate
CN106458862B (zh) 制备异氰酸酯的方法
JP6743068B2 (ja) 化学反応用塩化水素製造方法
CA2574024C (en) Process for the production of polyisocyanates
US4405527A (en) Process for the preparation of polyisocyanates
JP4308776B2 (ja) イソシアネートの製造
CN111630028B (zh) 制备亚甲基二亚苯基二异氰酸酯和多亚甲基多亚苯基多异氰酸酯的方法
EP2502904B1 (en) Process for the production of polyisocyanates
RU2361857C2 (ru) Способ производства полиизоцианатов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160512