RU2421656C2 - Способ изготовления вакуумных изоляционных панелей - Google Patents

Способ изготовления вакуумных изоляционных панелей Download PDF

Info

Publication number
RU2421656C2
RU2421656C2 RU2007145272A RU2007145272A RU2421656C2 RU 2421656 C2 RU2421656 C2 RU 2421656C2 RU 2007145272 A RU2007145272 A RU 2007145272A RU 2007145272 A RU2007145272 A RU 2007145272A RU 2421656 C2 RU2421656 C2 RU 2421656C2
Authority
RU
Russia
Prior art keywords
foam
pressing
vacuum insulation
open
foams
Prior art date
Application number
RU2007145272A
Other languages
English (en)
Other versions
RU2007145272A (ru
Inventor
Йоханн КЛАССЕН (DE)
Йоханн КЛАССЕН
Йорг КРОГМАНН (DE)
Йорг КРОГМАНН
Original Assignee
Басф Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36677078&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2421656(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Басф Акциенгезельшафт filed Critical Басф Акциенгезельшафт
Publication of RU2007145272A publication Critical patent/RU2007145272A/ru
Application granted granted Critical
Publication of RU2421656C2 publication Critical patent/RU2421656C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1285Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/005Avoiding skin formation; Making foams with porous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Предметом изобретения является способ изготовления вакуумных изоляционных панелей. Формованное изделие из открыто ячеистого пенопласта после отверждения обертывают газонепроницаемой пленкой, вакуумируют и герметично заваривают пленку. При этом формованное изделие подвергают прессованию. Способ отличается тем, что прессование формованного изделия осуществляют после его обертывания газонепроницаемой пленкой и перед вакуумированием. Технический результат: улучшение качества поверхности вакуумной изоляционной поверхности, повышение гибкости панели, уменьшение теплопроводности.
5 з.п.ф-лы, 1 табл.

Description

Предметом изобретения являются вакуумные изоляционные панели, способ их изготовления, а также жесткие открыто ячеистые полиуретановые пенопласты, которые могут применяться в качестве материала матрицы в вакуумных изоляционных панелях.
Вакуумные изоляционные блоки находят применение в частности для корпусов холодильных аппаратов, кузовов рефрижераторов или труб централизованного теплоснабжения. Из-за небольшой их теплопроводности они имеют преимущество по сравнению с обычными изоляционными материалами. Так их потенциал энергосбережения по сравнению с закрыто ячеистыми жесткими полиуретановыми пенопластами составляет около 20-30%.
Такие вакуумные изоляционные блоки, как правило, состоят из теплоизоляционных материалов матрицы, например, открыто ячеистых жестких полиуретановых пенопластов (жестких ПУР-пенопластов), экструдированного открыто ячеистого пенополистирола, силикагелей, стекловолокон, сыпучей полимерной массы, прессованного помола из жесткого или полужесткого ПУР-пенопласта или перлитов, которые упакованы в газонепроницаемую пленку, вакуумированы и герметично заварены.
Для другого варианта осуществления вакуумные изоляционные блоки могут изготавливаться введением пеносистемы для открыто ячеистых жестких полиуретановых пенопластов вовнутрь двойной стенки двухстенного кожуха, например, дверцы холодильного оборудования или корпуса холодильного оборудования, где система отверждается в открыто ячеистую пену, и последующим вакуумированием. При этом варианте осуществления с заполненной пеной двойной стенкой может соединяться вакуумный насос, с помощью которого вакуумирование при необходимости может быть возобновлено.
При использовании жестких полиуретановых пенопластов существенным является то, чтобы ячейки пены были открытыми для достижения полного откачивания вакуумной изоляционной панели.
В ЕР 905159 и ЕР 905158 описаны способы изготовления жестких пенопластов с открытыми ячейками, причем используется преимущественно продукт этерификации жирных кислот полифункциональными спиртами в качестве эмульгатора для поддержания устойчивости при хранении эмульсии, содержащей вспениватели. При этом, в частности, используются комбинации из перфторалканов и алканов в качестве физических порофоров. Применение перфторалканов для создания тонких ячеек уже известно из ЕР 351614.
Большое влияние на теплопроводность вакуумных изоляционных панелей имеет также морфология ячеек открыто ячеистых жестких полиуретановых пенопластов, используемых в качестве материала матрицы.
Из ЕР 967243 известно, что открыто ячеистые жесткие полиуретановые пенопласты для использования в качестве материала матрицы для вакуумных изоляционных панелей спрессовывают во время процесса вспенивания. Это осуществляется в две стадии. Перед гелеобразованием пены ее спрессовывают до объема 40-60% объема свободно вспененной пены и во второй стадии во время подъема спрессовывают до объема 20-30% объема свободно вспененной пены.
За счет этой компрессии должно возрастать содержание открытых ячеек в пене. Полученные таким образом пены могут использоваться для вакуумных изоляционных панелей с пониженной теплопроводностью. Недостатками этого способа являются повышенная плотность пены, а также трудности при извлечении из пресс-формы вследствие сильного сжатия во время реакции. Из WO 99/36636 известен способ изготовления вакуумных изоляционных панелей, при котором панели спрессовывают во время процесса вакуумирования или после него. Вследствие этого должна уменьшаться теплопроводность и получаться поверхности элементов без складок. Недостатком при этом является то, что за счет дополнительного спрессовывания может произойти повреждение элементов изделия, в частности сварного шва. При этом также велика опасность того, что за счет компрессии повреждается пленка на поверхностях или, в особенности, на углах, например, вследствие небольших микротрещин, что может отрицательно повлиять на срок службы вакуумных изоляционных панелей. Кроме того, это приводит к нежелательному росту давления в панелях.
Поэтому задача данного изобретения заключалась в следующем: разработать вакуумные изоляционные панели с применением в качестве материала матрицы открыто ячеистых пенопластов, которые просты в изготовлении и обладают небольшой теплопроводностью.
Вследствие этого предметом изобретения являются вакуумные изоляционные панели, состоящие из формованных изделий из открыто ячеистых пенопластов, которые упакованы в газонепроницаемую пленку, вакуумированы и герметично заварены, отличающиеся тем, что открыто ячеистых пенопласты после отверждения и перед вакуумированием спрессованы.
Далее, предметом изобретения является способ изготовления вакуумных изоляционных панелей путем обертывания на формованное изделие из открыто ячеистого пенопласта газонепроницаемой пленки и последующего вакуумирования и герметичного заваривания пленки, отличающийся тем, что формованное изделие из открыто ячеистого пенопласта после отверждения спрессовывают.
В качестве пенопластов для изготовления вакуумных изоляционных панелей могут применяться обычно используемые открыто ячеистые пенопласты. При этом речь идет, например, о пенополистироле, пенопластах из полиолефинов, таких как пенополиэтилен или пенополипропилен, полиакрилатных пенах, фенолформальдегидных пенопластах, поливинилхлоридных пенопластах и особенно о жестких и полужестких полиуретановых пенопластах, в частности о жестких полиуретановых пенопластах.
Сжатие, рассчитанное как отношение толщины панели перед прессованием к толщине панели после прессования, находиться предпочтительно в диапазоне между 2 и 3,8. Особенно низкое значение теплопроводности достигается при сжатии в диапазоне между 3 и 3,5.
В дальнейшем понятия сжатие, компрессия и прессование используются как синонимы.
Прессование пенопласта происходит, как описано, перед вакуумированием вакуумной изоляционной панели. В частности прессование осуществляется после формообразования матрицы для вакуумной изоляционной панели.
Прессование может происходить с помощью гидравлического или пневматического пресса. При этом, в особенности при прессовании, после обертывания пенопласта пленкой, должно обеспечиваться то, что это не приведет к механическим повреждениям. В частности, поверхности прессовального механизма должны быть очень гладкими и не должны иметь никаких неровностей и выпуклостей с острыми краями. Поверхности пресса предпочтительно должны быть параллельны поверхностям прессуемых изделий.
Путем прессования, в зависимости от применяемой силы, можно очень сильно изменить ориентацию ячеек в направлении анизотропии вплоть до разрушения ячеек. Отношение длины ячеек к их ширине в пене при этом увеличивается в сторону длины до тех пор, пока при дальнейшем увеличении давления не произойдет разрушение ячеек.
Прессование при этом может происходить в одну или в несколько стадий. Предпочтительно прессование осуществляется в одну стадию.
Сопровождающее прессование пенопластов ухудшение их механических свойств может допускаться, так как вакуумные изоляционные панели вообще не подвергаются сильным механическим нагрузкам. Более важным для применения является то, чтобы они при использовании имели стабильные размеры. Для вакуумных изоляционных панелей согласно данному изобретению это задано. Другим в способе согласно изобретению является то, что профиль свойств жесткого пенопласта за счет компрессии изменяется в направлении более высокой гибкости, так что можно просто изготавливать даже неплоские вакуумные изоляционные панели, например, для использования для изоляции труб.
Часто теплопроводность не уменьшается с усилением сжатия. Часто с возрастанием компрессии теплопроводность проходит через минимум, чтобы после этого снова увеличиться. Этот оптимум, действующий для соответствующего типа пенопласта, может быть легко найден специалистом путем предварительных опытов. Часто компрессия зависит также от требуемых размеров детали. В каждом случае теплопроводность пенопласта, который подвергался прессованию, меньше, чем теплопроводность не подвергнутого прессованию пенопласта.
В принципе все описанные пенопласты с открытыми ячейками, в частности открыто ячеистые жесткие полиуретановые пенопласты, могут использоваться для вакуумных изоляционных панелей согласно данному изобретению.
Изготовление полиуретановых жестких поропластов с открытыми порами происходит известными способами путем взаимодействия полиизоцианатов с соединениями, содержащими по меньшей мере два реакционно-способных к изоцианатным группам атома водорода.
В качестве полиизоцианатов используются преимущественно ароматические полиизоцианаты, наиболее предпочтительны изомеры дифенилметандиизоцианата (MDI) и смеси из дифенилметандиизоцианата и полифениленполиметиленполиизоцианатов (Roh-MDI).
В качестве соединений, содержащих по меньшей мере два реакционно-способных к изоцианатным группам атома водорода, используются большей частью простые и/или сложные полиэфироспирты.
Сложные полиэфироспирты получаются чаще всего путем конденсации полифункциональных спиртов, преимущественно диолов, с числом атомов углерода от 2 до 12, предпочтительно с числом атомов углерода от 2 до 6, с полифункциональными карбоновыми кислотами с числом атомов углерода от 2 до 12, например, янтарной, глутаровой, адипиновой, пробковой, азелаиновой, себациновой, декандикарбоновой, малеиновой, фумаровой кислотами и предпочтительно фталевой, изофталевой, терефталевой кислотами и изомерами нафталиндикарбоновой кислоты.
Сложные полиэфироспирты большей частью имеют функциональность от 2 до 8, в частности от 4 до 8.
В частности в качестве полигидроксильных соединений используются простые полиэфирполиолы, которые получают известными способами, например, анионной полимеризацией алкиленоксидов в присутствии гидроксидов щелочных металлов.
В качестве алкиленоксидов используют чаще всего этиленоксид и 1,2-пропиленоксид. Алкиленоксиды могут применяться по отдельности, последовательно друг за другом или в виде смесей.
В качестве исходных соединений подходят, например, вода, органические дикарбоновые кислоты, такие как, например, янтарная, адипиновая, фталевая и терефталевая кислоты, алифатические и ароматические, при необходимости N-моно-, N,N- и N,N'-диалкилзамещенные диамины с числом атомов углерода в алкильном остатке от 1 до 4, такие как, например, при необходимости моно- и диалкилзамещенный этилендиамин, диэтилентриамин, триэтилентетраамин, 1,3-пропилендиамин, 1,3- или 1,4-бутилендиамин, 1,2-, 1,3-, 1,4-, 1,5- и 1,6-гексаметилендиамин, анилин, фенилендиамины, 2,3-, 2,4-, 3,4- и 2,6-толуилендиамин и 4,4′-, 2,4′- и 2,2′-диамино-дифенилметан.
Далее, в качестве исходных соединений подходят: алканоламины, такие как, например, этаноламин, N-метил- и N-этилэтаноламин, диалканоламины, такие как, например, диэтаноламин, N-метил- и N-этилдиэтаноламин и триалканоламины, такие как, например, триэтаноламин, и аммиак.
Далее, используются многоатомные, в частности, двухатомные и/или трехатомные спирты, такие как этандиол, пропандиол-1,2 и -1,3, диэтиленгликоль, дипропиленгликоль, бутандиол-1,4, гександиол-1,6, глицерин, пентаэритрит, сорбит и сахароза, многоатомные фенолы, такие как, например, 4,4′-дигидрокси-дифенилметан и 4,4′-дигидрокси-дифенилпропан-2,2, резолы, такие как, например, олигомерные продукты конденсации фенола и формальдегида и конденсаты Манниха из фенолов, формальдегида и диалканоламинов, а также меламина.
Простые полиэфирполиолы имеют функциональность предпочтительно от 2 до 8, наиболее предпочтительно 3 и 6, и гидроксильные числа предпочтительно от 120 мг КОН/г до 770 мг КОН/г, наиболее предпочтительно от 240 мг КОН/г до 570 мг КОН/г.
К соединениям, содержащим по меньшей мере два реакционно-способных к изоцианатным группам атома водорода, относятся также применяемые при необходимости удлинители цепи и отвердители. Для модификации механических свойств оказались полезными добавки дифункциональных веществ для удлинения цепи, трифункциональных веществ и веществ с большей функциональностью, образующих поперечные связи, или при необходимости их смеси. В качестве веществ, удлиняющих цепи и/или образующих поперечные связи, применяются преимущественно алканоламины и в особенности диолы и/или триолы с молекулярным весом менее 400, предпочтительно 60-300.
Если для изготовления жестких пенопластов на основе изоцианатов находят применение вещества, удлиняющие цепи, вещества, образующие поперечные связи, или смеси этих веществ, их используют в количестве от 0 до 20 вес.%, предпочтительно 2-5 вес.%, в расчете на вес соединений, содержащих по меньшей мере два атома водорода, реакционно-способных к изоцианатным группам.
Способ согласно данному изобретению осуществляется обычно в присутствии агентов вспенивания, катализаторов, а также, если требуется, вспомогательных веществ и/или добавок.
В качестве катализаторов могут применяться обычные и известные катализаторы для полиуретанов, в частности используются соединения, сильно ускоряющие реакцию изоцианатных групп с группами, реакционно-способными к изоцианатным группам. В частности используются органические соединения металлов, предпочтительно органические соединения цинка, такие как соли двухвалентного цинка органических кислот.
Далее, в качестве катализаторов могут применяться амины, обладающие свойствами сильных оснований. Примерами таких аминов являются вторичные алифатические амины, имидазолы, амидины, триазины, а также алканоламины.
Катализаторы, в зависимости от необходимости, могут использоваться по одному или в любых смесях друг с другом.
В качестве агента вспенивания может применяться вода, которая реагирует с изоцианатными группами с отщеплением диоксида углерода. Вместо воды, но предпочтительно все же в комбинации с водой, могут использоваться также так называемые физические агенты вспенивания. При этом речь идет об инертных по отношению к используемым компонентам соединениях, которые при комнатной температуре большей частью являются жидкими и при условиях протекания реакции уретанизации превращаются в пар. Температура кипения таких соединений предпочтительно лежит ниже 110°С, наиболее предпочтительно ниже 80°С. К физическим агентам вспенивания относятся также инертные газы, которые вводятся в используемые компоненты или растворяются в них, например, диоксид углерода, азот или благородные газы.
Жидкие при комнатной температуре соединения большей частью выбирают из группы, содержащей алканы и/или циклоалканы с числом атомов углерода не менее 4, простые диалкиловые эфиры, сложные эфиры, кетоны, ацетали, фторалканы с числом атомов углерода от 1 до 8 и тетраалкилсиланы с числом атомов углерода 1-3 в алкильных цепочках, в частности тетраметилсилан.
В качестве примеров следовало бы назвать пропан, н-бутан, изо- и циклобутан, н-, изо- и циклопентан, циклогексан, диметиловый эфир, метилэтиловый эфир, метилбутиловый эфир, метиловый эфир муравьиной кислоты, ацетон, а также фторалканы, которые могут разлагаться в тропосфере и поэтому не вредят озоновому слою, такие как трифторметан, дифторметан, 1,1,1,3,3-пентафторбутан, 1,1,1,3,3-пентафторпропан, 1,1,1,2-тетрафторэтан, дифторэтан и гептафторпропан. Вышеназванные физические агенты вспенивания могут использоваться по одному или в любых комбинациях друг с другом.
В качестве вспомогательных средств и/или добавок могут использоваться для этой цели известные сами по себе вещества, например, поверхностно-активные вещества, стабилизаторы пены, регуляторы ячеек, наполнители, пигменты, красители, огнезащитные средства, средство защиты от гидролиза, антистатики, средства, действующие фунгистатически и бактериостатически.
Более подробные данные об используемых для реализации способа согласно данному изобретению исходных веществах, агентах вспенивания, катализаторах, а также вспомогательных веществах и/или добавках находятся, например, в учебнике по полимерам Kunststoffhandbuch, т.7, "Polyurethane" издательство Carl-Hanser, 1-е издание 1966, 2-е издание 1983 и 3-е издание 1993.
Для получения жестких пенопластов на основе изоцианатов полиизоцианаты а) и соединения б), содержащие по меньшей мере два реакционно-способных к изоцианатным группам атома водорода, приводятся во взаимодействие в таких количествах, что эквивалентное отношение NCO-групп полиизоцианата а) к сумме реакционно-способных атомов водорода компонента б) равно 0,85-1,75:1, предпочтительно 1,0-1,3:1 и наиболее предпочтительно 1,0-1,15:1. Если пенопласты, содержащие уретановые группы, модифицируются путем образования изоциануратных групп, например, для повышения невоспламеняемости, обычно применяется отношение NCO-групп полиизоцианата а) к сумме реакционно-способных атомов водорода компонента б) 1,6-60:1, предпочтительно 3,0-8:1.
Жесткие пенопласты на основе изоцианатов можно получать дискретно или непрерывно через форполимеры или предпочтительно методом one shot с помощью известных устройств для смешивания.
В качестве наиболее предпочтительного оказался двухкомпонентный метод, при котором соединения, содержащие по меньшей мере два реакционно-способных к изоцианатным группам атома водорода, вместе с агентами вспенивания, катализаторами, а также вспомогательными веществами и/или добавками объединять в так называемый полиольный компонент и его приводить во взаимодействие с полиизоцианатами или смесями из полиизоцианатов и при необходимости агентов вспенивания, названными как изоцианатный компонент.
Вакуумные изоляционные панели могут изготавливаться в различных формах, например, в виде жесткой панели, или также с другой, непланарной геометрией. Их изготовление и используемые материалы известны сами по себе. Обычно вместе с материалом матрицы также сваривается геттерный материал для предотвращения того, чтобы выделяющаяся позднее в виде газа летучая субстанция не отражалась неблагоприятно на вакууме.
В качестве материала оболочки для вакуумных изоляционных панелей вообще применяют пленки. Предпочтительными пленками являются пленки из комбинированных материалов, в частности многослойные пленки из комбинированных материалов с металлическим покрытием, нанесенным осаждением пара, или металлическим ламинированным покрытием, например, из алюминия. Подходящие пленки состоят, например, из сложного полиэфира, поливинилхлорида, полиолефинов, таких как полиэтилен или полипропилен, или поливиниловый спирт. В качестве материала оболочки подходят, например, также внутренний слой стенок холодильников, облицовка труб или металлические пленки.
При изготовлении вакуумных изоляционных панелей с использованием изготовленных в соответствии со способом согласно данному изобретению жестких полиуретановых пенопластов сначала получают известным способом пену. После чего полученному пенопласту, если он не изготавливается уже в виде соответствующих формованных изделий, придают форму, которую он имеет в качестве матрицы вакуумной изоляционной панели. Это происходит преимущественно путем разрезания, в частности распиловки на пластины соответствующего размера. При разрезании процесс резания осуществляется параллельно направлению вспенивания, т.к. вследствие анизотропии пенопластов образующаяся пластина тогда имеет наименьшую теплопроводность. Формованные изделия после этого обертывают в газонепроницаемые оболочки, предпочтительно пленки из комбинированных материалов, вакуумируют и герметично заваривают.
Изготовленные в соответствии со способом согласно данному изобретению вакуумные изоляционные панели могут использоваться для изоляции холодильных установок, контейнеров и зданий, а также для обертывания труб. Вследствие своей гибкости они легко могут формоваться, что особенно выгодным является для использования в качестве облицовки труб.
Изобретение более подробно описывается нижеследующими примерами.
Примеры 1-3 и сравнительный пример.
Блок из жесткого полиуретанового пенопласта толщиной, указанной в таблице, спрессовывается с помощью гидравлического пресса до толщины, указанной в таблице, и определяется теплопроводность в направлении прессования. Результаты также находятся в таблице.
Figure 00000001
В случае пены I речь идет о жестком полиуретановом пенопласте, который изготавливали на двухленточном прессе. В случае пены II речь идет о жестком полиуретановом пенопласте, который изготавливали в виде блока.

Claims (6)

1. Способ изготовления вакуумных изоляционных панелей путем отверждения формованного изделия из открыто ячеистого пенопласта, его обертывания газонепроницаемой пленкой и последующего вакуумирования и герметичного заваривания пленки, при этом формованное изделие подвергают прессованию, отличающийся тем, что прессование формованного изделия осуществляют после его обертывания газонепроницаемой пленкой и перед вакуумированием.
2. Способ по п.1, отличающийся тем, что открыто ячеистый пенопласт представляет собой жесткий полиуретановый пенопласт.
3. Способ по п.1, отличающийся тем, что открыто ячеистый пенопласт спрессовывают в одну стадию.
4. Способ по п.1, отличающийся тем, что открыто ячеистый пенопласт спрессовывают по меньшей мере в две стадии.
5. Способ по п.1, отличающийся тем, что сжатие, рассчитанное как отношение толщины панели перед прессованием к толщине панели после прессования, находиться в диапазоне от 2 до 3,8.
6. Способ по п.1, отличающийся тем, что сжатие, рассчитанное как отношение толщины панели перед прессованием к толщине панели после прессования, находиться в диапазоне от 3 до 3,5.
RU2007145272A 2005-05-09 2006-05-08 Способ изготовления вакуумных изоляционных панелей RU2421656C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510021994 DE102005021994A1 (de) 2005-05-09 2005-05-09 Verfahren zur Herstellung von Vakuumisolations-Paneelen
DE102005021994.2 2005-05-09

Publications (2)

Publication Number Publication Date
RU2007145272A RU2007145272A (ru) 2009-06-20
RU2421656C2 true RU2421656C2 (ru) 2011-06-20

Family

ID=36677078

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007145272A RU2421656C2 (ru) 2005-05-09 2006-05-08 Способ изготовления вакуумных изоляционных панелей

Country Status (14)

Country Link
US (1) US20080199678A1 (ru)
EP (1) EP1893905B1 (ru)
JP (1) JP2008540955A (ru)
KR (1) KR20080008382A (ru)
CN (1) CN100580303C (ru)
AT (1) ATE445802T1 (ru)
AU (1) AU2006245777B2 (ru)
DE (2) DE102005021994A1 (ru)
ES (1) ES2331536T3 (ru)
NZ (1) NZ563010A (ru)
PL (1) PL1893905T3 (ru)
RU (1) RU2421656C2 (ru)
SI (1) SI1893905T1 (ru)
WO (1) WO2006120183A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2387459A2 (de) 2009-01-14 2011-11-23 Basf Se Vakuumisolationseinheiten mit gettermaterialien
ES2532539T3 (es) * 2010-09-22 2015-03-27 Basf Se Fijación de paneles de aislamiento bajo vacío en dispositivos de refrigeración
US9126386B2 (en) 2011-03-04 2015-09-08 Basf Se Composite elements
KR20140009451A (ko) 2011-03-04 2014-01-22 바스프 에스이 복합 부재
GB2491414B (en) 2011-06-03 2017-11-01 Acell Ind Ltd Composite Open-Cell Foam Insulating Panels
CN102493564A (zh) * 2011-12-21 2012-06-13 江苏秀强玻璃工艺股份有限公司 一种建筑外墙用真空保温板及其生产方法
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US8944541B2 (en) 2012-04-02 2015-02-03 Whirlpool Corporation Vacuum panel cabinet structure for a refrigerator
CN102635171B (zh) * 2012-05-05 2014-06-18 陈宏宇 一种整体式真空绝热保温板的制备方法
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443284B1 (en) * 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
CN111372963B (zh) * 2017-12-05 2022-06-03 巴斯夫欧洲公司 制备包含氨基甲酸酯基和异氰脲酸酯基的开孔硬质泡沫的方法
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
CN113498462A (zh) * 2019-03-08 2021-10-12 松下知识产权经营株式会社 绝热片及其制造方法
CN113710715A (zh) 2019-04-15 2021-11-26 巴斯夫欧洲公司 一种基于整体有机气凝胶的模制品
WO2021185716A1 (en) 2020-03-17 2021-09-23 Basf Se Thin and flexible thermal insulation material based on a monolithic organic aerogel
RU205795U1 (ru) * 2021-04-26 2021-08-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Вакуумная звукоизолирующая панель
EP4286438A1 (de) 2022-05-31 2023-12-06 Covestro Deutschland AG Komprimierter, offenzelliger, feinzelliger pur/pir-hartschaumstoff

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025974A (en) * 1972-01-10 1977-05-31 Lea James M Air mattress and method of making the same
US4454248A (en) * 1982-09-29 1984-06-12 The Boeing Company Open cell rigid thermoset foams and method
US5259080A (en) * 1990-12-12 1993-11-09 Lumex, Inc. Damped air displacement support system
JPH06213561A (ja) * 1993-01-18 1994-08-02 Hitachi Ltd 断熱材及びそれを用いた冷蔵庫
US5977197A (en) * 1996-02-02 1999-11-02 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
JP3876491B2 (ja) * 1997-02-27 2007-01-31 三菱電機株式会社 真空断熱パネル及びその製造方法並びにそれを用いた冷蔵庫
DE19726732C2 (de) * 1997-06-24 1999-04-29 Bayer Ag Kombiniertes Vakuumisolierpaneel aus Polystyrol und Polyurethan sowie dessen Verwendung bei der Herstellung von Dämmelementen
CA2313010A1 (en) * 1998-01-19 1999-07-22 Jan Maurice Stroobants Evacuated insulation panel
DE19917787A1 (de) * 1999-04-20 2000-11-02 Bayer Ag Komprimierte Polyurethanhartschaumstoffe
WO2001080916A2 (en) * 2000-04-26 2001-11-01 The Dow Chemical Company Durable, absorbent latex foam composition having high vertical wicking

Also Published As

Publication number Publication date
DE102005021994A1 (de) 2006-11-23
RU2007145272A (ru) 2009-06-20
ATE445802T1 (de) 2009-10-15
AU2006245777B2 (en) 2011-02-10
CN101171451A (zh) 2008-04-30
KR20080008382A (ko) 2008-01-23
NZ563010A (en) 2009-10-30
AU2006245777A1 (en) 2006-11-16
WO2006120183A1 (de) 2006-11-16
SI1893905T1 (sl) 2010-01-29
ES2331536T3 (es) 2010-01-07
DE502006005120D1 (de) 2009-11-26
US20080199678A1 (en) 2008-08-21
PL1893905T3 (pl) 2010-03-31
CN100580303C (zh) 2010-01-13
EP1893905B1 (de) 2009-10-14
JP2008540955A (ja) 2008-11-20
EP1893905A1 (de) 2008-03-05

Similar Documents

Publication Publication Date Title
RU2421656C2 (ru) Способ изготовления вакуумных изоляционных панелей
JP5372286B2 (ja) 向上した熱伝導率を有する硬質ポリウレタン発泡体の成形方法
KR100335874B1 (ko) 단열재및그것의제조방법
US9580539B2 (en) Foam insulation unit
TW568929B (en) Open-celled rigid polyurethane foam and method for producing the same
US20080280120A1 (en) Thermally Insulating Molded Element
WO2014087834A1 (ja) 断熱材およびその製造方法、ならびに断熱施工方法
JPH071479A (ja) 断熱性構造体の製造法
JPH11503774A (ja) 非平面性の排気断熱パネルおよびその製造方法
EP0707612A1 (en) Microporous isocyanate-based polymer compositions and method of preparation
MX2011010059A (es) Produccion de espumas de poliuretano rigido y uso de las mismas.
CA2370363A1 (en) Compressed rigid polyurethane foams
ES2625883T3 (es) Procedimiento para la preparación de espumas rígidas que contienen grupos uretano y grupos isocianurato
US8986801B2 (en) Polyurethane having improved insulating properties
CA2825836C (en) Polyurethane having improved insulating properties
JPH07110097A (ja) 断熱材
JP7346409B2 (ja) ウレタン基及びイソシアヌレート基を含む連続気泡硬質フォームを製造するための方法
JPH07156313A (ja) 断熱構造体及びその製造方法
JP2004331772A (ja) 硬質ポリウレタンフォーム断熱成形体およびその製造方法
JPH071477A (ja) 断熱性構造体の製造方法
JPH07233896A (ja) 断熱体とその製造方法
JPH0753655A (ja) 硬質ポリウレタンフォームの製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160509