RU2414385C2 - Кессон с каркасом для крыла самолета - Google Patents

Кессон с каркасом для крыла самолета Download PDF

Info

Publication number
RU2414385C2
RU2414385C2 RU2008109665/11A RU2008109665A RU2414385C2 RU 2414385 C2 RU2414385 C2 RU 2414385C2 RU 2008109665/11 A RU2008109665/11 A RU 2008109665/11A RU 2008109665 A RU2008109665 A RU 2008109665A RU 2414385 C2 RU2414385 C2 RU 2414385C2
Authority
RU
Russia
Prior art keywords
shell
frame
wing
aircraft
forces
Prior art date
Application number
RU2008109665/11A
Other languages
English (en)
Other versions
RU2008109665A (ru
Inventor
Кристиан МАНЦ (DE)
Кристиан МАНЦ
Original Assignee
Эйрбас Дойчланд Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эйрбас Дойчланд Гмбх filed Critical Эйрбас Дойчланд Гмбх
Publication of RU2008109665A publication Critical patent/RU2008109665A/ru
Application granted granted Critical
Publication of RU2414385C2 publication Critical patent/RU2414385C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/22Geodetic or other open-frame structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/06Fins

Abstract

Группа изобретений относится к области авиации. Кессон для крыла самолета имеет каркас (7) и первую оболочку (1). Каркас (7) соединен с первой оболочкой (1) так, что нагрузка, воздействующая на первую оболочку (1), может быть передана при помощи каркаса (7). Предложено также применение каркаса в качестве устройства придания жесткости для кессона крыла самолета. Способ характеризуется использованием кессона. Группа изобретений направлена на расширение арсенала технических средств. 3 н. и 6 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение имеет отношение к кессону крыла самолета, к использованию каркаса в качестве устройства придания жесткости кессону крыла самолета и к способу передачи усилия (силы) в кессоне крыла самолета.
В самолете крылья имеют область передней кромки, кессон крыла, концевую коробку и область поверхности управления. Область передней кромки адаптирует крыло самолета к аэродинамике и служит для снижения аэродинамического сопротивления крыла самолета. Кессон крыла поддерживает конструкцию крыла и поглощает нагрузки, вызванные разностью давлений или изменениями нагрузки. Концевая область содержит гидравлику, управляющую перемещением поверхностей управления. Область поверхности управления содержит руль направления, при помощи которого управляют изменением направления.
Примеры таких крыльев самолета, спроектированных в виде кессонов, включают в себя аэродинамические профили, рули высоты и кили. Известные конструкции кессона крыла содержат оболочки, которые усилены лонжеронами, нервюрами и стрингерами. За счет использования этих компонентов достигается локальная жесткость кессона крыла. Однако, для того, чтобы поглощать весьма существенные усилия, которые воздействуют на кессон крыла, лонжероны, нервюры и стрингеры должны быть прочными, что неизбежно делает их тяжелыми.
Чтобы поглощать весьма существенные усилия, обычно необходимо множество крупных компонентов. С одной стороны, это приводит к недостаткам в случае ошибок изготовления, так как требуются значительные усилия для ремонта крупных компонентов.
С другой стороны, в частности в случае нервюр, невозможно передавать приложенные нагрузки, такие как, например, нагрузки, возникающие за счет сил давления или сил растяжения в ходе маневров при полете самолета, по самому короткому пути к соединению фюзеляжа.
В контексте настоящего изобретения термин "сила" (усилие) относится как к силе давления, так и к силе растяжения.
Из публикации DE 699 11 507 Т2 известна конструкция крыла, изготовленная из упрочненного волокном композиционного материала, содержащая множество лонжеронов.
Задачей настоящего изобретения является создание усовершенствованного крыла самолета.
В соответствии с изобретением в кессоне крыла для самолета используют каркас в качестве устройства придания жесткости для кессона крыла самолета.
В соответствии с примерным вариантом осуществления настоящего изобретения предлагается кессон крыла самолета. Кессон крыла содержит по меньшей мере одну первую оболочку и каркас. Каркас соединен по меньшей мере с одной первой оболочкой, так что нагрузка, которая воздействует по меньшей мере на одну первую оболочку, может быть передана при помощи каркаса. Обычно конструкция кессона крыла является симметричной.
Каркасом может быть несущая конструкция, которая может быть полностью или частично помещена по меньшей мере в одну первую оболочку. Обычно первая оболочка представляет собой скорее непрерывный, чем плоский элемент. Однако первая оболочка может также содержать различные компоненты, которые не являются непрерывными и выполнены в виде листов. В этом случае не непрерывные элементы могут покрывать только отдельные части каркаса.
Области или плоскости, которые соединены с каркасом, распределены на первой оболочке. Например, первая оболочка может иметь две противоположные половины оболочки, причем половины оболочки могут быть разделены каркасом.
Каркас может иметь точки соединения или узловые точки, в которых с ним соединяют индивидуальные стержневые элементы. Стержневые элементы широко применяют в конструкциях каркаса, и именно в таком смысле этот термин используют в описании настоящего изобретения.
При помощи каркаса могут быть смоделированы различные конфигурации, такие как, например, форма крыла самолета. Для этого форму крыла аппроксимируют каркасом так, как это делают с использованием проволочных моделей каркасов. С использованием каркаса можно спроектировать не только кессон крыла, но и все крыло самолета, включая область передней кромки и концевую область.
Другими словами, форма контура крыла или кессона крыла может быть смоделирована при помощи соединительных элементов или узловых элементов, которые ограничивают каркас. Затем элементы оболочки, например покрытие, могут быть растянуты поверх проволочной модели каркаса, причем оболочки могут быть соединены при помощи соединительных элементов или узловых элементов. За счет этого может быть получена модель конфигурации крыла самолета.
Оболочка может иметь листовую конструкцию, так что силы, созданные воздушным потоком, могут поглощаться оболочкой и передаваться к каркасу.
Оболочка может быть изготовлена из металла, из упрочненного волокном композиционного материала, такого как, например, упрочненный углеродным волокном пластик, упрочненный стекловолокном пластик (CFK или GFK), или может быть изготовлена из другого материала, который обычно используют в авиапромышленности. Оболочка образует поверхность, которая может выполнять функцию соответствующего крыла. Крыло, главным образом, используют для разделения воздушных потоков. От формы крыла зависит тип воздушного потока вокруг крыла самолета. Поверхности, на которые воздействует воздушный поток, могут влиять на режим полета самолета.
Аэродинамические поверхности могут иметь изогнутую форму. Поверхности оболочки разделяют воздушный поток, который протекает мимо крыла. Оболочка аэродинамического профиля может иметь верхнюю сторону и нижнюю сторону.
При полете самолета путь протекания воздушных потоков вдоль верхней стороны аэродинамического профиля, обращенной в направлении удаления от земли, может быть длиннее, чем путь протекания воздушных потоков вдоль нижней стороны аэродинамического профиля, обычно обращенной к земле. За счет более длинного пути протекания воздушных потоков вдоль верхней стороны аэродинамического профиля возникают силы всасывания в направлении стороны оболочки, находящейся сверху от аэродинамического профиля. На противоположной стороне может возникать давление. За счет разности между всасыванием и давлением самолет может удерживаться в воздухе во время полета. Однако в этом процессе на аэродинамический профиль и/или крыло воздействуют нагрузки.
Ситуация является аналогичной в случае вертикального хвостового оперения самолета. Вертикальное хвостовое оперение разделяет воздух на два параллельных воздушных потока, каждый из которых протекает соответственно мимо одной стороны вертикального хвостового оперения, при этом оба воздушных потока проходят одинаковое расстояние. Во время прямого полета на вертикальное хвостовое оперение по существу не воздействуют силы, перпендикулярные к направлению воздушного потока.
Конец вертикального хвостового оперения может иметь поверхность управления или руль направления. Руль направления может быть перемещен (отклонен) в любую сторону относительно вертикального хвостового оперения. При отклонении руля направления путь протекания воздуха становится короче на той стороне, в которую был отклонен руль направления. Это приводит к возникновению давления, воздействующего на соответствующую оболочку. На противоположной стороне, на которой путь протекания воздуха становится длиннее в результате отклонения руля направления, возникают усилия всасывания. Разности давления на противоположных сторонах вертикального хвостового оперения позволяют самолету произвести соответствующее движение (изменение направления) в полете. При этом возникают нагрузки в виде поперечных нагрузок, воздействующие, в частности, на кессон крыла вертикального хвостового оперения.
Каркас, который обеспечивает поддержку оболочки, может частично поглощать усилие, воздействующее на поверхность оболочки. При этом не только одна оболочка воспринимает усилие. Вместо этого большая часть усилия может переноситься (передаваться) к опорной конструкции, то есть к каркасу, и поглощаться им. Усилие может быть вызвано нагрузкой давления или нагрузкой растяжения, воздействующей на оболочку, а также моментом, воздействующим на оболочку. В случае крыльев самолета указанные выше разности давления могут создавать усилия или моменты на противоположных оболочках крыла.
Каркас в крыле самолета или в кессоне крыла позволяет упростить конструкцию оболочек. Оболочки больше не должны только сами поглощать воздействующие на них усилия. Вместо этого каркас помогает оболочкам поглощать и передавать усилия.
В соответствии с другим аспектом настоящего изобретения предлагается использовать каркас в качестве устройства придания жесткости для крыла самолета. В частности, предлагается использовать каркас в качестве устройства придания жесткости для кессона крыла самолета.
Каркас содержит опорные компоненты, которые могут быть изготовлены из различных материалов и которые могут иметь различные конфигурации. Форма поперечного сечения и материал опорных компонентов могут влиять на стойкость индивидуальных опорных компонентов к приложенному давлению или растяжению. На распределение усилий в каркасе может влиять конструкция каркаса, то есть взаимодействие между опорными компонентами. Следовательно, при проектировании каркаса необходимо учитывать соответствующие опорные компоненты.
Однако при этом может быть свободно выбран использованный материал, например упрочненный углеродным волокном пластик (CFK или GFK) или металл, или может быть свободно выбрана форма поперечного сечения использованных индивидуальных опорных компонентов, например круглое поперечное сечение или прямоугольное поперечное сечение. Единственными требованиями, которые необходимо принимать во внимание при выборе, являются вес и прочность. Опорная функция может быть обеспечена за счет (соответствующего) геометрического построения каркаса.
Легче произвести упрочнение крыла в каркасе, чем в оболочке. В отличие от оболочек, которые должны поглощать и передавать все усилия, оболочка крыла самолета, содержащего каркас, может иметь более простую конструкцию. Опорные лонжероны, нервюры или стрингеры для упрочнения оболочки могут быть выбраны для более легких нагрузок, или могут быть полностью исключены.
Более того, в соответствии с другим примерным вариантом осуществления настоящего изобретения предлагается способ передачи усилия в кессоне крыла самолета. Прежде всего, каркас соединен с первой оболочкой, причем нагрузка может поглощаться при помощи первой оболочки. Поглощенная нагрузка может быть передана при помощи каркаса, соединенного с оболочкой.
Нагрузкой может быть любая произвольная сила, которая воздействует на крыло. Например, нагрузкой могут быть силы веса, центробежные силы или поперечные силы, причем указанные силы могут быть вызваны, например, порывом ветра или воздушным потоком.
В контексте настоящего изобретения термин "крыло" относится к любому типу крыла. В частности, этот термин относится к крылу самолета, причем термин "крыло самолета" следует понимать в его самом широком смысле. В частности, термин "крыло самолета" относится к аэродинамическим профилям, к горизонтальному хвостовому оперению и к вертикальному хвостовому оперению. Примером крыла самолета является конструкция вертикального хвостового оперения. Вертикальное хвостовое оперение содержит область передней кромки, несущий кессон крыла, оконечную коробку, а также поверхность управления, такую как руль направления.
В соответствии с еще одним примерным вариантом осуществления настоящего изобретения предлагается кессон крыла со второй оболочкой, причем вторая оболочка размещена с промежутком от первой оболочки.
Пространство и расстояние между первой оболочкой и второй оболочкой могут быть созданы, например, за счет U-образного профиля, с которым соединены первая и вторая оболочки. U-образный профиль может быть расположен между первой и второй оболочками, причем форма второй оболочки может соответствовать форме первой оболочки. Вторая оболочка может быть обернута первой оболочкой.
Однако форма второй оболочки также может соответствовать части формы первой оболочки. Вторая оболочка также может быть соединена с точками соединения или с узловыми точками каркаса.
За счет расстояния между первой и второй оболочками, две оболочки могут взаимно поддерживать друг друга, в результате чего улучшается прочность кессона крыла.
В соответствии с дополнительным примерным вариантом осуществления настоящего изобретения первая оболочка может выполнять функцию внешней оболочки. В этом случае вторая оболочка является внутренней оболочкой.
На внешнюю оболочку непосредственно воздействуют условия окружающей среды, такие как дождь и ветер. Внутренняя оболочка может быть защищена при помощи внешней оболочки, так как внутренняя оболочка закрыта внешней оболочкой. Следовательно, внутренняя оболочка может быть использована для придания жесткости.
Так как нагрузки давления на боковые поверхности вертикального хвостового оперения часто являются очень высокими только локально, например, в области основания крыла самолета, внутреннюю оболочку преимущественно используют только в выбранных областях, так что внутренняя оболочка идет только в выбранных частях относительно внешней оболочки. Так, обычно не требуется иметь конструкцию боковой поверхности с двойной оболочкой в области конца крыла, где изгибные нагрузки являются очень малыми.
В соответствии с еще одним примерным вариантом осуществления настоящего изобретения, каркас, который поддерживает кессон крыла, может быть соединен с областью днища. При этом усилие, поглощенное каркасом, может быть передано на область днища, а вертикальное хвостовое оперение может быть прикреплено к фюзеляжу самолета.
Поперечная сила, поглощенная боковыми оболочками и переданная по меньшей мере частично к каркасу (на каркас), может быть введена в область фюзеляжа самолета или в область днища фюзеляжа самолета. В зонах крепления каркаса к области фюзеляжа область фюзеляжа преимущественно спроектирована так, чтобы поглощать силы растяжения и силы давления. Указанным образом могут быть переданы весьма значительные силы. В сочетании с двустенными оболочками указанным образом могут быть спроектированы прочные крылья.
В соответствии с дополнительным аспектом настоящего изобретения передача нагрузки происходит по прямой линии к области днища, в частности к области фюзеляжа. Силы могут быть введены в область днища в виде сил давления или сил растяжения, за счет чего главным образом исключены срезающие усилия и моменты.
Каркас содержит стержневые элементы и соединительные элементы или узловые элементы. Стержневые элементы соединены друг с другом у соединительных элементов или у узловых элементов. В этом контексте любая ссылка на прямую линию означает, что усилия распространяются вдоль стержневых элементов. В частности, нет передачи моментов. Таким образом, область днища в первую очередь должна выдерживать силы давления и силы растяжения, за счет чего может быть упрощена конструкция самолета. Упрощение состоит в том, что необходимо упрочнять только выбранные зоны крепления области фюзеляжа.
В соответствии с дополнительным аспектом настоящего изобретения каркас может быть соединен по меньшей мере только с одной первой оболочкой. Следовательно, каркас не должен иметь контакт с областью днища. Таким образом, нагрузка, воздействующая на каркас, может быть передана при помощи каркаса по меньшей мере на одну первую оболочку. В свою очередь, по меньшей мере одна первая оболочка может быть соединена с областью днища фюзеляжа самолета. Таким образом, нагрузка может быть введена при помощи каркаса по меньшей мере в одну первую оболочку, и может быть передана к области фюзеляжа самолета при помощи по меньшей мере одной первой оболочки.
Вместо соединения по меньшей мере с одной первой оболочкой каркас может быть соединен с любой другой оболочкой крыла или с опорой оболочки. При такой схеме расположения один или несколько соединительных элементов в области днища преимущественно могут быть срезаны.
В соответствии с дополнительным аспектом настоящего изобретения каркас имеет трубчатую конструкцию. В трубчатой конструкции могут быть использованы тонкостенные трубки в качестве стержневых элементов, которые имеют меньший вес, но обеспечивают высокую прочность, в частности при большом диаметре трубки. Большой диаметр трубки позволяет получить малое отношение толщины к диаметру, а малое отношение толщины к диаметру, в свою очередь, за счет повышения допустимой нагрузки, позволяет повысить коэффициент использования материала.
Трубки преимущественно изготавливают из упрочненных волокном композиционных материалов или из металла. Использование легкого по весу материала с хорошей стойкостью к силам растяжения или к силам давления позволяет дополнительно уменьшить вес самолета.
Стержневые элементы каркаса для крыла самолета могут быть спроектированы для типичных нагрузок растяжения или нагрузок давления величиной от 20 до 30 тонн или от 15 до 50 тонн для каждого стержневого элемента. Такие нагрузки могут быть приложены к индивидуальным стержневым элементам при маневрах в полете.
Более того, соответствующие силы могут создаваться за счет порывов ветра, воздействующих на запаркованный самолет, в частности на вертикальное хвостовое оперение запаркованного самолета или на крыло самолета.
Различные дополнительные варианты осуществления настоящего изобретения описаны со ссылкой на опорную конструкцию. Эти решения применимы также к способу передачи усилий в кессоне крыла самолета.
Далее настоящее изобретение будет описано более подробно со ссылкой на сопроводительные чертежи.
На фиг.1 показан вид в перспективе в разрезе крыла с опорной конструкцией в соответствии с примерным вариантом осуществления настоящего изобретения.
На фиг.2 показан дополнительный вид в перспективе в разрезе крыла с опорной конструкцией в соответствии с примерным вариантом осуществления настоящего изобретения.
На фиг.3 показан вид в перспективе в разрезе, соответствующий показанному на фиг.2, но без внутренней оболочки.
На фиг.4 показан вид сбоку в перспективе крыла с опорной конструкцией в соответствии с примерным вариантом осуществления настоящего изобретения.
На фиг.5 показан вид сбоку в перспективе, соответствующий показанному на фиг.4, но без внутренней оболочки.
На фиг.6 показан еще один вид в перспективе в разрезе крыла с опорной конструкцией в соответствии с примерным вариантом осуществления настоящего изобретения.
На фиг.7 показана частично вид спереди в разрезе вертикального хвостового оперения в соответствии с примерным вариантом осуществления настоящего изобретения.
На фиг.8 показана схема последовательности операций способа передачи силы в кессоне крыла.
На фиг.1 показано поперечное сечение крыла самолета, которое содержит каркас 7 в соответствии с примерным вариантом осуществления настоящего изобретения. На фиг.1 показана, в частности, задняя (со стороны наблюдателя) боковая поверхность 5 кессона крыла самолета. Форма и ориентация боковой поверхности 5 соответствуют боковой поверхности кессона крыла для вертикального хвостового оперения самолета.
Боковая поверхность 5 содержит заднюю (со стороны наблюдателя) внешнюю оболочку 1 и переднюю внутреннюю оболочку 2. Внешняя оболочка 1 и внутренняя оболочка 2 смещены друг от друга на расстояние s. Между внешней оболочкой 1 и внутренней оболочкой 2 расположены несколько распорок, компонентов каркаса или U-образных профилей 3, соответствующие перемычки или стержни которых имеют высоту s. Распорки 3 смешают внутреннюю оболочку 2 от внешней оболочки 1, причем указанные оболочки приклепаны к распоркам при помощи глухих заклепок (не показаны на фиг.1). Несмотря на то, что крепление при помощи глухих заклепок является особенно предпочтительным, внешняя оболочка 1 и внутренняя оболочка 2 могут быть прикреплены к распоркам и некоторым иным образом, например при помощи клеевого соединения.
Как это показано на фиг.1, внутренняя оболочка 2 не идет по полной высоте внешней оболочки 1. Вместо этого внутренняя оболочка 2 идет только на высоту h, где воздействие момента за счет воздушной нагрузки является особенно высоким, как это показано стрелкой М. Особенно существенные моменты приложены, в частности, к области основания, поблизости от фюзеляжного соединения 4 кессона крыла, причем достаточно разместить внутреннюю оболочку 2 только в этой области, которая может занимать, в зависимости от типа и размера самолета, от 10% до 50% всей длины крыла.
На фиг.1 перемычки или стержневые элементы 7 каркаса образованы из трубчатых элементов 8 с соединительными деталями 9. На фиг.1 показано, что, для дополнительной передачи силы или поглощения сил, точки (элементы) соединения или узловые точки (элементы) 10 предусмотрены на соответствующих распорках или профилях 3 каркаса. Трубчатые элементы 8 вместе с соединительными деталями 9 образуют опорную конструкцию 7, которая выполнена в виде каркаса. При помощи конструкции 7 моменты делятся на силы растяжения и силы давления вдоль стержней, и передаются к боковой поверхности вертикального хвостового оперения (не видна на фиг.1), противоположной боковой поверхности 5. Аналогично, часть сил поступает в соединительную область 4, в частности к фюзеляжу 6 самолета, в виде сил давления или сил растяжения.
Деление (распределение) момента или сил в вертикальном хвостовом оперении происходит не только за счет внешней оболочки 1 или компонентов 3 каркаса; вместо этого эти силы передаются при помощи всей опорной конструкции 7. Это позволяет за счет конструкции боковой поверхности 5 или компонентов 3 каркаса обеспечивать придание жесткости крылу или вертикальному хвостовому оперению, так что размеры могут быть уменьшены.
Так как большие моменты действуют в области основания фюзеляжного соединения 4 кессона крыла, стержневые элементы 8 или соединительные элементы 9 преимущественно выполняют так, чтобы иметь хорошие несущие характеристики в нижней области, то есть в области опорной конструкции 7 поблизости от фюзеляжа 6 самолета. Как внутренняя оболочка 2, так и внешняя оболочка 1 могут передавать усилия к фюзеляжу 6 при помощи кронштейна или уголка в районе кромки 4 фюзеляжа.
Стержневые элементы 8 также могут быть соединены с фюзеляжем 6 самолета для введения сил.
Как можно понять из рассмотрения фиг.1, за счет соединения стержневых элементов 8, точки соединения или узловые точки 10 образованы как на боковой поверхности 5, так и на противоположенной боковой поверхности. Эти точки на противоположной боковой поверхности расположены аналогично боковой поверхности 5 и позволяют поглощать силы, воздействующие в противоположном направлении. Стержневые элементы 8 совместно с соединительными элементами или узловыми элементами 10 образуют проволочную раму или пространственный каркас, который покрыт при помощи боковых поверхностей 5, в частности при помощи внутренней оболочки 2 или внешней оболочки 1.
Разность давлений нагрузки на две боковые поверхности 5 может быть вызвана, например, полетными маневрами самолета, только часть области фюзеляжа 6 которого показана на фиг.1. Для проведения маневров руль 11 направления перемещают как в плоскости чертежа, так и вне плоскости чертежа. Движением руля 11 направления управляют при помощи управляющих кронштейнов 12. За счет изменения положения руля направления 11 создаются силы давления или силы всасывания, воздействующие на вертикальное хвостовое оперение. За счет опорной конструкции 7 эти силы распределяются, причем кессоны крыла проектируют так, чтобы они были прочными. Опорная конструкция 7 не только повышает прочность, но и позволяет снизить вес крыла, в частности вес вертикального хвостового оперения самолета.
Опорная конструкция 7 может иметь низкое отношение толщины, за счет чего становится возможным передавать весьма значительные силы. Более того, при установке опорной конструкции в кессон крыла, имеет место соответствующая компенсация допусков за счет глубины, на которую вводят трубчатый элемент в соединительный элемент. За счет этого можно обеспечить ограничение эффективной длины изгиба стержневых элементов. Более того, можно исключить концентрацию напряжений.
В самолете типа Airbus 380 примеры возможных элементов 3 каркаса включают в себя ребра 1-7 кессона крыла SLW.
На фиг.2 показан дополнительный вид в перспективе в разрезе крыла с опорной конструкцией 7. Показано, что концевые точки трубок 8, которые также содержат соединительные элементы 9, образуют плоскость относительно внутренней оболочки 2 и внешней оболочки 1. За счет использования соответствующих соединительных элементов или узловых элементов 10 в этих соединительных точках или в узловых точках можно также крепить боковую поверхность 5, если она есть, к внутренней оболочке 2 и к внешней оболочке 1.
На фиг.3 показан вид в перспективе в разрезе, соответствующий показанному на фиг.2, но без внутренней оболочки. Можно видеть, что U-образные профили 3 идут поперек области на фиг.2, которая закрыта внутренней оболочкой 2.
На фиг.4-6 показаны дополнительные виды в перспективе в разрезе крыла, а в частности вертикального хвостового оперения. Показана конструкция вертикального хвостового оперения и поверхности управления или руля направления. Показано, как руль 11 направления связан с вертикальным хвостовым оперением при помощи кронштейнов 12 управления. За счет руля 11 направления создается дополнительный вес, который должна нести опорная конструкция 7, внутренняя оболочка 2 и внешняя оболочка 1, а также кронштейн 4 (вероятно, должно быть "12" - Прим. переводчика).
На фиг.7 схематично показан вид спереди в разрезе вертикального хвостового оперения самолета. Две боковые поверхности 5 создают вертикальное хвостовое оперение с плоской конструкцией, которая находится в плоскости чертежа. Две боковые поверхности 5 образуют первую оболочку вокруг каркаса 7. При перемещении самолета из плоскости чертежа воздух может протекать мимо боковых поверхностей 5. На фиг.7 показаны две боковые поверхности 5, которые образуют внешнюю оболочку 1. В точках соединения или в узловых точках 10 боковые поверхности 5 соединены с каркасом 7. Таким образом, точки соединения или узловые точки 10 определяют форму вертикального хвостового оперения. Каркас 7 покрыт двумя боковыми поверхностями 5, так что каркас 7 может быть использован как рама для боковых поверхностей 5. Каркас 7 поддерживает боковые поверхности 5.
На фиг.7 показаны две индивидуальные боковые поверхности 5, которые расположены по сторонам каркаса 7. Однако внешняя оболочка 1 также может быть сконструирована как непрерывный элемент, в котором верхняя область вертикального хвостового оперения, показанная на фиг.7 открытой, может быть закрыта и также покрыта внешней оболочкой 1.
Между двумя поверхностями 5 образовано главным образом полое пространство, которое содержит каркас 7. Поэтому сконструированное вертикальное хвостовое оперение может иметь малый вес. Силы, которые воздействуют на боковые поверхности 5 в направлении полого пространства, передаются к фюзеляжу 6 самолета при помощи каркаса 7, расположенного внутри вертикального хвостового оперения, по прямой линии. Для того, чтобы ввести силы, переданные от боковых поверхностей 5, при помощи каркаса 7 к фюзеляжу самолета, боковые поверхности 5 и/или каркас 7 соединены с фюзеляжем 6 самолета. Соединением может быть, например, болтовое соединение (не показано на фиг.7), причем каркас 7 соединен с областью 6 днища или только с боковой поверхностью 5, В первом случае сила вводится при помощи каркаса 7 непосредственно в область (6) днища фюзеляжа самолета, в то время как во втором случае сила передается при помощи каркаса 7 к боковой поверхности 5, а затем при помощи боковой поверхности 5 к области (6) днища или к фюзеляжу 6.
На фиг.8 показаны операции S0-S6 способа передачи сил к кессону крыла самолета. При осуществлении способа от операции S0 ожидания в операции S1 каркас соединяют с первой оболочкой, которая главным образом охватывает каркас. В дополнение к первой оболочке может быть предусмотрена вторая оболочка, смещенная от первой оболочки. Установку внутренней оболочки производят в операции S2. Форма второй оболочки в целом может соответствовать форме первой оболочки.
В операции S3 каркас соединяют с областью фюзеляжа самолета, так что нагрузка, которая приложена к первой оболочке, может быть передана к области фюзеляжа самолета при помощи каркаса. Поглощение нагрузки первой оболочкой происходит в операции S4. Нагрузка на второй оболочке может быть вызвана нагрузкой на первой оболочке, например, если первая оболочка и вторая оболочка соединены друг с другом.
Ранее завершения способа в операции S6, нагрузка, которая была поглощена оболочками и была распределена при помощи каркаса, в операции S5, вводится по прямой линии в область фюзеляжа. В области фюзеляжа опоры, предназначенные для поглощения или передачи нагрузок давления и нагрузок растяжения, могут поглощать и передавать силы.

Claims (9)

1. Кессон крыла самолета, который содержит:
по меньшей мере одну первую оболочку (1);
каркас (7);
область фюзеляжа (6);
причем каркас (7) соединен по меньшей мере с одной первой оболочкой (1) так, что нагрузка, воздействующая на первую оболочку (1), передается при помощи каркаса (7);
причем по меньшей мере одна оболочка (1) соединена с областью (6) фюзеляжа; и
при этом нагрузка передается к области (6) фюзеляжа при помощи по меньшей мере одной первой оболочки (1).
2. Кессон крыла по п.1, который дополнительно содержит:
вторую оболочку (2);
причем вторая оболочка (2) размещена с промежутком от первой оболочки (1).
3. Кессон крыла по п.2, в котором по меньшей мере одна первая оболочка (1) представляет собой внешнюю оболочку (1).
4. Кессон крыла по п.1, в котором каркас (7) имеет трубчатую конструкцию.
5. Применение каркаса в качестве устройства придания жесткости для кессона крыла самолета, причем каркас (7) соединен по меньшей мере с одной первой оболочкой (1) так, что нагрузка, воздействующая на первую оболочку (1), передается при помощи каркаса (7);
причем по меньшей мере одна оболочка (1) соединена с областью (6) фюзеляжа; и
при этом нагрузка передается к области (6) фюзеляжа при помощи по меньшей мере одной первой оболочки (1).
6. Способ передачи усилий в кессоне крыла самолета, который включает в себя следующие операции:
соединение каркаса по меньшей мере с одной первой оболочкой;
соединение по меньшей мере одной первой оболочки с областью фюзеляжа;
поглощение нагрузки по меньшей мере от одной первой оболочки;
передача нагрузки с использованием каркаса;
передача нагрузки к области фюзеляжа при помощи по меньшей мере одной первой оболочки.
7. Способ по п.6, который дополнительно предусматривает использование второй оболочки, расположенной на расстоянии от, по меньшей мере, одной первой оболочки.
8. Способ по п.7, в котором по меньшей мере одна первая оболочка представляет собой внешнюю оболочку.
9. Способ по п.6, в котором в качестве каркаса используют трубчатую конструкцию.
RU2008109665/11A 2005-08-17 2006-08-17 Кессон с каркасом для крыла самолета RU2414385C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70914505P 2005-08-17 2005-08-17
DE102005038851A DE102005038851A1 (de) 2005-08-17 2005-08-17 Fachwerk-Mittelkasten für einen Flügel
US60/709,145 2005-08-17
DE102005038851.5 2005-08-17

Publications (2)

Publication Number Publication Date
RU2008109665A RU2008109665A (ru) 2009-09-27
RU2414385C2 true RU2414385C2 (ru) 2011-03-20

Family

ID=37715283

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008109665/11A RU2414385C2 (ru) 2005-08-17 2006-08-17 Кессон с каркасом для крыла самолета

Country Status (9)

Country Link
US (1) US8602356B2 (ru)
EP (1) EP1915292B8 (ru)
JP (1) JP5021646B2 (ru)
CN (1) CN101242991A (ru)
BR (1) BRPI0614420A2 (ru)
CA (1) CA2614878A1 (ru)
DE (2) DE102005038851A1 (ru)
RU (1) RU2414385C2 (ru)
WO (1) WO2007020094A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494918C1 (ru) * 2012-10-08 2013-10-10 Юлия Алексеевна Щепочкина Крыло летательного аппарата
RU186272U1 (ru) * 2018-08-08 2019-01-15 Михаил Борисович Жуков Кессон крыла летательного аппарата

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051216A1 (de) * 2010-11-12 2012-05-16 Airbus Operations Gmbh Seitenrudersystem an einem Flugzeug
ES2902069T3 (es) * 2014-10-16 2022-03-24 Airbus Operations Gmbh Deflector para aeronave y método asociado
US10479474B2 (en) * 2016-07-14 2019-11-19 The Boeing Company Friction stir welded wingtip torque box
US10850826B2 (en) * 2017-03-24 2020-12-01 The Boeing Company Aircraft wing space frame
DE102017128497A1 (de) * 2017-11-30 2019-06-06 Airbus Operations Gmbh Vorderkantenanordnung für einen Strömungskörper eines Fahrzeugs
WO2021195267A1 (en) 2020-03-25 2021-09-30 Opt Industries, Inc. Systems, methods and file format for 3d printing of microstructures

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE434808A (ru) *
US709145A (en) 1902-01-14 1902-09-16 Jacob Eisenmann Guard device for coupled cars.
DE337522C (de) * 1916-12-23 1921-06-01 Hugo Junkers Dr Ing Hohler Tragfluegel fuer Flugzeuge
DK27222C (da) 1918-03-12 1921-02-28 Hugo Junkers Endækkerflyvemaskine med selvbærende Vinger.
GB148891A (en) 1918-03-22 1921-09-29 Hugo Junkers Improvements relating to monoplane aircraft
US1842736A (en) * 1918-12-23 1932-01-26 Ford Motor Co Air and water craft and method of making the same
DE343385C (de) * 1919-06-27 1921-11-02 Hugo Junkers Dr Ing Hohler Tragfluegel fuer Flugzeuge
US1555409A (en) * 1920-12-27 1925-09-29 Curtiss Aeroplane & Motor Co Airplane wing
US1545129A (en) * 1923-09-27 1925-07-07 Jr John F Cook Aircraft structure
DE515645C (de) * 1928-06-27 1931-01-08 Blasius Bart Verfahren zum Verbinden von metallischen Bauteilen auf elektrolytischem Wege, insbesondere zur Herstellung von Flugzeugzellen
GB333833A (en) 1928-12-10 1930-08-21 Hugo Junkers Improvements in and relating to the construction of wings, tail units, and the like for flying machines
US1810762A (en) * 1930-08-15 1931-06-16 Daniel B Gish Aeroplane
US1988079A (en) * 1932-05-27 1935-01-15 Curtiss Wright Airplane Compan Airplane wing
DE671453C (de) * 1934-03-01 1939-02-07 Friedrich Eugen Maier Dipl Ing Luftkraeften unterworfener Hohlkoerper, insbesondere Tragflaeche fuer Flugzeuge
US2122709A (en) * 1937-01-14 1938-07-05 Barkley Grow Aircraft Corp Aerofoil structure
US2791386A (en) * 1953-10-19 1957-05-07 Lockheed Aircraft Corp Truss core
US2941760A (en) * 1954-12-14 1960-06-21 Rolls Royce Aircraft structure
US3666211A (en) * 1970-03-12 1972-05-30 Mc Donnell Douglas Corp Trijet aircraft
JPS5828782B2 (ja) * 1978-04-28 1983-06-17 株式会社東芝 位相比較装置
US4332501A (en) * 1978-08-03 1982-06-01 General Dynamics Corporation Structural node for large space structures
US4334816A (en) * 1978-08-03 1982-06-15 General Dynamics Corporation Device and method for assembling large space structures
JPS5820681A (ja) * 1981-07-24 1983-02-07 三菱重工業株式会社 構造物
US4448372A (en) * 1981-09-30 1984-05-15 The Boeing Company Aircraft vertical fin-fuselage structural integration system
JPS5855843A (ja) * 1981-09-30 1983-04-02 Shimadzu Corp X線立体透視装置
EP0157778B1 (en) * 1983-09-29 1989-05-31 The Boeing Company High strength to weight horizontal and vertical aircraft stabilizer
JPS645904A (en) 1987-06-29 1989-01-10 Mitsubishi Metal Corp Method for hydrolyzing silicon chloride
JPH041453A (ja) 1990-04-16 1992-01-06 Mitsubishi Heavy Ind Ltd シリンダライナ
DE4315600C2 (de) * 1993-05-11 1996-07-25 Daimler Benz Aerospace Airbus Tragstruktur für eine aerodynamische Fläche
DE4329744C1 (de) * 1993-09-03 1994-09-08 Deutsche Forsch Luft Raumfahrt Flügel mit Flügelschalen aus Faserverbundwerkstoffen, insbesondere CFK, für Luftfahrzeuge
DE19626187C2 (de) * 1996-06-29 2000-02-10 Zumbach Electronic Ag Verfahren und Anordnung zur Detektion von Objekten
JP2000006893A (ja) 1998-06-23 2000-01-11 Fuji Heavy Ind Ltd 複合材翼構造
US6655633B1 (en) * 2000-01-21 2003-12-02 W. Cullen Chapman, Jr. Tubular members integrated to form a structure
RU2191137C2 (ru) 2000-12-19 2002-10-20 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Крыло летательного аппарата
SE519185C2 (sv) * 2001-06-07 2003-01-28 Saab Ab Flygplanspanel
AU2002323407A1 (en) * 2001-08-24 2003-03-10 University Of Virginia Patent Foundation Reversible shape memory multifunctional structural designs and method of using and making the same
US20030146346A1 (en) * 2002-12-09 2003-08-07 Chapman Jr W. Cullen Tubular members integrated to form a structure
FR2868039B1 (fr) * 2004-03-25 2007-06-08 Airbus France Sas Dispositif de renfort de structure creuse notamment de structure en caisson pour aeronef et structure creuse equipee d'un tel dispositif
DE102005038849A1 (de) * 2005-08-17 2007-02-22 Airbus Deutschland Gmbh Stützstruktur für einen Flügel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494918C1 (ru) * 2012-10-08 2013-10-10 Юлия Алексеевна Щепочкина Крыло летательного аппарата
RU186272U1 (ru) * 2018-08-08 2019-01-15 Михаил Борисович Жуков Кессон крыла летательного аппарата

Also Published As

Publication number Publication date
CA2614878A1 (en) 2007-02-22
EP1915292B8 (en) 2009-12-16
EP1915292A1 (en) 2008-04-30
CN101242991A (zh) 2008-08-13
BRPI0614420A2 (pt) 2011-03-29
EP1915292B1 (en) 2009-10-21
RU2008109665A (ru) 2009-09-27
JP5021646B2 (ja) 2012-09-12
US20090294590A1 (en) 2009-12-03
WO2007020094A8 (en) 2007-07-19
JP2009504495A (ja) 2009-02-05
WO2007020094A1 (en) 2007-02-22
DE102005038851A1 (de) 2007-03-01
DE602006009947D1 (de) 2009-12-03
US8602356B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
RU2414385C2 (ru) Кессон с каркасом для крыла самолета
RU2456204C2 (ru) Секция крыло-фюзеляж летательного аппарата
EP1176089B1 (en) Leading edge of aerodynamic surfaces of aircraft
EP2066563B1 (en) Curved element, wing, control surface and stabilizer for aircraft
US7597287B2 (en) Device for reinforcement of a hollow structure, especially a box structure for an aircraft and a hollow structure equipped with such a device
US20080093503A1 (en) Structural frame for an aircraft fuselage
US8286911B2 (en) Fitting for pivotally connecting aerodynamic control element to aircraft structure
EP0532016B1 (en) Composite focused load control surface
EP2786932B1 (en) Continuously curved spar and method of manufacturing
CN115535211A (zh) 飞机及制造飞机的方法
EP2886450B1 (en) Aircraft control surface
EP3025954B1 (en) Aircraft fuselage section
EP3446963B1 (en) Co-cured spar and stringer center wing box
EP2634093A1 (en) Filler panels for aircraft fuel tank coverings
EP2540618B1 (en) Filler panel for bulkhead to skin joint in integral tanks
US20180186463A1 (en) Primary structure of a pylon for an aircraft engine assembly comprising a pyramidal part with converging upright members
KR20180041654A (ko) 회전익기용 일체형 선체를 지닌 서브플로어 구조물
US2228253A (en) Aircraft construction
CN220448176U (zh) 撑杆及无人机
US20220250735A1 (en) Aircraft empennage with a horizontal stabilizer interfacing at the vertical stabilizer root
Sager et al. Aircraft wing structure detail design

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170818