RU2384987C2 - Система маршрутизации для сельскохозяйственных машин - Google Patents

Система маршрутизации для сельскохозяйственных машин Download PDF

Info

Publication number
RU2384987C2
RU2384987C2 RU2005116582/12A RU2005116582A RU2384987C2 RU 2384987 C2 RU2384987 C2 RU 2384987C2 RU 2005116582/12 A RU2005116582/12 A RU 2005116582/12A RU 2005116582 A RU2005116582 A RU 2005116582A RU 2384987 C2 RU2384987 C2 RU 2384987C2
Authority
RU
Russia
Prior art keywords
route
processing
territory
sections
agricultural machine
Prior art date
Application number
RU2005116582/12A
Other languages
English (en)
Other versions
RU2005116582A (ru
Inventor
Норберт ДИКХАНС (DE)
Норберт ДИКХАНС
Йохен ХУСТЕР (DE)
Йохен Хустер
Андреас БРУННЕРТ (DE)
Андреас БРУННЕРТ
Original Assignee
КЛААС Зельбстфаренде Эрнтемашинен ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by КЛААС Зельбстфаренде Эрнтемашинен ГмбХ filed Critical КЛААС Зельбстфаренде Эрнтемашинен ГмбХ
Publication of RU2005116582A publication Critical patent/RU2005116582A/ru
Application granted granted Critical
Publication of RU2384987C2 publication Critical patent/RU2384987C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow

Abstract

Система, характеризующаяся тем, что для разработки маршрутов движения по территории сельскохозяйственной машине присвоена определенная ширина обработки. Система маршрутизации выполнена с возможностью динамической адаптации запланированного маршрута. Маршрут образован из множества участков пути. Участки пути разрабатываются по критериям оптимизации. Критериями оптимизации являются «кратчайший участок пути/время обработки» и/или «низкая доля непродуктивного вспомогательного времени», и/или «короткие вспомогательные проходы между последовательными подлежащими обработке участками пути», и/или «опознавание и обработка уже известных маршрутов и последовательности процесса обработки», «короткие проходы на краю поля» и/или «минимизация проходов между сельскохозяйственной машиной и перегрузочным транспортным средством». Система маршрутизации выполнена с возможностью выработки стратегии обработки. Стратегия обработки содержит координирование параллельных участков пути и дуг поворота и/или учет числа положений других сельскохозяйственных машин, находящихся на подлежащей обработке территории, и/или учет кинематики машины, геометрии подлежащей обработке территории препятствий на подлежащей обработке территории, и/или учет характеристики убираемой массы, и/или учет характеристик убираемой массы, и/или учет желаний пользователя и предварительно заданного процесса обработки. Обеспечивается возможность гибко реагировать на изменяющиеся внешние условия. 2 н. и 18 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к системе маршрутизации для сельскохозяйственных машин в соответствии с ограничительной частью пунктов 1 и 9 формулы изобретения.
Уровень техники
Из патентного документа ЕР 0660660 известно оснащение сельскохозяйственных машин устройствами так называемой системы GPS (Global Positioning System - глобальной системы навигации и определения местоположения) для регистрации положения сельскохозяйственных уборочных машин на площади, подлежащей обработке. При этом маршрут движения определяется оператором машины, а с помощью системы GPS, связанной с записывающим устройством, регистрируются данные положения машины, которые затем в записывающем устройстве привлекаются для электронного построения изображения пройденного маршрута. Такие системы являются первым шагом в направлении регистрации маршрутов, однако здесь производится только запись маршрута как такового. Системы этого типа не позволяют выполнять предварительное планирование маршрутов движения машины при обработке.
В развитие идеи регистрации маршрутов, системы по патентному документу ЕР 0821296 создают возможность генерирования (разработки) маршрутов в зависимости от внешней геометрии подлежащих обработке площадей. Существенное преимущество этих систем состоит в том, что они впервые позволяют вначале разрабатывать маршруты с учетом различных критериев оптимизации, а затем в простейшем случае производить обработку сельскохозяйственными машинами с их автоматическим следованием по этим маршрутам. Поскольку в данном случае участки пути разрабатываются на основе простых геометрических зависимостей, такие системы способны обрабатывать только однократно предварительно определенный маршрут, при этом отклонения от этого маршрута или показываются, или могут непосредственно корректироваться.
Раскрытие изобретения
Соответственно, задача, на решение которой направлено настоящее изобретение, заключается в создании системы маршрутизации, способной гибко реагировать на изменяющиеся внешние условия.
В соответствии с изобретением решение поставленной задачи достигается за счет отличительных признаков, изложенных в пунктах 1 или 9 формулы изобретения.
Предложена система маршрутизации для сельскохозяйственных машин, в которой для разработки маршрутов движения по территории сельскохозяйственной машине присвоена определенная ширина обработки, отличающаяся тем, что система маршрутизации выполнена с возможностью динамической адаптации запланированного маршрута.
За счет того, что система маршрутизации допускает динамическую адаптацию запланированного маршрута, обеспечивается возможность гибкой адаптации разработанного маршрута к изменяющимся внешним условиям, таким как объезд препятствий, так что оператор сельскохозяйственной машины полностью разгружен от рулевых маневров по возврату машины на первоначально разработанный маршрут. Кроме того, обеспечивается то преимущество, что оператор может в любое время изменить последовательность процесса обработки на конкретной территории, а система маршрутизации автоматически разрабатывает с учетом этого изменения новый маршрут, по которому далее машина автоматически ведет обработку.
Поскольку оператор в любое время может вмешиваться в рулевое управление машиной, динамическая адаптация маршрутизации в простейшем случае достигается посредством того, что маршрут динамически адаптируется в зависимости от действительного положения и действительного направления движения машины.
Способ динамической адаптации маршрутов работает тем точнее, чем чаще запрашивается действительное положение и действительное направление машины. Поэтому в предпочтительном примере осуществления изобретения предложена непрерывно работающая динамическая адаптация маршрута.
В простейшем случае разработанный маршрут известным образом образован из множества участков пути, причем каждый из этих участков может быть определен по критериям оптимизации и, кроме того, последовательность обработки участков пути определяется по этим же или по другим критериям оптимизации.
Для обеспечения, с одной стороны, повышения эффективности процесса обработки и, с другой стороны, минимальных повреждающих почву проходов по территории критериями оптимизации для учета системой маршрутизации могут быть “учет кратчайшего участка пути” или аналогичный ему “учет кратчайшего времени обработки”. С этими критериями связан также следующий критерий оптимизации “снижение непродуктивного вспомогательного времени”. Под этим критерием подразумевается прежде всего организация по возможности коротких проходов между последовательными участками пути и минимизация проходов от сельскохозяйственной машины, например, до перегрузочного транспортного средства. Кроме того, сам процесс маршрутизации оптимизируется посредством того, что система маршрутизации опознает уже обработанные и заложенные в памяти маршруты и последовательности процесса обработки и непосредственно привлекает их при разработке новых маршрутов на соответствующей территории.
Для предоставления оператору сельскохозяйственной машины наибольшей возможности влияния на систему маршрутизации в следующем предпочтительном примере осуществления предусмотрено, что оператор может отказаться от участка пути, предварительно выбранного для обработки системой маршрутизации, и выбрать другой из предварительно разработанных участков пути или самостоятельно определенный им маршрут. Далее, в предпочтительном примере осуществления система маршрутизации выполнена таким образом, что при выборе самостоятельно определенного участка пути система маршрутизации на основе этого введенного оператором маршрута разрабатывает новый маршрут, составленный из участков пути.
Для решения поставленной задачи предложена также система маршрутизации для сельскохозяйственных машин, в которой для разработки последовательности процесса обработки на территории сельскохозяйственной машине присвоена определенная ширина обработки. Согласно изобретению, система маршрутизации выполнена с возможностью выработки стратегии обработки, причем стратегия обработки содержит координирование параллельных участков пути и дуг поворота, и/или учет числа и положений других сельскохозяйственных машин, находящихся на подлежащей обработке территории, и/или учет кинематики машины, геометрии подлежащей обработке территории, препятствий на подлежащей обработке территории, и/или учет характеристик убираемой массы, и/или учет желаний пользователя и предварительно заданного процесса обработки.
За счет того, что система маршрутизации имеет такую структуру, что она может разрабатывать стратегии обработки, созданы условия для того, чтобы система маршрутизации могла координировать маршруты и связанные с ними процессы последовательности обработки для нескольких сельскохозяйственных машин. В простейшем случае стратегия обработки образуется тем, что маршруты различных транспортных средств, состоящие из параллельных участков пути и дуг поворота, скоординированы между собой таким образом, что совместно работающие машины всегда используют приблизительно одинаковые полосы движения, а развороты всегда производятся примерно в одних и тех же областях. Кроме того, стратегия обработки может учитывать кинематику сельскохозяйственных машин и геометрию подлежащих обработке площадей. Особенное преимущество при этом заключается в том, что, например, при совместной работе зерноуборочных комбайнов с одним или несколькими перегрузочными транспортными средствами для разгрузки бункеров комбайнов может обеспечиваться позиционирование этих перегрузочных транспортных средств таким образом, что комбайны могут удобным образом позиционироваться в области перегрузочных транспортных средств для перегрузки зерна. Другими словами, перегрузочные транспортные средства должны быть достаточно удалены от территории прохода машин с учетом круга поворота комбайна и длины устройства разгрузки бункера. Далее, разрабатываемая стратегия может быть выполнена зависимой от желаний пользователя. При этом пользователь задает, как правило, последовательности процесса обработки и соблюдение определенных параметров, например соблюдение величины потерь зерна при уборке зерновых и соблюдение времени обработки для окончания уборки до наступления плохой погоды.
За счет того, что система маршрутизации дополнительно выполнена таким образом, что опознает маршруты и стратегии обработки, значительно снижается требуемый объем вычислений для разработки участков пути, образующих маршрут. В этом отношении особенно эффективная система маршрутизации создается в том случае, когда она может привлекать заложенные в памяти стратегии движения, которые определяют машины, работающие на данной территории либо одновременно, либо последовательно, и их оптимизированные маршруты.
Для упрощения процессов вычислений и визуального представления в системе маршрутизации для разработки маршрута определена так называемая базовая линия или мастер-линия, при этом дальнейшие участки пути изображаются отстоящими от этой мастер-линии на расстояние, примерно равное ширине обработки сельскохозяйственной машины или кратное ее величине. С таким же эффектом в следующем предпочтительном примере осуществления мастер-линия, выполненная прямолинейной или криволинейной, определяется по меньшей мере двумя отстоящими друг от друга точками пути, причем воображаемое продолжение мастер-линии, проходящей через эти отстоящие друг от друга точки пути, служит направляющей линией, по которой производится направление сельскохозяйственной машины на подлежащей обработке территории. В простейшем случае оператор сельскохозяйственной машины определяет мастер-линию посредством ввода координат.
Для уменьшения требуемого объема памяти и ускорения процесса вычислений для разработки маршрута в системе маршрутизации заложены алгоритмы, которые с учетом необходимой точности уменьшают число точек пути, необходимых для построения криволинейной основной линии.
Для достижения наглядно структурированных маршрутов и сниженного количества рулевых маневров на сельскохозяйственной машине выгодно, когда система маршрутизации по изобретению вначале определяет участки пути, которые повторяют внешний контур подлежащей обработке территории или подлежащих объезду препятствий, а затем разрабатывает (генерирует) участки пути, проходящие примерно параллельно друг другу. При этом длины участков пути разрабатываемого маршрута по существу определяются внешним контуром подлежащей обработке территории или подлежащих объезду препятствий.
Для того чтобы сельскохозяйственные машины на конце участков пути могли выполнять разворот для прохода к следующему участку пути обработки и при этом не повреждали еще не обработанные площади или находящуюся на них растительность, в следующем предпочтительном примере осуществления изобретения предложено возможное продолжение участков пути. Преимущество решения состоит в том, что сельскохозяйственная машина выводится из растительности достаточно далеко перед тем, как начать разворот.
Для того чтобы оператор сельскохозяйственной машины мог оказывать непосредственное влияние на последовательность обработки участков пути, разработанных системой маршрутизации, образованный из участков пути маршрут визуально указывается оператору по меньшей мере в области концов участков пути. В том случае, когда оператор выбирает для обработки участок пути, отличный от следующего предлагаемого системой маршрутизации участка пути, система 20 маршрутизации автоматически разрабатывает требуемую кривую поворота для достижения выбранного участка пути. Особенное преимущество решения состоит в том, что водитель в значительной мере освобождается от части сложных рулевых маневров в области поворота.
В простейшем случае выбор следующего участка пути для обработки осуществляется с помощью так называемого монитора с сенсорным экраном (Touch-Screen Monitor).
Оператор сельскохозяйственной машины имеет также возможность смещать разработанные системой маршрутизации участки пути известным образом с помощью средств ввода, например, для того, чтобы компенсировать неточности данных GPS.
Перечень чертежей
Далее со ссылками на прилагаемые чертежи будут подробно описаны примеры осуществления изобретения.
Фиг.1 схематично изображает систему маршрутизации в соответствии с изобретением,
фиг.2 изображает подлежащую обработке территорию, разбитую на участки пути,
фиг.3 изображает систему маршрутизации в одном примере выполнения,
фиг.4 изображает систему маршрутизации в другом примере выполнения,
фиг.5 изображает систему маршрутизации в виде блок-схемы.
Сведения, подтверждающие возможность осуществления изобретения Фиг.1 схематично изображает систему 1 маршрутизации, которая уже известна из ЕР 0821296 и заложена в вычислительно-индикаторном устройстве 2 сельскохозяйственной машины 4, представленной здесь зерноуборочным комбайном 3. Вычислительно-индикаторное устройство 2 расположено в кабине 6 оператора 5 комбайна 3 в зоне видимости и доступности для управления. Спереди зерноуборочный комбайн оснащен навесным аппаратом 8, например, в виде жатвенного аппарата 7, ширина которого определяет ширину АВ обработки комбайна 3. Кроме того, сельскохозяйственная машина 4 снабжена так называемой GPS-антенной 9 для приема координат положения от системы GPS. Блок-схема системы маршрутизации показана на фиг.1 в увеличенном виде вынесенной и ограниченной штрихпунктирными линиями. Система 1 маршрутизации содержит один или несколько вычислительных алгоритмов 10, которые известным образом разрабатывают координаты положения сельскохозяйственной машины 4 из сигналов GPS, получаемых от GPS-антенны 9. С учетом критериев 11 оптимизации, как это будет подробно объяснено далее, а также характерных параметров 12 машины и характерных параметров 13 поля, вычислительные алгоритмы 10 разрабатывают выраженные в цифровой форме маршруты 14, которые в простейшем случае показываются оператору 5 с помощью индикаторного блока 16, выполненного в виде монитора 15 и расположенного в кабине 6. При этом система 1 маршрутизации этого типа может быть выполнена таким образом, что разработанные маршруты 14 могут храниться в запоминающем блоке 17 и повторно вызываться из него. Известно также, что из разработанных маршрутов 14 могут быть выведены управляющие сигналы Z, которые в зависимости от конфигурации маршрутов 14 воздействуют на систему 18 рулевого управления сельскохозяйственной машины 4 таким образом, что управляемые колеса 19 совершают поворот 20 для следования по маршруту 14.
Фиг.2 изображает территорию 21, а именно подлежащее уборке поле 22 зерновых, по которому должна пройти сельскохозяйственная машина 4, выполненная в виде комбайна 3. Выбранное в качестве примера поле 22 имеет периметр, состоящий из прямолинейных и криволинейных внешних контуров 23. Географические данные этих внешних контуров 23 могут быть определены самим комбайном 3 таким образом, что оператор 5 направляет комбайн 3 вдоль этих внешних контуров 23, при этом система 1 маршрутизации разрабатывает первый маршрут 24 с использованием сигналов GPS. В простейшем случае система 1 маршрутизации разрабатывает этот маршрут 24 для положения, которое соответствует примерно середине ширины АВ обработки навесного аппарата 8, причем воспроизведение внешнего контура 23 проезжаемой территории 21 осуществляется последовательностью множества участков 25 пути. Такая система 1 маршрутизации может известным образом генерировать дальнейшие участки 25, 26 пути с учетом представленных на фиг.1 параметров, таких как самые различные критерии 11 оптимизации, а также характерные параметры 12 машины и характерные параметры 13 поля. В простейшем случае эти участки 25, 26 пути расположены по существу параллельно друг другу и либо образуют относительно сложный внешний контур 23, либо являются прямолинейными. Для обеспечения полной обработки территории 21 расстояния между соседними участками 25, 26 пути примерно соответствуют ширине АВ обработки навесного аппарата 8.
Как показано на фиг.3, на подлежащей проходу территории 21 могут быть расположены одно или несколько препятствий 27, которые машина 4 должна объезжать. Кроме того, оператор машины может решить, например, изменить маршрут 14, разработанный системой 1 маршрутизации, таким образом, чтобы производить обработку территории 21 по частям. При этом в простейшем случае оператор 5 вмешивается в управление сельскохозяйственной машины 4 и производит ручное рулевое управление, например, с целью разделения территории 21 на первую и вторую площадки 28, 29. Зачастую оператор по самым разным субъективным критериям принимает решение о том, какие направления и участки обработки дадут эффективную обработку территории 21 в целом. Такими субъективными критериями могут быть, например, разделение подлежащей обработке территории 21 на простые по геометрии площадки с прямолинейными краями, требующие мало рулевых маневров, или необходимость объезда препятствий 27 или несозревшей, слишком влажной или полеглой убираемой культуры. Поскольку в этих случаях оператор 5 задает новый участок 30 пути, система 1 маршрутизации не может продолжать использовать в качестве опорного уже разработанный маршрут 14. В данном случае согласно изобретению предусмотрено, что система маршрутизации 1 распознает отклонение действительного положения 31 машины от заданного положения 32, определяемого заданным маршрутом 14, а также изменение действительного направления 33 машины от заданного направления 34, и на основе этого нового положения 31, 33 машины разрабатывает новый маршрут 14′, при этом новый маршрут 14′ учитывает уже обработанную территорию 21.
Аналогичным образом оператор 5 может вмешиваться в рулевое управление при объезде препятствий 27. В данном примере выполнения в целях упрощения на фиг.3 представлен случай, когда оператор 5 для объезда препятствия 27 производит полностью ручное рулевое управление поворотами на участке 30 объезда до возвращения на предварительно разработанный маршрут 14. Изобретением предусмотрено, что оператор вводит в систему 1 маршрутизации окружной объезд, а система на основе этого изменения положения сельскохозяйственной машины 4 автоматически разрабатывает новый маршрут 14′. Поскольку система 1 маршрутизации работает на базе GPS, возможен также вариант, когда она на основе информации о стационарных препятствиях на обрабатываемой территории 21, таких как деревья, может автоматически учитывать их положение при разработке маршрута 14, 14′. Благодаря обеспечению такой непосредственной реакции системы 1 маршрутизации на вмешательство оператора 5 в рулевое управление сельскохозяйственной машины 4 создается динамичная система 1 маршрутизации, которая может очень гибко реагировать на изменения маршрута 14. Дальнейшее повышение гибкости и высокая точность такой системы 1 маршрутизации достигаются в том случае, когда система 1 маршрутизации непрерывно определяет действительное положение 31 и действительное направление 33 машины и в зависимости от этих данных производит непрерывную адаптацию маршрута 14, 14′ сельскохозяйственной машины 4.
Согласно описанным выше примерам осуществления разработанные системой 1 маршрутизации маршруты 14, 14′ состоят из множества участков 25, 26 пути, при этом определение этих участков 25, 26 пути по длине, направлению и последовательности процесса обработки может зависеть от самых различных критериев 11 оптимизации. Как правило, уборка урожая с поля 22 зерновой культуры производится, как это показано на фиг.4, таким образом, что один или несколько зерноуборочных комбайнов 3 убирают культуру и передают убранную массу на одно или несколько перегрузочных транспортных средств 35, находящихся в определенных положениях на подлежащей уборке территории 21. При этом особенно существенно, чтобы машины 4, 35 проходили по территории 21 по коротким рабочим участкам пути с наименьшим повреждением почвы. Кроме того, эффективный процесс уборки урожая решающим образом определяется низкими затратами времени на уборку и связанной с ними низкой долей затрат времени на вспомогательные непродуктивные проходы. Поэтому система маршрутизации 1 в своих заложенных вычислительных алгоритмах 10 учитывает решающие критерии 11 оптимизации “кратчайший участок пути”, “кратчайшее время обработки” и/или “низкая доля непродуктивного вспомогательного времени”. В простейшем случае в вычислительных алгоритмах 10 определены математические зависимости между основанными на GPS данными положения сельскохозяйственных машин 4, перегрузочных машин 35 и внешними контурами 23 подлежащей обработке территории 21 в зависимости от выбираемых или предварительно заданных характерных параметров 12 машин или характерных параметров 13 поля, как это будет подробнее объяснено далее. Следующим критерием 11 оптимизации, непосредственно связанным с перечисленными выше критериями, является критерий “короткие вспомогательные проходы между последовательными подлежащими обработке участками 25, 26 пути”. Как показано на фиг.4, если бы последовательность процесса обработки выполнялась путем отдельных участков 26 пути, проходящих с двух сторон снаружи внутрь, комбайн 3 должен был бы совершать значительные вспомогательные проходы. Здесь оптимизация может производиться, исходя из того, что вычислительные алгоритмы 10 разрабатывают оптимизированную последовательность процесса обработки. Она может состоять, например, в том, что территория 21, образованная поперечно проходящими участками 26 пути, вначале подразделяется на первую и вторую площадки 28, 29, а затем для каждой площадки 28, 29 разрабатываются отдельные маршруты 14.
Следующим критерием 11 оптимизации может быть “опознавание и обработка уже известных маршрутов 14 и протекания процесса обработки”. С одной стороны, по подлежащей обработке территории 21 в ходе возделывания почвы и уборки урожая проходят самые различные сельскохозяйственные машины 4. С другой стороны, данная территория 21 ежегодно периодически подвергается обработке. В обоих случаях выгодно, чтобы процесс разработки маршрутов 14 мог быть значительно сокращен. Это может достигаться путем того, что система 1 маршрутизации выполнена таким образом, что она может опознавать территорию 21 и уже разработанные для нее ранее последовательность процесса обработки и маршруты 14 и возвращаться к ним. Короткие участки проходов и низкая доля непродуктивного вспомогательного времени достигается также за счет того, что следующими критериями 11 оптимизации являются “минимизация проходов между сельскохозяйственной машиной 4 и перегрузочным транспортным средством 35”, а также “короткие проходы 36 на краю поля”.
Вследствие того, что процессы обработки поля, как правило, осуществляются путем взаимодействия нескольких сельскохозяйственных машин 4, особенно эффективная система 1 маршрутизации создается в том случае, когда она посредством заложенных в ней вычислительных алгоритмов 10 способна разрабатывать стратегии обработки. В простейшем случае стратегия обработки ограничивается тем, что система маршрутизации разрабатывает участки 25, 26 пути и так называемые дуги 37 поворота и устанавливает определенную последовательность процесса обработки участков 25, 26 пути и дуг 37 поворота. В примере выполнения по фиг.4 при использовании двух комбайнов 3 стратегия обработки может заключаться, например, в том, что система маршрутизации 1 согласно предыдущим примерам осуществления вначале подразделяет подлежащую обработке территорию 21 на первую и вторую площадки 28, 29, а затем каждому комбайну 3 назначает для обработки площадку 28, 29. В этом случае стратегия обработки по существу заключается в том, чтобы учесть число и положение самых различных сельскохозяйственных машин 4, находящихся в эксплуатации на данной территории 21. В особенности при проведении так называемого процесса перегрузки, когда комбайн передает на перегрузочное транспортное средство 35 убранную массу, накопленную во время рабочих проходов уборки, особенно важно, чтобы комбайн 3 мог простым образом занимать нужное положение относительно перегрузочного транспортного средства 35 и чтобы при этом не создавались взаимные помехи с другими комбайнами, также загружающими перегрузочное транспортное средство 35. В простейшем случае это может надежно обеспечиваться за счет того, что стратегия обработки, разрабатываемая системой 1 маршрутизации, учитывает кинематику машин в зависимости от типа машин, геометрию территории 21, в особенности при так называемых проходах 36 на краю поля (разворотах на краю поля) и, в необходимых случаях, положение препятствий 27 на обрабатываемой территории 21. При этом кинематика машин образует характерные параметры 12 машин, которыми могут быть, например, возможные радиусы поворота и углы поворота рулевого колеса комбайна 3, геометрия его устройства 38 разгрузки бункера и габариты перегрузочного транспортного средства 35. Учет геометрии подлежащей обработке территории 21 имеет особенно важное значение при процессе перегрузки, схематично показанном на фиг.4, поскольку удобное достижение положения перегрузки существенно сокращает процесс перегрузки и, соответственно, ведет к сокращению потребных затрат вспомогательного времени. Кроме того, стратегия обработки может учитывать показатели убираемой массы, такие как полеглые зерновые, пустые участки, слишком высокую влажность культуры, причем такая информация в основном передается в систему 1 маршрутизации оператором 5 сельскохозяйственной машины 4. Как показатели убираемой массы, так и геометрия подлежащей обработке территории 21 образуют в системе 1 маршрутизации так называемые характерные параметры 13 поля. Далее, разрабатываемая системой 1 маршрутизации стратегия обработки может учитывать пожелания пользователя в том отношении, что пользователь предварительно задает, например, допустимые верхние пределы для потерь убранной массы или время обработки. Часто бывает, что пользователь на основе прошлого опыта предпочитает определенную последовательность процесса обработки, например, с учетом высыхания убираемой массы, которое под влиянием самых различных внешних условий может быть очень разным в пределах подлежащей обработке территории 21. Кроме того, стратегия обработки может предварительно задавать полную последовательность работ в том отношении, что в то время, как комбайн 3 еще обрабатывает территорию 21, уже начинаются последующие процессы, такие как, например, прессование выложенной на поле соломы или перепахивание стерни.
Способ разработки маршрутов 14, схематично показанный на фиг.1, может осуществляться в соответствии с блок-схемой по фиг.5. В простейшем случае способ осуществляется таким образом, что оператор 5 сельскохозяйственной машины 4 на первом шаге 39 обходит по периметру подлежащую обработке территорию 21, причем географические данные внешнего контура 23 территории 21 определяются на с помощью системы GPS. В рамках изобретения возможен вариант, когда географические данные уже известной территории 21 могут передаваться непосредственно из банка 40 данных в систему 1 маршрутизации. В системе 1 маршрутизации посредством использования уже описанных вычислительных алгоритмов 10 и с учетом характерных параметров 12 машины и характерных параметров 13 поля на следующем шаге 41 обработки вычисляются участки 25, 26. На следующем шаге 42 обработки в системе 1 маршрутизации производится оптимизация разработанных маршрутов 14, 14′ с привлечением различных уже описанных ранее критериев 11 оптимизации, причем в простейшем случае вначале автоматически обрабатывается разработанный маршрут 14. Как уже было описано, этот шаг 43 способа осуществляется таким образом, что система 1 маршрутизации разрабатывает управляющие сигналы Z, которые непосредственно вмешиваются в систему 18 рулевого управления сельскохозяйственной машины 4, так что эта система рулевого управления автоматически ведется вдоль разработанного маршрута 14 на подлежащей обработке территории 21. Если оператор 5 сельскохозяйственной машины 4 вмешивается в процесс рулевого управления на следующем шаге 44 обработки или если он отказывается от разработанного маршрута 14, система 1 маршрутизации разрабатывает новый маршрут 14′, причем в этом случае повторяются предыдущие шаги 41-43 обработки. Этот процесс всегда повторяется в тех случаях, когда либо отвергается разработанный маршрут 14, либо оператор непосредственно вмешивается в обработку маршрута 14 посредством воздействия на систему 18 рулевого управления сельскохозяйственной машиной 4. Таким образом, система 1 маршрутизации по изобретению в конечном счете всегда разрабатывает маршрут 14, 14′, который образует оптимум 45 между требованиями оператора 5 и учетом самых различных критериев 11 оптимизации.
Для того чтобы разработанные маршруты 14, 14′ могли быть дальше обработаны электронными средствами и представлены графически для обзора, эти маршруты 14, 14′ описываются в системе 1 маршрутизации посредством представленных слева на фиг.3 так называемых мастер-линий 46, при этом участки 25, 26 пути, примыкающие к мастер-линиям 46, отстоят друг от друга на расстояние, равное ширине АВ обработки сельскохозяйственной машины 4 или кратное ее величине. Таким образом, подлежащая обработке территория 21, определенная своими внешними контурами 23, описывается несколькими мастер-линиями 46, отстоящими друг от друга, при этом мастер-линии 46 в зависимости от вида внешних контуров 23 могут быть также прямолинейными или криволинейными. Для того чтобы мастер-линии 46 могли достаточно точно моделировать разработанный маршрут 14, 14′ и служить в качестве задающих величин для автоматического воздействия на систему 18 рулевого управления сельскохозяйственной машины 4, мастер-линии 46 всегда определяются двумя точками С, D пути, отстоящими друг от друга, причем проходящее через эти точки С, D пути воображаемое продолжение 47 мастер-линии 46 служит направляющей линией 48.
Поскольку точное построение криволинейных участков 25, 26 пути требует значительного числа точек С, D пути, что связано с большим объемом вычислений, в следующем примере осуществления изобретения предусмотрено, что для системы 1 маршрутизации предназначены дополнительные вычислительные алгоритмы 49, которые в зависимости от предварительно определенных или предварительно определяемых пределов точности выполняют уменьшение точек С, D пути криволинейных участков 25, 26 пути, так что разработанный в конечном счете маршрут 14, 14′ достаточно точно образует территорию 21, определяемую своими внешними контурами 21. Для того чтобы сельскохозяйственная машина 4 во время прохода 36 на краю поля не наезжала на необработанную растительность 50, участки 25, 26 пути, образующие маршрут 14, 14′, как это показано на фиг.4, продолжены в области прохода 36 на краю поля, так что сельскохозяйственная машина 4 перед выполнением дуги 37 поворота вначале достаточно далеко выезжает из растительности 50.
Для того чтобы оператор 5 сельскохозяйственной машины 4 мог оказать непосредственное воздействие на последовательность процесса обработки участков 25, 26 пути, образующих маршрут 14, 14′, они визуально показываются оператору 5 с помощью уже описанного индикаторного устройства 2. При этом отдельные участки 25, 26 пути могут показываться либо постоянно, либо только в виде определенных участков, - например, в области прохода 36 на краю поля. Для того чтобы оператор 5 простым образом мог изменять последовательность процесса обработки участков 25, 26 пути, образующих маршрут 14, 14′, индикаторное устройство 2 выполнено в виде так называемого монитора 51 с сенсорным экраном, так что следующие участки 25, 26 пути могут быть выбраны непосредственно на мониторе. Это создает особенное преимущество в области прохода 36 на краю поля, так как оператор 5 может простым образом влиять на разделение подлежащей обработке территории 21 на площадки 28, 29. Кроме того, для индикаторного устройства 2 может быть известным образом предусмотрено средство, создающее возможность для оператора 5 смещать разработанный маршрут 14, 14′ в целом или отдельные участки 25, 26 пути этого маршрута 14, 14′ на подлежащей обработке территории 21 для устранения возможных неточностей при разработке маршрутов.
Для специалиста в данной области понятно, что при осуществлении изобретения возможны различные изменения и модификации описанной системы 1 маршрутизации или ее интегрирования в системы других машин в пределах объема защиты изобретения.

Claims (20)

1. Система маршрутизации для сельскохозяйственных машин, причем для разработки маршрутов движения по территории сельскохозяйственной машине присвоена определенная ширина обработки, причем система маршрутизации выполнена с возможностью динамической адаптации запланированного маршрута, отличающаяся тем, что маршрут образован из множества участков пути, а участки пути разрабатываются по критериям оптимизации, причем критериями оптимизации являются «кратчайший участок пути/время обработки» и/или «низкая доля непродуктивного вспомогательного времени», и/или «короткие вспомогательные проходы между последовательными подлежащими обработке участками пути», и/или «опознавание и обработка уже известных маршрутов и последовательности процесса обработки», «короткие проходы на краю поля» и/или «минимизация проходов между сельскохозяйственной машиной и перегрузочным транспортным средством».
2. Система по п.1, отличающаяся тем, что запланированный маршрут динамически адаптируется в зависимости от действительного положения машины и действительного направления движения машины.
3. Система по любому из пп.1 и 2, отличающаяся тем, что динамическая адаптация маршрута производится непрерывно.
4. Система по любому из пп.1 и 2, отличающаяся тем, что выбор следующего подлежащего обработке участка пути определяется по критериям оптимизации.
5. Система по п.4, отличающаяся тем, что выполнена с возможностью отказа оператора сельскохозяйственной машины от предварительно выбранного маршрута и/или участка пути и выбора любого участка пути.
6. Система по п.5, отличающаяся тем, что при отказе оператора сельскохозяйственной машины от предварительно выбранного маршрута и/или участка пути система маршрутизации разрабатывает новый маршрут, составленный из участков пути.
7. Система маршрутизации для сельскохозяйственных машин, причем для разработки последовательности процесса обработки на территории сельскохозяйственной машине присвоена определенная ширина обработки, отличающаяся тем, что система маршрутизации выполнена с возможностью выработки стратегии обработки, причем стратегия обработки содержит координирование параллельных участков пути и дуг поворота, и/или учет числа и положений других сельскохозяйственных машин, находящихся на подлежащей обработке территории, и/или учет кинематики машины, геометрии подлежащей обработке территории, препятствий на подлежащей обработке территории, и/или учет характеристик убираемой массы, и/или учет желаний пользователя и предварительно заданного процесса обработки.
8. Система по п.7, отличающаяся тем, что система маршрутизации выполнена с возможностью запоминания маршрутов и стратегии обработки для подлежащей обработке территории и при повторной обработке опознавания и автоматического возврата к этим заложенным в память маршрутам и стратегии обработки.
9. Система по п.7 или 8, отличающаяся тем, что в основе маршрута, образованного участками пути, заложена мастер-линия, при этом соотнесенные с мастер-линией участки пути разрабатываются отстоящими от мастер-линии или друг от друга на расстояние, примерно равное ширине обработки сельскохозяйственной машины или кратное ее величине.
10. Система по п.9, отличающаяся тем, что мастер-линия может быть прямолинейной или криволинейной, при этом каждая мастер-линия задана, по меньшей мере, двумя отстоящими друг от друга точками (С, D) пути, а воображаемое продолжение участка мастер-линии, проходящее через эти точки (C, D) пути, служит направляющей линией.
11. Система по п.9, отличающаяся тем, что мастер-линия определяется оператором сельскохозяйственной машины.
12. Система по п.11, отличающаяся тем, что направляющая линия используется для автоматического ведения сельскохозяйственной машины.
13. Система по п.10, отличающаяся тем, что число разрабатываемых точек (С, D) пути криволинейных мастер-линий уменьшается посредством обработки с помощью вычислительных алгоритмов.
14. Система по п.9, отличающаяся тем, что участки пути вначале повторяют внешние контуры подлежащей обработке территории и/или огибают препятствия, находящиеся на подлежащей обработке территории, а затем проходят примерно параллельно друг другу.
15. Система по п.14, отличающаяся тем, что длины участков пути определяются внешним контуром подлежащей обработке территории или подлежащих объезду препятствий.
16. Система по п.15, отличающаяся тем, что участки пути маршрута продолжены настолько, что движущаяся по участку пути сельскохозяйственная машина при проходе на краю поля на подлежащей обработке территории выводится из территории так далеко, что поворот сельскохозяйственной машины возможен без контакта с необработанной растительностью.
17. Система по п.14 или 15, отличающаяся тем, что концевой переход от одного участка пути к следующему участку пути определяется посредством дуги поворота определенного прохода на краю поля.
18. Система по любому из пп.7, 8, 10-16, отличающаяся тем, что оператору сельскохозяйственной машины, по меньшей мере, в конце участка пути указываются следующие участки пути, при этом оператор может выбрать следующий подлежащий обработке участок пути, а система маршрутизации автоматически разрабатывает дугу для этого прохода на краю поля, причем дуга поворота может быть образована множеством участков пути.
19. Система по п.18, отличающаяся тем, что оператор может выбирать участки пути посредством использования монитора с сенсорным экраном.
20. Система по любому из пп.7, 8, 10-16, 19, отличающаяся тем, что участки пути могут быть смещены оператором сельскохозяйственной машины.
RU2005116582/12A 2004-06-03 2005-05-31 Система маршрутизации для сельскохозяйственных машин RU2384987C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004027242A DE102004027242A1 (de) 2004-06-03 2004-06-03 Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
DE102004027242 2004-06-03
DE102004027242.25 2004-06-03

Publications (2)

Publication Number Publication Date
RU2005116582A RU2005116582A (ru) 2006-11-20
RU2384987C2 true RU2384987C2 (ru) 2010-03-27

Family

ID=35433229

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005116582/12A RU2384987C2 (ru) 2004-06-03 2005-05-31 Система маршрутизации для сельскохозяйственных машин

Country Status (6)

Country Link
US (2) US7742860B2 (ru)
AR (2) AR048889A1 (ru)
BR (1) BRPI0501987A (ru)
DE (1) DE102004027242A1 (ru)
RU (1) RU2384987C2 (ru)
UA (1) UA93982C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651420C1 (ru) * 2017-05-02 2018-04-19 Акционерное общество "Когнитив" Система мониторинга маршрутов движения сельскохозяйственных машин при выполнении полевых работ
RU2680461C2 (ru) * 2014-06-06 2019-02-21 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Способ планирования последующей обработки при осуществлении сельскохозяйственных работ
US10390492B2 (en) 2014-07-17 2019-08-27 Deere & Company Strategic crop placement using a virtual trip line for a harvester and crop accumulator combination
RU2701892C2 (ru) * 2014-04-02 2019-10-02 КЛААС Е-Системс ГмбХ Система планирования разработки поля, способ планирования разработки поля и сельскохозяйственная рабочая машина с такой системой планирования
RU2721576C1 (ru) * 2016-06-10 2020-05-20 СиЭнЭйч ИНДАСТРИАЛ АМЕРИКА ЭлЭлСи Автоматическое масштабирование рядов движения для внедорожного транспортного средства
RU2776355C1 (ru) * 2019-05-21 2022-07-19 ФАРМОБАЙЛ ЭлЭлСи Определение полосы захвата действия из собранных машиной обработанных данных

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084172A1 (en) * 2005-10-17 2007-04-19 Richman Kevin S Guidance indicator system for a cotton harvesting machine
US20070282812A1 (en) * 2006-03-08 2007-12-06 Superior Edge, Inc. Process execution support system
DE102006015203A1 (de) 2006-03-30 2007-11-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung von landwirtschaftlichen Maschinensystemen
DE102006015204A1 (de) 2006-03-30 2007-10-18 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Erstellung eines Routenplans für landwirtschaftliche Maschinensysteme
DE102006019216A1 (de) * 2006-04-21 2007-10-25 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung eines landwirtschaftlichen Maschinensystems
DE102006045280A1 (de) * 2006-09-22 2008-04-03 Claas Selbstfahrende Erntemaschinen Gmbh Vorrichtung und Verfahren zur Koordination eines Maschinenparks
US7848865B2 (en) * 2007-02-09 2010-12-07 Tsd Integrated Controls, Llc Method and system for applying materials to crops
US7747370B2 (en) * 2007-04-03 2010-06-29 Cnh America Llc Method for creating end of row turns for agricultural vehicles
US8635011B2 (en) * 2007-07-31 2014-01-21 Deere & Company System and method for controlling a vehicle in response to a particular boundary
US8209075B2 (en) * 2007-07-31 2012-06-26 Deere & Company Method and system for generating end turns
US8131432B2 (en) * 2008-02-27 2012-03-06 Deere & Company Method and system for managing the turning of a vehicle
US8204654B2 (en) * 2008-03-20 2012-06-19 Deere & Company System and method for generation of an inner boundary of a work area
DE102008021785A1 (de) 2008-04-30 2009-11-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zum Koordinieren eines Bearbeitungsvorgangs von landwirtschaftlicher Fläche
DE102008050460A1 (de) 2008-10-08 2010-04-15 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Einsatzsteuerung von landwirtschaftlichen Maschinen
US20110029804A1 (en) * 2008-12-22 2011-02-03 Honeywell International Inc. Fleet mission management system and method using health capability determination
DE102009015112A1 (de) 2009-03-31 2010-10-14 Claas Selbstfahrende Erntemaschinen Gmbh Routenplanungsverfahren und -system für landwirtschaftliche Maschinen
US9678508B2 (en) 2009-11-16 2017-06-13 Flanders Electric Motor Service, Inc. Systems and methods for controlling positions and orientations of autonomous vehicles
DE102010036922A1 (de) 2010-08-10 2012-02-16 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Elektronisches Fahrgassensystem
US8868302B2 (en) * 2010-11-30 2014-10-21 Caterpillar Inc. System for autonomous path planning and machine control
US8983707B2 (en) * 2010-11-30 2015-03-17 Caterpillar Inc. Machine control system having autonomous dump queuing
US9058560B2 (en) 2011-02-17 2015-06-16 Superior Edge, Inc. Methods, apparatus and systems for generating, updating and executing an invasive species control plan
US20130054075A1 (en) * 2011-08-22 2013-02-28 Deere And Company Location Control System for Feature Placement
US8589013B2 (en) 2011-10-25 2013-11-19 Jaybridge Robotics, Inc. Method and system for dynamically positioning a vehicle relative to another vehicle in motion
DE102011088700A1 (de) 2011-12-15 2013-06-20 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Planung einer Prozesskette für einen landwirtschaftlichen Arbeitseinsatz
US8655538B2 (en) 2011-12-16 2014-02-18 Agco Corporation Systems and methods for switching display modes in agricultural vehicles
US20130173321A1 (en) * 2011-12-30 2013-07-04 Jerome Dale Johnson Methods, apparatus and systems for generating, updating and executing a crop-harvesting plan
US10346784B1 (en) 2012-07-27 2019-07-09 Google Llc Near-term delivery system performance simulation
US9113590B2 (en) 2012-08-06 2015-08-25 Superior Edge, Inc. Methods, apparatus, and systems for determining in-season crop status in an agricultural crop and alerting users
US20160320189A1 (en) * 2015-04-30 2016-11-03 Oleg Yurjevich Kupervasser Method for navigation and joint coordination of automated devices
CN103901886A (zh) * 2012-12-28 2014-07-02 中国科学院沈阳自动化研究所 分布式农机导航控制系统通用can节点
US20140257911A1 (en) * 2013-03-08 2014-09-11 Deere & Company Methods and apparatus to schedule refueling of a work machine
EP3018987B1 (en) * 2013-07-10 2020-09-02 Agco Corporation Automating distribution of work in a field
US9188986B2 (en) 2013-10-01 2015-11-17 Jaybridge Robotics, Inc. Computer-implemented method and system for dynamically positioning a vehicle relative to another vehicle in motion for on-the-fly offloading operations
JP6312416B2 (ja) * 2013-12-12 2018-04-18 株式会社クボタ 圃場作業機
DE102014102030A1 (de) 2014-02-18 2015-08-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Verfahren und Steuerungseinheit zur Einstellung einer Arbeitsbreite eines Pflugs
DE102014102036A1 (de) * 2014-02-18 2015-08-20 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Verfahren zur Unterstützung der Positionierung einer landwirtschaftlichen Arbeitsmaschine
DE102014102489A1 (de) 2014-02-26 2015-08-27 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Steuereinheit
US9489576B2 (en) 2014-03-26 2016-11-08 F12 Solutions, LLC. Crop stand analysis
US10114348B2 (en) 2014-05-12 2018-10-30 Deere & Company Communication system for closed loop control of a worksite
US9772625B2 (en) 2014-05-12 2017-09-26 Deere & Company Model referenced management and control of a worksite
JP6502221B2 (ja) * 2015-09-14 2019-04-17 株式会社クボタ 作業車支援システム
DE102016121523A1 (de) * 2015-11-17 2017-05-18 Lacos Computerservice Gmbh Verfahren zum prädikativen Erzeugen von Daten zur Steuerung eines Fahrweges und eines Betriebsablaufes für landwirtschaftliche Fahrzeuge und Maschinen
US10417723B2 (en) * 2016-02-08 2019-09-17 Conduent Business Services, Llc Method and system for identifying locations for placement of replenishment stations for vehicles
US10314224B2 (en) * 2016-03-30 2019-06-11 Autonomous Solutions, Inc. Multiple harvester planner
EP3231270B1 (en) * 2016-04-13 2019-03-13 CLAAS E-Systems KGaA mbH & Co KG Method for controlling an agricultural working machine and operator assistance system
US10144453B2 (en) * 2016-04-13 2018-12-04 Cnh Industrial America Llc System and method for controlling a vehicle
US10368475B2 (en) 2016-04-19 2019-08-06 CropZilla Software, Inc. Machine guidance for optimal working direction of travel
US10152891B2 (en) * 2016-05-02 2018-12-11 Cnh Industrial America Llc System for avoiding collisions between autonomous vehicles conducting agricultural operations
US10143126B2 (en) 2016-06-10 2018-12-04 Cnh Industrial America Llc Planning and control of autonomous agricultural operations
US10251329B2 (en) 2016-06-10 2019-04-09 Cnh Industrial Canada, Ltd. Planning and control of autonomous agricultural operations
PL3518648T3 (pl) * 2016-09-29 2021-07-05 Agro Intelligence Aps System i sposób optymalizacji trajektorii, którą należy podążać przy pieleniu roślin
LT3518647T (lt) 2016-09-29 2021-05-25 Agro Intelligence Aps Sistema ir būdas nustatyti trajektorijai, kurios turi laikytis žemės ūkio darbinė transporto priemonė
DK179918B1 (en) * 2016-09-29 2019-10-07 Agro Intelligence Aps A METHOD FOR DETERMINING PLACEMENT OF NEW OBSTACLES IN AN AGRICULTURAL FIELD
KR102452919B1 (ko) * 2016-12-19 2022-10-11 가부시끼 가이샤 구보다 작업차 자동 주행 시스템
JP7034589B2 (ja) 2016-12-28 2022-03-14 ヤンマーパワーテクノロジー株式会社 作業車両の経路生成システム
US20180210456A1 (en) * 2017-01-20 2018-07-26 Kubota Corporation Travel route generation device and travel route generation method
CN107045347A (zh) * 2017-01-22 2017-08-15 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的自动掉头路径规划及其控制方法
CN106909150A (zh) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的避障、掉头路径规划及其控制方法
CN106909151A (zh) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的路径规划及其控制方法
CN106909144A (zh) * 2017-01-22 2017-06-30 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的田间避障路径规划及其控制方法
CN106681335A (zh) * 2017-01-22 2017-05-17 无锡卡尔曼导航技术有限公司 用于农机无人驾驶的避障路径规划及其控制方法
JP6802076B2 (ja) * 2017-01-24 2020-12-16 株式会社クボタ 走行経路生成システム
DE102017105773A1 (de) 2017-03-17 2018-09-20 Lemken Gmbh & Co. Kg Verfahren zum Planen der Bearbeitung eines landwirtschaftlichen Felds
WO2018185522A1 (en) * 2017-04-04 2018-10-11 Graf Plessen Mogens Coordination of harvesting and transport units for area coverage
US11096323B2 (en) 2017-04-18 2021-08-24 CropZilla Software, Inc. Machine control system providing actionable management information and insight using agricultural telematics
US10649457B2 (en) 2017-05-02 2020-05-12 Cnh Industrial America Llc System and method for autonomous vehicle system planning
US20180328745A1 (en) * 2017-05-09 2018-11-15 Uber Technologies, Inc. Coverage plan generation and implementation
US10942525B2 (en) 2017-05-09 2021-03-09 Uatc, Llc Navigational constraints for autonomous vehicles
DE102017110109A1 (de) * 2017-05-10 2018-11-15 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine
US10542674B2 (en) * 2017-05-19 2020-01-28 Cnh Industrial America Llc Methods for creating merged triple windrows
JP7027142B2 (ja) * 2017-12-06 2022-03-01 ヤンマーパワーテクノロジー株式会社 作業車両用の目標経路生成システム
JP6908510B2 (ja) * 2017-12-07 2021-07-28 ヤンマーパワーテクノロジー株式会社 走行経路設定装置
JP6910283B2 (ja) * 2017-12-18 2021-07-28 株式会社クボタ 領域決定システム
AU2018401970A1 (en) * 2018-01-15 2021-07-01 SwarmFarm Robotics Pty Ltd. Coverage path planning
WO2019183890A1 (zh) * 2018-03-29 2019-10-03 深圳市大疆软件科技有限公司 作业路径调整方法及装置、可移动设备作业路径调整方法及设备、和记录介质
JP2018139604A (ja) * 2018-05-07 2018-09-13 ジオサーフ株式会社 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体
US11287816B2 (en) 2018-06-11 2022-03-29 Uatc, Llc Navigational constraints for autonomous vehicles
JP7334281B2 (ja) * 2018-08-07 2023-08-28 株式会社クボタ 収穫機
JP7014687B2 (ja) * 2018-08-07 2022-02-01 株式会社クボタ 収穫機
US20200089222A1 (en) * 2018-09-17 2020-03-19 Subsite, Llc Virtual Path Guidance System
JP2020099268A (ja) * 2018-12-21 2020-07-02 株式会社クボタ 圃場作業車及び走行経路生成システム
JP7206118B2 (ja) * 2019-01-15 2023-01-17 株式会社クボタ 営農システム
CN109828589A (zh) * 2019-03-08 2019-05-31 北京大成高科机器人技术有限公司 模块化农用机械平台及控制方法
JP6749448B2 (ja) * 2019-03-19 2020-09-02 株式会社クボタ 作業車支援システム
CN110209153A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 自动收割机的倒伏行驶规划系统及其方法
WO2020210607A1 (en) * 2019-04-10 2020-10-15 Kansas State University Research Foundation Autonomous robot system for steep terrain farming operations
JP7260412B2 (ja) * 2019-06-20 2023-04-18 ヤンマーパワーテクノロジー株式会社 作業車両用の自動走行システム
EP3997540A4 (en) * 2019-08-30 2023-11-08 Deere & Company CONTROL SYSTEM AND METHOD FOR AUTONOMOUS OR REMOTELY CONTROLLED VEHICLE PLATFORM
JP7237788B2 (ja) * 2019-09-26 2023-03-13 株式会社クボタ 作業車両
JP7155097B2 (ja) * 2019-11-29 2022-10-18 株式会社クボタ 自動走行制御システム、及び、コンバイン
GB201918841D0 (en) * 2019-12-19 2020-02-05 Agco Int Gmbh Mower combination
GB201918843D0 (en) * 2019-12-19 2020-02-05 Agco Int Gmbh Mower combination
JP2021108621A (ja) * 2020-01-14 2021-08-02 株式会社クボタ 走行経路管理システム
KR20210091644A (ko) * 2020-01-14 2021-07-22 가부시끼 가이샤 구보다 작업기의 주행 경로 관리 시스템
US11622495B2 (en) * 2021-06-01 2023-04-11 Gint Co., Ltd. Method of automatically combining farm vehicle and work machine and farm vehicle
CN113310494B (zh) * 2021-06-02 2023-12-05 广州极飞科技股份有限公司 作业路径生成方法、作业方法、装置、设备及存储介质
CN113361764B (zh) * 2021-06-02 2022-12-06 深圳冰河导航科技有限公司 一种农机自动作业的路径规划方法
CN114326717A (zh) * 2021-12-13 2022-04-12 中国科学院计算技术研究所 一种智能农机转场与作业的融合路径规划方法及系统
CN115067061B (zh) * 2022-05-18 2024-04-09 江苏大学 一种粮箱卸粮返航位置监测系统及方法和收获机
CN115088463A (zh) * 2022-07-06 2022-09-23 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质
CN115469664A (zh) * 2022-09-16 2022-12-13 北京博创联动科技有限公司 农机收边方法、装置、农机及存储介质
CN115200589B (zh) * 2022-09-16 2022-11-29 北京博创联动科技有限公司 农机收边轨迹规划方法、装置、计算机终端及存储介质
CN117490703B (zh) * 2023-12-29 2024-03-08 博创联动科技股份有限公司 一种农机作业路径规划方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002318A2 (de) 1993-07-17 1995-01-26 Duerrstein Georg Verfahren zur einwirkung auf nutzterritorien
DE19629618A1 (de) * 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
US5987383C1 (en) * 1997-04-28 2006-06-13 Trimble Navigation Ltd Form line following guidance system
US6549849B2 (en) * 2001-06-25 2003-04-15 Trimble Navigation Ltd. Guidance pattern allowing for access paths
DE10219500A1 (de) * 2002-04-30 2003-11-20 Siemens Ag Navigationssystem mit dynamischer Routenplanung
US6907336B2 (en) * 2003-03-31 2005-06-14 Deere & Company Method and system for efficiently traversing an area with a work vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701892C2 (ru) * 2014-04-02 2019-10-02 КЛААС Е-Системс ГмбХ Система планирования разработки поля, способ планирования разработки поля и сельскохозяйственная рабочая машина с такой системой планирования
RU2680461C2 (ru) * 2014-06-06 2019-02-21 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Способ планирования последующей обработки при осуществлении сельскохозяйственных работ
US10390492B2 (en) 2014-07-17 2019-08-27 Deere & Company Strategic crop placement using a virtual trip line for a harvester and crop accumulator combination
RU2703404C2 (ru) * 2014-07-17 2019-10-16 Дир Энд Компани Стратегическое расположение сельскохозяйственной культуры с использованием виртуальной линии срабатывания для комбинации уборочной машины и накопителя сельскохозяйственной культуры
RU2721576C1 (ru) * 2016-06-10 2020-05-20 СиЭнЭйч ИНДАСТРИАЛ АМЕРИКА ЭлЭлСи Автоматическое масштабирование рядов движения для внедорожного транспортного средства
RU2651420C1 (ru) * 2017-05-02 2018-04-19 Акционерное общество "Когнитив" Система мониторинга маршрутов движения сельскохозяйственных машин при выполнении полевых работ
RU2776355C1 (ru) * 2019-05-21 2022-07-19 ФАРМОБАЙЛ ЭлЭлСи Определение полосы захвата действия из собранных машиной обработанных данных

Also Published As

Publication number Publication date
US8285459B2 (en) 2012-10-09
AR076482A2 (es) 2011-06-15
RU2005116582A (ru) 2006-11-20
AR048889A1 (es) 2006-06-07
US20050273253A1 (en) 2005-12-08
DE102004027242A1 (de) 2005-12-22
UA93982C2 (ru) 2011-03-25
US7742860B2 (en) 2010-06-22
US20080195270A1 (en) 2008-08-14
BRPI0501987A (pt) 2006-01-24

Similar Documents

Publication Publication Date Title
RU2384987C2 (ru) Система маршрутизации для сельскохозяйственных машин
CN111343854B (zh) 作业车、用于作业车的行驶路径选择系统以及行驶路径计算系统
KR20210039452A (ko) 자동 조타 시스템 및 수확기, 자동 조타 방법, 자동 조타 프로그램, 기록 매체
US7706948B2 (en) Method for creating spiral swaths for irregular field boundaries
RU2384988C2 (ru) Способ и устройство для управления сельскохозяйственной машиной
EP1915894B1 (en) Method and apparatus for creating curved swath patterns for farm machinery
CN109936975B (zh) 行进路线管理系统及行进路线决定装置
RU2467374C2 (ru) Устройство для определения маршрута транспортного средства
KR20180116319A (ko) 자율 주행 경로 생성 시스템
US7110881B2 (en) Modular path planner
WO2020031494A1 (ja) 収穫機、収穫システム、収穫方法、収穫プログラムおよび記録媒体
CN109964192A (zh) 作业车自动行驶系统
US20080103690A1 (en) Nudge compensation for curved swath paths
JP6884092B2 (ja) 作業車及び作業車のための走行経路選択システム
JP6891097B2 (ja) 走行経路決定装置
EP1602267A2 (de) Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
JP6982116B2 (ja) 作業車自動走行システム及び走行経路管理装置
WO2020111102A1 (ja) 自動走行制御システム、自動走行制御プログラム、自動走行制御プログラムを記録した記録媒体、自動走行制御方法、制御装置、制御プログラム、制御プログラムを記録した記録媒体、制御方法
JP2022028836A5 (ru)
JP2022180405A5 (ru)
JP7224151B2 (ja) 走行経路生成システム及び走行経路生成方法
JP7030662B2 (ja) 収穫機
JP7466276B2 (ja) 作業車協調システム
CN112868367A (zh) 自动行驶控制系统、联合收割机、收获机
JP7403397B2 (ja) 農作業機

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 9-2010 FOR TAG: (30)

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20151224

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170601