RU2374171C2 - Способ и устройство для монтажа подложки в корпус - Google Patents

Способ и устройство для монтажа подложки в корпус Download PDF

Info

Publication number
RU2374171C2
RU2374171C2 RU2005129955/28A RU2005129955A RU2374171C2 RU 2374171 C2 RU2374171 C2 RU 2374171C2 RU 2005129955/28 A RU2005129955/28 A RU 2005129955/28A RU 2005129955 A RU2005129955 A RU 2005129955A RU 2374171 C2 RU2374171 C2 RU 2374171C2
Authority
RU
Russia
Prior art keywords
thin film
display device
matrix
rear thin
transparent substrate
Prior art date
Application number
RU2005129955/28A
Other languages
English (en)
Other versions
RU2005129955A (ru
Inventor
Лорен ПАЛМАТИР (US)
Лорен ПАЛМАТИР
Уилльям Дж. КАММИНГЗ (US)
Уилльям Дж. КАММИНГЗ
Брайан Дж. ГАЛЛИ (US)
Брайан Дж. ГАЛЛИ
Марк В. МАЙЛС (US)
Марк В. МАЙЛС
Джеффри Б. СЕМПСЕЛЛ (US)
Джеффри Б. СЕМПСЕЛЛ
Клэренс ЧУЙ (US)
Клэренс ЧУЙ
Маниш КОТХАРИ (US)
Маниш КОТХАРИ
Original Assignee
АйДиСи, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АйДиСи, ЭлЭлСи filed Critical АйДиСи, ЭлЭлСи
Publication of RU2005129955A publication Critical patent/RU2005129955A/ru
Application granted granted Critical
Publication of RU2374171C2 publication Critical patent/RU2374171C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00285Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0825Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/047Optical MEMS not provided for in B81B2201/042 - B81B2201/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid

Abstract

Изобретение относится к микроэлектромеханическим системам (МЭМС) и монтажу таких систем в корпусе. Технический результат направлен на усовершенствование конструкции изделий. Дисплейное устройство содержит матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет. Причем это дисплейное устройство содержит прозрачную подложку; интерферометрический модулятор, содержащий упомянутую матрицу подвижных зеркал. Причем упомянутый интерферометрический модулятор выполнен с возможностью модулировать свет, пропускаемый сквозь упомянутую прозрачную подложку; и заднюю тонкую пленку, уплотняющую упомянутую матрицу подвижных зеркал внутри корпуса между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует зазор. Способ реализуется вышеуказанным устройством. 6 н. и 39 з.п. ф-лы, 13 ил.

Description

Область техники, к которой относится изобретение
Область изобретения относится к микроэлектромеханическим системам (МЭМС) и монтажу таких систем в корпуса. Более конкретно, область изобретения относится к интерферометрическим модуляторам и способам изготовления таких модуляторов с тонкопленочными задними панелями.
Предшествующий уровень техники
Микроэлектромеханические системы (МЭМС) включают в себя микромеханические элементы, исполнительные механизмы и электронику. Микромеханические элементы могут быть созданы с использованием осаждения, травления и/или других процессов микрообработки, при осуществлении которых вытравливают части подложек и/или осажденных слоев материалов или добавляют слои для формирования электрических и электромеханических устройств. Один тип устройства на основе МЭМС называют интерферометрическим модулятором. Интерферометрический модулятор может содержать пару электропроводных пластин, причем одна из них или обе они могут быть прозрачными и/или отражающими полностью или частично и выполненными с возможностью относительного перемещения после приложения соответствующего электрического сигнала. Одна пластина может содержать стационарный слой, осажденный на подложке, другая пластина может содержать металлическую мембрану, отделенную от стационарного слоя воздушным зазором. Такие устройства имеют широкий диапазон применения, и в данной области техники могло бы оказаться выгодным использование и/или модификация характеристик устройств этих типов таким образом, что возникнет возможность использования их конструктивных особенностей при усовершенствовании существующих изделий и создании новых изделий, которые еще не разработаны.
Раскрытие изобретения
Система, способ и устройства согласно изобретению - все эти объекты имеют несколько аспектов, ни один из которых не является единственно обуславливающим желательные неотъемлемые признаки изобретения. Теперь, без ограничения объема изобретения, будет приведено краткое описание наиболее важных признаков. После рассмотрения нижеследующего описания и, в частности, после прочтения раздела под названием «Подробное описание конкретных вариантов реализации», можно будет понять, каким образом признаки этого изобретения обеспечивают преимущества по сравнению с другими дисплейными устройствами.
В одном варианте реализации предложена корпусная структура для дисплейного устройства на основе интерферометрического модулятора, исключающая необходимость в отдельной задней панели, осушающем веществе и уплотнении. Это дисплейное устройство включает в себя прозрачную подложку, интерферометрический модулятор, выполненный с возможностью модулировать свет, пропускаемый сквозь прозрачную подложку, и заднюю тонкую пленку, расположенную на модуляторе и уплотняющую модулятор внутри корпуса между прозрачной подложкой и задней тонкой пленкой. Между модулятором и тонкой пленкой существует зазор, созданный за счет удаления временного слоя.
Согласно изобретению также предложено дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит прозрачную подложку; интерферометрический модулятор, содержащий упомянутую матрицу подвижных зеркал, причем упомянутый интерферометрический модулятор выполнен с возможностью модулировать свет, пропускаемый сквозь упомянутую прозрачную подложку; и заднюю тонкую пленку, уплотняющую упомянутую матрицу подвижных зеркал внутри корпуса между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует зазор. Предпочтительно, упомянутый зазор сформирован вследствие удаления временного слоя, расположенного между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой. Предпочтительно, задняя тонкая пленка содержит герметичный материал. Предпочтительно, тонкая пленка выполнена из никеля или из алюминия.
Согласно изобретению также предложен способ изготовления дисплея, содержащего матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, включающий в себя обеспечение наличия прозрачной подложки; формирование интерферометрического модулятора на прозрачной подложке, причем упомянутый интерферометрический модулятор содержит упомянутую матрицу подвижных зеркал; и осаждение задней тонкой пленки поверх матрицы подвижных зеркал и прозрачной подложки для уплотнения упомянутой матрицы подвижных зеркал между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует зазор. Предпочтительно, способ дополнительно включает в себя осаждение временного слоя на упомянутом интерферометрическом модуляторе перед осаждением упомянутой задней тонкой пленки и удаление упомянутого временного слоя после осаждения упомянутой задней тонкой пленки для обеспечения зазора между упомянутым интерферометрическим модулятором и упомянутой задней тонкой пленкой. Предпочтительно, способ дополнительно включает в себя формирование рисунка на упомянутой задней тонкой пленке для создания по меньшей мере одного отверстия в упомянутой задней тонкой пленке. Предпочтительно, способ дополнительно включает в себя формирование рисунка на упомянутой задней тонкой пленке для открытия по меньшей мере части упомянутого временного слоя. Предпочтительно, заднюю тонкую пленку формируют из алюминия, никеля или наносимого центрифугированием стекла. Предпочтительно, заднюю тонкую пленку формируют из герметичного материала. Предпочтительно, временный слой формируют из наносимого центрифугированием стекла.
Согласно изобретению также предложено дисплейное устройство на основе микроэлектромеханических систем, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит прозрачную подложку; интерферометрический модулятор, сформированный на прозрачной подложке, причем этот интерферометрический модулятор содержит упомянутую матрицу подвижных зеркал; и заднюю тонкую пленку, уплотненную на прозрачной подложке для инкапсуляции матрицы подвижных зеркал между прозрачной подложкой и задней тонкой пленкой, при этом между матрицей подвижных зеркал и задней тонкой пленкой существует полость. Предпочтительно, полость создана за счет удаления временного слоя между матрицей подвижных зеркал и задней тонкой пленкой. Предпочтительно, полость позволяет перемещаться одному или более подвижным зеркалам в матрице подвижных зеркал. Предпочтительно, задняя тонкая пленка содержит герметичный материал. Предпочтительно, дисплейное устройство дополнительно содержит покрывающий слой, осажденный поверх задней тонкой пленки, причем этот покрывающий слой предпочтительно содержит паронепроницаемый материал, например полимер. Предпочтительно, задняя тонкая пленка содержит металл или полимер.
Согласно изобретению также предложено дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит прозрачную подложку; интерферометрический модулятор, содержащий упомянутую матрицу подвижных зеркал, при этом упомянутый интерферометрический модулятор выполнен с возможностью модулировать свет, пропускаемый сквозь прозрачную подложку, и при этом упомянутый интерферометрический модулятор сформирован на этой прозрачной подложке; заднюю тонкую пленку, осажденную поверх матрицы подвижных зеркал, причем эта задняя тонкая пленка уплотняет матрицу подвижных зеркал внутри корпуса между прозрачной подложкой и задней тонкой пленкой; и полость между матрицей подвижных зеркал и задней тонкой пленкой, причем эта полость образована за счет удаления временного материала. Предпочтительно, задняя тонкая пленка является герметичной. Предпочтительно, задняя тонкая пленка выполнена из металла или полимера.
Согласно изобретению также предложено дисплейное устройство, содержащее пропускающее средство для пропускания света сквозь него; модулирующее средство, выполненное с возможностью модулировать свет, пропускаемый сквозь пропускающее средство, причем это модулирующее средство содержит матрицу подвижных зеркал; и уплотняющее средство для уплотнения матрицы подвижных зеркал внутри корпуса между пропускающим средством и уплотняющим средством, при этом уплотняющее средство содержит тонкую пленку, и при этом между матрицей подвижных зеркал и уплотняющим средством существует полость. Предпочтительно, полость образована за счет удаления временного слоя между матрицей подвижных зеркал и уплотняющим средством. Предпочтительно, уплотняющее средство содержит герметичный материал. Предпочтительно, тонкая пленка является проницаемой для дифторида ксенона, а уплотняющее средство дополнительно содержит герметичный материал, сформированный поверх тонкой пленки. Предпочтительно, дисплейное устройство дополнительно содержит процессор, который электрически связан с упомянутой матрицей подвижных зеркал, причем упомянутый процессор выполнен с возможностью обрабатывать данные изображения; и запоминающее устройство, электрически связанное с упомянутым процессором. Предпочтительно, дисплейное устройство дополнительно содержит схему возбуждения, выполненную с возможностью посылать по меньшей мере один сигнал в упомянутую матрицу подвижных зеркал. Предпочтительно, дисплейное устройство дополнительно содержит контроллер, выполненный с возможностью посылать по меньшей мере часть упомянутых данных изображения в упомянутую схему возбуждения. Предпочтительно, дисплейное устройство дополнительно содержит модуль источника изображения, выполненный с возможностью посылать упомянутые данные изображения в упомянутый процессор, причем упомянутый модуль источника изображения предпочтительно содержит по меньшей мере один из приемника, приемопередатчика и передатчика. Предпочтительно, дисплейное устройство дополнительно содержит устройство ввода, выполненное с возможностью принимать вводимые данные и передавать упомянутые вводимые данные в упомянутый процессор.
Согласно изобретению также предложено дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство изготовлено способом, включающим в себя обеспечение наличия прозрачной подложки; формирование интерферометрического модулятора, содержащего упомянутую матрицу подвижных зеркал и выполненного с возможностью модулировать свет, пропускаемый сквозь упомянутую прозрачную подложку, на упомянутой прозрачной подложке; и осаждение задней тонкой пленки для уплотнения упомянутой матрицы подвижных зеркал между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует полость. Предпочтительно, полость создана за счет удаления временного слоя между матрицей подвижных зеркал и задней тонкой пленкой. Предпочтительно, задняя тонкая пленка содержит герметичный материал. Предпочтительно, задняя тонкая пленка является проницаемой для дифторида ксенона, и эта задняя тонкая пленка дополнительно содержит герметичный материал, сформированный поверх тонкой пленки. Предпочтительно, задняя тонкая пленка содержит металл, например никель или алюминий. Предпочтительно, дисплейное устройство содержит сотовый телефон.
Краткое описание чертежей
Эти и другие аспекты изобретения будет легче понять, изучив нижеследующее подробное описание и прилагаемые чертежи (представленные не в масштабе), которые следует понимать как иллюстрирующие изобретение, а не ограничивающие его, при этом:
на фиг.1 представлен изометрический вид, изображающий часть дисплея на основе интерферометрических модуляторов в одном варианте его реализации, в котором подвижный отражающий слой первого интерферометрического модулятора находится в невозбужденном положении, а подвижный отражающий слой второго интерферометрического модулятора находится в возбужденном положении;
на фиг.2 представлена блок-схема системы, иллюстрирующая один вариант реализации электронного устройства, включающего в себя дисплей на основе, имеющей размер 3×3 матрицы интерферометрических модуляторов;
на фиг.3 представлен график зависимости положения подвижного зеркала от приложенного напряжения для одного примерного варианта реализации интерферометрического модулятора по фиг.1;
на фиг.4 представлена иллюстрация группы напряжений строк и столбцов, которые можно использовать для возбуждения дисплея на основе интерферометрических модуляторов;
фиг.5А и 5В иллюстрируют одну примерную временную диаграмму для сигналов строк и столбцов, которые можно использовать для записи кадра данных изображения в дисплей на основе имеющей размер 3×3 матрицы интерферометрических модуляторов по фиг.2;
на фиг.6А представлено поперечное сечение устройства по фиг.1;
на фиг.6В представлено поперечное сечение интерферометрического модулятора в альтернативном варианте его реализации;
на фиг.6С представлено поперечное сечение интерферометрического модулятора в еще одном альтернативном варианте его реализации;
фиг.7 схематически иллюстрирует корпусную структуру согласно одному варианту реализации, в которой интерферометрический модулятор смонтирован без обычной задней панели;
на фиг.8 представлена блок-схема последовательности операций способа монтажа интерферометрических модуляторов в корпус в одном варианте реализации;
фиг.9 схематически иллюстрирует корпусную структуру согласно одному варианту реализации, в которой поверх интерферометрического модулятора осажден временный слой;
фиг.10 схематически иллюстрирует корпусную структуру, в которой поверх временного слоя осаждена тонкая пленка;
на фиг.11 представлен вид сверху в одном варианте реализации корпусной структуры 800 после осаждения тонкой пленки 820 и формирования на ней рисунка и перед освобождением от временного слоя 850;
фиг.12 схематически иллюстрирует корпусную структуру, в которой интерферометрический модулятор смонтирован в соответствии с одним вариантом реализации и имеет покрывающий слой;
на фиг.13А и 13В представлены блок-схемы системы, иллюстрирующие вариант реализации дисплейного устройства визуального отображения, содержащего множество интерферометрических модуляторов.
Подробное описание конкретных вариантов реализации
Нижеследующее подробное описание посвящено некоторым конкретным вариантам реализации изобретения. Вместе с тем, изобретение может быть реализовано множеством различных путей. В этом описании делаются ссылки на чертежи, причем одинаковые детали обозначены одинаковыми позициями на всех чертежах. Из нижеследующего описания будет ясно, что изобретение можно воплотить в любом устройстве, которое предназначено для отображения изображения, либо в движении (например, видеоизображения), либо в статике (например, фотографического изображения), будь то текст или картинка. Более конкретно, предполагается, что изобретение можно воплотить в или совместить с самыми разными электронными устройствами, такими как, но не ограничиваясь ими, мобильные телефоны, беспроводные устройства, персональные цифровые секретари (ПЦС), карманные или портативные компьютеры, приемники и/или навигаторы Глобальной системы позиционирования (ГСП или GPS), съемочные камеры, плееры стандарта МРЗ, видеокамеры, игровые консоли, наручные часы, настенные или напольные часы, будильники, калькуляторы, телевизионные мониторы, дисплеи с плоскими экранами, мониторы компьютеров, автомобильные дисплеи (например, дисплеи счетчиков пройденного пути и т.д.), органы управления и/или дисплеи кабин пилотов, дисплей поля зрения съемочной камеры (например, дисплей съемочной камеры заднего обзора в транспортном средстве), электронные фотоаппараты, электронные рекламные щиты или дорожные знаки, проекционные аппараты, архитектурные сооружения, упаковка и эстетические конструкции (например, дисплей изображений на ювелирном изделии). Устройства на основе МЭМС, которые по конструкции аналогичны описываемым здесь, можно также использовать в тех областях применения, которые не связаны с индикацией или отображением, таких как электронные коммутирующие устройства.
Один вариант реализации дисплея на основе интерферометрических модуляторов, содержащего интерферометрический элемент дисплея на основе МЭМС, изображен на фиг.1. В этих устройствах пиксели (т.е. элементы изображения) находятся либо в освещенном, либо в затемненном состоянии. В освещенном («включенном» или «открытом») состоянии элемент дисплея отражает большую часть падающего видимого света по направлению к пользователю. Находясь в затемненном («выключенном» или «закрытом») состоянии, элемент дисплея отражает мало падающего видимого света по направлению к пользователю. В зависимости от варианта реализации светоотражательные свойства во «включенном» и «выключенном» состояниях могут меняться местами. Пиксели МЭМС могут быть выполнены с возможностью отражать преимущественно на выбранных цветах, что позволяет создать цветной дисплей, а не только черно-белый.
На фиг.1 представлен изометрический вид, изображающий два соседних пикселя в ряду пикселей дисплея визуального отображения, при этом каждый пиксель содержит интерферометрический модулятор на основе МЭМС. В некоторых вариантах реализации дисплей на основе интерферометрических модуляторов включает в себя матрицу строк и столбцов из этих интерферометрических модуляторов. Каждый интерферометрический модулятор включает в себя пару отражающих слоев, располагающихся на изменяемом и регулируемом расстоянии друг от друга с образованием резонансной оптической полости с по меньшей мере одним изменяемым размером. В одном варианте реализации один из отражающих слоев можно перемещать между двумя положениями. В первом положении, именуемом здесь невозбужденным положением, подвижный слой располагается на относительно большом расстоянии от неподвижного частично отражающего слоя. Во втором положении подвижный слой располагается ближе к частично отражающему слою, находясь рядом с ним. Падающий свет, который отражается от обоих слоев, интерферирует конструктивно или деструктивно в зависимости от положения подвижного отражающего слоя, вследствие чего получается либо полностью отражающее, либо неотражающее состояние каждого пикселя.
Показанная на фиг.1 часть матрицы пикселей включает в себя два соседних интерферометрических модулятора 12а и 12b. В интерферометрическом модуляторе 12а, показанном слева, подвижный и высокоотражающий слой 14а изображен в невозбужденном положении на заранее заданном расстоянии от неподвижного частично отражающего слоя 16а. В интерферометрическом модуляторе 12b, показанном справа, подвижный высокоотражающий слой 14b изображен в возбужденном положении рядом с неподвижным частично отражающим слоем 16b.
Неподвижные слои 16а, 16b являются электропроводными, частично прозрачными и частично отражающими и могут быть изготовлены, например, путем осаждения одного или более слоев, каждый из которых состоит из хрома и оксида индия-олова, на прозрачную подложку 20. В этих слоях сформированы рисунки в виде параллельных полос, которые могут образовывать электроды строк в дисплейном устройстве, что подробнее описывается ниже. Подвижные слои 14а, 14b могут быть выполнены в виде серии параллельных полос осажденного слоя металла или осажденных слоев металла (перпендикулярных электродам 16а, 16b строк), которые осаждены поверх столбиков 18, и промежуточного временного материала, осажденного между столбиками 18. Когда временный материал вытравливают, деформируемые слои металла оказываются отделенными от неподвижных слоев металла ограниченным воздушным зазором 19. Для деформируемых слоев можно использовать материал с высокой электрической проводимостью и высокой отражательной способностью, такой как алюминий, а эти полосы могут образовывать электроды столбцов в дисплейном устройстве.
При отсутствии приложенного напряжения полость 19 между слоями 14а, 16а сохраняется, а деформируемый слой находится в механически ненапряженном состоянии, что иллюстрируется пикселем 12а на фиг.1. Вместе с тем, когда к выбранным строке и столбцу приложена разность потенциалов, конденсатор, образованный на пересечении электродов строки и столбца в соответствующем пикселе, становится заряженным, и электростатические силы притягивают электроды друг к другу. Если напряжение является достаточно высоким, подвижный слой деформируется и принудительно подводится к неподвижному слою (на неподвижном слое можно осадить диэлектрический материал, который не показан на этом чертеже, чтобы предотвратить короткое замыкание и управлять разделительным расстоянием), что иллюстрируется пикселем 12b справа на фиг.1. Это поведение оказывается тем же самым безотносительно полярности приложенной разности потенциалов. Таким образом, возбуждение строки и столбца, которое может обеспечить управление отражающими и неотражающими состояниями пикселей, оказывается во многом аналогичным тому, которое используется в технологиях производства обычных жидкокристаллических (ЖКД) и других дисплеев.
Фиг.2-5 иллюстрируют один примерный способ и систему для использования матрицы интерферометрических модуляторов применительно к дисплею. На фиг.2 представлена блок-схема системы, иллюстрирующая один вариант реализации электронного устройства, которое может включать в себя аспекты данного изобретения. В примерном варианте реализации это электронное устройство включает в себя процессор 21, который может быть любым одно- или многокристальным микропроцессором общего назначения, таким как ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, 8051, MIPS®, Power PC®, ALPHA®, или любым микропроцессором специального назначения, таким как процессор цифровых сигналов, микроконтроллер или программируемая вентильная матрица. Как принято в данной области техники, процессор 21 может быть приспособлен для исполнения одного или более модулей программного обеспечения. В дополнение к исполнению операционной системы процессор может быть приспособлен для исполнения одного или более приложений программного обеспечения, включая web-браузер, телефонное приложение, программу электронной почты или любое другое приложение программного обеспечения.
В одном варианте реализации процессор 21 также выполнен с возможностью связи с контроллером 22 матрицы. В одном варианте реализации контроллер 22 матрицы включает в себя схему 24 возбуждения строк и схему 26 возбуждения столбцов, которые выдают сигналы в матрицу 30 пикселей. Поперечное сечение этой матрицы, проиллюстрированное на фиг.1, показано линиями 1-1 на фиг.2. Протокол возбуждения строк/столбцов для интерферометрических модуляторов на основе МЭМС может использовать преимущество наличия свойства гистерезиса у этих устройств, иллюстрируемого на фиг.3. Например, может потребоваться разность потенциалов 10 вольт, чтобы заставить подвижный слой деформироваться из невозбужденного состояния в возбужденное состояние. Вместе с тем, когда напряжение становится меньше этой величины, подвижный слой сохраняет свое состояние при падении напряжения ниже 10 вольт. В примерном варианте реализации согласно фиг.3 подвижный слой не полностью освобождается от возбуждения до тех пор, пока напряжение не падает ниже 2 вольт. Таким образом, в примере, иллюстрируемом на фиг.3, существует диапазон напряжения, составляющий примерно от 3 до 7 В, в котором есть интервал прикладываемого напряжения, в пределах которого устройство устойчиво в любом - возбужденном или невозбужденном - состоянии. Этот интервал именуется далее «интервалом гистерезиса» или «интервалом устойчивости». Для матрицы дисплея, имеющей характеристики гистерезиса согласно фиг.3, протокол возбуждения строк/столбцов можно разработать так, что во время стробирования строк те пиксели в стробируемой строке, которые должны быть возбуждены, подвергаются воздействию разности потенциалов (напряжению) примерно 10 вольт, а пиксели, которые должны остаться невозбужденными, подвергаются воздействию разности потенциалов, близкой к нулю вольт. После подачи строб-импульса пиксели подвергаются воздействию разности потенциалов устойчивого состояния, составляющей примерно 5 вольт, так что они остаются в том состоянии, в которое переводит их строб-импульс строки. После записи каждый пиксель «видит» разность потенциалов в «интервале устойчивости», размер которого в этом примере составляет 3-7 вольт. Этот признак делает конструкцию пикселя, проиллюстрированную на фиг.1, устойчивой в одинаковых условиях приложенного напряжения как в возбужденном, так и в невозбужденном, ранее существовавшем состоянии. Поскольку каждый пиксель интерферометрического модулятора - в возбужденном или невозбужденном состоянии - по существу представляет собой конденсатор, образованный неподвижным и подвижным отражающими слоями, это устойчивое состояние может поддерживаться при напряжении в пределах интервала гистерезиса почти без рассеяния мощности. Если приложенный потенциал фиксирован, ток в пиксель по существу не протекает.
В типичных применениях кадр дисплея можно создавать, назначая набор электродов столбцов в соответствии с желаемым набором возбуждаемых пикселей в первой строке. Затем к электроду строки 1 прикладывают импульс строки, возбуждающий пиксели, соответствующие назначенным шинам столбцов. Затем назначенный набор электродов столбцов изменяют в соответствии с желаемым набором возбуждаемых пикселей во второй строке. Затем к электроду строки 2 прикладывают импульс строки, возбуждающий пиксели в строке 2 в соответствии с назначенными электродами столбцов. Пиксели строки 1 не затрагиваются импульсом строки 2 и остаются в том состоянии, в которое они были установлены во время импульса строки 1. Этот процесс можно последовательным образом повторить для всей серии строк, чтобы получить кадр. Вообще говоря, кадры регенерируют и/или обновляют новыми отображаемыми данными путем постоянного повторения этого процесса с получением некоторого желательного количества кадров в секунду. Также известно и может быть использовано совместно с настоящим изобретением широкое множество протоколов возбуждения электродов строк и столбцов матриц пикселей для получения кадров изображения.
Фиг.4 и 5 иллюстрируют один возможный протокол возбуждения для создания кадра изображения на имеющей размер 3×3 матрице согласно фиг.2. Фиг.4 иллюстрирует возможный набор уровней напряжений столбцов и строк, который можно использовать для пикселей, обладающих кривыми гистерезиса согласно фиг.3. В варианте реализации по фиг.4 возбуждение пикселя подразумевает установление напряжения -Vсмещения для соответствующего столбца и установление напряжения +ΔV для соответствующей строки, которые могут составлять -5 вольт и +5 вольт соответственно. Снятие возбуждения с пикселя достигается путем установления напряжения +Vсмещения для соответствующего столбца и установления того же напряжения +ΔV для соответствующей строки, что приводит к нулевой разности потенциалов на этом пикселе. В тех строках, где напряжение строки поддерживается на уровне нуля вольт, пиксели устойчивы, в каком бы состоянии они сначала не находились, вне зависимости от того, находится ли столбец под напряжением
+Vсмещения или -Vсмещения.
На фиг.5В представлена временная диаграмма, изображающая серию сигналов строк и столбцов, подаваемых на имеющую размер 3×3 матрицу согласно фиг.2, которые приведут к компоновке дисплея, проиллюстрированной на фиг.5А, где возбужденные пиксели являются неотражающими. Перед записью кадра, проиллюстрированного на фиг.5А, пиксели могут находиться в любом состоянии, и в этом примере все строки находятся под напряжением 0 вольт, а все столбцы - под напряжением +5 вольт. Если приложены такие напряжения, то все пиксели устойчивы в своих существующих возбужденных или невозбужденных состояниях.
На фиг.5А пиксели (1,1), (1,2), (2,2), (3,2) и (3,3) показаны возбужденными. Чтобы достичь этого, в течение «времени включения шины» для строки 1 устанавливают напряжение -5 вольт для столбцов 1 и 2 и напряжение +5 вольт для столбца 3. Это не изменяет состояние каких-либо пикселей, потому что все пиксели остаются в интервале устойчивости, составляющем 3-7 вольт. Затем строку 1 стробируют импульсом, который сначала имеет скачок от 0 до 5 вольт, а затем - обратный скачок до 0 вольт. Это возбуждает пиксели (1,1) и (1,2) и снимает возбуждение с пикселя (1,3). Ни на какие другие пиксели в этой матрице влияние не оказывается.
Чтобы установить строку 2 в желаемое состояние, для столбца 2 устанавливают напряжение -5 вольт, а для столбцов 1 и 3 устанавливают напряжение +5 вольт. Такой же строб-импульс, прикладываемый затем к строке 2, возбудит пиксель (2,2) и снимет возбуждение с пикселей (2,1) и (2,3). И опять, ни на никакие другие пиксели матрицы влияние не оказывается. Установку строки 3 осуществляют точно так же, устанавливая для столбцов 2 и 3 напряжение -5 вольт, а для столбца 1 - напряжение +5 вольт. Строб-импульс строки 3 устанавливает пиксели строки 3 так, как показано на фиг.5А. После записи кадра потенциалы строк становятся нулевыми, а потенциалы столбцов могут остаться на любом из уровней +5 или -5 вольт, после чего дисплей оказывается устойчивым в компоновке согласно фиг.5А. Следует понимать, что ту же процедуру можно применить для матриц, содержащих дюжины или сотни строк и столбцов. Следует также понимать, что синхронизацию, последовательность приложения и уровни напряжений, используемых для осуществления возбуждения строк и столбцов, можно изменять в широких пределах в рамках вышеизложенных общих принципов, а вышеописанный пример является лишь иллюстративным, и вместе с настоящим изобретением можно использовать любой способ приложения напряжений возбуждения.
Подробности конструкции интерферометрических модуляторов, которые работают в соответствии с изложенными выше принципами, могут изменяться в широких пределах. Например, фиг.6А-6С иллюстрируют три разных варианта реализации конструкции перемещаемых зеркал. На фиг.6А представлено поперечное сечение для варианта реализации согласно фиг.1, в котором полоса металлического материала 14 расположена на ортогонально простирающихся опорах 18. На фиг.6В подвижный отражающий материал 14 прикреплен к опорам только в углах - на привязях 32. На фиг.6С подвижный отражающий материал 14 свисает с деформируемого слоя 34. Этот вариант реализации имеет преимущества, поскольку структурную компоновку и выбор материалов, используемых в качестве отражающего материала 14, можно оптимизировать по оптическим свойствам, а структурную компоновку и выбор материалов, используемых в качестве деформируемого слоя 34, можно оптимизировать по желательным механическим свойствам. Производство интерферометрических устройств различных типов описано во множестве различных опубликованных документов, например в публикации заявки на патент США №2004/0051929 от 18.03.2004. Для изготовления вышеописанных конструкций можно использовать огромное множество хорошо известных способов, предусматривающих последовательность этапов осаждения материала, формирования рисунка и травления.
Фиг.7 иллюстрирует корпусную структуру 800, в которой интерферометрический модулятор 830 смонтирован на прозрачной подложке 810 без обычной задней панели или крышки. Корпусная структура 800, проиллюстрированная на фиг.7, может исключить необходимость не только в задней панели, но и в отдельном уплотнении, а также в осушающем веществе.
В соответствии с вариантом реализации, показанным на фиг.7, вместо уплотнения задней панели на прозрачной подложке для инкапсуляции интерферометрического модулятора 830, как указано выше, поверх прозрачной подложки 810 осаждена тонкая пленка или надстроечная структура 820 для инкапсуляции интерферометрического модулятора 830 внутри корпусной структуры 800. Тонкая пленка 820 защищает интерферометрический модулятор 830 от вредных элементов, присутствующих в окружающей среде.
Ниже будет проведено более подробное рассмотрение способа монтажа интерферометрического модулятора в корпус в соответствии с вариантом реализации, показанным на фиг.7. Корпуса и способы монтажа в корпуса, описываемые в данной заявке, можно использовать для монтажа в корпус любого интерферометрического модулятора, включая, но не ограничиваясь ими, вышеописанные интерферометрические модуляторы.
Как сказано выше, интерферометрический модулятор 830 выполнен с возможностью отражения света сквозь прозрачную подложку и включает в себя подвижные детали, такие как подвижные зеркала 14а, 14b. Следовательно, чтобы позволить таким подвижным деталям перемещаться, между такими подвижными деталями и тонкой пленкой 820 предпочтительно создают зазор или полость 840. Зазор или полость 840 позволяет перемещаться механическим деталям, таким как подвижные зеркала 14а, 14b, интерферометрического модулятора 830. Следует понимать, что перед тем как можно будет осадить тонкую пленку 820 для инкапсуляции интерферометрического модулятора 830, поверх интерферометрического модулятора 830 и прозрачной подложки 810 предпочтительно осаждают временный слой 850 (показанный на фиг.9), а затем удаляют этот слой, чтобы создать полость 840 между интерферометрическим модулятором 830 и тонкой пленкой 820. Это будет подробнее описано ниже.
На фиг.8 показан один вариант реализации способа монтажа в корпус интерферометрического модулятора без обычной задней панели или крышки. Сначала на этапе 900 обеспечивают прозрачную подложку 810, а на этапе 910 формируют интерферометрический модулятор 830 на прозрачной подложке 810. Интерферометрический модулятор 830 предпочтительно формируют в соответствии с процессами, описанными со ссылкой на фиг.1-6. Прозрачная подложка 810 может быть любым прозрачным веществом, которое способно иметь тонкую пленку, на которой формируют устройства на основе МЭМС. Такие прозрачные вещества включают в себя, но не ограничиваются ими, стекло, пластмассу и прозрачные полимеры. Изображения отображаются через прозрачную подложку 810, которая служит поверхностью формирования изображений.
После того как на прозрачной подложке 810 сформирован интерферометрический модулятор 830, на этапе 920 предпочтительно осаждают временный слой 850 поверх верхних поверхностей интерферометрического модулятора 830 и прозрачной подложки 810. Затем на этапе 930 на временном слое 850 формируют рисунок, пользуясь фотолитографическими методами. Этот процесс формирования рисунка предпочтительно ограничивает временный слой 850 очертаниями интерферометрического модулятора 830, обнажая прозрачную подложку 810 вокруг периферии интерферометрического модулятора 830. После того как временный слой 850 осажден и на нем сформирован рисунок, на этапе 940 поверх всей структуры осаждают тонкую пленку 820. Затем на этапе 950 на тонкой пленке 820 формируют рисунок, пользуясь фотолитографическими методами. Этот процесс формирования рисунка предпочтительно ограничивает тонкую пленку 820 очертаниями временного слоя 850. Этот этап формирования рисунка также создает в тонкой пленке 820 поверхностные элементы, которые делают возможным последующее удаление временного слоя 850. Следует отметить, что в этот момент процесса внутри структуры интерферометрического модулятора могут оставаться или не оставаться дополнительные временные слои. Этап 930 формирования рисунка обеспечивает возможность удаления временного слоя 850, а также удаления любых временных слоев, остающихся внутри интерферометрического модулятора 830. На этапе 960 временный слой 850 и любые временные слои, остающиеся внутри интерферометрического модулятора 830, удаляют, оставляя полость 840 между интерферометрическим модулятором 830 и тонкой пленкой 820, что завершает обработку интерферометрического модулятора 830. На этапе 970 упомянутые поверхностные элементы или отверстия в тонкой пленке 820 уплотняют.
В соответствии с одним вариантом реализации интерферометрический модулятор 830 предпочтительно формируют на прозрачной подложке 810. Следует понимать, что неподвижные зеркала 16а, 16b интерферометрического модулятора 830 находятся рядом с прозрачной подложкой 810, а подвижные зеркала 14а, 14b сформированы над неподвижными зеркалами 16а, 16b, так что подвижные зеркала 14а, 14b могут перемещаться внутри полости 840 корпусной структуры в варианте реализации, показанном на фиг.7.
Для формирования интерферометрического модулятора 830 в одном варианте реализации прозрачную подложку 810 покрывают оксидом индия-олова (ITO). ITO можно осаждать стандартными методами осаждения, включая химическое осаждение из паровой фазы (ХОПФ) и напыление, предпочтительно до толщины примерно 500. Поверх ITO предпочтительно осаждают относительно тонкий слой хрома. Затем двойной слой ITO/хрома травят и формируют на нем рисунок столбцов, чтобы сформировать электроды 16а, 16b столбцов. Поверх столбцов из ITO/хрома предпочтительно формируют слой диоксида кремния (SiO2), чтобы создать частично отражающие неподвижные зеркала 16а, 16b. На эту структуру предпочтительно осаждают временный слой кремния (Si) (а позже освобождаются от него), чтобы создать резонансную оптическую полость между неподвижными зеркалами 16а, 16b и подвижными зеркалами 14а, 14b.
В других вариантах реализации этот временный слой можно сформировать из молибдена (Мо), вольфрама (W) или титана (Ti).
Еще один зеркальный слой, предпочтительно выполненный из алюминия, осаждают поверх временного слоя кремния для формирования подвижных зеркал 14а, 14b интерферометрического модулятора 830. Этот зеркальный слой осаждают и формируют в нем рисунок строк, перпендикулярных электродам 16а, 16b столбцов, чтобы создать вышеописанную матрицу строк/столбцов. В других вариантах реализации зеркальный слой может содержать высокоотражающие металлы, например такие, как серебро (Аg) или золото (Au). В альтернативном варианте этот зеркальный слой может быть «пакетом» металлов, выполненных с возможностью придания надлежащих оптических и механических свойств.
Временный слой кремния удаляют, предпочтительно пользуясь процессом газового травления, после того как сформированы подвижные зеркала 14а, 14b, чтобы создать оптическую полость между неподвижными зеркалами 16а, 16b и подвижными зеркалами 14а, 14b. В одном варианте реализации временный слой вытравливают после того, как сформирована тонкая пленка 820. Для удаления временного слоя кремния можно воспользоваться стандартными методами травления. Конкретное освобождающее травление будет зависеть от освобождаемого материала. Например, для удаления временного слоя кремния можно использовать дифторид ксенона (XeF2). В одном варианте реализации временный слой кремния между зеркалами 16а, 16b, 14а, 14b удаляют, после того как сформирована тонкая пленка 820. Специалист в данной области техники поймет, что каждый слой интерферометрического модулятора 830 предпочтительно осаждают и формируют на нем рисунок, пользуясь стандартными методами осаждения и стандартными фотолитографическими методами.
Как показано на фиг.9, после того как на прозрачной подложке 810 сформирован интерферометрический модулятор 830, поверх верхних поверхностей интерферометрического модулятора 830 на прозрачной подложке 810 осаждают еще один временный слой 850. Этот временный слой 850 можно формировать, например, из такого материала, как молибден (Мо), кремний (Si), вольфрам (W) или титан (Ti), от которого можно освободиться после осаждения тонкой пленки 820. В одном варианте реализации временный слой 850 формируют из такого материала, как полимер, наносимое центрифугированием стекло или оксид. Эти процессы удаления, которые могут отличаться в зависимости от материала временного слоя, будут описаны более подробно ниже.
Специалисту будет понятно, что верхний временный слой 850 может формироваться из любого материала из молибдена (Мо), кремния (Si), вольфрама (W), титана (Ti), полимера, наносимого центрифугированием стекла или оксида в течение такого периода времени, что этот материал обеспечивает достаточное сглаживание ступеньки и может быть осажден до желаемой толщины. Толщина временного слоя 850 должна быть достаточной для разделения тонкой пленки 820 и интерферометрического модулятора 830. В одном варианте реализации верхний временный слой 850 осаждают до толщины в диапазоне примерно от 1000 до 1 мкм, а более предпочтительно - в диапазоне примерно от 1000 до 5000. В одном варианте реализации формирование рисунка на временном слое 850 и его травление проводят, пользуясь стандартными фотолитографическими методами.
В одном варианте реализации тонкую пленку 820 можно осаждать поверх всей верхней поверхности временного слоя 850, как показано на фиг.10. Тонкую пленку 820 можно сформировать поверх временного слоя 850, пользуясь известными методами осаждения. После того как на тонкой пленке 820 сформирован рисунок и она подвергнута травлению, от временного слоя 850 освобождаются, чтобы сформировать полость 840, в которой смогут перемещаться подвижные зеркала 14а, 14b, как показано на фиг.8.
На тонкой пленке 820 предпочтительно формируют рисунок и травят ее для формирования в ней по меньшей мере одного отверстия, через которое можно вводить внутрь корпусной структуры 800 освобождающий материал, такой как дифторид ксенона (XeF2), чтобы освободиться от временного слоя 850. Количество и размер этих отверстий зависят от желательной скорости освобождения от временного слоя 850. Эти отверстия могут располагаться в любом месте в тонкой пленке 820. В определенных вариантах реализации от временного слоя 850 и временного слоя внутри интерферометрического модулятора (между неподвижными зеркалами 16а, 16b и подвижными зеркалами 14а, 14b) можно освобождаться одновременно. В других вариантах реализации временный слой 850 и временный слой внутри интерферометрического модулятора 850 не удаляют одновременно, при этом временный слой 850 удаляют перед удалением временного слоя внутри интерферометрического модулятора.
Альтернативный метод освобождения представлен вариантом реализации, показанным на фиг.11. На фиг.11 представлен вид сверху в одном варианте реализации корпусной структуры 800, после того как была осаждена тонкая пленка 820 и на ней был сформирован рисунок, и перед освобождением от временного слоя 850. Как показано на фиг.11, временный слой 850 осаждают и формируют на нем рисунок таким образом, что этот слой имеет множество выступов 855. Затем осаждают тонкую пленку 820 поверх временного слоя 850 и прозрачной подложки 810. После того как тонкая пленка 820 осаждена, ее затем предпочтительно вытравливают на каждой стороне, как показано на фиг.11. Затем можно подвергнуть корпусную структуру 800 воздействию освобождающего материала, такого как дифторид ксенона (XeF2), который сначала реагирует с открытым материалом временного слоя 850, а затем попадает в корпусную структуру 800 через отверстия, созданные в выступах 855 за счет удаления временного слоя 850 на сторонах корпусной структуры. Должно быть понятно, что количество и размер выступов 855 будут зависеть от желаемой скорости освобождения от временного слоя 850.
Чтобы удалить временный слой молибдена (Мо), кремния (Si), вольфрама (W) или титана (Ti), можно ввести дифторид ксенона (XeF2) внутрь корпусной структуры 800 через отверстие или отверстия в тонкой пленке 820. Такие отверстия в тонкой пленке 820 предпочтительно создают путем вытравливания отверстия в тонкой пленке 820. Дифторид ксенона (XeF2) реагирует с временным слоем 850, удаляя его и оставляя полость 840 между интерферометрическим модулятором 830 и тонкой пленкой 820. Временный слой 850, сформированный из наносимого центрифугированием стекла или оксида, предпочтительно подвергают газовому травлению или парофазному травлению, чтобы удалить временный слой 850, после того как осаждена тонкая пленка 820. Специалист поймет, что процесс удаления будет зависеть от материала временного слоя 850.
Специалисту также будет ясно, что полость 840 обязательно располагается позади интерферометрического модулятора 830, чтобы позволить свободно перемещаться механическим деталям, таким как подвижные зеркала 14а, 14b, интерферометрического модулятора 830. Результирующая высота h полости 840 зависит от толщины временного слоя 850.
В некоторых вариантах реализации тонкая пленка 820 может быть материалом любого типа, который является герметичным или гидрофобным, включая, но не ограничиваясь ими, никель, алюминий, а также металлы и фольга других типов. Тонкую пленку 820 также можно сформировать из изолятора, включая, но не ограничиваясь ими, диоксид кремния, оксид алюминия или нитриды.
В альтернативном варианте тонкую пленку 820 можно сформировать из негерметичного материала. Подходящие негерметичные материалы включают в себя полимеры, например такие, как полиметилметакрилат (ПММА), эпоксидные смолы и органические или неорганические материалы типа стекла, наносимого центрифугированием (СНЦ). Если для получения тонкой пленки 820 используют негерметичные материалы, то поверх негерметичной тонкой пленки предпочтительно формируют покрывающий слой 860, как показано на фиг.12, чтобы обеспечить дополнительную защиту интерферометрическому модулятору 830 после того как удален временный слой 850, как показано на фиг.12. Такой покрывающий слой 860 предпочтительно выполнен из паронепроницаемого материала и имеет толщину от примерно 1000 до примерно 10000. В одном варианте реализации покрывающий слой 860 представляет собой барикс (Barix®) - тонкую пленку, проставляемую в продажу фирмой Vitex Systems, Inc., Сан-Хосе, штат Калифорния, США. Такое покрытие может быть многослойным, в котором некоторые слои могут служить целям герметичности по газу, а некоторые слои, как описано ниже, могут служить механическим целям.
В определенных вариантах реализации, в которых тонкая пленка 820 представляет собой гидрофобный материал, она не обязательно создает герметичное уплотнение, но все же может исключить необходимость в обычной задней панели. Следует понимать, что на последующем этапе монтажа в корпус на уровне модулей можно ввести любой другой влагонепроницаемый слой.
Тонкую пленку 820 можно осаждать способом химического осаждения из паровой фазы (ХОПФ) или другими способами осаждения до толщины примерно 1 мкм. Специалист поймет, что толщина тонкой пленки 820 может зависеть от конкретных свойств материала, выбранного для тонкой пленки 820.
Тонкая пленка 820 может быть либо прозрачной, либо непрозрачной. Поскольку изображения отображаются не сквозь тонкую пленку 820, а сквозь прозрачную подложку 810, ясно, что тонкая пленка 820 не обязательно должна быть прозрачной. Специалист поймет, что для формирования тонкой пленки 820 можно использовать прозрачные материалы, такие как наносимое центрифугированием стекло, потому что они могут иметь такие свойства, которые подходят для использования таких материалов в качестве тонкой пленки 820 для защиты интерферометрического модулятора 830. Например, такой материал, как наносимое центрифугированием стекло, которое является прозрачным, может обеспечить повышенную прочность и защиту интерферометрическому модулятору 830 внутри корпусной структуры 800.
После освобождения от временного слоя 850 отверстие(я) в тонкой пленке 820 предпочтительно уплотняют. В одном варианте реализации для уплотнения этих отверстий используют эпоксидную смолу. Специалист поймет, что можно использовать другие материалы, а также что предпочтительными являются те материалы, которые обладают высокой вязкостью. Если отверстия достаточно малы (например, менее 1 мкм), то для уплотнения этих отверстий можно использовать еще один слой материала тонкой пленки 820.
В некоторых вариантах реализации, включая определенные варианты реализации с герметичной тонкой пленкой 820, но не ограничиваясь ими, покрывающий слой 860 можно осаждать поверх тонкой пленки 820, после того как удален временный слой 850, как показано на фиг.12. Покрывающий слой предпочтительно выполнен из полимера и предпочтительно имеет толщину от примерно 1 мкм до нескольких миллиметров. Покрывающий слой 860 придает тонкой пленке 820 дополнительную прочность и жесткость. В определенных вариантах реализации, когда отверстие(я) в тонкой пленке 820 достаточно мало(ы) (например, менее 1 мкм), для уплотнения этих отверстий можно использовать покрывающий слой 860, а не еще один слой тонкой пленки 820, как описано выше.
Тонкая пленка 820 предпочтительно герметично уплотняет внутреннее пространство корпусной структуры 800 от окружающей среды, как показано на фиг.7. Поскольку тонкая пленка 820 может обеспечить герметичное уплотнение, необходимость в осушающем веществе уже отпадает, так как герметичное уплотнение предотвращает попадание влаги в корпусную структуру 800 из окружающей среды. В еще одном варианте реализации тонкая пленка 820 обеспечивает полугерметичное уплотнение, а внутри корпусной структуры 800 предусматривают осушающее вещество для поглощения избыточной влаги.
Осушающее вещество можно использовать для борьбы с влагой, находящейся внутри корпусной структуры 800. Вместе с тем, поскольку тонкая пленка 820 может обеспечить герметичное уплотнение в зависимости от выбираемого материала, для предотвращения проникновения влаги из атмосферы во внутреннее пространство корпусной структуры 800 осушающее вещество не обязательно. В случае полугерметичной тонкой пленки 820 количество требуемого осушающего вещества уменьшается.
В одном варианте реализации способ монтажа интерферометрического модулятора в корпус в соответствии с этим вариантом реализации предусматривает перенесение формирования уплотнения корпусной структуры 800 на стадию предварительной обработки и исключение необходимости в отдельной задней панели, осушающем веществе и уплотнении, тем самым снижая стоимость монтажа в корпус. В еще одном варианте реализации тонкая пленка 820 уменьшает количество требуемого осушающего вещества, а не исключает необходимость в осушающем веществе. Монтаж в корпус в соответствии с этими вариантами реализации смягчает ограничения по материалам как в отношении осушающего вещества, так и в отношении уплотнения, тем самым обеспечивая более широкий выбор материалов, геометрий и возможностей снижения затрат. Тонкая пленка 820 может смягчить требования к герметичности, не только обеспечивая исключение задней панели, но и обеспечивая возможность введения любых дополнительных требований к влагонепроницаемости при монтаже в корпус на модульном уровне. В общем случае желательно поддерживать корпусную структуру как можно более тонкой, и корпусная структура 800, показанная на фиг.7, обеспечивает такую тонкую структуру.
Устранение необходимости в осушающем веществе также обеспечивает получение еще более тонкой корпусной структуры 800. В типичном случае корпусов, содержащих осушающие вещества, прогнозируемый срок службы устройства может зависеть от срока службы осушающего вещества. Когда осушающее вещество полностью израсходуется, дисплей на основе интерферометрических модуляторов выйдет из строя, так как в корпусную структуру попадет достаточно влаги для того, чтобы вызывать повреждение интерферометрического модулятора. Теоретический минимальный срок службы устройства определяется потоком водяного пара в корпус, а также количеством и типом осушающего вещества. В этой корпусной конструкции 800 интерферометрический модулятор 830 не выйдет из строя из-за израсходованного осушающего вещества, поскольку корпусная конструкция 800 согласно этому варианту реализации не содержит никакого осушающего вещества.
В еще одном варианте реализации тонкая пленка 820 не герметична и может быть проницаемой для дифторида ксенона (XeF2) или другого удаляющего газа, который реагирует с временным слоем 850, удаляя его и оставляя полость 840 между интерферометрическим модулятором 830 и тонкой пленкой 820. В соответствии с этим вариантом реализации некоторые подходящие материалы для тонкой пленки 820 включают в себя пористый глинозем и определенные аэрогели, но не ограничиваются ими. В этом варианте реализации не обязательно формировать в тонкой пленке 820 какие-либо отверстия, поскольку она проницаема для дифторида ксенона (XeF2) или другого удаляющего газа. После удаления временного слоя 850 поверх тонкой пленки 820 предпочтительно осаждают герметичный покрывающий слой 860 для герметичного уплотнения корпусной структуры 800. В этих вариантах реализации покрывающий слой 860 предпочтительно формируют из металла.
На фиг.13А и 13В представлены блок-схемы системы, иллюстрирующие один вариант реализации дисплейного устройства 2040. Дисплейное устройство (устройство с дисплеем) 2040 может быть, например, сотовым или мобильным телефоном. Однако те же самые или немного измененные компоненты дисплейного устройства 2040 могут служить иллюстрацией различных типов дисплейных устройств, таких как телевизионные приемники (телевизоры) и портативные медиаплееры.
Дисплейное устройство 2040 включает в себя корпус 2041, дисплей 2030, антенну 2043, динамик 2045, устройство 2048 ввода и микрофон 2046. Корпус 2041 в общем случае изготовлен посредством любого из множества различных процессов изготовления, которые известны специалистам в данной области техники, включая литьевое формование и вакуумное формование. Кроме того, корпус 2041 может быть выполнен из любого из множества различных материалов, включая, но не ограничиваясь ими, пластмассу, металл, стекло, резину и керамику или любую их комбинацию. В одном варианте реализации корпус 2041 включает в себя съемные части (не показаны), которые могут быть выполнены взаимозаменяемыми с другими съемными частями другого цвета либо содержащими другие логотипы, изображения или символы.
Дисплей 2030 примерного дисплейного устройства 2040 может быть любым из множества различных дисплеев, включая дисплей с двумя устойчивыми состояниями, описываемый здесь. В других вариантах реализации дисплей 2030 включает в себя дисплей с плоским экраном, такой как, например, плазменный, электролюминесцентный (EL), на органических светодиодах (OLED), ЖКД на нематических сильно скрученных жидких кристаллах (STN LCD) или ЖКД на тонкопленочных транзисторах (TFT LCD), как описано выше, либо дисплей с неплоским экраном, такой как электронно-лучевая трубка (ЭЛТ) или любое другое электровакуумное устройство, хорошо известное специалистам в данной области техники. Однако для целей описания настоящего варианта реализации дисплей 2030 включает в себя дисплей на основе интерферометрических модуляторов, как описано выше.
Компоненты примерного дисплейного устройства 2040 в одном варианте его реализации схематически изображены на фиг.13В. Иллюстрируемое примерное дисплейное устройство 2040 включает в себя корпус 2041 и может включать в себя дополнительные компоненты, по меньшей мере частично заключенные в этом корпусе. Например, в одном варианте реализации примерное дисплейное устройство 2040 включает в себя сетевой интерфейс 2027, который включает в себя антенну 2043, которая подключена к приемопередатчику 2047. Приемопередатчик 2047 соединен с процессором 2021, который соединен с аппаратным средством 2052 предварительного формирования сигнала. Аппаратное средство 2052 предварительного формирования сигнала может быть выполнено с возможностью предварительного формирования некоторого сигнала (например, фильтрации сигнала). Аппаратное средство 2052 предварительного формирования сигнала соединено с динамиком 2045 и микрофоном 2046. Процессор 2021 также соединен с устройством 2048 ввода и контроллером 2029 схемы возбуждения. Контроллер 2029 схемы возбуждения подключен к буферу 2028 кадров и к схеме 2022 возбуждения матрицы, которая в свою очередь подключена к матрице дисплея 2030. Источник 2050 питания обеспечивает всем компонентам электропитание, требуемое конструкцией конкретного примерного дисплейного устройства 2040.
Сетевой интерфейс 2027 включает в себя антенну 2043 и приемопередатчик 2047, так что примерное дисплейное устройство 2040 может осуществлять связь с одним или более устройствами по сети. В одном варианте реализации сетевой интерфейс 2027 также может быть наделен некоторыми функциональными возможностями обработки, чтобы сделать менее жесткими требования к процессору 2021. Антенна 2043 представляет собой любую антенну, известную специалистам в области передачи и приема сигналов. В одном варианте реализации антенна передает и принимает ВЧ-сигналы, соответствующие стандарту IEEE 802.11, включая IEEE 802.11(а), (b) или (g). В еще одном варианте реализации антенна передает и принимает ВЧ-сигналы, соответствующие стандарту BLUETOOTH. В случае сотового телефона антенна предназначена для приема сигналов, соответствующих стандартам множественного доступа с кодовым разделением каналов (МДКРК или CDMA), глобальной системы мобильной связи (GSM), усовершенствованной мобильной телефонной связи (УМТС или AMPS) или других известных сигналов, которые используются для связи в беспроводной сотовой телефонной сети. Приемопередатчик 2047 предварительно обрабатывает сигналы, принимаемые от антенны 2043, так что процессор 2021 может принимать их и проводить с ними дальнейшие манипуляции. Приемопередатчик 2047 также обрабатывает сигналы, принимаемые от процессора 2021, таким образом, что их можно передавать из примерного дисплейного устройства 2040 через антенну 2043.
В альтернативном варианте реализации приемопередатчик 2047 может быть заменен приемником. В еще одном альтернативном варианте реализации сетевой интерфейс 2027 может быть заменен источником изображений, который может хранить или генерировать данные изображений, посылаемые в процессор 2021. Например, источник изображений может быть цифровым видеодиском (DVD) или дисководом на жестких дисках, который содержит данные изображений, или модулем программного обеспечения, который генерирует данные изображений.
Процессор 2021 в общем случае управляет всей работой примерного дисплейного устройства 2040. Процессор 2021 принимает данные, такие как сжатые данные изображения, от сетевого интерфейса 2027 или источника изображения и обрабатывает эти данные в исходные данные изображения или в формат, который легко обрабатывается в исходные данные изображения. Затем процессор 2021 посылает обработанные данные в контроллер 2029 схемы возбуждения или в буфер 2028 кадров для хранения. Исходными данными обычно называют информацию, которая идентифицирует характеристики изображения для каждой точки в пределах изображения. Например, такие характеристики изображения могут включать в себя цвет, насыщенность и уровень серого.
В одном варианте реализации процессор 2021 включает в себя микроконтроллер, центральный процессор (ЦП) или логический блок для управления работой примерного дисплейного устройства 2040. Аппаратное средство 2052 предварительного формирования сигнала в общем случае включает в себя усилители и фильтры для передачи сигналов в динамик 2045 и для приема сигналов из микрофона 2046. Аппаратное средство 2052 предварительного формирования сигнала может представлять собой дискретные компоненты внутри примерного дисплейного устройства 2040 или может быть встроено внутрь процессора 2021 или других компонентов.
Контроллер 2029 схемы возбуждения берет исходные данные изображения, генерируемые процессором 2021, либо непосредственно из процессора 2021, либо из буфера 2028 кадров и надлежащим образом переформатирует исходные данные изображения для высокоскоростной передачи в схему 2022 возбуждения матрицы. В частности, контроллер 2029 схемы возбуждения переформатирует исходные данные изображения в поток данных, имеющий растрообразный формат, так что он имеет временной порядок, подходящий для сканирования по матрице дисплея 2030. Затем контроллер 2029 схемы возбуждения посылает отформатированную информацию в схему 2022 возбуждения матрицы. Хотя контролер 2029 возбуждения, такой как контроллер ЖКД, часто связан с процессором 2021 системы, таким как автономная интегральная схема (ИС), такие контроллеры могут быть воплощены многими путями. Они могут быть внедрены в процессор 2021 как аппаратные средства, внедрены в процессор 2021 как программные средства или полностью интегрированы в аппаратные средства схемы 2022 возбуждения матрицы.
Как правило, схема 2022 возбуждения матрицы принимает отформатированную информацию из контроллера 2029 схемы возбуждения и переформатирует видеоданные в параллельный набор сигналов определенной формы, которые много раз в секунду подаются к сотням, а иногда и тысячам выводов, идущих от двухкоординатной (x-y) матрицы пикселей дисплея.
В одном варианте реализации контроллер 2029 схемы возбуждения, схема 2022 возбуждения матрицы и матрица дисплея 2030 подходят для любого из типов описываемых здесь дисплеев. Например, в одном варианте реализации контроллер 2029 схемы возбуждения является контроллером обычного дисплея или контроллером дисплея с двумя устойчивыми состояниями (например, контроллером интерферометрических модуляторов). В еще одном варианте реализации схема 2022 возбуждения матрицы является обычной схемой возбуждения или схемой возбуждения дисплея с двумя устойчивыми состояниями (например, дисплея на основе интерферометрических модуляторов). В одном варианте реализации контроллер 2029 схемы возбуждения интегрирован со схемой 2022 возбуждения матрицы. Такой вариант реализации является обычным в системах с высокой степенью интеграции, таких как сотовые телефоны, наручные часы и другие дисплеи с малой площадью изображения. В еще одном варианте реализации матрица дисплея 2030 является матрицей типичного дисплея или матрицей дисплея с двумя устойчивыми состояниями (например, дисплея, включающего в себя матрицу интерферометрических модуляторов).
Устройство 2048 ввода позволяет пользователю управлять работой примерного дисплейного устройства 2040. В одном варианте реализации устройство 2048 ввода включает в себя клавиатуру, такую как клавиатура стандарта QWERTY или клавиатура телефона, кнопка, переключатель, сенсорный (т.е. чувствительный к нажатию) экран, нажимная или теплочувствительная мембрана. В одном варианте реализации микрофон 2046 является устройством ввода для примерного дисплейного устройства 2040. Когда микрофон 2046 используют для ввода данных в устройство, пользователь может выдавать голосовые (речевые) команды для управления операциями примерного дисплейного устройства 2040.
Источник 2050 питания может включать в себя множество различных устройств аккумулирования энергии, которые хорошо известны в данной области техники. Например, в одном варианте реализации источник 2050 питания представляет собой перезаряжаемую (аккумуляторную) батарею, такую как никель-кадмиевая батарея или литий-ионная батарея. В еще одном варианте реализации источник 2050 питания представляет собой возобновляемый источник энергии, конденсатор или солнечный элемент, включая пластмассовый солнечный элемент, и краску с функцией солнечного элемента. В еще одном варианте реализации источник 2050 питания выполнен с возможностью получения энергии от настенной розетки.
В некоторых воплощениях функциональные возможности программируемости управления заложены, как описано выше, в контроллере схемы возбуждения, который может находиться в нескольких местах в электронной системе дисплея. В некоторых случаях программируемость управления обеспечивается в схеме 2022 возбуждения матрицы. Специалисты в данной области техники поймут, что вышеописанную оптимизацию можно воплотить в любом количестве компонентов аппаратных средств и/или программных средств и в различных конфигурациях.
Хотя в вышеизложенном подробном описании проиллюстрированы, описаны и указаны новые признаки изобретения применительно к конкретным вариантам его реализации, следует понимать, что специалистами в данной области техники без отклонения от существа изобретения могут быть проделаны различные исключения, замены и изменения как по форме, так и по содержанию проиллюстрированного устройства или способа. Следует понимать, что настоящее изобретение можно воплотить в форме, которая не обладает всеми вышеуказанными признаками и преимуществами, поскольку некоторые признаки могут быть использованы или практически воплощены отдельно от других.

Claims (45)

1. Дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит:
прозрачную подложку;
интерферометрический модулятор, содержащий упомянутую матрицу подвижных зеркал, причем упомянутый интерферометрический модулятор выполнен с возможностью модулировать свет, пропускаемый сквозь упомянутую прозрачную подложку; и
заднюю тонкую пленку, уплотняющую упомянутую матрицу подвижных зеркал внутри корпуса между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует зазор.
2. Дисплейное устройство по п.1, в котором упомянутый зазор сформирован вследствие удаления временного слоя, расположенного между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой.
3. Дисплейное устройство по п.1, в котором задняя тонкая пленка содержит герметичный материал.
4. Дисплейное устройство по п.1, в котором тонкая пленка выполнена из никеля.
5. Дисплейное устройство по п.1, в котором тонкая пленка выполнена из алюминия.
6. Способ изготовления дисплея, содержащего матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, включающий в себя:
обеспечение наличия прозрачной подложки;
формирование интерферометрического модулятора на прозрачной подложке, причем упомянутый интерферометрический модулятор содержит упомянутую матрицу подвижных зеркал; и
осаждение задней тонкой пленки поверх матрицы подвижных зеркал и прозрачной подложки для уплотнения упомянутой матрицы подвижных зеркал между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует зазор.
7. Способ по п.6, дополнительно включающий в себя:
осаждение временного слоя на упомянутом интерферометрическом модуляторе перед осаждением упомянутой задней тонкой пленки; и
удаление упомянутого временного слоя после осаждения упомянутой задней тонкой пленки для обеспечения зазора между упомянутым интерферометрическим модулятором и упомянутой задней тонкой пленкой.
8. Способ по п.7, дополнительно включающий в себя формирование рисунка на упомянутой задней тонкой пленке для создания по меньшей мере одного отверстия в упомянутой задней тонкой пленке.
9. Способ по п.7, дополнительно включающий в себя формирование рисунка на упомянутой задней тонкой пленке для открытия части упомянутого временного слоя.
10. Способ по п.6, в котором заднюю тонкую пленку формируют из алюминия.
11. Способ по п.6, в котором заднюю тонкую пленку формируют из никеля.
12. Способ по п.6, в котором заднюю тонкую пленку формируют из наносимого центрифугированием стекла.
13. Способ по п.6, в котором заднюю тонкую пленку формируют из герметичного материала.
14. Способ по п.7, в котором временный слой формируют из наносимого центрифугированием стекла.
15. Дисплейное устройство на основе микроэлектромеханических систем, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит:
прозрачную подложку;
интерферометрический модулятор, сформированный на прозрачной подложке, причем этот интерферометрический модулятор содержит упомянутую матрицу подвижных зеркал; и
заднюю тонкую пленку, уплотненную на прозрачной подложке для инкапсуляции матрицы подвижных зеркал между прозрачной подложкой и задней тонкой пленкой, при этом между матрицей подвижных зеркал и задней тонкой пленкой существует полость.
16. Дисплейное устройство по п.15, в котором полость создана за счет удаления временного слоя между матрицей подвижных зеркал и задней тонкой пленкой.
17. Дисплейное устройство по п.15, в котором полость позволяет перемещаться одному или более подвижным зеркалам в матрице подвижных зеркал.
18. Дисплейное устройство по п.15, в котором задняя тонкая пленка содержит герметичный материал.
19. Дисплейное устройство по п.15, дополнительно содержащее покрывающий слой, осажденный поверх задней тонкой пленки.
20. Дисплейное устройство по п.19, в котором покрывающий слой содержит паронепроницаемый материал.
21. Дисплейное устройство по п.19, в котором покрывающий слой содержит полимер.
22. Дисплейное устройство по п.15, в котором задняя тонкая пленка содержит металл.
23. Дисплейное устройство по п.15, в котором задняя тонкая пленка содержит полимер.
24. Дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрически модулировать свет, причем это дисплейное устройство содержит:
прозрачную подложку;
интерферометрический модулятор, содержащий упомянутую матрицу подвижных зеркал, при этом упомянутый интерферометрический модулятор выполнен с возможностью модулировать свет, пропускаемый сквозь прозрачную подложку, и при этом упомянутый интерферометрический модулятор сформирован на этой прозрачной подложке;
заднюю тонкую пленку, осажденную поверх матрицы подвижных зеркал, причем эта задняя тонкая пленка уплотняет матрицу подвижных зеркал внутри корпуса между прозрачной подложкой и задней тонкой пленкой; и полость между матрицей подвижных зеркал и задней тонкой пленкой, причем эта полость образована за счет удаления временного материала.
25. Дисплейное устройство по п.24, в котором задняя тонкая пленка является герметичной.
26. Дисплейное устройство по п.24, в котором задняя тонкая пленка выполнена из металла.
27. Дисплейное устройство по п.24, в котором задняя тонкая пленка выполнена из полимера.
28. Дисплейное устройство, содержащее:
пропускающее средство для пропускания света сквозь него;
модулирующее средство, выполненное с возможностью модулировать свет, пропускаемый сквозь пропускающее средство, причем это модулирующее средство содержит матрицу подвижных зеркал; и
уплотняющее средство для уплотнения матрицы подвижных зеркал внутри корпуса между пропускающим средством и уплотняющим средством, при этом уплотняющее средство содержит заднюю тонкую пленку, и при этом между матрицей подвижных зеркал и уплотняющим средством существует полость.
29. Дисплейное устройство по п.28, в котором полость образована за счет удаления временного слоя между матрицей подвижных зеркал и уплотняющим средством.
30. Дисплейное устройство по п.28, в котором уплотняющее средство содержит герметичный материал.
31. Дисплейное устройство по п.28, в котором тонкая пленка является проницаемой для дифторида ксенона, а уплотняющее средство дополнительно содержит герметичный материал, сформированный поверх тонкой пленки.
32. Дисплейное устройство по п.1, дополнительно содержащее:
процессор, который электрически связан с упомянутой матрицей подвижных зеркал, причем упомянутый процессор выполнен с возможностью обрабатывать данные изображения; и
запоминающее устройство, электрически связанное с упомянутым процессором.
33. Дисплейное устройство по п.32, дополнительно содержащее:
схему возбуждения, выполненную с возможностью посылать по меньшей мере один сигнал в упомянутую матрицу подвижных зеркал.
34. Дисплейное устройство по п.33, дополнительно содержащее:
контроллер, выполненный с возможностью посылать по меньшей мере часть упомянутых данных изображения в упомянутую схему возбуждения.
35. Дисплейное устройство по п.32, дополнительно содержащее:
модуль источника изображения, выполненный с возможностью посылать упомянутые данные изображения в упомянутый процессор.
36. Дисплейное устройство по п.35, в котором упомянутый модуль источника изображения содержит по меньшей мере один из приемника, приемопередатчика и передатчика.
37. Дисплейное устройство по п.32, дополнительно содержащее:
устройство ввода, выполненное с возможностью принимать вводимые данные и передавать упомянутые вводимые данные в упомянутый процессор.
38. Дисплейное устройство, содержащее матрицу подвижных зеркал, выполненных с возможностью интерферометрчески модулировать свет, причем это дисплейное устройство изготовлено способом, включающим в себя:
обеспечение наличия прозрачной подложки;
формирование интерферометрического модулятора, содержащего упомянутую матрицу подвижных зеркал и выполненного с возможностью модулировать свет, пропускаемый сквозь упомянутую прозрачную подложку, на упомянутой прозрачной подложке; и
осаждение задней тонкой пленки для уплотнения упомянутой матрицы подвижных зеркал между упомянутой прозрачной подложкой и упомянутой задней тонкой пленкой, при этом между упомянутой матрицей подвижных зеркал и упомянутой задней тонкой пленкой существует полость.
39. Дисплейное устройство по п.38, в котором полость создана за счет удаления временного слоя между матрицей подвижных зеркал и задней тонкой пленкой.
40. Дисплейное устройство по п.38, в котором задняя тонкая пленка содержит герметичный материал.
41. Дисплейное устройство по п.38, в котором задняя тонкая пленка является проницаемой для дифторида ксенона, и эта задняя тонкая пленка дополнительно содержит герметичный материал, сформированный поверх тонкой пленки.
42. Дисплейное устройство по п.38, в котором задняя тонкая пленка содержит металл.
43. Дисплейное устройство по п.42, в котором металл содержит никель.
44. Дисплейное устройство по п.42, в котором металл содержит алюминий.
45. Дисплейное устройство по п.1, причем это дисплейное устройство содержит сотовый телефон.
RU2005129955/28A 2004-09-27 2005-09-26 Способ и устройство для монтажа подложки в корпус RU2374171C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61331804P 2004-09-27 2004-09-27
US60/613,318 2004-09-27
US11/045,738 US7424198B2 (en) 2004-09-27 2005-01-28 Method and device for packaging a substrate
US11/045,738 2005-01-28

Publications (2)

Publication Number Publication Date
RU2005129955A RU2005129955A (ru) 2007-04-10
RU2374171C2 true RU2374171C2 (ru) 2009-11-27

Family

ID=35462233

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005129955/28A RU2374171C2 (ru) 2004-09-27 2005-09-26 Способ и устройство для монтажа подложки в корпус

Country Status (13)

Country Link
US (3) US7424198B2 (ru)
EP (1) EP1640330A3 (ru)
JP (3) JP2006099057A (ru)
KR (2) KR101162593B1 (ru)
CN (1) CN102141679A (ru)
AU (1) AU2005203257A1 (ru)
BR (1) BRPI0503853A (ru)
CA (1) CA2514348A1 (ru)
MX (1) MXPA05010095A (ru)
MY (1) MY139484A (ru)
RU (1) RU2374171C2 (ru)
SG (1) SG121045A1 (ru)
TW (1) TWI353335B (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424198B2 (en) 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US8124434B2 (en) * 2004-09-27 2012-02-28 Qualcomm Mems Technologies, Inc. Method and system for packaging a display
JP2007019107A (ja) * 2005-07-05 2007-01-25 Shinko Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
WO2007120885A2 (en) * 2006-04-13 2007-10-25 Qualcomm Mems Technologies, Inc. Mems devices and processes for packaging such devices
US7556981B2 (en) 2006-12-29 2009-07-07 Qualcomm Mems Technologies, Inc. Switches for shorting during MEMS etch release
US8929741B2 (en) * 2007-07-30 2015-01-06 Hewlett-Packard Development Company, L.P. Optical interconnect
US7782522B2 (en) 2008-07-17 2010-08-24 Qualcomm Mems Technologies, Inc. Encapsulation methods for interferometric modulator and MEMS devices
US8363380B2 (en) 2009-05-28 2013-01-29 Qualcomm Incorporated MEMS varactors
US8379392B2 (en) * 2009-10-23 2013-02-19 Qualcomm Mems Technologies, Inc. Light-based sealing and device packaging
FR2955999B1 (fr) * 2010-02-04 2012-04-20 Commissariat Energie Atomique Procede d'encapsulation d'un microcomposant par un capot renforce mecaniquement
JP6132762B2 (ja) 2010-04-16 2017-05-24 フレックス ライティング 2,エルエルシー フィルムベースのライトガイドを備える前面照射デバイス
CA2796519A1 (en) 2010-04-16 2011-10-20 Flex Lighting Ii, Llc Illumination device comprising a film-based lightguide
US20120162232A1 (en) * 2010-12-22 2012-06-28 Qualcomm Mems Technologies, Inc. Method of fabrication and resultant encapsulated electromechanical device
US20130057557A1 (en) * 2011-09-07 2013-03-07 Qualcomm Mems Technologies, Inc. High area stacked layered metallic structures and related methods
US20130100065A1 (en) * 2011-10-21 2013-04-25 Qualcomm Mems Technologies, Inc. Electromechanical systems variable capacitance device
WO2015199143A1 (ja) * 2014-06-24 2015-12-30 国立大学法人愛媛大学 人工膝関節
US20160140685A1 (en) * 2014-11-17 2016-05-19 Pixtronix, Inc. Display including sensors
CN105185922B (zh) * 2015-06-12 2018-09-21 合肥京东方光电科技有限公司 一种封装结构及封装方法、oled装置
CN105741774B (zh) * 2016-01-28 2018-03-20 京东方科技集团股份有限公司 一种图像处理方法及其装置、显示装置
US10431510B2 (en) * 2017-10-09 2019-10-01 Global Circuit Innovations, Inc. Hermetic lid seal printing method

Family Cites Families (370)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534846A (en) 1946-06-20 1950-12-19 Emi Ltd Color filter
DE1288651B (de) 1963-06-28 1969-02-06 Siemens Ag Anordnung elektrischer Dipole fuer Wellenlaengen unterhalb 1 mm und Verfahren zur Herstellung einer derartigen Anordnung
FR1603131A (ru) * 1968-07-05 1971-03-22
US3813265A (en) 1970-02-16 1974-05-28 A Marks Electro-optical dipolar material
US3653741A (en) * 1970-02-16 1972-04-04 Alvin M Marks Electro-optical dipolar material
DE2336930A1 (de) 1973-07-20 1975-02-06 Battelle Institut E V Infrarot-modulator (ii.)
US4036360A (en) 1975-11-12 1977-07-19 Graham Magnetics Incorporated Package having dessicant composition
US4074480A (en) * 1976-02-12 1978-02-21 Burton Henry W G Kit for converting single-glazed window to double-glazed window
US4099854A (en) 1976-10-12 1978-07-11 The Unites States Of America As Represented By The Secretary Of The Navy Optical notch filter utilizing electric dipole resonance absorption
DE2802728C2 (de) 1977-01-24 1984-03-15 Sharp K.K., Osaka Elektrochrome Anzeigezelle
US4389096A (en) 1977-12-27 1983-06-21 Matsushita Electric Industrial Co., Ltd. Image display apparatus of liquid crystal valve projection type
US4663083A (en) 1978-05-26 1987-05-05 Marks Alvin M Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics
US4445050A (en) * 1981-12-15 1984-04-24 Marks Alvin M Device for conversion of light power to electric power
US4431691A (en) * 1979-01-29 1984-02-14 Tremco, Incorporated Dimensionally stable sealant and spacer strip and composite structures comprising the same
US4228437A (en) 1979-06-26 1980-10-14 The United States Of America As Represented By The Secretary Of The Navy Wideband polarization-transforming electromagnetic mirror
NL8001281A (nl) 1980-03-04 1981-10-01 Philips Nv Weergeefinrichting.
CH633902A5 (fr) 1980-03-11 1982-12-31 Centre Electron Horloger Dispositif de modulation de lumiere.
US4377324A (en) * 1980-08-04 1983-03-22 Honeywell Inc. Graded index Fabry-Perot optical filter device
US4441791A (en) * 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
FR2506026A1 (fr) 1981-05-18 1982-11-19 Radant Etudes Procede et dispositif pour l'analyse d'un faisceau de rayonnement d'ondes electromagnetiques hyperfrequence
NL8103377A (nl) * 1981-07-16 1983-02-16 Philips Nv Weergeefinrichting.
US4571603A (en) * 1981-11-03 1986-02-18 Texas Instruments Incorporated Deformable mirror electrostatic printer
NL8200354A (nl) 1982-02-01 1983-09-01 Philips Nv Passieve weergeefinrichting.
US4500171A (en) * 1982-06-02 1985-02-19 Texas Instruments Incorporated Process for plastic LCD fill hole sealing
US4482213A (en) 1982-11-23 1984-11-13 Texas Instruments Incorporated Perimeter seal reinforcement holes for plastic LCDs
US4566935A (en) * 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4710732A (en) 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US5096279A (en) * 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US4615595A (en) 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US5172262A (en) 1985-10-30 1992-12-15 Texas Instruments Incorporated Spatial light modulator and method
US5835255A (en) * 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
GB8610129D0 (en) 1986-04-25 1986-05-29 Secr Defence Electro-optical device
US4748366A (en) 1986-09-02 1988-05-31 Taylor George W Novel uses of piezoelectric materials for creating optical effects
US4786128A (en) 1986-12-02 1988-11-22 Quantum Diagnostics, Ltd. Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US4977009A (en) 1987-12-16 1990-12-11 Ford Motor Company Composite polymer/desiccant coatings for IC encapsulation
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US4856863A (en) 1988-06-22 1989-08-15 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
US4982184A (en) * 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
KR100202246B1 (ko) * 1989-02-27 1999-06-15 윌리엄 비. 켐플러 디지탈화 비디오 시스템을 위한 장치 및 방법
US5206629A (en) * 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5287096A (en) * 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5170156A (en) 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5079544A (en) * 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5162787A (en) 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5192946A (en) * 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5214420A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5214419A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5272473A (en) 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5446479A (en) 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5022745A (en) 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5381253A (en) * 1991-11-14 1995-01-10 Board Of Regents Of University Of Colorado Chiral smectic liquid crystal optical modulators having variable retardation
US5124834A (en) 1989-11-16 1992-06-23 General Electric Company Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same
US5037173A (en) 1989-11-22 1991-08-06 Texas Instruments Incorporated Optical interconnection network
US5500635A (en) * 1990-02-20 1996-03-19 Mott; Jonathan C. Products incorporating piezoelectric material
CH682523A5 (fr) * 1990-04-20 1993-09-30 Suisse Electronique Microtech Dispositif de modulation de lumière à adressage matriciel.
GB9012099D0 (en) 1990-05-31 1990-07-18 Kodak Ltd Optical article for multicolour imaging
US5018256A (en) 1990-06-29 1991-05-28 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5099353A (en) * 1990-06-29 1992-03-24 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
DE69113150T2 (de) * 1990-06-29 1996-04-04 Texas Instruments Inc Deformierbare Spiegelvorrichtung mit aktualisiertem Raster.
US5083857A (en) * 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5142405A (en) 1990-06-29 1992-08-25 Texas Instruments Incorporated Bistable dmd addressing circuit and method
US5216537A (en) 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5304419A (en) * 1990-07-06 1994-04-19 Alpha Fry Ltd Moisture and particle getter for enclosures
US5153771A (en) 1990-07-18 1992-10-06 Northrop Corporation Coherent light modulation and detector
US5526688A (en) 1990-10-12 1996-06-18 Texas Instruments Incorporated Digital flexure beam accelerometer and method
US5192395A (en) * 1990-10-12 1993-03-09 Texas Instruments Incorporated Method of making a digital flexure beam accelerometer
US5044736A (en) 1990-11-06 1991-09-03 Motorola, Inc. Configurable optical filter or display
US5331454A (en) 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5602671A (en) * 1990-11-13 1997-02-11 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
US5233459A (en) 1991-03-06 1993-08-03 Massachusetts Institute Of Technology Electric display device
CA2063744C (en) 1991-04-01 2002-10-08 Paul M. Urbanus Digital micromirror device architecture and timing for use in a pulse-width modulated display system
US5162767A (en) 1991-04-03 1992-11-10 Aura Systems, Inc. High efficiency solenoid
US5142414A (en) 1991-04-22 1992-08-25 Koehler Dale R Electrically actuatable temporal tristimulus-color device
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
US5268533A (en) 1991-05-03 1993-12-07 Hughes Aircraft Company Pre-stressed laminated lid for electronic circuit package
US5179274A (en) * 1991-07-12 1993-01-12 Texas Instruments Incorporated Method for controlling operation of optical systems and devices
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
US5254980A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated DMD display system controller
US5563398A (en) 1991-10-31 1996-10-08 Texas Instruments Incorporated Spatial light modulator scanning system
CA2081753C (en) 1991-11-22 2002-08-06 Jeffrey B. Sampsell Dmd scanner
US5233385A (en) 1991-12-18 1993-08-03 Texas Instruments Incorporated White light enhanced color field sequential projection
US5233456A (en) 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
US5244707A (en) 1992-01-10 1993-09-14 Shores A Andrew Enclosure for electronic devices
CA2087625C (en) 1992-01-23 2006-12-12 William E. Nelson Non-systolic time delay and integration printing
US5296950A (en) * 1992-01-31 1994-03-22 Texas Instruments Incorporated Optical signal free-space conversion board
US5231532A (en) 1992-02-05 1993-07-27 Texas Instruments Incorporated Switchable resonant filter for optical radiation
DE69310974T2 (de) 1992-03-25 1997-11-06 Texas Instruments Inc Eingebautes optisches Eichsystem
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
US5401983A (en) * 1992-04-08 1995-03-28 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
US5311360A (en) 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
JPH0651250A (ja) * 1992-05-20 1994-02-25 Texas Instr Inc <Ti> モノリシックな空間的光変調器およびメモリのパッケージ
JPH06214169A (ja) * 1992-06-08 1994-08-05 Texas Instr Inc <Ti> 制御可能な光学的周期的表面フィルタ
US5818095A (en) * 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
US5327286A (en) 1992-08-31 1994-07-05 Texas Instruments Incorporated Real time optical correlation system
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
US5324888A (en) 1992-10-13 1994-06-28 Olin Corporation Metal electronic package with reduced seal width
US5659374A (en) 1992-10-23 1997-08-19 Texas Instruments Incorporated Method of repairing defective pixels
US5322161A (en) * 1992-11-30 1994-06-21 United States Surgical Corporation Clear package for bioabsorbable articles
EP0610665B1 (en) 1993-01-11 1997-09-10 Texas Instruments Incorporated Pixel control circuitry for spatial light modulator
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5461411A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Process and architecture for digital micromirror printer
DE4317274A1 (de) * 1993-05-25 1994-12-01 Bosch Gmbh Robert Verfahren zur Herstellung oberflächen-mikromechanischer Strukturen
US5559358A (en) * 1993-05-25 1996-09-24 Honeywell Inc. Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
US5489952A (en) * 1993-07-14 1996-02-06 Texas Instruments Incorporated Method and device for multi-format television
US5365283A (en) 1993-07-19 1994-11-15 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
US5526172A (en) 1993-07-27 1996-06-11 Texas Instruments Incorporated Microminiature, monolithic, variable electrical signal processor and apparatus including same
US5581272A (en) 1993-08-25 1996-12-03 Texas Instruments Incorporated Signal generator for controlling a spatial light modulator
FR2710161B1 (fr) 1993-09-13 1995-11-24 Suisse Electronique Microtech Réseau miniature d'obturateurs de lumière.
US5457493A (en) 1993-09-15 1995-10-10 Texas Instruments Incorporated Digital micro-mirror based image simulation system
US5526051A (en) 1993-10-27 1996-06-11 Texas Instruments Incorporated Digital television system
US5497197A (en) * 1993-11-04 1996-03-05 Texas Instruments Incorporated System and method for packaging data into video processor
US5459602A (en) 1993-10-29 1995-10-17 Texas Instruments Micro-mechanical optical shutter
US5452024A (en) 1993-11-01 1995-09-19 Texas Instruments Incorporated DMD display system
US5517347A (en) 1993-12-01 1996-05-14 Texas Instruments Incorporated Direct view deformable mirror device
CA2137059C (en) 1993-12-03 2004-11-23 Texas Instruments Incorporated Dmd architecture to improve horizontal resolution
US5583688A (en) 1993-12-21 1996-12-10 Texas Instruments Incorporated Multi-level digital micromirror device
US5448314A (en) 1994-01-07 1995-09-05 Texas Instruments Method and apparatus for sequential color imaging
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5444566A (en) 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
US5665997A (en) 1994-03-31 1997-09-09 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US6040937A (en) * 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US7460291B2 (en) * 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US20010003487A1 (en) 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US6710908B2 (en) * 1994-05-05 2004-03-23 Iridigm Display Corporation Controlling micro-electro-mechanical cavities
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
EP0686934B1 (en) 1994-05-17 2001-09-26 Texas Instruments Incorporated Display device with pointer position detection
US5497172A (en) * 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
US5673106A (en) 1994-06-17 1997-09-30 Texas Instruments Incorporated Printing system with self-monitoring and adjustment
US6026690A (en) * 1994-06-20 2000-02-22 Sony Corporation Vibration sensor using the capacitance between a substrate and a flexible diaphragm
US5454906A (en) 1994-06-21 1995-10-03 Texas Instruments Inc. Method of providing sacrificial spacer for micro-mechanical devices
US5499062A (en) * 1994-06-23 1996-03-12 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
US5636052A (en) 1994-07-29 1997-06-03 Lucent Technologies Inc. Direct view display based on a micromechanical modulation
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US5703710A (en) 1994-09-09 1997-12-30 Deacon Research Method for manipulating optical energy using poled structure
US6053617A (en) 1994-09-23 2000-04-25 Texas Instruments Incorporated Manufacture method for micromechanical devices
US5619059A (en) * 1994-09-28 1997-04-08 National Research Council Of Canada Color deformable mirror device having optical thin film interference color coatings
US5650881A (en) 1994-11-02 1997-07-22 Texas Instruments Incorporated Support post architecture for micromechanical devices
US5552924A (en) 1994-11-14 1996-09-03 Texas Instruments Incorporated Micromechanical device having an improved beam
US5610624A (en) * 1994-11-30 1997-03-11 Texas Instruments Incorporated Spatial light modulator with reduced possibility of an on state defect
JPH08162006A (ja) * 1994-11-30 1996-06-21 Canon Inc 電子放出素子、電子源、及びそれを用いた画像形成装置
TW378276B (en) * 1995-01-13 2000-01-01 Seiko Epson Corp Liquid crystal display device and its fabrication method
JPH08263208A (ja) 1995-02-24 1996-10-11 Whitaker Corp:The 弾性波タッチパネル及びその製造方法
US5567334A (en) 1995-02-27 1996-10-22 Texas Instruments Incorporated Method for creating a digital micromirror device using an aluminum hard mask
US5610438A (en) * 1995-03-08 1997-03-11 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
US5535047A (en) 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5784190A (en) 1995-04-27 1998-07-21 John M. Baker Electro-micro-mechanical shutters on transparent substrates
US6046840A (en) 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US6969635B2 (en) * 2000-12-07 2005-11-29 Reflectivity, Inc. Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US5837562A (en) * 1995-07-07 1998-11-17 The Charles Stark Draper Laboratory, Inc. Process for bonding a shell to a substrate for packaging a semiconductor
US5739945A (en) * 1995-09-29 1998-04-14 Tayebati; Parviz Electrically tunable optical filter utilizing a deformable multi-layer mirror
US7907319B2 (en) * 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US5999306A (en) 1995-12-01 1999-12-07 Seiko Epson Corporation Method of manufacturing spatial light modulator and electronic device employing it
US5889568A (en) 1995-12-12 1999-03-30 Rainbow Displays Inc. Tiled flat panel displays
US5825528A (en) 1995-12-26 1998-10-20 Lucent Technologies Inc. Phase-mismatched fabry-perot cavity micromechanical modulator
JP3799092B2 (ja) * 1995-12-29 2006-07-19 アジレント・テクノロジーズ・インク 光変調装置及びディスプレイ装置
US5771321A (en) 1996-01-04 1998-06-23 Massachusetts Institute Of Technology Micromechanical optical switch and flat panel display
US5784166A (en) * 1996-04-03 1998-07-21 Nikon Corporation Position resolution of an interferometrially controlled moving stage by regression analysis
US5936758A (en) 1996-04-12 1999-08-10 Texas Instruments Incorporated Method of passivating a micromechanical device within a hermetic package
US5939785A (en) 1996-04-12 1999-08-17 Texas Instruments Incorporated Micromechanical device including time-release passivant
US5815141A (en) 1996-04-12 1998-09-29 Elo Touch Systems, Inc. Resistive touchscreen having multiple selectable regions for pressure discrimination
EP0802125B1 (en) 1996-04-17 2001-06-27 Mitsubishi Gas Chemical Company, Inc. Package to hold a product under controlled environmental conditions, in particular for a glass item
US5710656A (en) * 1996-07-30 1998-01-20 Lucent Technologies Inc. Micromechanical optical modulator having a reduced-mass composite membrane
US5789848A (en) 1996-08-02 1998-08-04 Motorola, Inc. Field emission display having a cathode reinforcement member
US5912758A (en) 1996-09-11 1999-06-15 Texas Instruments Incorporated Bipolar reset for spatial light modulators
US5771116A (en) 1996-10-21 1998-06-23 Texas Instruments Incorporated Multiple bias level reset waveform for enhanced DMD control
US5875011A (en) * 1997-04-10 1999-02-23 International Business Machines Corporation Liquid crystal display tile interconnected to a tile carrier and method
US6037173A (en) * 1997-04-11 2000-03-14 Millennium Pharmaceuticals, Inc. Isolated nucleic acid encoding TRBP
EP0877272B1 (en) * 1997-05-08 2002-07-31 Texas Instruments Incorporated Improvements in or relating to spatial light modulators
US5777705A (en) 1997-05-30 1998-07-07 International Business Machines Corporation Wire bond attachment of a liquid crystal display tile to a tile carrier
US6480177B2 (en) 1997-06-04 2002-11-12 Texas Instruments Incorporated Blocked stepped address voltage for micromechanical devices
GB9724077D0 (en) 1997-11-15 1998-01-14 Dow Corning Sa Insulating glass units
US6028690A (en) 1997-11-26 2000-02-22 Texas Instruments Incorporated Reduced micromirror mirror gaps for improved contrast ratio
US6180428B1 (en) * 1997-12-12 2001-01-30 Xerox Corporation Monolithic scanning light emitting devices using micromachining
JP2876530B1 (ja) 1998-02-24 1999-03-31 東京工業大学長 固着した可動部の修復手段を具える超小型素子およびその製造方法
US6195196B1 (en) 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
EP0951068A1 (en) 1998-04-17 1999-10-20 Interuniversitair Micro-Elektronica Centrum Vzw Method of fabrication of a microstructure having an inside cavity
US6160833A (en) 1998-05-06 2000-12-12 Xerox Corporation Blue vertical cavity surface emitting laser
US6282010B1 (en) 1998-05-14 2001-08-28 Texas Instruments Incorporated Anti-reflective coatings for spatial light modulators
US6323982B1 (en) 1998-05-22 2001-11-27 Texas Instruments Incorporated Yield superstructure for digital micromirror device
US6147790A (en) 1998-06-02 2000-11-14 Texas Instruments Incorporated Spring-ring micromechanical device
US6430332B1 (en) 1998-06-05 2002-08-06 Fiber, Llc Optical switching apparatus
JP2000003783A (ja) 1998-06-12 2000-01-07 Tdk Corp 有機el表示装置
US6496122B2 (en) 1998-06-26 2002-12-17 Sharp Laboratories Of America, Inc. Image display and remote control system capable of displaying two distinct images
US6303986B1 (en) 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6113239A (en) 1998-09-04 2000-09-05 Sharp Laboratories Of America, Inc. Projection display system for reflective light valves
GB9819817D0 (en) * 1998-09-12 1998-11-04 Secr Defence Improvements relating to micro-machining
US6365229B1 (en) 1998-09-30 2002-04-02 Texas Instruments Incorporated Surface treatment material deposition and recapture
US6843936B1 (en) 1998-10-22 2005-01-18 Texas Instruments Incorporated Getter for enhanced micromechanical device performance
US6004179A (en) 1998-10-26 1999-12-21 Micron Technology, Inc. Methods of fabricating flat panel evacuated displays
GB9827965D0 (en) 1998-12-19 1999-02-10 Secr Defence Assembly of cells having spaced opposed substrates
GB9827900D0 (en) 1998-12-19 1999-02-10 Secr Defence Spacers for cells having spaced opposed substrates
US6245194B1 (en) 1998-12-21 2001-06-12 Sikorsky Aircraft Corporation Processed fiber for emission of energy into a medium and method therefor
JP3180794B2 (ja) * 1999-02-19 2001-06-25 日本電気株式会社 半導体装置及びその製造方法
WO2000052674A1 (en) * 1999-03-04 2000-09-08 Flixel Ltd. Micro-mechanical flat panel display with touch sensitive input and vibration source
US6606175B1 (en) 1999-03-16 2003-08-12 Sharp Laboratories Of America, Inc. Multi-segment light-emitting diode
KR20000071852A (ko) * 1999-04-30 2000-11-25 모리시타 요이찌 액정표시소자 및 그 제조방법
US6201633B1 (en) * 1999-06-07 2001-03-13 Xerox Corporation Micro-electromechanical based bistable color display sheets
US6862029B1 (en) * 1999-07-27 2005-03-01 Hewlett-Packard Development Company, L.P. Color display system
US6833668B1 (en) * 1999-09-29 2004-12-21 Sanyo Electric Co., Ltd. Electroluminescence display device having a desiccant
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6549338B1 (en) 1999-11-12 2003-04-15 Texas Instruments Incorporated Bandpass filter to reduce thermal impact of dichroic light shift
US6472739B1 (en) 1999-11-15 2002-10-29 Jds Uniphase Corporation Encapsulated microelectromechanical (MEMS) devices
US6552840B2 (en) 1999-12-03 2003-04-22 Texas Instruments Incorporated Electrostatic efficiency of micromechanical devices
DE69933380T2 (de) 1999-12-15 2007-08-02 Asulab S.A. Verfahren zum hermetischen Einkapseln von Mikrosystemen vor Ort
US6548908B2 (en) 1999-12-27 2003-04-15 Xerox Corporation Structure and method for planar lateral oxidation in passive devices
US6545335B1 (en) 1999-12-27 2003-04-08 Xerox Corporation Structure and method for electrical isolation of optoelectronic integrated circuits
US6583921B2 (en) 1999-12-28 2003-06-24 Texas Instruments Incorporated Micromechanical device and method for non-contacting edge-coupled operation
US6466358B2 (en) 1999-12-30 2002-10-15 Texas Instruments Incorporated Analog pulse width modulation cell for digital micromechanical device
US6197610B1 (en) 2000-01-14 2001-03-06 Ball Semiconductor, Inc. Method of making small gaps for small electrical/mechanical devices
DE10004964B4 (de) 2000-02-04 2010-07-29 Robert Bosch Gmbh Mikromechanische Kappenstruktur
GB2359216B (en) * 2000-02-11 2003-10-29 Purple Voice Ltd A method of synchronising the replay of audio data in a network of computers
JP2001318324A (ja) 2000-05-11 2001-11-16 Seiko Epson Corp 光スイッチングユニット、その製造方法および画像表示装置
US6384473B1 (en) * 2000-05-16 2002-05-07 Sandia Corporation Microelectronic device package with an integral window
US6661084B1 (en) 2000-05-16 2003-12-09 Sandia Corporation Single level microelectronic device package with an integral window
US6379988B1 (en) 2000-05-16 2002-04-30 Sandia Corporation Pre-release plastic packaging of MEMS and IMEMS devices
US7008812B1 (en) * 2000-05-30 2006-03-07 Ic Mechanics, Inc. Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation
JP2001351998A (ja) 2000-06-09 2001-12-21 Kyocera Corp 半導体素子収納用パッケージ
US6473274B1 (en) 2000-06-28 2002-10-29 Texas Instruments Incorporated Symmetrical microactuator structure for use in mass data storage devices, or the like
US6686653B2 (en) 2000-06-28 2004-02-03 Institut National D'optique Miniature microdevice package and process for making thereof
EP1170618B1 (en) 2000-07-03 2010-06-16 Sony Corporation Optical multilayer structure, optical switching device, and image display
US6853129B1 (en) * 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device
US6778155B2 (en) 2000-07-31 2004-08-17 Texas Instruments Incorporated Display operation with inserted block clears
TWI251101B (en) 2000-08-02 2006-03-11 Allied Material Technology Cor A liquid crystal display and a method for fabricating the same
JP2002062492A (ja) 2000-08-15 2002-02-28 Canon Inc 干渉性変調素子を用いた投影光学系
JP2002062491A (ja) 2000-08-15 2002-02-28 Canon Inc 干渉性変調素子を用いた撮像光学系及び光量制御装置
US6643069B2 (en) 2000-08-31 2003-11-04 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
US6466354B1 (en) * 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6426461B1 (en) 2000-09-21 2002-07-30 Delphi Technologies, Inc. Enclosure for electronic components
DE10049288B4 (de) 2000-10-04 2004-07-15 Infineon Technologies Ag Elektronische Bauteile und eine Folienband zum Verpacken von Bonddrahtverbindungen elektronischer Bauteile sowie deren Herstellungsverfahren
CZ20031012A3 (en) 2000-10-20 2004-04-14 Pfizer Products Inc. Alpha-aryl ethanolamines and their use as beta-3 adrenergic receptor agonists
US6859218B1 (en) * 2000-11-07 2005-02-22 Hewlett-Packard Development Company, L.P. Electronic display devices and methods
US7178927B2 (en) * 2000-11-14 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent device having drying agent
US6664779B2 (en) 2000-11-16 2003-12-16 Texas Instruments Incorporated Package with environmental control material carrier
US6762868B2 (en) 2000-11-16 2004-07-13 Texas Instruments Incorporated Electro-optical package with drop-in aperture
US20020075551A1 (en) 2000-11-29 2002-06-20 Onix Microsystems, Inc Enclosure for MEMS apparatus and method of using the same
US6906847B2 (en) 2000-12-07 2005-06-14 Reflectivity, Inc Spatial light modulators with light blocking/absorbing areas
US7307775B2 (en) 2000-12-07 2007-12-11 Texas Instruments Incorporated Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US6775174B2 (en) 2000-12-28 2004-08-10 Texas Instruments Incorporated Memory architecture for micromirror cell
US6625047B2 (en) 2000-12-31 2003-09-23 Texas Instruments Incorporated Micromechanical memory element
JP2002296519A (ja) 2001-03-29 2002-10-09 Ricoh Co Ltd 光変調装置及びその光変調装置の製造方法並びにその光変調装置を具備する画像形成装置及びその光変調装置を具備する画像投影表示装置
JP2002258310A (ja) 2001-02-28 2002-09-11 Kyocera Corp 液晶表示装置および表示機器
US6455927B1 (en) 2001-03-12 2002-09-24 Amkor Technology, Inc. Micromirror device package
US6630786B2 (en) 2001-03-30 2003-10-07 Candescent Technologies Corporation Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
JP2002311843A (ja) * 2001-04-17 2002-10-25 Dainippon Printing Co Ltd 電磁波遮蔽用部材及びディスプレイ
JP2002312066A (ja) 2001-04-17 2002-10-25 Hunet Inc 着脱自在な増設ディスプレイを備えた携帯用コンピュータ及び増設用ディスプレイモジュール
KR100387239B1 (ko) 2001-04-26 2003-06-12 삼성전자주식회사 Mems 릴레이 및 그 제조방법
US6465355B1 (en) 2001-04-27 2002-10-15 Hewlett-Packard Company Method of fabricating suspended microstructures
JP2002328313A (ja) 2001-05-01 2002-11-15 Sony Corp 光スイッチング素子およびその製造方法、並びに画像表示装置
US6706316B2 (en) 2001-05-08 2004-03-16 Eastman Kodak Company Ultrasonically sealing the cover plate to provide a hermetic enclosure for OLED displays
US6558820B2 (en) 2001-05-10 2003-05-06 Eastman Kodak Company High contrast light-emitting diode devices
US6822628B2 (en) 2001-06-28 2004-11-23 Candescent Intellectual Property Services, Inc. Methods and systems for compensating row-to-row brightness variations of a field emission display
US6862022B2 (en) * 2001-07-20 2005-03-01 Hewlett-Packard Development Company, L.P. Method and system for automatically selecting a vertical refresh rate for a video display monitor
US6922499B2 (en) 2001-07-24 2005-07-26 Lucent Technologies Inc. MEMS driver circuit arrangement
US6589625B1 (en) 2001-08-01 2003-07-08 Iridigm Display Corporation Hermetic seal and method to create the same
US6600201B2 (en) 2001-08-03 2003-07-29 Hewlett-Packard Development Company, L.P. Systems with high density packing of micromachines
US6632698B2 (en) 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
US6778046B2 (en) 2001-09-17 2004-08-17 Magfusion Inc. Latching micro magnetic relay packages and methods of packaging
US6590157B2 (en) 2001-09-21 2003-07-08 Eastman Kodak Company Sealing structure for highly moisture-sensitive electronic device element and method for fabrication
US6893574B2 (en) 2001-10-23 2005-05-17 Analog Devices Inc MEMS capping method and apparatus
US6870581B2 (en) * 2001-10-30 2005-03-22 Sharp Laboratories Of America, Inc. Single panel color video projection display using reflective banded color falling-raster illumination
US7050835B2 (en) 2001-12-12 2006-05-23 Universal Display Corporation Intelligent multi-media display communication system
US6776538B2 (en) 2001-12-12 2004-08-17 Axsun Technologies, Inc. MEMS tunable optical filter system with moisture getter for frequency stability
JP2003185496A (ja) 2001-12-13 2003-07-03 Mitsubishi Electric Corp 赤外線検出アレイおよびその製造方法
JP3755460B2 (ja) 2001-12-26 2006-03-15 ソニー株式会社 静電駆動型mems素子とその製造方法、光学mems素子、光変調素子、glvデバイス、レーザディスプレイ、及びmems装置
DE10200869A1 (de) 2002-01-11 2003-07-31 Infineon Technologies Ag Verfahren zum Erzeugen einer Schutzabdeckung für ein Bauelement
US7077662B2 (en) * 2002-01-15 2006-07-18 Tribotek, Inc. Contact woven connectors
JP4168757B2 (ja) * 2002-02-01 2008-10-22 松下電器産業株式会社 フィルタ
JP2003228302A (ja) * 2002-02-04 2003-08-15 Toshiba Electronic Engineering Corp 表示装置及びその製造方法
JP2003227961A (ja) * 2002-02-06 2003-08-15 Nippon Sheet Glass Co Ltd 光モジュール
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
JP4088864B2 (ja) 2002-02-13 2008-05-21 ソニー株式会社 光学多層構造体、これを用いた光スイッチング素子および画像表示装置
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7535093B1 (en) 2002-03-08 2009-05-19 Raytheon Company Method and apparatus for packaging circuit devices
US6603182B1 (en) 2002-03-12 2003-08-05 Lucent Technologies Inc. Packaging micromechanical devices
US7046374B1 (en) 2002-03-14 2006-05-16 Avanex Corporation Interferometers for optical communications utilizing photo-sensitive materials
US7145143B2 (en) 2002-03-18 2006-12-05 Honeywell International Inc. Tunable sensor
US7832177B2 (en) 2002-03-22 2010-11-16 Electronics Packaging Solutions, Inc. Insulated glazing units
US6962834B2 (en) * 2002-03-22 2005-11-08 Stark David H Wafer-level hermetic micro-device packages
US6627814B1 (en) 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
US6707351B2 (en) 2002-03-27 2004-03-16 Motorola, Inc. Tunable MEMS resonator and method for tuning
US20030183916A1 (en) * 2002-03-27 2003-10-02 John Heck Packaging microelectromechanical systems
JP3558621B2 (ja) 2002-04-15 2004-08-25 シャープ株式会社 液晶表示装置
US6954297B2 (en) 2002-04-30 2005-10-11 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6972882B2 (en) 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
US20030202264A1 (en) 2002-04-30 2003-10-30 Weber Timothy L. Micro-mirror device
US20040212026A1 (en) 2002-05-07 2004-10-28 Hewlett-Packard Company MEMS device having time-varying control
AU2003228973A1 (en) * 2002-05-07 2003-11-11 Memgen Corporation Electrochemically fabricated hermetically sealed microstructures
JP3943437B2 (ja) 2002-05-10 2007-07-11 アルプス電気株式会社 液晶表示装置
FR2839812B1 (fr) 2002-05-17 2005-07-01 Atmel Grenoble Sa Procede de fabrication collective de composants de filtrage optique et plaquette de composants
TW589915B (en) 2002-05-24 2004-06-01 Sanyo Electric Co Electroluminescence display device
US7034984B2 (en) 2002-06-19 2006-04-25 Miradia Inc. Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US20040069742A1 (en) 2002-06-19 2004-04-15 Pan Shaoher X. Fabrication of a reflective spatial light modulator
FR2841380A1 (fr) * 2002-06-25 2003-12-26 Commissariat Energie Atomique Procede d'encapsulation d'un objet sous atmosphere controlee
ITTO20020551A1 (it) 2002-06-26 2003-12-29 Vhit Spa Macchina fluidica a cilindrata variabile in funzione della pressione
US6741377B2 (en) 2002-07-02 2004-05-25 Iridigm Display Corporation Device having a light-absorbing mask and a method for fabricating same
JP2004053852A (ja) 2002-07-18 2004-02-19 Sony Corp 光変調素子およびその製造方法
JP3758622B2 (ja) 2002-08-08 2006-03-22 セイコーエプソン株式会社 光学装置、光学ユニット、および、プロジェクタ
TW544787B (en) * 2002-09-18 2003-08-01 Promos Technologies Inc Method of forming self-aligned contact structure with locally etched gate conductive layer
JP2004118001A (ja) 2002-09-27 2004-04-15 Matsushita Electric Ind Co Ltd 表示装置
WO2004037711A2 (en) * 2002-10-23 2004-05-06 Rutgers, The State University Of New Jersey Processes for hermetically packaging wafer level microscopic structures
US6747785B2 (en) 2002-10-24 2004-06-08 Hewlett-Packard Development Company, L.P. MEMS-actuated color light modulator and methods
US6666561B1 (en) 2002-10-28 2003-12-23 Hewlett-Packard Development Company, L.P. Continuously variable analog micro-mirror device
US7370185B2 (en) 2003-04-30 2008-05-06 Hewlett-Packard Development Company, L.P. Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers
KR100474455B1 (ko) 2002-11-08 2005-03-11 삼성전자주식회사 기판단위 mems 진공실장방법 및 장치
JP2004170507A (ja) * 2002-11-18 2004-06-17 Canon Inc マイクロ構造体
US6741503B1 (en) 2002-12-04 2004-05-25 Texas Instruments Incorporated SLM display data address mapping for four bank frame buffer
JP4342174B2 (ja) * 2002-12-27 2009-10-14 新光電気工業株式会社 電子デバイス及びその製造方法
TW594155B (en) 2002-12-27 2004-06-21 Prime View Int Corp Ltd Optical interference type color display and optical interference modulator
US20040140557A1 (en) 2003-01-21 2004-07-22 United Test & Assembly Center Limited Wl-bga for MEMS/MOEMS devices
US7205675B2 (en) 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making
US20040147056A1 (en) 2003-01-29 2004-07-29 Mckinnell James C. Micro-fabricated device and method of making
US6903487B2 (en) 2003-02-14 2005-06-07 Hewlett-Packard Development Company, L.P. Micro-mirror device with increased mirror tilt
EP1602124B1 (en) * 2003-02-25 2013-09-04 IC Mechanics, Inc. Micromachined assembly with a multi-layer cap defining cavity
US7492019B2 (en) 2003-03-07 2009-02-17 Ic Mechanics, Inc. Micromachined assembly with a multi-layer cap defining a cavity
US20040166606A1 (en) * 2003-02-26 2004-08-26 David Forehand Low temperature wafer-level micro-encapsulation
JP4156946B2 (ja) 2003-02-26 2008-09-24 三菱電機株式会社 加速度センサ
US6844953B2 (en) 2003-03-12 2005-01-18 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
TW591778B (en) 2003-03-18 2004-06-11 Advanced Semiconductor Eng Package structure for a microsystem
US7015885B2 (en) * 2003-03-22 2006-03-21 Active Optical Networks, Inc. MEMS devices monolithically integrated with drive and control circuitry
US6779260B1 (en) 2003-03-28 2004-08-24 Delphi Technologies, Inc. Overmolded electronic package including circuit-carrying substrate
TWI226504B (en) 2003-04-21 2005-01-11 Prime View Int Co Ltd A structure of an interference display cell
TW567355B (en) 2003-04-21 2003-12-21 Prime View Int Co Ltd An interference display cell and fabrication method thereof
US7153016B2 (en) * 2003-04-24 2006-12-26 Waltop International Corp. Package for the display module with the electromagnetic module
US6741384B1 (en) 2003-04-30 2004-05-25 Hewlett-Packard Development Company, L.P. Control of MEMS and light modulator arrays
US7400489B2 (en) 2003-04-30 2008-07-15 Hewlett-Packard Development Company, L.P. System and a method of driving a parallel-plate variable micro-electromechanical capacitor
US7358966B2 (en) 2003-04-30 2008-04-15 Hewlett-Packard Development Company L.P. Selective update of micro-electromechanical device
US6829132B2 (en) * 2003-04-30 2004-12-07 Hewlett-Packard Development Company, L.P. Charge control of micro-electromechanical device
US6853476B2 (en) 2003-04-30 2005-02-08 Hewlett-Packard Development Company, L.P. Charge control circuit for a micro-electromechanical device
CN1220621C (zh) 2003-04-30 2005-09-28 华中科技大学 微机电系统后封装工艺
US7218438B2 (en) 2003-04-30 2007-05-15 Hewlett-Packard Development Company, L.P. Optical electronic device with partial reflector layer
US7072093B2 (en) * 2003-04-30 2006-07-04 Hewlett-Packard Development Company, L.P. Optical interference pixel display with charge control
US6819469B1 (en) 2003-05-05 2004-11-16 Igor M. Koba High-resolution spatial light modulator for 3-dimensional holographic display
US7218499B2 (en) 2003-05-14 2007-05-15 Hewlett-Packard Development Company, L.P. Charge control circuit
US6917459B2 (en) 2003-06-03 2005-07-12 Hewlett-Packard Development Company, L.P. MEMS device and method of forming MEMS device
US6811267B1 (en) 2003-06-09 2004-11-02 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US20050012197A1 (en) * 2003-07-15 2005-01-20 Smith Mark A. Fluidic MEMS device
US7190380B2 (en) * 2003-09-26 2007-03-13 Hewlett-Packard Development Company, L.P. Generating and displaying spatially offset sub-frames
US7173314B2 (en) * 2003-08-13 2007-02-06 Hewlett-Packard Development Company, L.P. Storage device having a probe and a storage cell with moveable parts
TWI305599B (en) * 2003-08-15 2009-01-21 Qualcomm Mems Technologies Inc Interference display panel and method thereof
TW200506479A (en) * 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI251712B (en) * 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TW593127B (en) * 2003-08-18 2004-06-21 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
US20050057442A1 (en) * 2003-08-28 2005-03-17 Olan Way Adjacent display of sequential sub-images
JP3979982B2 (ja) * 2003-08-29 2007-09-19 シャープ株式会社 干渉性変調器および表示装置
US6977391B2 (en) * 2003-09-25 2005-12-20 Osram Semiconductors Gmbh Transport balancing diffusion layer for rate limited scavenging systems
US20050068583A1 (en) * 2003-09-30 2005-03-31 Gutkowski Lawrence J. Organizing a digital image
US6861277B1 (en) * 2003-10-02 2005-03-01 Hewlett-Packard Development Company, L.P. Method of forming MEMS device
US20050116924A1 (en) * 2003-10-07 2005-06-02 Rolltronics Corporation Micro-electromechanical switching backplane
US20050093134A1 (en) 2003-10-30 2005-05-05 Terry Tarn Device packages with low stress assembly process
US7161728B2 (en) * 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US20050184304A1 (en) 2004-02-25 2005-08-25 Gupta Pavan O. Large cavity wafer-level package for MEMS
TW200530669A (en) 2004-03-05 2005-09-16 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
US7060895B2 (en) 2004-05-04 2006-06-13 Idc, Llc Modifying the electro-mechanical behavior of devices
US7164520B2 (en) 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
US20050253283A1 (en) 2004-05-13 2005-11-17 Dcamp Jon B Getter deposition for vacuum packaging
US20060029732A1 (en) * 2004-08-04 2006-02-09 Boris Kobrin Vapor deposited functional organic coatings
US7126741B2 (en) 2004-08-12 2006-10-24 Hewlett-Packard Development Company, L.P. Light modulator assembly
US7424198B2 (en) 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US7573547B2 (en) * 2004-09-27 2009-08-11 Idc, Llc System and method for protecting micro-structure of display array using spacers in gap within display device
US7551246B2 (en) * 2004-09-27 2009-06-23 Idc, Llc. System and method for display device with integrated desiccant
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7307773B2 (en) * 2005-01-04 2007-12-11 Hewlett-Packard Development Company, L.P. Micro-optoelectromechanical system packages for a light modulator and methods of making the same

Also Published As

Publication number Publication date
KR101162592B1 (ko) 2012-07-13
BRPI0503853A (pt) 2006-05-09
KR101162593B1 (ko) 2012-07-27
US20120002266A1 (en) 2012-01-05
AU2005203257A1 (en) 2006-04-13
JP2006099057A (ja) 2006-04-13
RU2005129955A (ru) 2007-04-10
US20090059342A1 (en) 2009-03-05
US7424198B2 (en) 2008-09-09
US20060067641A1 (en) 2006-03-30
CN102141679A (zh) 2011-08-03
CA2514348A1 (en) 2006-03-27
KR20060087382A (ko) 2006-08-02
EP1640330A3 (en) 2008-11-19
SG121045A1 (en) 2006-04-26
JP2014222345A (ja) 2014-11-27
TW200626472A (en) 2006-08-01
US8682130B2 (en) 2014-03-25
KR20120003420A (ko) 2012-01-10
JP2010231232A (ja) 2010-10-14
MY139484A (en) 2009-10-30
TWI353335B (en) 2011-12-01
US8045835B2 (en) 2011-10-25
EP1640330A2 (en) 2006-03-29
MXPA05010095A (es) 2006-05-17

Similar Documents

Publication Publication Date Title
RU2374171C2 (ru) Способ и устройство для монтажа подложки в корпус
RU2389051C2 (ru) Устройство, имеющее проводящую светопоглощающую маску, и способ его изготовления
KR101167895B1 (ko) 양면에서 볼 수 있는 디스플레이를 구비하는 반사형디스플레이 기기
US7580172B2 (en) MEMS device and interconnects for same
KR101237888B1 (ko) 백플레이트 상에 전자 회로를 제공하는 방법 및 기기
RU2475789C2 (ru) Микроэлектромеханическое устройство, в котором оптическая функция отделена от механической и электрической
RU2471210C2 (ru) Дисплеи на основе микроэлектромеханических систем и способы их изготовления
US7916378B2 (en) Method and apparatus for providing a light absorbing mask in an interferometric modulator display
JP4331148B2 (ja) 基板を封止するための方法およびシステム
US7706042B2 (en) MEMS device and interconnects for same
US8285089B2 (en) MEMS device fabricated on a pre-patterned substrate
US7561334B2 (en) Method and apparatus for reducing back-glass deflection in an interferometric modulator display device
KR20060092901A (ko) 비사각형 어레이로 배열된 반사형 디스플레이 픽셀
TWI390643B (zh) 微機電系統裝置及其互連
KR20110020913A (ko) 표시장치의 패키지화 방법 및 그에 의해 얻어진 장치
KR20080078667A (ko) 세트 및 래치 전극을 가지는 미소 기전 시스템 스위치
US7550912B2 (en) Method and system for maintaining partial vacuum in display device
CN100501494C (zh) 制作于经预先图案化的衬底上的mems装置

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20101006

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150927