RU2362239C2 - Способ изготовления твердого топливного элемента на основе оксида - Google Patents

Способ изготовления твердого топливного элемента на основе оксида Download PDF

Info

Publication number
RU2362239C2
RU2362239C2 RU2006110158/09A RU2006110158A RU2362239C2 RU 2362239 C2 RU2362239 C2 RU 2362239C2 RU 2006110158/09 A RU2006110158/09 A RU 2006110158/09A RU 2006110158 A RU2006110158 A RU 2006110158A RU 2362239 C2 RU2362239 C2 RU 2362239C2
Authority
RU
Russia
Prior art keywords
layer
electrode
electrolyte
thickness
fuel cell
Prior art date
Application number
RU2006110158/09A
Other languages
English (en)
Other versions
RU2006110158A (ru
Inventor
Дональд А. Джр. СЕККОМБЭ (US)
Дональд А. Джр. СЕККОМБЭ
Гари ОРБЕК (US)
Гари ОРБЕК
Срикант ГОПАЛАН (US)
Срикант ГОПАЛАН
Удай Б. ПАЛ (US)
Удай Б. ПАЛ
Original Assignee
БиТиЮ ИНТЕРНЭЙШНЛ, ИНК.
Трастис Оф Бостон Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by БиТиЮ ИНТЕРНЭЙШНЛ, ИНК., Трастис Оф Бостон Юниверсити filed Critical БиТиЮ ИНТЕРНЭЙШНЛ, ИНК.
Publication of RU2006110158A publication Critical patent/RU2006110158A/ru
Application granted granted Critical
Publication of RU2362239C2 publication Critical patent/RU2362239C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Изобретение относится к способу изготовления твердого топливного элемента на основе оксида (SOFC) в течение одного термического цикла. Согласно изобретению способ включает формирование электродного слоя и осаждение материала электролита на поверхность электрода. Сформированная структура представляет собой электрод-электролитный би-слой. На этот би-слой осаждают второй электрод для формирования многослойной структуры топливного элемента, включающей электролит, помещаемый между двумя электродами. Эту многослойную структуру затем нагревают и прокаливают в течение одного термического цикла для удаления любых связующих веществ и спекания соответственно топливного элемента. Этот термический цикл можно выполнять в печи, имеющей одну или большее количество камер. Камера(ы) предпочтительно содержит(ат) источник микроволн переменной частоты или многочастотный источник микроволн для нагревания топливного элемента и удаления связующих веществ в структурах электролита и электрода. Камера(ы) также предпочтительно включает(ют) источник тепловой конвекции и/или радиации для спекания топливного элемента. Дополнительно способ изобретения гармонизирует и сводит к минимуму расхождение между термофизическими свойствами структур электролита и электрода. Эта гармонизация уменьшает и сводит к минимуму температурный градиент внутри топливного элемента, так что структуру можно равномерно нагревать и прокаливать во время термического цикла. Техническим результатом является уменьшение времени, требуемого для термического цикла, повышение эффективности изготовления, улучшение граничного контакта и устойчивость между слоями, уменьшение внутреннего напряжения для предотвращения деформирования многослойной структуры. 7 н. и 27 з.п. ф-лы, 8 ил.

Description

Перекрестная ссылка на родственные заявки
В этой заявке заявляется приоритет предварительной заявки США за номером 60/501742, поданной 10 сентября 2003 года и озаглавленной SINGLE STEP CO-FIRING PROCESS FOR FUEL CELL MANUFACTURE, которая приводится здесь в виде ссылки.
Предпосылки создания изобретения
Топливный элемент представляет собой устройство или систему, которая генерирует электричество за счет электрохимической реакции, в которой происходит соединение кислорода и водорода с образованием воды. Электролит в топливном элементе переносит заряженные частицы от катода к аноду. Часто применяют катализаторы для ускорения и повышения эффективности электрохимической реакции. Устройства на основе топливных элементов представляют собой жизнеспособные источники альтернативной энергии. Эти устройства являются обычно эффективными и создают меньше загрязнения, чем традиционные источники энергии. Электричество, продуцируемое топливными элементами, можно использовать для снабжения энергией, например, воздухоплавательных систем, компьютерных устройств, самоходных систем и сотовых устройств.
Обычно топливные элементы классифицируют по типу используемого электролита. В устройствах на основе топливных элементов присутствуют различные материалы в зависимости от применения или конкретных потребностей в электроэнергии. Ряд топливных элементов включает, например, устройства на основе использования фосфорной кислоты, протонной обменной мембраны, расплавов карбонатов, солей щелочных металлов и твердого оксида. Твердый топливный элемент на основе оксида (SOFC) обеспечивает чистоту окружающей среды и представляет собой разносторонний источник энергии, который может эффективно превращать ископаемое топливо в электричество и тепло.
SOFC включает плотный электролит, который помещают между пористыми электродами, а именно катодом и анодом. Плотный электролит может быть твердым кислород-ионным проводником, таким как цирконий, стабилизированный иттрием (YSZ). Кроме того, катод и анод можно изготавливать из керамических композитных материалов, таких как манганит лантана, легированный стронцием-YSZ, и оксид никеля-YSZ соответственно. Устройства на основе SOFC можно компоновать также в виде плоских блоков, в которых несколько топливных элементов монтируют с внутренними соединителями, отделяющими каждый элемент.
Препятствие для осуществления промышленного внедрения устройств на основе SOFC заключается в значительной стоимости, связанной с их изготовлением. Эта стоимость по величине на порядок выше, чем изготовление сопоставимой газовой турбины. Одной из причин такого несоответствия является то, что устройства на основе SOFC изготавливают, используя периодические процессы. Периодические процессы изготовления применяют для медленного нагревания и прокаливания структуры топливного элемента с тем, чтобы предохранять электролит и электроды от деформирования. При стандартном периодическом процессе изготовления можно равномерно нагревать и прокаливать SOFC при скорости изменения температуры около 1°С в минуту. При этой скорости может потребоваться несколько часов для спекания структур электролита и электрода. При проведении процесса может потребоваться также большое количество термических циклов для нагревания и охлаждения топливного элемента во время изготовления. Однако изготовление топливного элемента с помощью таких процессов является полностью неэффективным и дорогим. С ростом потребностей на топливные элементы существует конкретная необходимость в эффективном процессе изготовления, который является недорогим и для которого не требуется большого количества термических циклов.
Краткое описание изобретения
Настоящее изобретение представляет способ для удобного изготовления твердого топливного элемента на основе оксида (SOFC) при стоимости, которая меньше, чем пятьсот долларов за киловатт электричества. Способ включает формирование электродного слоя и осаждение материала электролита на поверхность электрода. Сформированная структура представляет собой электрод-электролитный би-слой (bi-layer). На этот би-слой осаждают второй электрод для формирования многослойной структуры топливного элемента, включающей электролит, помещаемый между двумя электродами. Эту многослойную структуру затем нагревают и прокаливают в течение одного термического цикла для удаления любых связующих веществ и спекания соответственно топливного элемента. Этот термический цикл можно выполнять в печи, имеющей одну или большее количество камер. Камера(ы) предпочтительно содержит (ат) источник микроволн переменной частоты или многочастотный источник микроволн для нагревания топливного элемента и удаления связующих веществ в структурах электролита и электрода. Камера(ы) также предпочтительно включает(ют) источник тепловой конвекции и/или радиации для спекания топливного элемента.
Дополнительно способ изобретения гармонизирует и сводит к минимуму расхождение между термофизическими свойствами структур электролита и электрода. Эта гармонизация уменьшает и сводит к минимуму температурный градиент внутри топливного элемента, так что структуру можно равномерно нагревать и прокаливать во время термического цикла. Благодаря сведению к минимуму температурного градиента в элементе также низка вероятность того, что многослойная структура будет деформирована или разрушена. Также при использовании настоящего способа многослойный топливный элемент можно изготавливать со значительно меньшим временем изготовления, чем при изготовлении стандартными способами.
Способ изобретения можно применять для изготовления блоков SOFC, в которых несколько топливных элементов монтируют с внутренними соединителями, отделяющими каждый элемент. Изобретение также представляет многослойную структуру SOFC, изготавливаемую согласно раскрываемому способу. Эти устройства на основе топливных элементов можно использовать, например, для питания воздухоплавательных систем, компьютерных устройств, самоходных систем и сотовых устройств.
SOFC, изготавливаемый с помощью раскрываемого способа, обычно функционирует в диапазоне температур от около 700 до 1100°С. SOFC включает плотный электролит, который помещают между пористыми электродами, а именно катодом и анодом. Плотный электролит может быть твердым кислород-ионным проводником, таким как цирконий, стабилизированный иттрием (YSZ). Кроме того, катод и анод можно изготавливать из керамических композитных материалов, таких как манганит лантана, легированный стронцием-YSZ, и оксид никеля-YSZ соответственно.
В основном, способ настоящего изобретения включает формирование электрода за счет контролируемого распределения фаз и размеров частиц. Электрод может быть однослойной или многослойной пористой структурой, которая является "свежей (green)" или непрокаленной. Электрод также сушат, чтобы он имел толщину в диапазоне около 0,5-2,0 мм. Затем на поверхность электрода осаждают плотный электролит в виде одного или составного твердого слоя, который имеет толщину в высушенном состоянии в диапазоне около 5-1000 мкм.
На этой би-слойной структуре осаждают второй электрод. Второй электрод может быть также однослойной или многослойной пористой структурой, имеющей толщину в высушенном состоянии в диапазоне около 50-150 мкм. Каждый из вышеописанных слоев электролита и электрода формируют согласно изобретению с помощью подходящих способов осаждения, таких как, например, трафаретная печать, вакуумная пропитка, электрофоретическое осаждение, струйная печать, холодное прессование, пленочное литье или распыление. Сформированную многослойную структуру можно затем нагревать и прокаливать в течение одного термического цикла. Этот цикл можно осуществлять при скорости изменения температуры около 10°С в минуту.
Описание чертежей
Дополнительные характеристики и преимущества настоящего изобретения будут очевидны из следующего подробного описания изобретения, представляемого вместе с сопровождающими чертежами, среди которых:
Фиг.1 представляет собой частичное изображение твердого топливного элемента на основе оксида (SOFC), включающего плотный электролит, который помещают между структурами пористых электродов;
Фиг.2 представляет собой перспективное изображение блока SOFC, в котором несколько топливных элементов монтируют с внутренними соединителями, отделяющими каждый элемент;
Фиг.3 представляет собой схему производственного процесса, в котором слой(и) пористого электрода формируют путем использования способа настоящего изобретения;
Фиг.4 представляет собой схему производственного процесса, в котором плотный(е) слой(и) электролита формируют на поверхности электрода, показанного на Фиг.3, путем использования способа настоящего изобретения, для создания электрод-электролитной би-слойной структуры;
Фиг.5 представляет собой изображение электрод-электролитного би-слоя, формируемого согласно способу настоящего изобретения, как показано на схеме производственного процесса, представленной на Фиг.4;
Фиг.6 представляет собой изображение, полученное с помощью сканирующего электронного микроскопа, электрод-электролитного би-слоя, формируемого согласно способу настоящего изобретения, как показано на схеме производственного процесса, представленной на Фиг.4;
Фиг.7 представляет собой схему производственного процесса, в котором слой(и) пористого электрода осаждают на поверхность электролита, показанного на Фиг.4, где сформированную многослойную структуру нагревают и прокаливают в течение одного термического цикла согласно способу настоящего изобретения; и
Фиг.8 представляет собой частичное изображение SOFC, изготавливаемого согласно способу, показанному на Фиг.3, 4 и 7, многослойного топливного элемента, включающего твердый электролит на основе циркония стабилизированного иттрием (YSZ), который помещают между катодом из манганита лантана, легированного стронцием-YSZ, и анодом из оксида никеля-YSZ.
Подробное описание изобретения
Настоящее изобретение представляет способ изготовления твердого топливного элемента на основе оксида (SOFC) в течение одного термического цикла. Этот цикл можно проводить в виде периодического процесса изготовления или в виде непрерывного процесса. SOFC можно удобно изготавливать согласно способу настоящего изобретения при стоимости, которая является меньшей, чем пятьсот долларов за киловатт электричества. Изготавливаемый SOFC функционирует также в диапазоне температур от около 700 до 1100°С. Аналогично согласно способу настоящего изобретения можно изготавливать блок SOFC, в котором несколько топливных элементов монтируют с внутренними соединителями, отделяющими каждый элемент. Устройства на основе топливных элементов, изготавливаемые с помощью раскрываемого способа, можно использовать, например, для питания воздухоплавательных систем, компьютерных устройств, самоходных систем и сотовых устройств.
Предлагаемые топливные элементы представляют собой экологически чистый и многофункциональный источник энергии для эффективного превращения ископаемого топлива в электричество и тепло. Фиг.1 представляет собой SOFC 10, включающий плотный электролит 12, который помещают между пористыми электродами, а именно катодом 18 и анодом 16. Плотный электролит может быть твердым кислород-ионным проводником, таким как цирконий, стабилизированный иттрием (YSZ). Кроме того, катод и анод можно изготавливать из керамических композитных материалов, таких как манганит лантана, легированный стронцием-YSZ, и оксид никеля-YSZ соответственно. Топливный элемент генерирует электричество за счет электрохимической реакции, в которой кислород и водород соединяются с образованием воды. Конкретно электроды восстанавливают кислород и окисляют водород с получением разности потенциалов 14. Электроды могут также включать катализатор, такой как оксид никеля. Этот катализатор может ускорять и повышать эффективность электрохимической реакции.
Фиг.2 представляет собой блок 20 SOFC, в котором несколько топливных элементов монтируют с внутренними соединителями, отделяющими каждый элемент. Единичный топливный элемент в плоских блоках включает электролит 25, который помещают между катодом 26 и анодом 24. Внутренний соединительный компонент может быть обкладкой 22 или прокладкой 28, которая направляет потоки топлива и оксиданта сквозь блок. Эти внутренние соединители состоят обычно из композитных материалов, таких как, например, хромит лантана.
Способ настоящего изобретения включает формирование электрода за счет контролируемого распределения фаз и размеров частиц с созданием термофизически консистентного слоя, имеющего, например, однородную микроструктуру, эластичность и/или коэффициент теплового расширения. Консистенция, среди этих свойств, предохраняет электрод от деформирования и разрушения в процессе термического цикла. Способ также гармонизирует и сводит к минимуму отклонения среди термофизических свойств слоев электролита и электрода. Эта гармонизация снижает и сводит к минимуму температурный градиент топливного элемента в ходе термического цикла, так что структуру можно равномерно нагревать и прокаливать эффективным образом.
Электрод представляет собой предпочтительно пористый анод, такой как показанный на Фиг.1 и 2. Пористый анод может состоять также из однослойного или многослойного композитного материала, такого как, например, оксид никеля-YSZ, оксид церия, легированный оксидом никель-гадолиния, оксид церия легированный оксидом никель-самария, оксид церия, легированный оксидом кобальта-YSZ или оксидом кобальт-гадолиния.
Электрод из композитного материала осаждают в виде свежего слоя(ев), имеющего(их) предпочтительную толщину в диапазоне около 0,5-2,0 мм. Эта толщина электрода служит механической опорой для топливного элемента. Толщина может зависеть от слоев пленочного литья, предпочтительно используемых при изготовлении электрода. Эти слои можно отливать также с изменяющейся пористостью для контролирования явления перемещения газа.
В основном слои пленочного литья формируют путем осаждения порошкообразной взвеси на субстрат, имеющий высвобождающийся материал. Взвесь может включать связующий агент, дисперсант, растворитель, пластификатор и композитные твердые вещества. Связующий агент может быть, например, поливиниловым спиртом или поливинилбутиралем. Обычный растворитель может включать этанол, толуол, метанол или изопропанол. Дисперсант или диспергирующий "агент" может включать рыбий жир. Эти материалы измельчают и просеивают для удаления мягких агломератов. Хоппер способствует перемещению взвеси на субстрат, а "ракельный нож" равномерно распределяет взвесь для отливки слоя. Этот слой затем отделяют от субстрата и подравнивают в соответствии с электродом.
На схеме производственного процесса, представленной на Фиг.3, показан слой пленочного литья, создаваемый на стадии 40. Слой высушивают с помощью соответствующей технологии во время стадии 42 в диапазоне температур от около 100 до 400°С. При этом диапазоне температур происходит предпочтительно испарение соединений в отлитом слое, таких как дисперсант, растворитель и пластификатор, с формированием пористого электрода. Этот диапазон температур может также изменяться в зависимости от летучести этих материалов. Толщину электрода можно после этого измерять на стадии 44 с помощью подходящего способа, такого как, например, использование оптического или сканирующего электронного микроскопа.
На стадии 45 можно осаждать на электрод дополнительные слои пленочного литья и отдельно высушивать до тех пор, пока толщина не будет находиться в предпочтительном диапазоне около 0,5-2,0 мм. Как описано выше, эти дополнительные слои можно отливать с изменяющейся пористостью для контролирования явления перемещения газа и повышения эффективности электрода. Является предпочтительным, когда электроды имеют меньшую пористость вблизи к электролиту и когда пористость возрастает в направлении к их наружным поверхностям. Формируемую на стадии 46 структуру электрода в виде одного или составного слоя затем готовят для дальнейшей обработки согласно способу настоящего изобретения.
На Фиг.4 показана схема производственного процесса, в котором плотный электролит формируют на слое(ях) электрода, создаваемом(ых) согласно способу настоящего изобретения. Этот электролит может быть однослойным или многослойным твердым проводником, таким, как показанный на Фиг.1 и 2. Примеры материалов такого твердого проводника включают YSZ, оксид церия-гадолиния, стронций, галлат магния лантана или оксид церия, легированный редкоземельным металлом. Проводник из YSZ работает эффективно в диапазоне температур от около 700 до 1100°С, хотя этот диапазон может изменяться для различных твердых электролитов.
На стадии 50 слой(и) электролита можно формировать способом трафаретной печати на поверхности электрода в виде порошкообразной взвеси. Трафаретная печать контролирует распределение фаз и размеров частиц для создания консистентной термофизической структуры. Осаждаемый электролит имеет предпочтительно толщину в диапазоне около 5-1000 мкм. Эта толщина зависит от различных характеристик печати, таких как, например, содержание твердых веществ в композитном материале или распределение частиц в слое(ях).
Порошкообразная взвесь для электролита может включать связующий агент, дисперсант, растворитель, пластификатор и твердые композитные материалы. Как описано выше, эти материалы измельчают и просеивают для удаления мягких агломератов перед печатанием. Слой взвеси, формируемый с помощью трафаретной печати, сушат в течение стадии 52 в диапазоне температур от около 100 до 400°С. Предпочтительно при этом диапазоне температур происходит испарение соединений в отпечатанном слое с формированием плотного электролита. После этого толщину электролита можно измерять на стадии 54 с помощью подходящего способа, включая способы, описанные ранее.
Электролит можно формировать путем осаждения дополнительных, получаемых с помощью трафаретной печати слоев на стадии 56. Каждый из этих слоев сушат до тех пор, пока толщина не будет находиться в предпочтительном диапазоне около 5-1000 мкм. Печатание дополнительных слоев можно изменять для контролирования явления перемещения газа и повышения эффективности электролита. Сформированную на стадии 60 структуру би-слоя готовят после этого для дальнейшей обработки согласно способу настоящего изобретения.
Пример этой структуры электрод-элекролитного би-слоя представлен на Фиг.5 и 6. На Фиг.5 показан электрод в виде пористого анода, состоящий из полученного(ых) в результате пленочного литья слоя(ев) оксида никеля-YSZ. Слой(и) электролита формируют, используя трафаретную печать, на поверхности анода. Этот электролит является твердым проводником из YSZ. Фиг.6 представляет собой изображение этой би-слойной структуры, полученное с помощью сканирующего электронного микроскопа.
Затем на электролит с би-слойной структурой осаждают второй электрод. На схеме производственного процесса, изображенной на Фиг.7, показан электрод, формируемый на поверхности слоя(ев) электролита в течение стадии 62. Электрод формируют путем контролируемого распределения фаз и размеров частиц. Сформированный электрод представляет собой предпочтительно пористый катод, такой как показанный на Фиг.1 и 2. Пористый катод может состоять из однослойного или многослойного композитного материала, такого как, например, манганит лантана, легированный стронцием-YSZ.
Электрод из композитного материала можно изготавливать путем трафаретного печатания в виде слоя (ев), имеющего(их) предпочтительную толщину в диапазоне около 50-150 мкм. Эта толщина зависит от печатаемых слоев, используемых для формирования электрода. Электрод осаждают в виде порошкообразной взвеси, которая может включать связующий агент, дисперсант, растворитель, пластификатор и твердые композитные материалы. Эти материалы измельчают и просеивают для удаления мягких агломератов перед печатанием. Как было показано, слой осажденной взвеси сушат в течение стадии 64 в диапазоне температур от около 100 до 400°С. Предпочтительно при этом диапазоне температур происходит испарение соединений в отпечатанном слое с образованием пористого электрода. После этого толщину электрода можно измерять на стадии 66 с помощью подходящего способа, включая способы, описанные ранее.
Электрод можно формировать на стадии 70 путем печатания дополнительных слоев на электролите и высушивания каждого слоя до тех пор, пока толщина не будет находиться в предпочтительном диапазоне около 50-150 мкм. Как описано выше, эти дополнительные слои можно осаждать, создавая различную пористость, для контролирования явления перемещения газа и воздействия на эффективность электрода. Эта однослойная или многослойная структура электрода, формируемая на электрод-электролитном би-слое, составляет многослойную структуру топливного элемента.
Эта многослойная структура включает обычно плотный электролит, который помещают между пористыми электродами. Любая влага внутри многослойного топливного элемента предпочтительно испаряется при однородном нагревании структуры в диапазоне температур от около 125 до 150°С. Структуру можно также нагревать для удаления связующего агента из каждого слоя топливного элемента в диапазоне температур от около 275 до 375°С. При этом диапазоне температур происходит улетучивание любого пластификатора, дисперсанта или растворителя, остающегося внутри каждого слоя. Вещества связующего агента, которые подвергаются частому нагреванию, оставляют остаток углерода, который можно удалять при равномерном нагревании структуры в диапазоне температур от около 500 до 600°С. Это равномерное нагревание продолжают до тех пор, пока температура не достигнет 800°С для того, чтобы уменьшить время, требуемое для проведения термического цикла, и повысить эффективность метода. После этого на стадии 74 структуру прокаливают в диапазоне температур от около 1000 до 1500°С для спекания многослойной структуры. Количество времени, используемое для нагревания и прокаливания структуры в течение вышеописанных диапазонов температур, может изменяться в зависимости, например, от материалов топливного элемента или конкретного процесса.
Структуру топливного элемента можно равномерно нагревать с помощью источника микроволн переменной частоты или многочастотного источника микроволн. Такие источники микроволн описаны, в основном, в патентах США под номерами 5321222, 5521360 и 5961871. Уровень частоты и мощности источника микроволн можно регулировать для обеспечения эффективной передачи энергии микроволн в структуру топливного элемента. Частоту микроволн также можно модулировать или плавно изменять частотный диапазон для создания нужного спектра микроволн. Альтернативно можно предусматривать микроволновую энергию на многих частотах. Хотя микроволновой источник нагревания используют предпочтительно для равномерного нагревания многослойной структуры, можно использовать и другие подходящие процессы нагревания, которые сводят к минимуму температурный градиент внутри слоев топливного элемента.
Многослойный топливный элемент можно прокаливать за счет конвекционного и/или излучаемого нагрева, такого как нагрев, используемый в процессе обжига керамики. Эти способы нагрева можно осуществлять также в атмосфере циркулирующего газа. Температуры для прокаливания SOFC могут зависеть от термофизических свойств слоев электролита и электрода. Таким образом, различные электрические нагреватели, такие как, например, изготовленные из никель-хрома, молибденовой ленты, молибден-силиката или карбидокремния, можно использовать для определенных структур топливного элемента.
Согласно способу настоящего изобретения проводится нагревание и прокаливание многослойного топливного элемента в течение одного термического цикла. Этот термический цикл можно проводить в печи, имеющей одну или большее количество камер. Камера(ы) предпочтительно содержит(ат) источник микроволн переменной частоты или многочастотный источник микроволн для нагревания топливного элемента и удаления связующих соединений в структурах электролита и электрода. Камера(ы) печи предпочтительно включает(ют) источник конвекционного нагрева и/или радиационного нагрева для спекания топливного элемента. Такие печи описывают в патентной заявке США за номером 10/775542, переуступленной BTU International, Incorporated. Единичный термический цикл можно осуществлять также в виде периодического или непрерывного процесса изготовления.
Электролит многослойной структуры топливного элемента представляет собой предпочтительно твердый проводник, состоящий из 8 мольных процентов YSZ, а катод и анод состоят из керамических композитных материалов, таких как манганит лантана, легированный стронцием-YSZ, и оксид никеля-YSZ соответственно. Слои электролита и электрода выбирают таким образом, чтобы они имели размер частиц в диапазоне нанометров или микрометров. На Фиг.8 показан SOFC, изготовленный из этих материалов, в процессе его формирования и прокаливания. Предпочтительная толщина плотного электролита и каждого пористого электрода также показана.
Параметры процесса настоящего изобретения также можно изменять для того, чтобы, например, уменьшать время, требуемое для термического цикла, и чтобы повышать эффективность изготовления. Эти параметры могут включать температуру, время, атмосферу, размер частиц и/или распределение частиц. Модифицирование этих параметров может также оказывать воздействие и улучшать граничный контакт и устойчивость между слоями, а также уменьшать внутренние напряжения для предотвращения деформирования многослойной структуры. Способ настоящего изобретения можно использовать при участии в технологическом процессе вспомогательного устройства, поддерживающего температуру SOFC, которое имеет, например, насосы для кислорода, датчики, или при участии других электрохимических устройств.
В то время как настоящее изобретение было описано в связи с предпочтительным вариантом осуществления настоящего изобретения, любой специалист в данной области, после ознакомления с вышеприведенным описанием, будет способен произвести различные изменения, замены эквивалентов и другие вариации по отношению к композициям и изделиям, представленным в нем. Следовательно, предполагается, что защита, предоставляемая патентом на изобретение, будет ограничиваться лишь определениями, содержащимися в прилагаемой Формуле изобретения и ее эквивалентах.

Claims (34)

1. Способ изготовления твердого топливного элемента на основе оксида, включающий следующие стадии в следующей последовательности:
формирование первого слоя электрода с поверхностью, который перед прокаливанием имеет толщину в диапазоне около 0,5-2,0 мм;
формирование слоя электролита трафаретной печатью порошкообразной взвеси на поверхности первого слоя электрода;
формирование второго слоя электрода на поверхности слоя электролита, при этом слои составляют многослойную электрохимическую структуру;
нагревание многослойной структуры для существенного удаления связующего агента и других материалов из каждого слоя; и
прокаливание многослойной структуры для существенного спекания каждого слоя.
2. Способ по п.1, дополнительно включающий:
осаждение взвеси для формирования каждого слоя, включающей связующий агент, дисперсант, растворитель, пластификатор и композитные твердые вещества; и
высушивание осажденной взвеси для существенного удаления дисперсанта, растворителя и пластификатора.
3. Способ по п.1, отличающийся тем, что энергия нагревания для удаления связующего агента и других материалов обеспечивается источником микроволн переменной частоты или многочастотным источником микроволн.
4. Способ по п.1, отличающийся тем, что прокаливание проводят посредством конвекционного нагрева, радиационного нагрева или их комбинациями.
5. Способ по п.1, отличающийся тем, что спекание осуществляют при температурах, больших, чем около 1000°С.
6. Способ по п.1, отличающийся тем, что стадию нагревания обеспечивают микроволновой энергией.
7. Способ по п.1, отличающийся тем, что первый слой электрода может функционировать в качестве анода.
8. Способ по п.7, отличающийся тем, что первый слой электрода после прокаливания является пористым.
9. Способ по п.1, отличающийся тем, что второй слой электрода может функционировать в качестве катода.
10. Способ по п.9, отличающийся тем, что второй слой электрода после прокаливания является пористым.
11. Способ по п.10, отличающийся тем, что второй слой электрода перед прокаливанием имеет толщину в диапазоне около 50-150 мкм.
12. Способ по п.1, отличающийся тем, что прокаленный слой электролита является плотным твердым веществом.
13. Способ по п.12, отличающийся тем, что слой электролита перед прокаливанием имеет толщину в диапазоне около 5-1000 мкм.
14. Способ по п.7, отличающийся тем, что первый слой электрода включает керамический композитный материал, выбираемый из группы, состоящей из оксида циркония стабилизированного никель-иттрием, оксида церия легированного оксидом никель-гадолиния, оксида церия легированного оксидом никель-самария, оксида циркония стабилизированного кобальт-иттрием, оксида церия легированного оксидом кобальт-гадолиния, и их комбинаций.
15. Способ по п.9, отличающийся тем, что второй слой электрода включает керамический композитный материал, состоящий из манганит лантана легированного стронцием-циркония стабилизированного иттрием.
16. Способ по п.12, отличающийся тем, что слой электролита включает проводник, выбранный из группы, состоящей из оксида циркония стабилизированного иттрием, оксида церия-гадолиния, стронция, галлата магния лантана, оксида церия легированного редкоземельным металлом, и их комбинаций.
17. Способ по п.1, дополнительно включающий:
высушивание первого слоя, который высушивают перед осаждением материала электролита, и высушенный первый слой имеет определенную толщину.
18. Способ по п.1, дополнительно включающий:
высушивание материала электролита, который высушивают перед осаждением второго слоя, и высушенный материал электролита имеет определенную толщину.
19. Способ по п.1, дополнительно включающий:
высушивание второго слоя, который высушивают перед прокаливанием многослойной структуры, и высушенный второй слой имеет определенную толщину.
20. Способ по п.17, дополнительно включающий:
измерение определенной толщины высушенного первого слоя для сравнения с требуемой толщиной;
получение дополнительного слоя электрохимически активного материала на высушенном первом слое, при этом дополнительный слой включает связующий агент, дисперсант, растворитель, пластификатор и композитные твердые вещества;
высушивание дополнительного слоя;
измерение определенной толщины слоев для сравнения с требуемой толщиной; и
повторение стадий получения и высушивания слоев до тех пор, пока определенная толщина и требуемая толщина слоев не будут примерно равными.
21. Способ по п.18, дополнительно включающий:
измерение определенной толщины высушенного материала электролита для сравнения с требуемой толщиной;
получение дополнительного материала на высушенном материале электролита, при этом дополнительный материал включает связующий агент, дисперсант, растворитель, пластификатор и композитные твердые вещества;
высушивание дополнительного материала;
измерение определенной толщины материалов для сравнения с требуемой толщиной; и
повторение стадий получения и высушивания материалов до тех пор, пока определенная толщина и требуемая толщина материалов не будут примерно равными.
22. Способ по п.19, дополнительно включающий:
измерение определенной толщины высушенного второго слоя для сравнения с требуемой толщиной;
получение дополнительного слоя электрохимически активного материала на высушенном втором слое, при этом дополнительный слой включает связующий агент, дисперсант, растворитель, пластификатор и композитные твердые вещества;
высушивание дополнительного слоя;
измерение определенной толщины слоев для сравнения с требуемой толщиной; и
повторение стадий получения и высушивания слоев до тех пор, пока определенная толщина и требуемая толщина слоев не будут примерно равными.
23. Способ изготовления блока твердых топливных элементов на основе оксида, включающий:
осуществление способа по п.1;
помещение внутреннего соединителя на поверхность многослойной электрохимической структуры; и
повторение способа по п.1, при этом внутренний соединитель существенно разделяет многослойные структуры.
24. Твердый топливный элемент на основе оксида, способный преобразовывать химическую энергию в электричество и тепло, включающий:
пористый анод, имеющий толщину перед прокаливанием в диапазоне около 0,5-2,0 мм;
твердый электролит, помещаемый на поверхность анода, имеющий толщину перед прокаливанием в диапазоне около 5-1000 мкм; и
пористый катод, помещаемый на поверхность электролита, имеющий толщину перед прокаливанием в диапазоне около 50-150 мкм, при этом анод, электролит и катод изготавливают способом по п.1.
25. Способ изготовления твердого топливного элемента на основе оксида, включающий следующие стадии:
формирование би-слоя, состоящего из первого пористого слоя электрода и материала плотного электролита на поверхности первого слоя электрода;
формирование второго пористого слоя электрода на поверхности материала электролита для получения многослойной электрохимической структуры, имеющей материал электролита, помещенный между первым и вторым слоями электрода;
термической обработки многослойной электрохимической структуры для существенного удаления связующего агента и других материалов из первого и второго слоев электрода и из материала электролита, и для существенного спекания многослойной электрохимической структуры.
26. Способ изготовления твердого топливного элемента на основе оксида, включающий следующие стадии:
формирование многослойной электрохимической структуры, имеющей слой электролита, помещенный между первым и вторым слоями электрода; и
термической обработки многослойной электрохимической структуры для существенного удаления связующего агента и других материалов из первого и второго слоев электрода и из материала электролита, и для существенного спекания многослойной электрохимической структуры.
27. Способ изготовления твердого топливного элемента на основе оксида, включающий:
формирование первого слоя электрода, имеющего поверхность;
формирование слоя электролита на поверхности первого слоя электрода;
формирование второго слоя электрода на поверхности слоя электролита, при этом слои составляют многослойную электрохимическую структуру;
нагревание многослойной электрохимической структуры для существенного удаления связующего агента и других материалов из каждого слоя; и
прокаливание многослойной электрохимической структуры для существенного спекания слоев.
28. Способ по п.27, отличающийся тем, что стадия формирования каждого слоя включает осаждение соответствующей взвеси композитного материала и высушивание осаждаемого материала.
29. Способ по п.28, отличающийся тем, что стадия формирования каждого слоя включает осаждение каждого слоя с соответствующей определенной толщиной.
30. Способ по п.27, отличающийся тем, что
стадия формирования первого слоя электрода включает формирование керамического композитного материала, имеющего толщину перед прокаливанием в диапазоне около 0,5-2,0 мм;
стадия формирования слоя электролита включает формирование слоя электролита, имеющего толщину перед прокаливанием в диапазоне около 5-1000 мкм; и
стадия формирования второго слоя электрода включает формирование слоя керамического композитного материала, имеющего толщину перед прокаливанием в диапазоне около 50-150 мкм.
31. Способ по п.29, отличающийся тем, что стадия формирования, по крайней мере, одного из слоев включает осаждение двух или более подслоев композитного материала для достижения определенной толщины.
32. Способ изготовления твердого топливного элемента на основе оксида, включающий:
получение первого слоя электрода электрохимически активного материала, имеющего поверхность;
осаждение слоя материала электролита на поверхность первого слоя
электрода;
осаждение второго слоя электрода электрохимически активного материала на поверхность материала электролита, при этом материал электролита помещают между слоями электрода для создания многослойной электрохимической структуры; и
термической обработки многослойной электрохимической структуры для существенного удаления связующего агента и других материалов из каждого слоя, и для существенного спекания слоев.
33. Способ по п.1, отличающийся тем, что энергию нагревания обеспечивает источник микроволн.
34. Способ по п.1, дополнительно включающий:
высушивание каждого слоя перед каждой последующей стадией.
RU2006110158/09A 2003-09-10 2004-09-10 Способ изготовления твердого топливного элемента на основе оксида RU2362239C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50174203P 2003-09-10 2003-09-10
US60/501,742 2003-09-10

Publications (2)

Publication Number Publication Date
RU2006110158A RU2006110158A (ru) 2007-10-20
RU2362239C2 true RU2362239C2 (ru) 2009-07-20

Family

ID=34312303

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006110158/09A RU2362239C2 (ru) 2003-09-10 2004-09-10 Способ изготовления твердого топливного элемента на основе оксида

Country Status (11)

Country Link
US (1) US7485385B2 (ru)
EP (1) EP1671385B1 (ru)
JP (1) JP5015598B2 (ru)
KR (1) KR101136191B1 (ru)
CN (1) CN101061596B (ru)
AU (1) AU2004272186B8 (ru)
BR (1) BRPI0414240A (ru)
CA (1) CA2538224C (ru)
CR (1) CR8281A (ru)
RU (1) RU2362239C2 (ru)
WO (1) WO2005027239A2 (ru)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004252862B2 (en) 2003-06-09 2008-04-17 Saint-Gobain Ceramics & Plastics, Inc. Stack supported solid oxide fuel cell
EP1784888A2 (en) * 2004-06-10 2007-05-16 Technical University of Denmark Solid oxide fuel cell
AU2005321530B2 (en) * 2004-12-28 2009-01-08 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
WO2006074932A1 (en) * 2005-01-12 2006-07-20 Technical University Of Denmark A method for shrinkage and porosity control during sintering of multilayer structures
CA2595854C (en) * 2005-01-31 2015-04-14 Technical University Of Denmark Redox stable anode
DE602006013786D1 (de) * 2005-02-02 2010-06-02 Univ Denmark Tech Dtu Verfahren zur herstellung einer reversiblen festoxidbrennstoffzelle
WO2007005767A1 (en) * 2005-07-01 2007-01-11 The Regents Of The University Of California Advanced solid oxide fuel cell stack design for power generation
ES2434442T3 (es) * 2005-08-31 2013-12-16 Technical University Of Denmark Apilamiento sólido reversible de pilas de combustible de óxido y método para preparar el mismo
CN101268576B (zh) * 2005-09-20 2011-08-17 京瓷株式会社 燃料电池单元及其制法
HUP0501201A2 (en) * 2005-12-23 2007-07-30 Cella H Electrode for electrochemical cell working with high differential pressure difference, method for producing said electrode and electrochemical cell for using said electrode
EP1928049A1 (en) 2006-11-23 2008-06-04 Technical University of Denmark Thin solid oxide cell
DK2378600T3 (da) * 2006-11-23 2013-07-01 Univ Denmark Tech Dtu Fremgangsmåde til fremstilling af reversible fastoxidceller
US20090181274A1 (en) * 2006-12-12 2009-07-16 Elangovan S Electrodes for Lanthanum Gallate Electrolyte-Based Electrochemical Systems
US20080232032A1 (en) * 2007-03-20 2008-09-25 Avx Corporation Anode for use in electrolytic capacitors
US20080248363A1 (en) * 2007-04-06 2008-10-09 Alfred University Composite electrolyte material having high ionic conductivity and depleted electronic conductivity and method for producing same
ES2375407T3 (es) * 2007-08-31 2012-02-29 Technical University Of Denmark Separación de fases de impurezas de dispositivos electroquímicos.
US20090110992A1 (en) * 2007-10-30 2009-04-30 Bloom Energy Corporation SOFC electrode sintering by microwave heating
US20090151850A1 (en) * 2007-12-14 2009-06-18 Wei-Xin Kao Process for fabrication of a fully dense electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
US20110003084A1 (en) * 2008-02-25 2011-01-06 National Research Council Of Canada Process of Making Ceria-Based Electrolyte Coating
EP2104165A1 (en) * 2008-03-18 2009-09-23 The Technical University of Denmark An all ceramics solid oxide fuel cell
US8163437B2 (en) * 2008-03-25 2012-04-24 Fuelcell Energy, Inc. Anode with ceramic additives for molten carbonate fuel cell
GB2469522A (en) * 2009-04-17 2010-10-20 Energy Conversion Technology As Fuel cell apparatus and method for heating a fuel cell stack
EP2333883A1 (de) * 2009-11-18 2011-06-15 Forschungszentrum Jülich Gmbh (FJZ) Anode für eine Hochtemperatur-Brennstoffzelle sowie deren Herstellung
KR101362894B1 (ko) * 2009-12-09 2014-02-14 한국세라믹기술원 전사 방법을 이용한 고체산화물 연료전지용 셀 제조방법
DE102009057720A1 (de) 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Batterie und Verfahren zum Betreiben einer Batterie
WO2011127283A1 (en) * 2010-04-09 2011-10-13 The Regents Of The University Of California Method of making electrochemical device with porous metal layer
JP2012028088A (ja) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd 膜電極複合体、燃料電池、ガス除害装置、および膜電極複合体の製造方法
ES2408861T3 (es) * 2010-07-07 2013-06-21 Technical University Of Denmark Método para sinterización
WO2012024330A2 (en) * 2010-08-17 2012-02-23 Bloom Energy Corporation Method for solid oxide fuel cell fabrication
JP2014154239A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 活物質成形体の製造方法、活物質成形体、リチウム電池の製造方法、およびリチウム電池
US10811717B2 (en) 2013-02-13 2020-10-20 Georgia Tech Research Corporation Electrolyte formation for a solid oxide fuel cell device
US9356298B2 (en) 2013-03-15 2016-05-31 Bloom Energy Corporation Abrasion resistant solid oxide fuel cell electrode ink
EP3038197A4 (en) * 2013-08-21 2017-04-12 Murata Manufacturing Co., Ltd. Ceramic substrate for electrochemical element, method for manufacturing same, fuel cell, and fuel cell stack
US9660273B2 (en) 2013-10-08 2017-05-23 Phillips 66 Company Liquid phase modification of solid oxide fuel cells
WO2015054096A1 (en) 2013-10-08 2015-04-16 Phillips 66 Company Formation of solid oxide fuel cells by spraying
US9666891B2 (en) 2013-10-08 2017-05-30 Phillips 66 Company Gas phase modification of solid oxide fuel cells
WO2015066646A2 (en) * 2013-11-01 2015-05-07 POWELL, Adam, Clayton IV Methods and apparatuses for increasing energy efficiency and improving membrane robustness in primary metal production
WO2015160751A1 (en) * 2014-04-14 2015-10-22 Ovonic Battery Company, Inc. Shared electrode hybrid battery-fuel cell system
US10916765B2 (en) 2016-06-07 2021-02-09 Navitas Systems, Llc High loading electrodes
US11043338B2 (en) 2017-11-09 2021-06-22 Korea Research Institute Of Chemical Technology Manufacturing method of porous composite electrode and organic removal method of porous composite electrode
KR102119411B1 (ko) * 2017-11-09 2020-06-08 한국화학연구원 다공성 복합체 전극의 제조방법 및 다공성 복합체 전극의 유기물 제거방법
DE102018217516A1 (de) * 2018-10-12 2020-04-16 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Elektrode für einen Akkumulator
DE102018217518A1 (de) * 2018-10-12 2020-04-16 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Elektrode für einen Akkumulator
CN109437903B (zh) * 2018-12-20 2022-01-18 云南大学 提高掺杂氧化铈电解质烧结活性的方法
WO2021025051A1 (ja) * 2019-08-06 2021-02-11 株式会社村田製作所 固体酸化物形燃料電池用電解質シート、固体酸化物形燃料電池用電解質シートの製造方法及び固体酸化物形燃料電池用単セル
US20220231317A1 (en) * 2021-01-15 2022-07-21 Bloom Energy Corporation Method of manufacturing solid oxide electrolyzer cells using a continuous furnace

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000006A (en) * 1975-09-02 1976-12-28 United Technologies Corporation Screen printing fuel cell electrolyte matrices
JPS5916831B2 (ja) * 1978-07-24 1984-04-18 日産自動車株式会社 膜構造型酸素センサ−の製造方法
US4799936A (en) * 1987-06-19 1989-01-24 Combustion Engineering, Inc. Process of forming conductive oxide layers in solid oxide fuel cells
US4997726A (en) * 1989-02-15 1991-03-05 Sanyo Electric Co., Ltd. Solid oxide electrolyte fuel cell
US5069987A (en) * 1990-07-06 1991-12-03 Igr Enterprises, Inc. Solid oxide fuel cell assembly
US5290642A (en) * 1990-09-11 1994-03-01 Alliedsignal Aerospace Method of fabricating a monolithic solid oxide fuel cell
US5143801A (en) * 1990-10-22 1992-09-01 Battelle Memorial Institute Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
US5292599A (en) * 1991-09-27 1994-03-08 Ngk Insulators, Ltd. Cell units for solid oxide fuel cells and power generators using such cell units
US5529856A (en) * 1993-01-14 1996-06-25 Electric Power Research Institute Fuel cell having solidified plasma components
CA2161957C (en) * 1993-03-20 2004-02-24 Kevin Kendall Solid oxide fuel cell structures
GB9403234D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack and a reactant distribution member therefor
GB9403198D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
JPH07277849A (ja) * 1994-04-13 1995-10-24 Ngk Insulators Ltd 多孔質焼結体、耐熱性電極及び固体電解質型燃料電池
US6316138B1 (en) * 1994-07-11 2001-11-13 Mitsubishi, Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US5992486A (en) * 1994-09-13 1999-11-30 Gunze Limited Laminate gas barrier layer for pneumatic tires
US5725965A (en) * 1995-04-25 1998-03-10 Gas Research Institute Stable high conductivity functionally gradient compositionally layered solid state electrolytes and membranes
US5993986A (en) * 1995-11-16 1999-11-30 The Dow Chemical Company Solide oxide fuel cell stack with composite electrodes and method for making
US5753385A (en) * 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
JPH09245813A (ja) * 1996-03-06 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池の製造方法
CA2275229C (en) * 1996-12-20 2008-11-18 Tokyo Gas Co., Ltd. Fuel electrode of solid oxide fuel cell and process for the production of the same
US6228520B1 (en) * 1997-04-10 2001-05-08 The Dow Chemical Company Consinterable ceramic interconnect for solid oxide fuel cells
US5922486A (en) * 1997-05-29 1999-07-13 The Dow Chemical Company Cosintering of multilayer stacks of solid oxide fuel cells
US6099985A (en) * 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US6117302A (en) * 1998-08-18 2000-09-12 Aluminum Company Of America Fuel cell aluminum production
JP2000133280A (ja) * 1998-10-19 2000-05-12 Sof Co 高性能固体酸化物燃料電池用アノ―ド
KR100341402B1 (ko) * 1999-03-09 2002-06-21 이종훈 고체산화물 연료전지의 단전지와 스택구조
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6682842B1 (en) * 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
KR100344936B1 (ko) * 1999-10-01 2002-07-19 한국에너지기술연구원 연료극 지지체식 원통형 고체산화물 연료전지 및 그 제조방법
US6649296B1 (en) * 1999-10-15 2003-11-18 Hybrid Power Generation Systems, Llc Unitized cell solid oxide fuel cells
US6485852B1 (en) * 2000-01-07 2002-11-26 Delphi Technologies, Inc. Integrated fuel reformation and thermal management system for solid oxide fuel cell systems
DK174654B1 (da) * 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
US6428920B1 (en) * 2000-05-18 2002-08-06 Corning Incorporated Roughened electrolyte interface layer for solid oxide fuel cells
CA2447855C (en) * 2000-05-22 2011-04-12 Acumentrics Corporation Electrode-supported solid state electrochemical cell
JP3690967B2 (ja) * 2000-06-29 2005-08-31 株式会社日本触媒 固体電解質膜形成用スラリーおよびこれを用いた固体電解質膜
JP4605885B2 (ja) * 2000-10-23 2011-01-05 東邦瓦斯株式会社 支持膜式固体電解質型燃料電池
US6551734B1 (en) * 2000-10-27 2003-04-22 Delphi Technologies, Inc. Solid oxide fuel cell having a monolithic heat exchanger and method for managing thermal energy flow of the fuel cell
JP2004513500A (ja) * 2000-11-08 2004-04-30 グローバル サーモエレクトリック インコーポレイテッド 電気化学電池の連結装置
US6803141B2 (en) * 2001-03-08 2004-10-12 The Regents Of The University Of California High power density solid oxide fuel cells
US7638222B2 (en) * 2001-03-28 2009-12-29 Hexis Ag Porous, gas permeable layer substructure for a thin, gas tight layer for use as a functional component in high temperature fuel cells
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
US20020155227A1 (en) * 2001-04-23 2002-10-24 Sulzer Markets And Technolgy Ag Method for the manufacture of a functional ceramic layer
JP5110337B2 (ja) * 2001-06-18 2012-12-26 株式会社豊田中央研究所 固体電解質型燃料電池用電極構造体およびその製造方法
JP4840718B2 (ja) * 2001-08-14 2011-12-21 日産自動車株式会社 固体酸化物形燃料電池
US6949307B2 (en) * 2001-10-19 2005-09-27 Sfco-Efs Holdings, Llc High performance ceramic fuel cell interconnect with integrated flowpaths and method for making same
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
YU88103A (sh) * 2002-05-14 2006-08-17 H.Lundbeck A/S. Lecenje adhd
US20030232230A1 (en) * 2002-06-12 2003-12-18 Carter John David Solid oxide fuel cell with enhanced mechanical and electrical properties
US6893769B2 (en) * 2002-12-18 2005-05-17 Hewlett-Packard Development Company, L.P. Fuel cell assemblies and methods of making the same
EP1624521B1 (en) 2003-03-31 2013-04-24 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module

Also Published As

Publication number Publication date
KR101136191B1 (ko) 2012-04-17
EP1671385A4 (en) 2009-03-25
CA2538224C (en) 2012-01-24
AU2004272186A1 (en) 2005-03-24
JP2007510255A (ja) 2007-04-19
AU2004272186B8 (en) 2010-02-18
EP1671385B1 (en) 2013-01-02
WO2005027239A3 (en) 2007-03-29
JP5015598B2 (ja) 2012-08-29
US20050089739A1 (en) 2005-04-28
BRPI0414240A (pt) 2006-10-31
EP1671385A2 (en) 2006-06-21
WO2005027239A2 (en) 2005-03-24
RU2006110158A (ru) 2007-10-20
CN101061596A (zh) 2007-10-24
AU2004272186B2 (en) 2009-10-29
CN101061596B (zh) 2010-08-18
KR20070019944A (ko) 2007-02-16
CR8281A (es) 2007-08-28
US7485385B2 (en) 2009-02-03
CA2538224A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
RU2362239C2 (ru) Способ изготовления твердого топливного элемента на основе оксида
EP1770816B1 (en) Paste for an anode-supported solid oxide fuel cell and fabricating method thereof
US5670270A (en) Electrode structure for solid state electrochemical devices
JP5718810B2 (ja) セラミック膜の堆積方法
JP2007510255A5 (ru)
JPH04118861A (ja) 固体電解質型燃料電池およびその製造方法
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
JP2023511694A (ja) 固体酸化物用中間層
WO1998049738A1 (en) Electrode structure for solid state electrochemical devices
KR101685386B1 (ko) 저온 동시소결에 의한 연료극 지지형 고체산화물 셀 및 그 제조방법
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
Mu et al. Rapid laser reactive sintering of BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3-δ electrolyte for protonic ceramic fuel cells
KR101662211B1 (ko) 연료극, 연료극 지지형 전해질막, 연료전지 및 연료극 지지형 전해질막의 제조방법
US8153331B2 (en) Fabrication method of anode and electrolyte in solid oxide fuel cell
US20140255599A1 (en) Method of preparing an electrochemical half-cell
EP3343682B1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
MXPA06002691A (en) Process for solid oxide fuel cell manufature
KR100707117B1 (ko) 연료극 지지형 고체산화물연료전지 및 그 제조방법
KR101670612B1 (ko) 평판형 고체 산화물 연료전지의 제조 방법
JPH11171653A (ja) セラミック粉末及びその製造方法
JP2001068130A (ja) 固体電解質型燃料電池セル
Ruiz-Morales et al. Novel Procedures for the Microstructural Design of SOFC Materials
KR20170036566A (ko) 고체산화물 연료전지, 이를 포함하는 전지모듈 및 고체산화물 연료전지의 제조방법
JPS63255375A (ja) セラミツクスコ−テイング剤
JPH07201342A (ja) 固体電解質型燃料電池の単電池製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140911