RU2358301C2 - Оптические устройства со световодной подложкой - Google Patents

Оптические устройства со световодной подложкой Download PDF

Info

Publication number
RU2358301C2
RU2358301C2 RU2006107027/28A RU2006107027A RU2358301C2 RU 2358301 C2 RU2358301 C2 RU 2358301C2 RU 2006107027/28 A RU2006107027/28 A RU 2006107027/28A RU 2006107027 A RU2006107027 A RU 2006107027A RU 2358301 C2 RU2358301 C2 RU 2358301C2
Authority
RU
Russia
Prior art keywords
substrate
optical device
light
optical
incidence
Prior art date
Application number
RU2006107027/28A
Other languages
English (en)
Other versions
RU2006107027A (ru
Inventor
Яаков АМИТАИ (IL)
Яаков АМИТАИ
Original Assignee
Лумус Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лумус Лтд. filed Critical Лумус Лтд.
Publication of RU2006107027A publication Critical patent/RU2006107027A/ru
Application granted granted Critical
Publication of RU2358301C2 publication Critical patent/RU2358301C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Eye Examination Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

Представлено оптическое устройство, содержащее световодную подложку, имеющую по меньшей мере две поверхности, параллельные друг другу, оптическое средство для ввода световых волн в подложку путем внутреннего отражения и по меньшей мере одну частично отражающую поверхность, расположенную в подложке, которая не параллельна указанным двум поверхностям подложки, при этом одна из двух указанных поверхностей имеет селективное покрытие по углу падения. Технический результат: создание индикаторной компактной системы с улучшенными эксплуатационными характеристиками. 15 з.п. ф-лы, 10 ил.

Description

Область техники
Настоящее изобретение относится к оптическим устройствам со световодной подложкой, в частности к устройствам, содержащим некоторое множество отражающих поверхностей на общей световодной подложке-носителе, также называемой световодом.
Изобретение может быть осуществлено для получения преимуществ в большом количестве устройств отображения информации, таких как, например, индикаторов шлемов виртуальной реальности (ИШВР) и проекционных бортовых индикаторов (ПБИ), сотовых телефонов, компактных дисплеев, трехмерных дисплеев, компактных расширителей пучка, а также для применения, не связанного с отображением информации, а именно для индикаторов индикаторных панелей, компактных осветительных приборов и сканеров.
Уровень техники
Одним из важных видов применения компактных оптических элементов является ИШВР, где оптический модуль служит в качестве объектива изображения и блоком объединения, в котором двухмерный дисплей экспонируется до бесконечности и отражается в глазах наблюдающего человека. Индикатор может быть получен непосредственно из пространственного модулятора света (ПМС), такого как электронно-лучевая трубка (ЭЛТ), жидкокристаллический дисплей (ЖКД), органической светодиодной матрицы (ОСМ) или сканирующего источника и аналогичных устройств или косвенно посредством объектива переноса или оптического кабеля. Индикатор содержит матрицу элементов (пикселей), экспонируемых до бесконечности коллимирующей линзой и передаваемых в глаза наблюдающего человека посредством отражающей или частично отражающей поверхности, действующей как блок объединения для непрозрачных и прозрачных изображений соответственно. Обычно для этих целей используется хорошо известный оптический модуль открытого типа. С увеличением желательного поля зрения (ПЗ) системы такой известный оптический модуль увеличивается по размерам, массе и объему и поэтому становится непрактичным даже для устройств с невысокими эксплуатационными характеристиками. Это является главным недостатком для всех типов индикаторов, но особенно для индикаторов шлемов виртуальной реальности, где система обязательно должна быть максимально легкой и компактной.
Стремление к компактности привело к созданию нескольких сложных оптических устройств, все из которых, с одной стороны, все же недостаточно компактные для большинства устройств, используемых на практике, а с другой стороны, они имеют большие недостатки с точки зрения возможности производства. Кроме того, поле перемещения глаза (ППГ) оптических углов зрения, которые обеспечивают такие конструкции, обычно очень мало - меньше 8 мм. Поэтому эксплуатационные характеристики оптической системы очень чувствительны даже к небольшим перемещениям оптической системы относительно глаза наблюдающего человека и не позволяют зрачку перемещаться на достаточное расстояние для удобного считывания текста с таких индикаторов.
Краткое описание изобретения
Настоящее изобретение облегчает разработку и изготовление очень компактных световодных оптических элементов (СОЭ) для, помимо других устройств, индикаторов шлемов виртуальной реальности. Изобретение обеспечивает относительно широкое ПЗ наряду с относительно высокими значениями ППГ. Оптическая система согласно изобретению обеспечивает крупное высококачественное изображение, которое также допускает перемещения глаза на большое расстояние. Оптическая система согласно настоящему изобретению обладает преимуществом в том, что она значительно более компактная, чем известные системы, и все же может быть легко интегрирована даже в оптические системы специальных конфигураций.
Изобретение также дает возможность изготовления усовершенствованных ПБИ. Проекционные бортовые индикаторы становятся популярными и сейчас играют важную роль не только в наиболее современных боевых самолетах, но и в гражданской авиации, где системы ПБИ стали одним из основных элементов систем посадки в условиях ограниченной видимости. Кроме того, в последнее время появилось много технических решений и конструкций для применения ПБИ в автомобилях, где они могут помогать водителю при вождении и выборе пути. Тем не менее, известные ПБИ обладают несколькими серьезными недостатками. Всем ПБИ известных конструкций необходим источник отображения, который должен быть смещен на значительное расстояние от блока объединения для обеспечения того, чтобы источник освещал всю поверхность блока объединения. В результате система ПБИ «блок объединения - проектор» обязательно имеет большие размеры и объем и требует значительного установочного пространства, что создает неудобства при установке и иногда даже опасность при использовании. Большая оптическая апертура известных ПБИ также является существенной проблемой с точки зрения оптической конструкции, что приводит либо к ухудшению эксплуатационных характеристик, либо к высоким затратам, если требуются высокие эксплуатационные характеристики. Особую проблему представляет хроматическое рассеивание высококачественных голографических ПБИ.
Важной областью применения настоящего изобретения является его использование в компактном ПБИ, которое устраняет вышеупомянутые недостатки. В конструкции ПБИ согласно настоящему изобретению блок объединения освещается компактным источником отображения, который может быть соединен с подложкой. Поэтому вся система очень компактная и может легко устанавливаться в различные конфигурации для разных применений. Кроме того, хроматическое рассеяние отображения ничтожно мало и поэтому может работать с источниками широкого спектра, включая известный источник белого света.
Также настоящее изобретение расширяет изображение так, что активная область блока объединения может быть значительно больше, чем область, фактически освещаемая источником света.
Еще одной областью применения настоящего изобретения является создание компактного дисплея с широким ПЗ для мобильных портативных устройств, таких как сотовые телефоны. На сегодняшнем рынке беспроводного доступа в Интернет имеется достаточная полоса частот для передачи полноразмерного видео. Ограничивающим фактором остается качество отображения в устройстве конечного пользователя. Требование мобильности ограничивает физические размеры дисплеев, и результатом является прямое отображение с плохим качеством изображения. Настоящее изобретение дает возможность создать физически очень компактный дисплей с очень крупным виртуальным изображением. Это является одним из главных факторов в мобильной связи, особенно для мобильного доступа в Интернет, устраняя одно из главных ограничений для его практического применения. Этим настоящее изобретение дает возможность наблюдать цифровое содержание полноформатной Интернет-страницы на небольшом ручном устройстве, таком как сотовый телефон.
Поэтому целью настоящего изобретения в широком смысле является устранение недостатков известных компактных устройств оптического отображения и создание других оптических компонентов и систем с улучшенными эксплуатационными характеристиками в соответствии с конкретными требованиями.
Поэтому изобретение предлагает оптическое устройство, содержащее световодную подложку, имеющую по меньшей мере две главных поверхности, параллельные друг к другу и краям; оптическое средство для ввода световых волн, находящихся в поле зрения, в упомянутую подложку путем внутреннего отражения и по меньшей мере одну частично отражающую поверхность, расположенную в упомянутой подложке, которая не параллельна упомянутым главным поверхностям подложки, причем упомянутое оптическое устройство отличается тем, что по меньшей мере одна из упомянутых главных поверхностей имеет дихроичное покрытие.
Краткое описание чертежей
Описание изобретения содержит некоторые предпочтительные варианты осуществления со ссылками на фигуры прилагаемых чертежей для облегчения его понимания.
При конкретной ссылке на подробные фигуры чертежей необходимо подчеркнуть, что все детали показаны только для примера и для целей обсуждения предпочтительных вариантов осуществления настоящего изобретения путем иллюстраций, все детали представлены в случае изложения того, что считается наиболее полезным и легко понимаемым описанием принципов и концептуальных аспектов изобретения. В этом отношении не делается попыток представить конструкционные детали изобретения более подробно, чем это необходимо для понимания основ изобретения. Описание, взятое вместе с чертежами, должно служить в качестве указания специалисту в данной области техники, как можно осуществить на практике несколько форм изобретения.
На чертежах:
Фиг.1 является видом сбоку известного складывающегося оптического устройства;
Фиг.2 является видом сбоку варианта осуществления световодных оптических элементов в соответствии с настоящим изобретением;
Фиг.3А и Фиг.3В иллюстрируют желательные характеристики отражательной способности и пропускаемости селективно отражающих поверхностей, используемых в настоящем изобретении для двух диапазонов углов падения;
на Фиг.4 показаны кривые отражательной способности как функция длины волны для представительного дихроичного покрытия для параллельной поляризации;
на Фиг.5 показана кривая отражательной способности как функция длины волны для представительного дихроичного покрытия для перпендикулярной поляризации;
на Фиг.6 показаны кривые отражательной способности как функция угла падения для представительного дихроичного покрытия;
на Фиг.7 показана схема, иллюстрирующая подробные сечения представительной матрицы селективно отражающих поверхностей;
на Фиг.8 показаны кривые отражательной способности как функция угла падения для другого дихроичного покрытия;
на Фиг.9 представлен представительный вариант осуществления настоящего изобретения, установленный в стандартную оправу очков, и
на Фиг.10 показана представительная система ПБИ в соответствии с настоящим изобретением.
Подробное описание предпочтительных вариантов изобретения
На Фиг.1 показана известная конструкция складывающегося оптического устройства, в котором подложка 2 освещается индикаторным источником 4. Индикатор коллимируется коллимирующей линзой 6. Свет от индикаторного источника 4 вводится в подложку 2 первой отражающей поверхностью 8 таким образом, что главный луч 10 параллелен плоскости подложки. Вторая отражающая поверхность 12 выводит свет из подложки в глаз наблюдающего человека 14. Несмотря на компактность данной конфигурации она обладает значительными недостатками, в частности может быть задействовано только очень ограниченное ПЗ. Как показано на Фиг.1, максимально разрешенный угол смещения оси в подложке равен:
Figure 00000001
где Т - толщина подложки;
deye - желательный диаметр выхода-зрачка;
l - расстояние между отражающими поверхностями 8 и 12.
При углах больше αmax лучи отражаются от поверхности подложки до прихода на отражающую поверхность 12. Отсюда, отражающая поверхность 12 будет освещаться в нежелательном направлении, и возникнут фантомные изображения.
Поэтому максимально достижимое ПЗ при этой конфигурации равно:
Figure 00000002
где ν является коэффициентом преломления подложки.
Обычно значения коэффициента преломления находятся в диапазоне 1,5-1,6.
Диаметр зрачка глаза обычно составляет 2-6 мм. Для аккомодации перемещения или смещения индикатора необходим больший диаметр выхода-зрачка. Если взять минимальное желательное значение приблизительно 8-10 мм, расстояние между оптической осью глаза и боковой стороной головы, l, будет обычно составлять 40-80 мм. Следовательно, даже для небольшого ПЗ 8° желательная толщина подложки должна составлять порядка 12 мм.
Для преодоления вышеизложенной проблемы были предложены различные методы. Они включают использование увеличивающего телескопа в подложке и не параллельные направления ввода и вывода. Даже при этих технических решениях, однако, и даже если рассматривать только одну отражающую поверхность, толщина системы останется ограниченной сходным значением. ПЗ ограничено диаметром проекции отражающей поверхности 12 на плоскость подложки. С математической точки зрения максимально достижимое ПЗ из-за этого ограничения выражается следующим образом:
Figure 00000003
где αsur - угол между отражающей поверхностью и нормалью к плоскости подложки;
Reye - расстояние между глазом наблюдающего человека и подложкой (обычно приблизительно 30-40 мм).
Практически tanαsur не может быть намного больше 1; отсюда, для тех же параметров, указанных выше для ПЗ 8°, требуемая здесь толщина подложки должна быть порядка 7 мм, что лучше вышеуказанного предельного значения. Тем не менее, когда желательное ПЗ увеличивается, толщина подложки быстро увеличивается. Например, для желательных ПЗ 15° и 30° ограничивающая толщина подложки будет равна 18 мм или 25 мм соответственно.
Для устранения вышеуказанных ограничений настоящее изобретение использует матрицу селективно отражающих поверхностей, изготовленную в световодном оптическом элементе. На Фиг.2 показано поперечное сечение световодного оптического элемента согласно настоящему изобретению. Первая отражающая поверхность освещается коллимированной входной плоской волной 18, исходящей из индикаторного светового источника (не показан), расположенного позади устройства, где плоская волна 18 является одной из набора световых волн, расположенных в данном ПЗ для ввода в световодный оптический элемент. Отражающая поверхность 16 отражает падающий свет от источника так, что этот свет захватывается в плоской подложке 20 общим внутренним отражением. После нескольких отражений с поверхностей подложки захваченная волна достигает матрицы селективно отражающих поверхностей 22, которые выводят световую волну 23 из подложки в поле 24 перемещения глаза наблюдающего человека. Для того чтобы избежать фантомных изображений, выходная световая волна 23 должна быть плоской, иначе различные лучи, представляющие одну точку на индикаторном источнике, будут поступать в поле 24 перемещения глаза наблюдающего человека под разными углами падения, и он будет видеть фантомные изображения, смешивающиеся с первичным изображением. Для предотвращения этого явления выходная световая волна 23, а отсюда и входная волна 18 должны быть плоскими. То есть угловое отклонение между двумя разными лучами, расположенными на одной световой волне, должно быть меньше αres, где αres является угловым разрешением оптического устройства. Обычно для большинства визуальных систем αres составляет приблизительно 1-2 миллирадиана, но разные устройства могут давать разное угловое разрешение.
Предполагая, что центральная волна источника выводится из подложки 20 в направлении, перпендикулярном поверхности 26 подложки, и что угол отклонения от оси введенной волны в подложке 20 составляет αin, то угол αsur2 между отражающими поверхностями и плоскостью подложки равен:
Figure 00000004
Как можно видеть на Фиг.2, захваченные лучи поступают на отражающие поверхности с двух различных направлений 28, 30. В данном конкретном варианте осуществления захваченные лучи поступают на отражающую поверхность с одного из этих направлений 28 после четного числа отражений от поверхностей 26 подложки, где угол падения βref между захваченным лучом и нормалью к отражающей поверхности равен:
Figure 00000005
Захваченные лучи поступают на отражающую поверхность с второго направления 30 после нечетного числа отражений от поверхностей 26 подложки, где угол отклонения от оси равен α'in=180°-αin, и угол падения между захваченным лучом и нормалью к отражающей поверхности равен:
Figure 00000006
Для того чтобы предотвратить нежелательные отражения и фантомные изображения, отражательная способность одного из этих направлений должна быть ничтожно малой. Желательное разграничение между двумя направлениями падения может быть достигнуто, если один угол будет значительно меньше другого угла. Можно обеспечить покрытие с очень низкой отражательной способностью при больших углах падения и с высокой отражательной способностью при малых углах падения. Это свойство должно использоваться для предотвращения нежелательных отражений и фантомных изображений путем устранения отражательной способности по одному из двух направлений. Например, выбрав βref≈25° из уравнений (5) и (6), можно вычислить, что:
Figure 00000007
Если теперь будет определена отражающая поверхность, для которой β′ref не отражается, а βref отражается, то желательное условие достигнуто. На Фиг.3А и Фиг.3В показаны желательные характеристики отражательной способности селективно-отражающих поверхностей. Пока луч 32 (Фиг.3А), имеющий угол отклонения от оси βref≈25°, частично отражается и выводится из подложки 34, луч 36 (Фиг.3В), который поступает под углом отклонения от оси β′ref≈75° на отражающую поверхность (которая эквивалентна β′ref≈105°), передается через отражающую поверхность 34 без какого-либо заметного отражения.
На Фиг.4 и Фиг.5 представлены кривые отражательной способности дихроичного покрытия, рассчитанного на достижение вышеуказанных характеристик отражательной способности, для четырех разных углов падения: 20°, 25°, 30° и 75° при параллельно поляризованном и перпендикулярно поляризованном свете соответственно. Когда отражательная способность луча под большим углом ничтожно мала во всем соответствующем спектре, лучи под углами отклонения от оси 20°, 25° и 30° получают почти постоянную отражательную способность 26%, 29% и 32% соответственно для параллельно поляризованного света и 32%, 28% и 25% соответственно для перпендикулярно поляризованного света во всем спектре. Очевидно, что отражательная способность уменьшается вместе с углом наклона падающих лучей для параллельно поляризованного света и возрастает для перпендикулярно поляризованного света.
На Фиг.6 показаны кривые отражательной способности того же дихроичного покрытия как функция угла падения для поляризации обоих типов при длине волны λ=550 нм. На представленном графике есть два значительных региона: между 65° и 80°, где отражательная способность очень низкая, и между 15° и 40°, где отражательная способность изменяется монотонно с уменьшением углов падения (увеличиваясь для параллельно поляризованного света и уменьшаясь для перпендикулярно поляризованного света). Отсюда, поскольку можно обеспечить, чтобы весь угловой спектр β′ref, где желательны очень низкие отражения, был расположен в первом регионе, а весь угловой спектр βref, где требуются более высокие отражения, был расположен во втором регионе, для данного ПЗ можно обеспечить отражение только одного режима подложки в глаз наблюдающего человека и отсутствие фантомных изображений.
Существуют некоторые различия между характеристиками этих двух типов поляризации. Главные различия заключаются в том, что регион больших углов, где отражательная способность очень низкая, намного уже для перпендикулярной поляризации, и что намного труднее достигнуть постоянной отражательной способности для какого-то данного угла во всей полосе частот спектра для перпендикулярно поляризованного света, чем для параллельно поляризованного света. Поэтому предпочтительно разрабатывать световодный элемент только для параллельно поляризованного света. Этого будет достаточно для системы, в которой используется поляризованный индикаторный источник, такой как жидкокристаллический дисплей, или для системы, где выходная яркость не имеет решающего значения, и перпендикулярно поляризованный свет может быть отфильтрован. Однако для неполяризованного индикаторного источника, например ЭЛТ или органической светодиодной матрицы, или для системы, для которой яркость является очень важной, перпендикулярно поляризованным светом нельзя пренебрегать, и он должен приниматься во внимание в ходе разработки. Еще одним отличием является то, что монотонные характеристики перпендикулярно поляризованного света при угловом спектре βref, где требуются более высокие отражения, противоположны характеристикам параллельно поляризованного света, то есть отражательная способность для перпендикулярно поляризованного света возрастает вместе с прозрачностью падающих лучей. Эти противоположные друг другу характеристики двух типов поляризации при угловом спектре βref могут использоваться при разработке оптических компонентов системы для достижения желательной отражательной способности всего света в соответствии с конкретными требованиями к каждой системе.
Предполагая, что связанная волна освещает всю площадь отражающей поверхности, после отражения с поверхности 16 она освещает площадь 2S1=2Т tan(α) на поверхности подложки. С другой стороны, проекция отражающей поверхности 22 на поверхности подложки равна S2=Т tan(αsur2). Для того чтобы избежать перекрывания или промежутков между отражающими поверхностями, проекция каждой поверхности примыкает к соседней. Отсюда, количество N отражающих поверхностей 22, через которые каждый связанный луч проходит в течение одного цикла (т.е. между двумя отражениями от одной и той же поверхности подложки), составляет:
Figure 00000008
В этом примере, где αsur2=25° и αsur1=25°, N=2, т.е. каждый луч проходит через две разные поверхности в течение одного цикла.
Вышеописанный вариант осуществления в отношении Фиг.7 является примером способа ввода входных волн в подложку. Входные волны, однако, также могут вводиться в подложку другими оптическими средствами, включающими, но не ограничивающимися, складывающиеся призмы, световодные кабели, дифракционные решетки и другие технические решения.
Также в примере, проиллюстрированном на Фиг.2, входные волны и изображающие волны расположены на одной стороне подложки. Предусматриваются и другие конфигурации, в которых входные волны и изображающие волны могут быть расположены на противоположных сторонах подложки. Также возможно, в некоторых областях применения, вводить входные волны в подложку через одну из периферийных сторон подложки.
На Фиг.7 показано подробное сечение матрицы селективно отражающих поверхностей, которые выводят свет, захваченный в подложке, наружу и в глаз наблюдающего человека. Как можно видеть, в каждом цикле связанный луч проходит через отражающие поверхности 43 под углом α′in=130°, в связи с чем угол между лучом и нормалью к отражающим поверхностям составляет приблизительно 75°. Отражения от этих поверхностей ничтожно малы. Кроме того, луч проходит дважды через отражающую поверхность 44 в каждом цикле под углом αin=50° при угле падения 25°. Часть энергии луча выводится из подложки. Предполагая, что одна матрица из двух отражающих поверхностей 22 используется для направления света в глаз наблюдающего человека, максимальное ПЗ будет равно:
Figure 00000009
Отсюда, при тех же параметрах, что и в примерах выше ограничивающая толщина подложки для ПЗ 8° будет составлять порядка 2,8 мм; для ПЗ 15° и 30° ограничивающая толщина подложки будет составлять 3,7 мм и 5,6 мм соответственно. Это более благоприятные значения, чем ограничивающая толщина в известных технических решениях, обсуждавшихся выше. Более того, можно использовать больше двух селективно отражающих поверхностей. Например, при трех отражающих поверхностях 22 ограничивающая толщина подложки для ПЗ 15° и 30° будет составлять приблизительно 2,4 мм и 3,9 мм соответственно. Подобно этому, могут быть введены дополнительные отражающие поверхности для, помимо других преимуществ, дальнейшего уменьшения ограничивающей толщины подложки.
Для конфигурации, в которой требуется относительно небольшое ПЗ, может быть достаточно одной частично отражающей поверхности. Например, для системы со следующими параметрами: Reye=25 мм; αsur=72° и Т=5 мм умеренное ПЗ 17° может быть достигнуто даже с одной отражающей поверхностью 22. Часть лучей будет пересекать поверхность 22 несколько раз перед их выводом в желательном направлении. Так как минимальный угол распространения внутри подложки для достижения состояния суммарного внутреннего отражения для материала ВК7 или аналогичного составляет αin(min)=42°, направление распространения центрального угла ПЗ составляет αin(cen)=48°. Следовательно, проецируемое изображение является не перпендикулярным к поверхности, а скорее наклонено до угла отклонения от оси 12°. Тем не менее, для многих областей применения это приемлемо.
К сожалению, это техническое решение не всегда осуществимо. Для многих других областей применения существует ограничение, заключающееся в том, что проецируемое изображение должно быть перпендикулярным к поверхности подложки. Еще одной проблемой, которая связана с состоянием суммарного внутреннего отражения, является максимальное ПЗ изображения, которое может быть захвачено в подложке. К сожалению, очень трудно достичь очень низкой отражательной способности для углов отклонения от оси, превышающих 82°. Предполагая, что требуемый угол ПЗ в подложке составляет αПЗ, максимальный угол падения между центральной волной и нормалью к отражающей поверхности составляет:
Figure 00000010
Предположим, что наружное ПЗ 30°, которое соответствует αПЗ~20° в подложке, дает β'куа=72°. Подстановка этого значения в уравнение (6) дает αin=48°, и отсюда минимальный требуемый угол захваченной волны составляет:
Figure 00000011
Понятно, что этот угол не может быть захвачен в ВК7 или других аналогичных материалах. Верно то, что существуют кремневые оптические материалы с более высоким показателем преломления, который может превышать 1.8, но прозрачность этих материалов обычно недостаточно высокая для оптических элементов на подложке. Еще одно возможное решение заключается в нанесении покрытия на поверхности подложки, используя не обычные противоотражающие покрытия, а чувствительные к углу отражающие покрытия, которые захватывают все ПЗ в подложке даже при меньших углах, чем критический угол. Необходимо отметить, что даже для непрозрачных применений, где одна из поверхностей подложки может быть непрозрачной и, следовательно, может быть покрыта обычной отражающей поверхностью, другая поверхность, которая расположена рядом с глазами наблюдающего человека, должна быть прозрачной, по меньшей мере для углов требуемого наружного ПЗ. Поэтому требуемое отражающее покрытие должно иметь очень высокую отражательную способность для региона углов меньше критического и очень высокую отражательную способность для всего ПЗ изображения.
На Фиг.8 приведены кривые отражательной способности дихроичного покрытия, рассчитанного на достижение вышеупомянутых характеристик отражательной способности, как функция угла падения для поляризации обоих типов при длине волны λ=550 нм, где угол измеряется в воздухе. Очевидно, что на этом графике существуют два значительных региона: между 30° и 90° (эквивалентно 20°-42° в подложке), где отражательная способность очень высокая, и между 0° и 22° (эквивалентно 0°-15° в подложке), где отражательная способность очень низкая. Следовательно, поскольку можно обеспечить, чтобы весь угловой спектр αin, где желательны очень высокие отражения, был расположен в первом регионе, тогда как весь угловой спектр наружного ПЗ, где требуются по существу нулевые отражения, был расположен во втором регионе, и для любого ПЗ можно обеспечить, чтобы все ПЗ было захвачено в подложке внутренними отражениями, чтобы наблюдающий человек мог видеть все изображение. Важно отметить, что так как процесс изготовления световодного элемента обычно включает цементирование оптических элементов, и так как требуемое чувствительное к углу отражающее покрытие наносится на поверхность подложки только после завершения создания тела световодного элемента, невозможно использовать обычные способы нанесения покрытий в горячем состоянии, так как можно повредить цементированные площади. К счастью, новые тонкопленочные технологии, способы ионного нанесения покрытий также могут использоваться для холодной обработки. Устранение необходимости нагрева деталей позволяет безопасно наносить покрытия на цементированные части, такие как световодные элементы.
Говоря в общем, световодные элементы предлагают несколько существенных преимуществ над альтернативными компактными оптическими средствами для применения в устройствах отображения информации; эти преимущества следующие.
1. Входной индикаторный источник может быть расположен очень близко к подложке, так что вся оптическая система будет очень компактной и легкой, что является не имеющим параллелей фактором формы.
2. В противоположность другим компактным индикаторным конфигурациям, настоящее изобретение предлагает гибкость в отношении расположения входного индикаторного источника относительно глаз. Эта гибкость в сочетании со способностью располагать такой источник близко к расширяющей подложке устраняет необходимость использования оптической конфигурации с отклонением от оси, что является обычным для других систем отображения информации. Кроме того, так как входная апертура световодного элемента намного меньше активной области выходной апертуры, числовая апертура коллимирующей линзы 6 намного меньше, чем требуется для сопоставимой традиционной системы формирования изображений. Следовательно, может быть осуществлена значительно более удобная оптическая система, и многие проблемы, связанные с оптикой с отклонением от оси и линзами с большими числовыми апертурами, такие как полевые или хроматические аберрации, могут быть компенсированы относительно легко и эффективно.
3. Коэффициенты отражения селективно отражающих поверхностей в настоящем изобретении в сущности одинаковы во всем соответствующем спектре.
Следовательно, в качестве индикаторных источников могут использоваться как монохроматические, так и полихроматические источники света. Световодные элементы имеют ничтожно малую зависимость от длины волны, обеспечивая высококачественное цветное изображение высокого разрешения.
4. Так как каждая точка с входного индикатора преобразуется в плоскую волну, которая отражается в глазе наблюдающего человека от крупной части отражающей матрицы, допуски на точное местонахождение глаза могут быть значительно увеличены. Как таковой, наблюдающий человек может видеть все ПЗ, и поле перемещения глаза может быть значительно большим, чем в других компактных индикаторных конфигурациях.
5. Так как большая часть интенсивности от индикаторного источника вводится в подложку, и поскольку большая часть этой связанной энергии «рециркулирует» и выводится в глаз наблюдающего человека, можно достичь относительно высокой яркости отображения даже для индикаторных источников с низким потреблением электроэнергии.
На Фиг.9 показан вариант осуществления настоящего изобретения, в котором световодный элемент 20 вмонтирован в оправу 58 очков. Индикаторный источник 4, коллимирующая линза 6 и складывающаяся линза 60 собраны внутри дужек 62 оправы очков, непосредственно рядом с краем световодного элемента 20. В случае, если индикаторным источником является электронный элемент, такой как небольшая ЭЛТ, ЖКД или органическая светодиодная матрица, электронное устройство 64 возбуждения может быть собрано внутри задней части дужки 62. Источник питания и интерфейс 66 данных соединяются с дужкой 62 проводником 68 или другим средством связи, включая средство радио- или оптической передачи. Альтернативно, аккумулятор и миниатюрное электронное устройство передачи данных могут быть расположены в оправе очков.
Вышеописанный вариант осуществления может использоваться как в прозрачных, так и в непрозрачных системах. В последнем случае непрозрачные слои расположены перед световодным элементом. Необязательно закрывать весь световодный элемент, обычно необходимо блокировать только активную область видимого дисплея. Как таковое, такое устройство может обеспечивать сохранение периферийного зрения пользователя, воспроизводя опыт экрана компьютера или телевизора, где такое периферийное зрения выполняет важную познавательную функцию. Альтернативно, перед системой может быть размещен перестраиваемый фильтр так, чтобы наблюдающий человек мог управлять уровнем яркости света, поступающего снаружи. Этот перестраиваемый фильтр может быть механически управляемым устройством, например складывающимся фильтром, или двумя вращающимися поляризаторами, устройством с электронным управлением или даже автоматическим устройством, посредством которого коэффициент пропускания фильтра определяется яркостью наружного фона. Один способ получения требуемого фильтра с переменным коэффициентом пропускания заключается в использовании электрохромных материалов для обеспечения электрического управления оптическим пропусканием, причем материалы с оптическими свойствами, управляемыми электрическими средствами, вводятся в ламинированные структуры.
Существует несколько альтернатив точному способу использования световодного элемента в данном варианте осуществления. Простейшим вариантом является использование одного элемента для одного глаза. Еще одним вариантом является использование элемента и индикаторного источника для каждого глаза, но с одинаковым изображением. Альтернативно, можно проецировать две разные части одного изображения при некотором перекрывании между двумя глазами, что дает более широкое ПЗ. Еще одна возможность заключается в проецировании двух различных сцен, по одной в каждый глаз, для создания стереоскопического изображения. С этой альтернативой возможны интересные варианты исполнения, включая трехмерные кинофильмы, современные способы отображения виртуальной реальности, системы обучения и т.д.
Вариант осуществления, представленный на Фиг.9, является только примером, иллюстрирующим простое исполнение настоящего изобретения. Так как оптический элемент со световодной подложкой, составляющий главную часть системы, очень компактный и легкий, он может устанавливаться в самые разные конструкции. Следовательно, возможны многие другие варианты осуществления, включая козырек, например, шлема, складывающийся дисплей, монокль и многие другие. Этот вариант осуществления предназначен для таких случаев применения, когда дисплей должен быть расположен рядом с глазом, устанавливаться на голову, носиться на голове или переноситься на голове.
Вышеописанный вариант осуществления является монокулярной оптической системой, т.е. изображение проецируется в один глаз. Существуют, однако, варианты применения, такие как проекционные бортовые индикаторы, где желательно проецировать изображение на оба глаза. До недавнего времени системы проекционных бортовых индикаторов использовались главным образом в современных боевых самолетах и гражданской авиации. В последнее время были представлены многочисленные предложения и разработки по установке проекционных индикаторов перед водителем автомобиля для помощи в ориетировании при движении или для проецирования теплового изображения в его глаза в условиях низкой видимости. Существующие системы проекционных бортовых индикаторов очень дорогие, стоимость одного блока составляет порядка нескольких сотен тысяч долларов. Кроме того, существующие системы очень большие по размерам и объему, тяжелые и слишком сложные для установки в небольшой самолет, не говоря уже об автомобиле. ПБИ на базе световодных элементов потенциально предоставляют возможности для создания очень компактного автономного ПБИ, который может быть легко установлен в ограниченное пространство. Он также упрощает разработку и производство оптических систем, относящихся к ПБИ, и поэтому потенциально пригоден как для усовершенствования авиационного ПБИ, так и для разработки компактной, дешевой товарной версии для автомобильной промышленности.
На Фиг.10 представлен способ реализации системы ПБИ на базе настоящего изобретения. Свет от индикаторного источника 4 коллимируется линзой 6 до бесконечности и вводится первой отражающей поверхностью 16 в подложку 20. После отражения на второй отражающей матрице (не показана) оптические волны падают на третью отражающую поверхность 22, которая выводит свет в глаза наблюдающего человека. Вся система может быть очень компактной и легкой, размером с большую почтовую открытку, имея толщину несколько миллиметров. Индикаторный источник, имеющий объем несколько кубических сантиметров, может быть прикреплен к одному из углов подложки, откуда по электропроводу питание и данные могут передаваться в систему. Предполагается, что установка представленной системы ПБИ будет не более сложной, чем установка простой товарной аудиосистемы. Более того, так как для проецирования изображений не нужен наружный индикаторный источник, устанавливать компоненты в небезопасных местах нет необходимости.
Варианты осуществления, представленные на Фиг.10, могут быть реализованы, помимо систем ПБИ для автомобилей, и в других областях. Одним возможным вариантом реализации является плоский дисплей для компьютера или телевизора. Главная и уникальная характеристика такого дисплея заключается в том, что изображение не находится на плоскости экрана, а фокусируется при бесконечности или до аналогичного удобного расстояния. Одним из главных недостатков существующих компьютерных дисплеев является то, что пользователь должен фокусировать свое зрение на очень близком расстоянии от 40 до 60 см, тогда как естественная фокусировка здорового глаза осуществляется до бесконечности. Многие люди страдают от головных болей после длительной работы за компьютером. Многие другие, которые часто работают на компьютере, проявляют тенденцию к развитию близорукости. Кроме того, некоторые люди, которые страдают близорукостью и дальнозоркостью одновременно, нуждаются в специальных очках для работы на компьютере. Плоский дисплей на базе настоящего изобретения может представлять приемлемое решение для людей, которые страдают от вышеуказанных проблем и не хотят работать с дисплеем, устанавливаемым на голове. Кроме того, настоящее изобретение позволяет значительно уменьшить физический размер экрана. Так как изображение, формируемое световодным элементом, больше устройства, можно будет помещать большие экраны в меньшие рамы. Это особенно важно для мобильных устройств, таких как ноутбуки и карманные компьютеры («палм-топы»).
Еще одна возможная реализация данного варианта осуществления заключается в создании экрана «электронного помощника» (PDA). Размер существующих экранов, которые обычно используются в настоящее время, меньше 10 см. Так как минимальное расстояние, с которого можно считывать информацию с этих дисплеев, составляет порядка 40 см, получаемое ПЗ составляет меньше 15°, следовательно, объем информации, особенно текстовой, на этих дисплеях ограничен. Значительного усовершенствования проецируемого ПЗ можно добиться с помощью варианта осуществления, представленного на Фиг.10. Изображение фокусируется в бесконечности, и экран может быть расположен намного ближе к глазам наблюдающего человека. Кроме того, так как каждый глаз видит свою часть общего поля зрения (ОПЗ) с перекрыванием в центре, можно достичь еще большего увеличения ОПЗ. Поэтому дисплей с ПЗ 40° и больше становится осуществимым.
Для специалиста в данной области техники будет понятно, что настоящее изобретение не ограничено подробностями вариантов осуществления, описанных выше, и что настоящее изобретение может быть реализовано в других конкретных формах без отхода от его сути или существенных признаков. Изложенные варианты осуществления должны поэтому считаться во всех аспектах иллюстративными, а не ограничивающими, причем объем изобретения определяется формулой изобретения, а не вышеприведенным описанием, и все изменения, подпадающие под смысл и диапазон эквивалентности пунктов формулы изобретения, считаются включенными в них.

Claims (16)

1. Оптическое устройство, содержащее:
световодную подложку, имеющую по меньшей мере две поверхности, параллельные друг другу;
оптическое средство для ввода световых волн в упомянутую подложку путем внутреннего отражения, и
по меньшей мере одну частично отражающую поверхность, расположенную в упомянутой подложке, которая не параллельна упомянутым двум поверхностям подложки,
отличающееся тем, что по меньшей мере одна из двух поверхностей имеет селективное покрытие по углу падения.
2. Оптическое устройство по п.1, отличающееся тем, что упомянутая одна поверхность имеет ничтожно малое отражение в одной части углового спектра и значительное отражение в других частях углового спектра.
3. Оптическое устройство по п.1, отличающееся тем, что упомянутая одна поверхность имеет низкую отражательную способность при малых углах падения и высокую отражательную способность при больших углах падения.
4. Оптическое устройство по п.1, отличающееся тем, что упомянутое селективное покрытие по углу падения обеспечивает захват указанных световых волн в упомянутой подложке путем внутренних отражений.
5. Оптическое устройство по п.1, отличающееся тем, что по меньшей мере одна частично отражающая поверхность выводит свет, захваченный внутренним отражением, из упомянутой подложки.
6. Оптическое устройство по п.2, отличающееся тем, что упомянутое селективное покрытие по углу падения заставляет указанные световые волны выходить из упомянутой подложки в заранее определенном месте для поступления по меньшей мере в один глаз наблюдающего человека.
7. Оптическое устройство по п.2, отличающееся тем, что упомянутое селективное покрытие по углу падения формируется путем использования способа ионного нанесения покрытий.
8. Оптическое устройство по п.1, дополнительно содержащее индикаторный источник света.
9. Оптическое устройство по п.8, отличающееся тем, что упомянутый индикаторный источник света является жидкокристаллическим дисплеем.
10. Оптическое устройство по п.8, отличающееся тем, что упомянутый индикаторный источник света является органическим светодиодным дисплеем.
11. Оптическое устройство по п.1, отличающееся тем, что упомянутая подложка является прозрачной, позволяющей наблюдение всего хода операции.
12. Оптическое устройство по п.1, дополнительно содержащее непрозрачную поверхность, расположенную на или в упомянутой подложке для блокирования поступления света, проходящего поперек подложки из наружного источника.
13. Оптическое устройство по п.1, дополнительно содержащее поверхность с переменным коэффициентом пропускания, расположенную так, чтобы ослаблять поступление света, проходящего поперек подложки, для управления яркостью света, проходящего через упомянутое устройство от наружного источника.
14. Оптическое устройство по п.13, отличающееся тем, что коэффициент пропускания упомянутой поверхности с переменным коэффициентом пропускания определяется по яркости света, направленного поперек подложки.
15. Оптическое устройство по п.1, отличающееся тем, что упомянутое устройство установлено в оправу очков.
16. Оптическое устройство по п.1, отличающееся тем, что упомянутое устройство расположено в проекционном бортовом индикаторе.
RU2006107027/28A 2003-09-10 2004-09-09 Оптические устройства со световодной подложкой RU2358301C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL157837A IL157837A (en) 2003-09-10 2003-09-10 Substrate-guided optical device particularly for three-dimensional displays
IL157,837 2003-09-10

Publications (2)

Publication Number Publication Date
RU2006107027A RU2006107027A (ru) 2007-09-20
RU2358301C2 true RU2358301C2 (ru) 2009-06-10

Family

ID=34259910

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006107027/28A RU2358301C2 (ru) 2003-09-10 2004-09-09 Оптические устройства со световодной подложкой

Country Status (13)

Country Link
US (3) US7724442B2 (ru)
EP (3) EP1664899B1 (ru)
JP (2) JP4628360B2 (ru)
KR (2) KR101036916B1 (ru)
CN (2) CN100529837C (ru)
AU (2) AU2004271393B2 (ru)
BR (1) BRPI0413948B1 (ru)
CA (2) CA2538323C (ru)
HK (2) HK1097917A1 (ru)
IL (1) IL157837A (ru)
RU (1) RU2358301C2 (ru)
WO (2) WO2005024969A2 (ru)
ZA (1) ZA200602016B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027917A1 (ru) * 2012-08-13 2014-02-20 Leschev Aleksei Mikhailovich Светодиодный светильник
RU2606506C2 (ru) * 2011-09-23 2017-01-10 Филипс Лайтинг Холдинг Б.В. Светодиодный светильник, имеющий смешивающую оптику
WO2017176162A1 (ru) * 2016-04-05 2017-10-12 Александр Сергеевич САУШИН Светодиодный светильник
RU2638822C2 (ru) * 2012-08-31 2017-12-18 Филипс Лайтинг Холдинг Б.В. Осветительное устройство, основанное на световоде со светорассеивающими частицами и модуле выбора светового угла

Families Citing this family (374)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088384A1 (ja) * 2004-03-12 2005-09-22 Nikon Corporation 画像表示光学系及び画像表示装置
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
WO2006085309A1 (en) * 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
JP5226528B2 (ja) 2005-11-21 2013-07-03 マイクロビジョン,インク. 像誘導基板を有するディスプレイ
IL174170A (en) * 2006-03-08 2015-02-26 Abraham Aharoni Device and method for two-eyed tuning
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Optical component in conductive substrate
US8643948B2 (en) * 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US7589901B2 (en) * 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
FR2925172B1 (fr) * 2007-12-13 2010-08-20 Optinvent Guide optique et systeme optique de vision oculaire.
FR2925171B1 (fr) * 2007-12-13 2010-04-16 Optinvent Guide optique et systeme optique de vision oculaire
FR2929720B1 (fr) * 2008-04-03 2010-11-12 Optinvent Collimateur catadioptrique
US7854523B2 (en) * 2008-08-26 2010-12-21 Microvision, Inc. Optical relay for compact head up display
DE102008049407A1 (de) * 2008-09-29 2010-04-01 Carl Zeiss Ag Anzeigevorrichtung und Anzeigeverfahren
JP4636164B2 (ja) 2008-10-23 2011-02-23 ソニー株式会社 頭部装着型ディスプレイ
FR2938934B1 (fr) * 2008-11-25 2017-07-07 Essilor Int - Cie Generale D'optique Verre de lunettes procurant une vision ophtalmique et une vision supplementaire
JP5389493B2 (ja) * 2009-03-25 2014-01-15 オリンパス株式会社 眼鏡装着型画像表示装置
US8059342B2 (en) * 2009-04-03 2011-11-15 Vuzix Corporation Beam segmentor for enlarging viewing aperture of microdisplay
AU2010240707B2 (en) * 2009-04-20 2014-01-30 Snap Inc. Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
CA2759295C (en) * 2009-04-20 2017-08-01 Bae Systems Plc Improvements in optical waveguides
US8441733B2 (en) * 2009-04-24 2013-05-14 David Kessler Pupil-expanded volumetric display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
JP5402293B2 (ja) 2009-06-22 2014-01-29 ソニー株式会社 頭部装着型ディスプレイ、及び、頭部装着型ディスプレイにおける画像表示方法
US20120224062A1 (en) * 2009-08-07 2012-09-06 Light Blue Optics Ltd Head up displays
JP2011070049A (ja) * 2009-09-28 2011-04-07 Brother Industries Ltd ヘッドマウントディスプレイ
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US10795160B1 (en) 2014-09-25 2020-10-06 Rockwell Collins, Inc. Systems for and methods of using fold gratings for dual axis expansion
US11300795B1 (en) 2009-09-30 2022-04-12 Digilens Inc. Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
US8659826B1 (en) 2010-02-04 2014-02-25 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
EP2539759A1 (en) 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US8477425B2 (en) 2010-02-28 2013-07-02 Osterhout Group, Inc. See-through near-eye display glasses including a partially reflective, partially transmitting optical element
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
JP5712537B2 (ja) * 2010-09-24 2015-05-07 セイコーエプソン株式会社 虚像表示装置
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US8625200B2 (en) 2010-10-21 2014-01-07 Lockheed Martin Corporation Head-mounted display apparatus employing one or more reflective optical surfaces
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
US8781794B2 (en) 2010-10-21 2014-07-15 Lockheed Martin Corporation Methods and systems for creating free space reflective optical surfaces
US8503087B1 (en) 2010-11-02 2013-08-06 Google Inc. Structured optical surface
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
US8582209B1 (en) 2010-11-03 2013-11-12 Google Inc. Curved near-to-eye display
US9292973B2 (en) 2010-11-08 2016-03-22 Microsoft Technology Licensing, Llc Automatic variable virtual focus for augmented reality displays
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
US9720228B2 (en) 2010-12-16 2017-08-01 Lockheed Martin Corporation Collimating display with pixel lenses
US9690099B2 (en) * 2010-12-17 2017-06-27 Microsoft Technology Licensing, Llc Optimized focal area for augmented reality displays
US8576143B1 (en) 2010-12-20 2013-11-05 Google Inc. Head mounted display with deformation sensors
US8531773B2 (en) 2011-01-10 2013-09-10 Microvision, Inc. Substrate guided relay having a homogenizing layer
US8391668B2 (en) 2011-01-13 2013-03-05 Microvision, Inc. Substrate guided relay having an absorbing edge to reduce alignment constraints
JP2012163656A (ja) 2011-02-04 2012-08-30 Seiko Epson Corp 虚像表示装置
JP5633406B2 (ja) 2011-02-04 2014-12-03 セイコーエプソン株式会社 虚像表示装置
JP5720290B2 (ja) 2011-02-16 2015-05-20 セイコーエプソン株式会社 虚像表示装置
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
US9329388B1 (en) 2011-04-28 2016-05-03 Google Inc. Heads-up display for a large transparent substrate
US8666212B1 (en) 2011-04-28 2014-03-04 Google Inc. Head mounted display using a fused fiber bundle
US8699842B2 (en) 2011-05-27 2014-04-15 Google Inc. Image relay waveguide and method of producing same
JP2012252091A (ja) * 2011-06-01 2012-12-20 Sony Corp 表示装置
US8817379B2 (en) 2011-07-12 2014-08-26 Google Inc. Whole image scanning mirror display system
US8471967B2 (en) 2011-07-15 2013-06-25 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
US8508851B2 (en) 2011-07-20 2013-08-13 Google Inc. Compact see-through display system
US8767305B2 (en) 2011-08-02 2014-07-01 Google Inc. Method and apparatus for a near-to-eye display
US8294994B1 (en) 2011-08-12 2012-10-23 Google Inc. Image waveguide having non-parallel surfaces
US8760762B1 (en) 2011-08-12 2014-06-24 Google Inc. Image waveguide utilizing two mirrored or polarized surfaces
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
US8823740B1 (en) 2011-08-15 2014-09-02 Google Inc. Display system
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
CA2750287C (en) 2011-08-29 2012-07-03 Microsoft Corporation Gaze detection in a see-through, near-eye, mixed reality display
CN103033936A (zh) 2011-08-30 2013-04-10 微软公司 具有虹膜扫描剖析的头戴式显示器
US8786686B1 (en) 2011-09-16 2014-07-22 Google Inc. Head mounted display eyepiece with integrated depth sensing
US8941560B2 (en) 2011-09-21 2015-01-27 Google Inc. Wearable computer with superimposed controls and instructions for external device
US9013793B2 (en) 2011-09-21 2015-04-21 Google Inc. Lightweight eyepiece for head mounted display
US8767306B1 (en) 2011-09-22 2014-07-01 Google Inc. Display system
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
JP6119091B2 (ja) * 2011-09-30 2017-04-26 セイコーエプソン株式会社 虚像表示装置
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
US8773599B2 (en) 2011-10-24 2014-07-08 Google Inc. Near-to-eye display with diffraction grating that bends and focuses light
US20130108229A1 (en) * 2011-10-28 2013-05-02 Google Inc. Heads-up display including ambient light control
US9087471B2 (en) 2011-11-04 2015-07-21 Google Inc. Adaptive brightness control of head mounted display
CN102495470A (zh) * 2011-11-11 2012-06-13 连城 一种基于波导的透视显示装置及眼镜式微投影系统
US20130137076A1 (en) 2011-11-30 2013-05-30 Kathryn Stone Perez Head-mounted display based education and instruction
CN108508523B (zh) * 2017-02-24 2020-09-01 北京耐德佳显示技术有限公司 一种波导型光学元件及其使用其的近眼显示装置
CN102402005B (zh) * 2011-12-06 2015-11-25 北京理工大学 自由曲面双焦面单目立体头盔显示器装置
US9194995B2 (en) 2011-12-07 2015-11-24 Google Inc. Compact illumination module for head mounted display
US8873148B1 (en) 2011-12-12 2014-10-28 Google Inc. Eyepiece having total internal reflection based light folding
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
JP6003903B2 (ja) 2012-01-24 2016-10-05 ソニー株式会社 表示装置
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US8867131B1 (en) 2012-03-06 2014-10-21 Google Inc. Hybrid polarizing beam splitter
US9239415B2 (en) 2012-03-08 2016-01-19 Google Inc. Near-to-eye display with an integrated out-looking camera
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
US8760765B2 (en) 2012-03-19 2014-06-24 Google Inc. Optical beam tilt for offset head mounted display
JP5989092B2 (ja) * 2012-03-21 2016-09-07 オリンパス株式会社 光学素子
US8749886B2 (en) 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
US9519092B1 (en) 2012-03-21 2016-12-13 Google Inc. Display method
US9116337B1 (en) 2012-03-21 2015-08-25 Google Inc. Increasing effective eyebox size of an HMD
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
CN103562802B (zh) 2012-04-25 2016-08-17 罗克韦尔柯林斯公司 全息广角显示器
US20130293530A1 (en) 2012-05-04 2013-11-07 Kathryn Stone Perez Product augmentation and advertising in see through displays
US9519640B2 (en) 2012-05-04 2016-12-13 Microsoft Technology Licensing, Llc Intelligent translations in personal see through display
US9122321B2 (en) 2012-05-04 2015-09-01 Microsoft Technology Licensing, Llc Collaboration environment using see through displays
JP6145966B2 (ja) 2012-05-09 2017-06-14 ソニー株式会社 表示装置
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Integrated head display system with eye tracking
US10502876B2 (en) * 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
JP5984591B2 (ja) 2012-09-05 2016-09-06 オリンパス株式会社 表示方法及び表示装置
US9019174B2 (en) 2012-10-31 2015-04-28 Microsoft Technology Licensing, Llc Wearable emotion detection and feedback system
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9189021B2 (en) 2012-11-29 2015-11-17 Microsoft Technology Licensing, Llc Wearable food nutrition feedback system
US8867139B2 (en) 2012-11-30 2014-10-21 Google Inc. Dual axis internal optical beam tilt for eyepiece of an HMD
US20140168261A1 (en) 2012-12-13 2014-06-19 Jeffrey N. Margolis Direct interaction system mixed reality environments
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US20140176591A1 (en) 2012-12-26 2014-06-26 Georg Klein Low-latency fusing of color image data
JP6197295B2 (ja) * 2013-01-22 2017-09-20 セイコーエプソン株式会社 光学デバイス及び画像表示装置
US9057826B2 (en) 2013-01-31 2015-06-16 Google Inc. See-through near-to-eye display with eye prescription
JP6123342B2 (ja) 2013-02-20 2017-05-10 ソニー株式会社 表示装置
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US9069115B2 (en) 2013-04-25 2015-06-30 Google Inc. Edge configurations for reducing artifacts in eyepieces
US9632312B1 (en) 2013-04-30 2017-04-25 Google Inc. Optical combiner with curved diffractive optical element
US9341850B1 (en) 2013-04-30 2016-05-17 Google Inc. Diffractive see-through display with hybrid-optical aberration compensation
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US10139623B2 (en) 2013-06-18 2018-11-27 Microsoft Technology Licensing, Llc Virtual object orientation and visualization
US9235051B2 (en) 2013-06-18 2016-01-12 Microsoft Technology Licensing, Llc Multi-space connected virtual data objects
US10175483B2 (en) 2013-06-18 2019-01-08 Microsoft Technology Licensing, Llc Hybrid world/body locked HUD on an HMD
US20140368537A1 (en) 2013-06-18 2014-12-18 Tom G. Salter Shared and private holographic objects
US20140375540A1 (en) 2013-06-24 2014-12-25 Nathan Ackerman System for optimal eye fit of headset display device
US9442291B1 (en) 2013-06-28 2016-09-13 Google Inc. Segmented diffractive optical elements for a head wearable display
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
JP6232863B2 (ja) * 2013-09-06 2017-11-22 セイコーエプソン株式会社 光学デバイス及び画像表示装置
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
DE102013219623B4 (de) * 2013-09-27 2015-05-21 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas
KR102378457B1 (ko) 2013-11-27 2022-03-23 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
US9459455B2 (en) 2013-12-19 2016-10-04 Google Inc. See-through eyepiece for head wearable display
US9389422B1 (en) 2013-12-23 2016-07-12 Google Inc. Eyepiece for head wearable display using partial and total internal reflections
US10732407B1 (en) 2014-01-10 2020-08-04 Rockwell Collins, Inc. Near eye head up display system and method with fixed combiner
JP5851535B2 (ja) 2014-01-27 2016-02-03 オリンパス株式会社 表示装置
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
JP2015172713A (ja) * 2014-03-12 2015-10-01 オリンパス株式会社 表示装置
US9395544B2 (en) 2014-03-13 2016-07-19 Google Inc. Eyepiece with switchable reflector for head wearable display
JP6391952B2 (ja) 2014-03-17 2018-09-19 ソニー株式会社 表示装置及び光学装置
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
JP6675318B2 (ja) 2014-04-01 2020-04-01 エシロール・アンテルナシオナル 補助画像を出力するように構成された多焦点眼鏡レンズ
JP2017509929A (ja) 2014-04-02 2017-04-06 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) 所与の眼鏡フレームに従って光学系を計算する方法
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
US9915823B1 (en) 2014-05-06 2018-03-13 Google Llc Lightguide optical combiner for head wearable display
CN105223692A (zh) * 2014-05-26 2016-01-06 联想(北京)有限公司 显示装置和电子设备
KR102205000B1 (ko) 2014-05-30 2021-01-18 매직 립, 인코포레이티드 가상 및 증강 현실에 대한 어드레스 가능 포커스를 가진 자유형 광학 시스템을 사용하여 입체영상을 디스플레이하기 위한 방법들 및 시스템들
US9529196B1 (en) 2014-06-05 2016-12-27 Iphysicist Ltd. Image guide optics for near eye displays
US9740004B2 (en) 2014-06-05 2017-08-22 Making Virtual Solid—California LLC. Pupil-expanded biocular volumetric display
CN105223693A (zh) * 2014-06-26 2016-01-06 联想(北京)有限公司 显示装置和电子设备
US20150379770A1 (en) 2014-06-27 2015-12-31 David C. Haley, JR. Digital action in response to object interaction
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US9285591B1 (en) 2014-08-29 2016-03-15 Google Inc. Compact architecture for near-to-eye display system
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
WO2016061447A1 (en) 2014-10-17 2016-04-21 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
JP6507575B2 (ja) * 2014-11-05 2019-05-08 セイコーエプソン株式会社 光学装置および表示装置
US9366869B2 (en) 2014-11-10 2016-06-14 Google Inc. Thin curved eyepiece for see-through head wearable display
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
SG11201703102VA (en) * 2014-11-13 2017-05-30 Heptagon Micro Optics Pte Ltd Manufacture of optical light guides
KR101643919B1 (ko) * 2014-12-17 2016-07-29 광주과학기술원 전기변색을 이용한 광자극기
IL236490B (en) * 2014-12-25 2021-10-31 Lumus Ltd Optical component on a conductive substrate
WO2016113533A2 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Holographic waveguide light field displays
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
KR102320737B1 (ko) * 2015-01-14 2021-11-03 삼성디스플레이 주식회사 헤드-장착 전자장치
US9846968B2 (en) 2015-01-20 2017-12-19 Microsoft Technology Licensing, Llc Holographic bird's eye view camera
US20160210780A1 (en) 2015-01-20 2016-07-21 Jonathan Paulovich Applying real world scale to virtual content
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
EP3248051B1 (en) 2015-01-22 2020-09-23 Magic Leap, Inc. Methods and system for creating focal planes using an alvarez lens
CN104536088B (zh) * 2015-01-24 2018-05-08 上海理湃光晶技术有限公司 齿形镶嵌平面波导光学器件
CN104597602A (zh) * 2015-01-24 2015-05-06 上海理湃光晶技术有限公司 高效耦合、结构紧凑的齿形镶嵌平面波导光学器件
CN104678555B (zh) * 2015-01-24 2017-12-08 上海理湃光晶技术有限公司 屈光度矫正的齿形镶嵌平面波导光学器件
CN104597603B (zh) * 2015-01-25 2018-09-18 上海理湃光晶技术有限公司 平面锯齿夹层结构的目视光学显示器件
CN104614858B (zh) * 2015-01-25 2017-02-22 上海理湃光晶技术有限公司 增强现实的锯齿结构平面波导目视光学显示器件
EP3250959B1 (en) 2015-01-26 2024-05-15 Magic Leap, Inc. Virtual and augmented reality systems and methods having improved diffractive grating structures
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
IL237337B (en) * 2015-02-19 2020-03-31 Amitai Yaakov A compact head-up display system with a uniform image
US9939650B2 (en) 2015-03-02 2018-04-10 Lockheed Martin Corporation Wearable display system
US10156721B2 (en) 2015-03-09 2018-12-18 Microsoft Technology Licensing, Llc User-based context sensitive hologram reaction
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
WO2016156776A1 (en) 2015-03-31 2016-10-06 Milan Momcilo Popovich Method and apparatus for contact image sensing
US10444505B2 (en) * 2015-04-10 2019-10-15 Essilor International Head mounted display device
EP3091740A1 (en) * 2015-05-08 2016-11-09 BAE Systems PLC Improvements in and relating to displays
WO2016181108A1 (en) * 2015-05-08 2016-11-17 Bae Systems Plc Improvements in and relating to displays
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US11366316B2 (en) 2015-05-18 2022-06-21 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10162180B2 (en) 2015-06-04 2018-12-25 Google Llc Efficient thin curved eyepiece for see-through head wearable display
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
US10146054B2 (en) 2015-07-06 2018-12-04 Google Llc Adding prescriptive correction to eyepieces for see-through head wearable displays
US10302945B2 (en) 2015-08-12 2019-05-28 Google Llc Near-eye display with stacked lightguides
US10007117B2 (en) * 2015-09-10 2018-06-26 Vuzix Corporation Imaging light guide with reflective turning array
CN113759555A (zh) 2015-10-05 2021-12-07 迪吉伦斯公司 波导显示器
GB201517607D0 (en) * 2015-10-06 2015-11-18 Silver Joshua D Novel optical waveguide display
WO2017061019A1 (ja) * 2015-10-09 2017-04-13 日立マクセル株式会社 ヘッドアップディスプレイ装置
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
US10429646B2 (en) 2015-10-28 2019-10-01 Google Llc Free space optical combiner with prescription integration
CN106896496B (zh) 2015-10-30 2019-11-08 洪维毅 场曲型虚像显示系统
CN105572876A (zh) * 2015-12-18 2016-05-11 上海理鑫光学科技有限公司 一种平板波导增强现实眼镜
US10598932B1 (en) 2016-01-06 2020-03-24 Rockwell Collins, Inc. Head up display for integrating views of conformally mapped symbols and a fixed image source
EP3400477B1 (en) 2016-01-06 2023-10-25 Vuzix Corporation Imaging light guide with reflective turning array
KR20180104056A (ko) 2016-01-22 2018-09-19 코닝 인코포레이티드 와이드 필드 개인 디스플레이
WO2017134412A1 (en) 2016-02-04 2017-08-10 Milan Momcilo Popovich Holographic waveguide optical tracker
US9891436B2 (en) 2016-02-11 2018-02-13 Microsoft Technology Licensing, Llc Waveguide-based displays with anti-reflective and highly-reflective coating
CN107167919B (zh) * 2016-03-07 2021-08-03 精工爱普生株式会社 导光装置以及虚像显示装置
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
JP6733255B2 (ja) * 2016-03-28 2020-07-29 セイコーエプソン株式会社 光学素子、表示装置、および光学素子の製造方法
US9946074B2 (en) * 2016-04-07 2018-04-17 Google Llc See-through curved eyepiece with patterned optical combiner
EP3440486A4 (en) 2016-04-07 2019-04-24 Magic Leap, Inc. SYSTEMS AND METHODS OF EXTENDED REALITY
CN109154717B (zh) 2016-04-11 2022-05-13 迪吉伦斯公司 用于结构光投射的全息波导设备
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
US10067347B2 (en) 2016-04-13 2018-09-04 Microsoft Technology Licensing, Llc Waveguides with improved intensity distributions
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
US10739598B2 (en) 2016-05-18 2020-08-11 Lumus Ltd. Head-mounted imaging device
GB2550958B (en) * 2016-06-03 2022-02-23 Bae Systems Plc Waveguide structure
US10353202B2 (en) * 2016-06-09 2019-07-16 Microsoft Technology Licensing, Llc Wrapped waveguide with large field of view
US10095045B2 (en) 2016-09-12 2018-10-09 Microsoft Technology Licensing, Llc Waveguide comprising a bragg polarization grating
CN107870430B (zh) 2016-09-26 2021-06-15 精工爱普生株式会社 光学元件和显示装置
CN108235739B (zh) 2016-10-09 2021-03-16 鲁姆斯有限公司 使用矩形波导的孔径倍增器
KR102541662B1 (ko) 2016-11-08 2023-06-13 루머스 리미티드 광학 컷오프 에지를 구비한 도광 장치 및 그 제조 방법
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
US11209586B2 (en) * 2016-12-15 2021-12-28 Fusao Ishii Ghost image elimination of doe using fourier optics method
JP2018106104A (ja) 2016-12-28 2018-07-05 セイコーエプソン株式会社 表示装置
CN108254918B (zh) 2016-12-28 2021-10-26 精工爱普生株式会社 光学元件和显示装置
CN108882845B (zh) 2016-12-31 2022-05-03 鲁姆斯有限公司 基于经由光导光学元件的视网膜成像的眼动追踪器
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
WO2018138714A1 (en) 2017-01-28 2018-08-02 Lumus Ltd. Augmented reality imaging system
EP3583454A4 (en) * 2017-02-16 2020-03-25 Magic Leap, Inc. METHOD AND SYSTEM FOR A DISPLAY DEVICE WITH INTEGRATED POLARIZER
KR102655450B1 (ko) 2017-02-22 2024-04-05 루머스 리미티드 광 가이드 광학 어셈블리
CN106610527A (zh) * 2017-02-24 2017-05-03 关春东 一种近眼显示光学装置
CN113341566B (zh) 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
JP2018165743A (ja) 2017-03-28 2018-10-25 セイコーエプソン株式会社 導光装置および表示装置
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
CN108319015B (zh) * 2017-04-21 2023-02-10 北京耐德佳显示技术有限公司 视网膜投影式近眼显示装置
US10620779B2 (en) 2017-04-24 2020-04-14 Microsoft Technology Licensing, Llc Navigating a holographic image
US20200183079A1 (en) * 2017-05-19 2020-06-11 Seereal Technologies S.A. Display device comprising a light guide
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
WO2019008646A1 (ja) * 2017-07-03 2019-01-10 サン電子株式会社 頭部装着型表示装置
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10521658B2 (en) * 2017-07-07 2019-12-31 Facebook Technologies, Llc Embedded eye tracker with dichroic mirror
WO2019016813A1 (en) * 2017-07-19 2019-01-24 Lumus Ltd. LIQUID CRYSTAL LIGHTING ON SILICON VIA OPTICAL ELEMENT GUIDE OF LIGHT
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
WO2019056188A1 (zh) * 2017-09-19 2019-03-28 深圳市柔宇科技有限公司 智能眼镜
US11175506B2 (en) 2017-09-28 2021-11-16 Google Llc Systems, devices, and methods for waveguide-based eyebox expansion in wearable heads-up displays
US11513352B2 (en) 2017-09-29 2022-11-29 Lumus Ltd. Augmented reality display
US10929667B2 (en) * 2017-10-13 2021-02-23 Corning Incorporated Waveguide-based optical systems and methods for augmented reality systems
CN111386495B (zh) 2017-10-16 2022-12-09 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
WO2019077614A1 (en) 2017-10-22 2019-04-25 Lumus Ltd. ENHANCED REALITY DEVICE MOUNTED ON THE HEAD AND USING AN OPTICAL BENCH
KR102570722B1 (ko) * 2017-11-21 2023-08-24 루머스 리미티드 근안 디스플레이용 광학 조리개 확장 배열
IL275013B (en) 2017-12-03 2022-08-01 Lumus Ltd Method and device for testing an optics device
KR20200096274A (ko) 2017-12-03 2020-08-11 루머스 리미티드 광학 장치 정렬 방법
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
TWI791728B (zh) 2018-01-02 2023-02-11 以色列商魯姆斯有限公司 具有主動對準的增強現實顯示裝置及其對準方法
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
CN111566571B (zh) 2018-01-08 2022-05-13 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
EP3734351A4 (en) * 2018-01-31 2021-01-06 Shimadzu Corporation IMAGE DISPLAY DEVICE
US10488666B2 (en) * 2018-02-10 2019-11-26 Daqri, Llc Optical waveguide devices, methods and systems incorporating same
JP6509395B1 (ja) * 2018-02-13 2019-05-08 ブルーオプテック株式会社 ウエアラブル画像表示装置
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
EP3775827B1 (en) 2018-04-08 2023-07-05 Lumus Ltd. Apparatus for optical testing of plate-shaped optical elements
JP7128648B2 (ja) * 2018-04-25 2022-08-31 株式会社日立エルジーデータストレージ ヘッドマウントディスプレイ
US10830938B2 (en) 2018-05-14 2020-11-10 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
DE102018207516B3 (de) * 2018-05-15 2019-11-14 Continental Automotive Gmbh Head-Up-Display mit einer von mehreren verteilt angeordneten Lichtquellen beleuchteten Anzeige
US11442273B2 (en) 2018-05-17 2022-09-13 Lumus Ltd. Near-eye display having overlapping projector assemblies
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improving light field uniformity
KR20210013173A (ko) 2018-05-23 2021-02-03 루머스 리미티드 부분 반사 내부면이 있는 도광 광학 요소를 포함한 광학 시스템
KR20210022708A (ko) 2018-06-21 2021-03-03 루머스 리미티드 도광체 광학소자의 플레이트들 사이의 굴절률 불균일성에 대한 측정 기술
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11409103B2 (en) 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
CN111077670B (zh) 2018-10-18 2022-02-18 中强光电股份有限公司 光传递模块以及头戴式显示装置
TWM642752U (zh) * 2018-11-08 2023-06-21 以色列商魯姆斯有限公司 用於將圖像顯示到觀察者的眼睛中的顯示器
US11947130B2 (en) 2018-11-08 2024-04-02 Lumus Ltd. Optical devices and systems with dichroic beamsplitter color combiner
TWM598414U (zh) 2018-11-11 2020-07-11 以色列商魯姆斯有限公司 具有中間視窗的近眼顯示器
JP2020086345A (ja) * 2018-11-30 2020-06-04 セイコーエプソン株式会社 導光装置、虚像表示装置、及び導光装置の製造方法
CN109445109A (zh) * 2018-12-26 2019-03-08 深圳珑璟光电技术有限公司 一种透光板
CN110146982A (zh) * 2018-12-29 2019-08-20 深圳珑璟光电技术有限公司 一种光学传感装置
EP3903138B1 (en) 2019-01-24 2023-03-08 Lumus Ltd. Optical systems including loe with three stage expansion
US20200264378A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
WO2020186113A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic waveguide backlight and related methods of manufacturing
WO2020183229A1 (en) 2019-03-12 2020-09-17 Lumus Ltd. Image projector
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
EP3990967A4 (en) 2019-06-27 2022-08-03 Lumus Ltd. APPARATUS AND METHODS FOR TRACKING THE EYE BASED ON IMAGING THE EYE THROUGH A LIGHT GUIDE OPTICAL ELEMENT
BR112021025737A2 (pt) 2019-07-04 2022-02-15 Lumus Ltd Sistema óptico e sistema óptico para exibir uma imagem a um olho de um usuário
JP2022543571A (ja) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド 画素化されたディスプレイの画像解像度および視野を乗算するための方法および装置
CN112305758A (zh) * 2019-08-01 2021-02-02 苏州苏大维格科技集团股份有限公司 一种ar显示眼镜
KR20220054386A (ko) 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. 진공 브래그 격자 및 이의 제조 방법
US11073651B1 (en) 2019-09-05 2021-07-27 Look-A-Light, LLC Side emitting LED and light guide device
EP4041491B1 (en) 2019-11-25 2023-07-26 Lumus Ltd. Method of polishing a surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd A light guide with an optical element to perform polarization mixing
JP7396738B2 (ja) 2019-12-05 2023-12-12 ルーマス リミテッド 相補的コーティング部分的反射器を用いた導光光学素子および低減された光散乱を有する導光光学素子
CN114746797A (zh) 2019-12-08 2022-07-12 鲁姆斯有限公司 具有紧凑型图像投影仪的光学系统
CA3164587A1 (en) 2019-12-30 2021-07-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
IL272391B (en) * 2020-01-30 2021-12-01 Lumus Ltd Substrated-guided optical device
EP4022218A4 (en) * 2020-02-02 2022-11-23 Lumus Ltd. PROCESS FOR MANUFACTURING LIGHT-TRANSDUCING OPTICAL ELEMENTS
US11119325B1 (en) 2020-03-06 2021-09-14 Coretronic Corporation Near eye display device
KR102623956B1 (ko) 2020-05-24 2024-01-10 루머스 리미티드 복합 도광 광학 요소의 제조 방법
TW202206891A (zh) * 2020-06-01 2022-02-16 以色列商魯姆斯有限公司 用於近眼顯示器的虛擬影像遞送系統
DE202021104723U1 (de) 2020-09-11 2021-10-18 Lumus Ltd. An ein optisches Lichtleiterelement gekoppelter Bildprojektor
CN112289240B (zh) * 2020-10-29 2024-01-30 中国航空工业集团公司洛阳电光设备研究所 一种集成亮度自适应调节功能的ar-hud装置
WO2022097153A1 (en) 2020-11-09 2022-05-12 Lumus Ltd. Color corrected back reflection in ar systems
JP7490286B2 (ja) 2021-02-25 2024-05-27 ルーマス リミテッド 矩形導波路を有する光学アパーチャ増倍器
EP4237903A4 (en) 2021-03-01 2024-04-24 Lumus Ltd COMPACT COUPLING OPTICAL SYSTEM FROM A PROJECTOR IN A WAVEGUIDE
IL308019B1 (en) 2021-05-19 2024-02-01 Lumus Ltd Active optical engine
CN117396792A (zh) 2021-07-04 2024-01-12 鲁姆斯有限公司 具有提供视场的不同部分的堆叠光导元件的显示器
KR20240046489A (ko) 2021-08-23 2024-04-09 루머스 리미티드 내장된 커플링-인 반사기를 갖는 복합 도광 광학 요소의 제조 방법
CN113791498A (zh) * 2021-09-16 2021-12-14 合肥视涯技术有限公司 显示装置及其制造方法
CN115453678B (zh) * 2022-01-30 2023-08-29 珠海莫界科技有限公司 一种光组合器及显示装置
CN115494575A (zh) * 2022-01-30 2022-12-20 珠海莫界科技有限公司 一种波导结构及显示装置
WO2023183506A1 (en) * 2022-03-23 2023-09-28 Rovi Guides, Inc. Diffractive gratings for optical elements of augmented reality and virtual reality head-mounted displays
DE102022113551A1 (de) 2022-05-30 2023-11-30 Carl Zeiss Ag Lichtwellenleiter mit Schicht zur Reduktion von Reflexion und Retardance
KR20230167579A (ko) * 2022-06-02 2023-12-11 한국전자기술연구원 시역 복제로 시역을 확장한 홀로그램 기반 동공 직사형 증강현실 장치
KR102646815B1 (ko) * 2023-04-12 2024-03-13 주식회사 파노비젼 톱니구조의 부분반사 어레이를 갖는 증강현실 글라스의 광학 시스템

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886911A (en) * 1953-07-23 1959-05-19 George K C Hardesty Duo-panel edge illumination system
US2795069A (en) * 1956-02-07 1957-06-11 George K C Hardesty Laminated metal-plastic illuminable panel
FR2295436A1 (fr) * 1974-12-16 1976-07-16 Radiotechnique Compelec Dispositif coupleur directif pour fibres optiques multimodes
US4516828A (en) * 1982-05-03 1985-05-14 General Motors Corporation Duplex communication on a single optical fiber
US4711512A (en) * 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
JPH0819970B2 (ja) * 1986-07-31 1996-03-04 三田工業株式会社 電磁制御ばねクラツチ機構
US4805988A (en) 1987-07-24 1989-02-21 Nelson Dones Personal video viewing device
DE68909553T2 (de) 1988-10-21 1994-01-27 Thomson Csf Optisches Kollimationssystem für eine Helmsichtanzeige.
FR2647556B1 (fr) * 1989-05-23 1993-10-29 Thomson Csf Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif
FR2683918B1 (fr) 1991-11-19 1994-09-09 Thomson Csf Materiau constitutif d'une lunette de visee et arme utilisant cette lunette.
US5369415A (en) * 1992-06-29 1994-11-29 Motorola, Inc. Direct retinal scan display with planar imager
IL103900A (en) 1992-11-26 1998-06-15 Electro Optics Ind Ltd Optical system
FR2721872B1 (fr) * 1994-07-01 1996-08-02 Renault Dispositif d'amelioration de la vision d'une scene routiere
US6204974B1 (en) * 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
US5886822A (en) * 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US5724163A (en) * 1996-11-12 1998-03-03 Yariv Ben-Yehuda Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
US6091548A (en) * 1997-10-01 2000-07-18 Raytheon Company Optical system with two-stage aberration correction
CA2326767C (en) * 1998-04-02 2009-06-23 Yeda Research And Development Co., Ltd. Holographic optical devices
US6671100B1 (en) * 1999-10-14 2003-12-30 Stratos Product Development Llc Virtual imaging system
JP3828328B2 (ja) * 1999-12-28 2006-10-04 ローム株式会社 ヘッドマウントディスプレー
DE60142516D1 (de) * 2000-06-05 2010-08-19 Lumus Ltd Optischer strahlaufweiter mit substratlichtwellenleitung
KR100813943B1 (ko) * 2001-04-30 2008-03-14 삼성전자주식회사 복합 반사프리즘 및 이를 채용한 광픽업장치
US6791760B2 (en) * 2001-07-24 2004-09-14 Itt Manufacturing Enterprises, Inc. Planar diffractive relay
US6556282B2 (en) * 2001-09-04 2003-04-29 Rosemount Aerospace, Inc. Combined LOAS and LIDAR system
FR2834799B1 (fr) 2002-01-11 2004-04-16 Essilor Int Lentille ophtalmique presentant un insert de projection
IL148804A (en) * 2002-03-21 2007-02-11 Yaacov Amitai Optical device
US7205960B2 (en) * 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
US7206133B2 (en) * 2003-05-22 2007-04-17 Optical Research Associates Light distribution apparatus and methods for illuminating optical systems
IL166799A (en) * 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
IL171820A (en) * 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606506C2 (ru) * 2011-09-23 2017-01-10 Филипс Лайтинг Холдинг Б.В. Светодиодный светильник, имеющий смешивающую оптику
WO2014027917A1 (ru) * 2012-08-13 2014-02-20 Leschev Aleksei Mikhailovich Светодиодный светильник
RU2543513C1 (ru) * 2012-08-13 2015-03-10 Геннадий Михайлович Михеев Светодиодный светильник
RU2638822C2 (ru) * 2012-08-31 2017-12-18 Филипс Лайтинг Холдинг Б.В. Осветительное устройство, основанное на световоде со светорассеивающими частицами и модуле выбора светового угла
WO2017176162A1 (ru) * 2016-04-05 2017-10-12 Александр Сергеевич САУШИН Светодиодный светильник

Also Published As

Publication number Publication date
AU2004271393A1 (en) 2005-03-17
CN100529837C (zh) 2009-08-19
CA2538375A1 (en) 2005-03-17
KR20070023622A (ko) 2007-02-28
US20070091445A1 (en) 2007-04-26
JP4628360B2 (ja) 2011-02-09
CA2538375C (en) 2012-01-10
RU2006107027A (ru) 2007-09-20
WO2005024969A2 (en) 2005-03-17
WO2005024969A3 (en) 2005-08-11
HK1097917A1 (en) 2007-07-06
EP1664898B1 (en) 2017-03-29
KR20070021101A (ko) 2007-02-22
EP1664899A2 (en) 2006-06-07
CA2538323C (en) 2012-01-10
US7724442B2 (en) 2010-05-25
CN1867855A (zh) 2006-11-22
BRPI0413948A (pt) 2006-10-24
CA2538323A1 (en) 2005-03-17
HK1099367A1 (en) 2007-08-10
WO2005024491A1 (en) 2005-03-17
KR101036916B1 (ko) 2011-05-25
AU2004271392A1 (en) 2005-03-17
US7672055B2 (en) 2010-03-02
AU2004271393B2 (en) 2010-02-18
JP2007505352A (ja) 2007-03-08
ZA200602016B (en) 2007-06-27
EP1664899B1 (en) 2018-11-07
KR101065069B1 (ko) 2011-09-15
CN1867853A (zh) 2006-11-22
US20070097513A1 (en) 2007-05-03
EP3223060B1 (en) 2019-05-15
AU2004271392B2 (en) 2010-02-18
IL157837A (en) 2012-12-31
US7391573B2 (en) 2008-06-24
CN1867855B (zh) 2011-04-20
JP2007505353A (ja) 2007-03-08
EP3223060A1 (en) 2017-09-27
US20080285140A1 (en) 2008-11-20
EP1664898A1 (en) 2006-06-07
BRPI0413948B1 (pt) 2019-01-02

Similar Documents

Publication Publication Date Title
RU2358301C2 (ru) Оптические устройства со световодной подложкой
US20190339530A1 (en) Substrate-guide optical device
RU2324960C2 (ru) Светопроводящий оптический элемент
US7643214B2 (en) Substrate-guided optical device with wide aperture
US7577326B2 (en) Optical device for light coupling
JP2003536102A (ja) 基板によって誘導される光学ビーム拡大器
JP2008533507A (ja) 特に視力強化光学系のための基板案内光学装置