RU2348661C1 - Трубка, имеющая барьерные свойства - Google Patents
Трубка, имеющая барьерные свойства Download PDFInfo
- Publication number
- RU2348661C1 RU2348661C1 RU2007125696/04A RU2007125696A RU2348661C1 RU 2348661 C1 RU2348661 C1 RU 2348661C1 RU 2007125696/04 A RU2007125696/04 A RU 2007125696/04A RU 2007125696 A RU2007125696 A RU 2007125696A RU 2348661 C1 RU2348661 C1 RU 2348661C1
- Authority
- RU
- Russia
- Prior art keywords
- ethylene
- copolymer
- nylon
- tube
- tube according
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
- C08L23/0861—Saponified vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
- C08L23/0876—Neutralised polymers, i.e. ionomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Изобретение имеет отношение к трубке, обладающей барьерными свойствами. Трубка получена путем формования композиции сухого смешения, содержащей полиолефиновую смолу, нанокомпозицию, обладающую барьерными свойствами, агент совместимости и упрочняющий наполнитель. Нанокомпозицию, обладающую барьерными свойствами, получают путем смешения прослойки глины со смолой, обладающей барьерными свойствами. Полученная трубка имеет высокие барьерные свойства и используется в качестве наполнительных трубок для заправки автомобилей, трубок кондиционеров воздуха и др. 13 з.п. ф-лы, 2 табл.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к трубке, обладающей барьерными свойствами, полученной из композиции сухого смешения, которая включает в себя полиолефиновую смолу, нанокомпозицию интеркалированного глинозема и смолы, обладающей барьерными свойствами, агент совместимости и упрочняющий наполнитель.
Уровень техники
Трубкам для циркуляции горячей воды, наполнительным трубкам для автомобилей, трубкам кондиционеров воздуха, газовым трубкам и др. необходимы барьерные свойства в отношении газа, кислорода и свойство влагонепроницаемости для того, чтобы предотвратить утечку воздуха и газа из трубок.
Трубки для циркуляции горячей воды, выполненные из металлического материала, традиционно используются в системе обогрева полов, с использованием циркуляции горячей воды. Трубки для циркуляции горячей воды обычно монтируют ниже пола, причем они заделаны в бетон. После монтажа последующий ремонт затруднен, и требуется срок службы свыше 50 лет. При таких жестких требованиях предпочтительно используют пластмассовые трубки, которые не подвержены коррозии и дешевле, чем металлические трубки. Для пластмассовых трубок используют полиэтилен, полипропилен, полибутилен и др. Однако при использовании пластмассовых трубок в системе обогрева полов с использованием циркуляции горячей воды металлические соединительные детали теплообменника или насоса с трубками корродируют под действием кислорода. Коррозия происходит, поскольку кислород из воздуха проходит сквозь пластмассовую стенку, проникает внутрь и растворяется в горячей воде, циркулирующей по трубкам. Таким образом, используются многослойные полиэтиленовые (ПЭ) трубки (ПЭ/слой алюминия/ПЭ), однако это не предотвращает коррозию под действием кислорода, так как в слое алюминия появляются трещины за счет изменения температуры. Для решения этой проблемы были исследованы различные многослойные трубки, состоящие из пластмассовой смолы, имеющей хорошие барьерные свойства в отношении кислорода, и полиэтилена. Установлено, что многослойные трубки с использованием сополимера этилена-винилового спирта (EVOH) обладают превосходными барьерными свойствами в отношении кислорода и хорошей механической прочностью, и обычно они используются в современных трубках для циркуляции горячей воды. Однако, хотя EVOH имеет хорошие барьерные свойства в отношении кислорода и механическую прочность, он не обладает удовлетворительной трещиностойкостью из-за своей жесткости.
В то же время, в случае наполнительных трубок для автомобилей, например, пластмассовые трубки совместной экструзии, сформованные выдуванием, выгодно используются для подачи бензина. Для пластмассовых трубок традиционно используется полиэтилен, поскольку он дешев, обладает хорошей формуемостью и механической прочностью. Однако полиэтилен обладает плохими барьерными свойствами, так что пары бензина или жидкости в трубке легко испаряются через стенку из полиэтилена.
Для преодоления этих недостатков используются многослойные трубки из сополимера EVOH, имеющего хорошие барьерные свойства, и полиэтиленовой смолы, которые также не всегда обладают удовлетворительными барьерными свойствами. Современными тенденциями являются экономия бензина и защита окружающей среды, и поэтому требуется уменьшение проникновения бензина через трубки с топливом.
В то же время, когда наночастицы интеркалированного глинозема смешиваются с полимерным соединением с образованием полностью расслоенной, частично расслоенной, интеркалированной, или частично интеркалированной нанокомпозиции, она обладает усовершенствованными барьерными свойствами благодаря своей морфологии. Таким образом, с использованием такой нанокомпозиции появляются изделия, обладающие барьерными свойствами.
Раскрытие изобретения
Настоящее изобретение представляет трубку, имеющую превосходные барьерные свойства и трещиностойкость за счет использования нанокомпозиции, обладающей барьерными свойствами.
В соответствии с замыслом настоящего изобретения разработана трубка, обладающая барьерными свойствами, полученная путем формования композиции сухого смешения, содержащей: от 40 до 98 мас. частей полиолефиновой смолы; от 0,5 до 60 мас. частей нанокомпозиции, обладающей барьерными свойствами, включающей интеркалированный глинозем и, по меньшей мере, одну смолу, обладающую барьерными свойствами, которую выбирают из группы, состоящей из сополимера этилена-винилового спирта (EVOH), полиамида, иономера и поливинилового спирта (ПВС); от 1 до 30 мас. частей агента совместимости; и от 1 до 10 мас. частей, по меньшей мере, одного упрочняющего наполнителя, который выбирают из группы, состоящей из полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), полиэтилена очень низкой плотности (VLDPE) и эластомера.
В одном варианте осуществления настоящего изобретения полиолефиновая смола может быть, по меньшей мере, одним соединением, которое выбирают из группы, состоящей из полиэтилена высокой плотности (HDPE), полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), этиленпропиленового сополимера, металлоценового полиэтилена и полипропилена. Полипропилен может быть, по меньшей мере, одним соединением, которое выбирают из группы, состоящей из гомополимера пропилена, сополимера пропилена, металлоценового полипропилена и композиционной смолы, имеющей усовершенствованные физические свойствами за счет добавления талька, огнезащитного агента и др. в гомополимер или сополимер пропилена.
В другом варианте осуществления настоящего изобретения интеркалированный глинозем может быть, по меньшей мере, одним материалом, выбранным из монтмориллонита, бентонита, каолинита, слюды, гекторита, фторогекторита, сапонита, бейделлита, нонтронита, стевенсита, вермикулита, галлосита, волконскоита, суконита, магадита и кениалита.
В другом варианте осуществления настоящего изобретения полиамид может быть найлоном-4.6, найлоном-6, найлоном-6.6, найлоном-6.10, найлоном-7, найлоном-8, найлоном-9, найлоном-11, найлоном-12, найлоном-46, MXD6, аморфным полиамидом, сополимеризованным полиамидом, содержащим, по меньшей мере, два из них, или смесь, по меньшей мере, из двух этих полиамидов.
В другом варианте осуществления настоящего изобретения иономер может иметь индекс расплава от 0,1 до 10 г/10 мин (190°С, 2160 г).
В другом варианте осуществления настоящего изобретения агент совместимости может быть, по меньшей мере, одним соединением, выбранным из сополимера этилена-этиленового ангидрида-акриловой кислоты, сополимера этилена-этилакрилата, сополимера этилена-алкилакрилата-акриловой кислоты, модифицированного малеиновым ангидридом (привитого) полиэтилена высокой плотности, модифицированного малеиновым ангидридом (привитого) линейного полиэтилена низкой плотности, сополимера этилена-алкил(мет)акрилата-(мет)акриловой кислоты, сополимера этилена-бутилакрилата, сополимера этилена-винилацетата, модифицированного малеиновым ангидридом (привитого) сополимера этилена-винилацетата.
В другом варианте осуществления настоящего изобретения трубка может представлять собой однослойный продукт или многослойный продукт.
В другом варианте осуществления настоящего изобретения трубка может быть наполнительной трубкой для заправки автомобилей, трубкой кондиционеров воздуха, трубкой водоснабжения, дренажной трубкой, трубкой циркуляции горячей воды или газовой трубкой.
Подробное описание изобретения
В соответствии с одним вариантом осуществления настоящего изобретения трубку, обладающую барьерными свойствами, получают путем формования композиции сухого смешения, содержащей: от 40 до 98 мас. частей полиолефиновой смолы; от 0,5 до 60 мас. частей нанокомпозиции, обладающей барьерными свойствами, которая включает в себя интеркалированный глинозем и, по меньшей мере, одну смолу, обладающую барьерными свойствами, которую выбирают из группы, состоящей из сополимера этилена-винилового спирта (EVOH), полиамида, иономера и поливинилового спирта (ПВС); от 1 до 30 мас. частей агента совместимости; и от 1 до 10 мас. частей, по меньшей мере, одного упрочняющего наполнителя, который выбирают из группы, состоящей из полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), полиэтилена очень низкой плотности (YLDPE) и эластомера.
Полиолефиновая смола может включать, по меньшей мере, одно соединение, которое выбирают из группы, состоящей из HDPE, LDPE, LLDPE, этиленпропиленового сополимера, металлоценового полиэтилена и полипропилена. Полипропилен может быть, по меньшей мере, одним соединением, которое выбирают из группы, состоящей из гомополимера пропилена, сополимера пропилена, металлоценового полипропилена и композиционной смолы, обладающей усовершенствованными физическими свойствами за счет добавления талька, огнезащитного агента и др. в гомополимер или сополимер пропилена.
Предпочтительно, содержание полиолефиновой смолы составляет от 40 до 98 мас. частей, и более предпочтительно от 65 до 96 мас. частей. Если содержание полиолефиновой смолы меньше, чем 40 мас. частей, то формование затруднено. Если содержание полиолефиновой смолы больше, чем 98 мас. частей, то барьерные свойства композиции неудовлетворительны.
Нанокомпозиция, обладающая барьерными свойствами, может быть получена путем смешения интеркалированного глинозема, по меньшей мере, с одной смолой, обладающей барьерными свойствами, которую выбирают из группы, состоящей из сополимера EVOH, полиамида, иономера и поливинилового спирта (ПВС).
Массовое отношение смолы, обладающей барьерными свойствами, к интеркалированному глинозему в нанокомпозиции составляет от 58,0:42,0 до 99,9:0,1, и предпочтительно от 85,0:15,0 до 99,0:1,0. Если массовое соотношение смолы, обладающей барьерными свойствами, к интеркалированному глинозему меньше, чем 58,0:42,0, то интеркалированный глинозем агломерируется, и диспергирование затруднено. Если массовое соотношение смолы, обладающей барьерными свойствами, к интеркалированному глинозему больше, чем 99,9:0,1, то барьерные свойства улучшаются незначительно.
Предпочтительно, интеркалированный глинозем представляет собой органический интеркалированный глинозем. Предпочтительно, содержание органического материала в интеркалированном глиноземе составляет от 1 до 45 мас.%. Когда содержание органического материала меньше, чем 1 мас.%, совместимость интеркалированного глинозема и смолы, обладающей барьерными свойствами, является неудовлетворительной. Когда содержание органического материала больше, чем 45 мас.%, интеркалирование смолы, обладающей барьерными свойствами, становится более трудным.
Интеркалированный глинозем включает, по меньшей мере, один материал, выбранный из монтмориллонита, бентонита, каолинита, слюды, гекторита, фторогекторита, сапонита, бейделлита, нонтронита, стевенсита, вермикулита, галлосита, волконскоита, суконита, магадита и кениалита; и органический материал предпочтительно имеет функциональную группу, выбранную из первичного амина, четвертичного аммония, фосфония, малеата, сукцината, акрилата, бензильного водорода, оксазолина и диметилдистеариламмония.
Если сополимер EVOH входит в состав нанокомпозиции, то содержание этилена в сополимере EVOH предпочтительно составляет от 10 до 50 мол.%. Если содержание этилена меньше, чем 10 мол.%, то формование расплава становится более затруднительным из-за плохой технологичности. Если содержание этилена превышает 50 мол.%, то барьерные свойства относительно кислорода и жидкости являются неудовлетворительными.
Если полиамид входит в состав нанокомпозиции, то полиамид может быть найлоном-4.6, найлоном-6, найлоном-6.6, найлоном-6.10, найлоном-7, найлоном-8, найлоном-9, найлоном-11, найлоном-12, найлоном-46, MXD6, аморфным полиамидом, сополимеризованным полиамидом, содержащим, по меньшей мере, два из них, или смесь, по меньшей мере, двух из этих полиамидов.
Термин аморфный полиамид относится к полиамиду, имеющему неудовлетворительную степень кристалличности, то есть не имеющему эндотермического пика плавления кристаллической структуры при исследовании методом дифференциальной сканирующей калориметрии (ДСК) (стандарт ASTM D-3417, скорость сканирования 10°С/мин).
Обычно полиамид может быть получен из диамина и дикарбоновой кислоты. Примеры диамина включают гексаметилендиамин, 2-метилпентаметилендиамин, 2,2,4-триметилгексаметилендиамин, 2,4,4-триметилгексаметилендиамин, бис(4-аминоциклогексил)метан, 2,2-бис(4-аминоциклогексил)изопропилиден, 1,4-диаминоциклогексан, 1,3-диаминоциклогексан, метаксилолдиамин, 1,5-диаминопентан, 1,4-диаминобутан, 1,3-диаминопропан, 2-этилдиаминобутан, 1,4-диаминометилциклогексан, метанксилолдиамин, алкилзамещенный или незамещенный метафенилендиамин и парафенилендиамин и др. Примеры дикарбоновой кислоты включают алкилзамещенную или незамещенную изофталевую кислоты, терефталевую кислоту, адипиновую кислоту, себациновую кислоту, бутандикарбоновую кислоту и др.
Полиамид, приготовленный с использованием алифатического диамина и алифатической дикарбоновой кислоты, обычно представляет собой полукристаллический полиамид (также называется кристаллическим нейлоном) и не является аморфным полиамидом. Полиамид, приготовленный с использованием ароматического диамина и ароматической дикарбоновой кислоты, трудно обрабатывать, используя обычный процесс плавления.
Таким образом, предпочтительно, аморфный полиамид получают, когда один из использованных диамина или дикарбоновой кислоты является ароматическим, а другой алифатическим. Алифатические группы аморфного полиамида предпочтительно представляют собой C1-С15-алифатические или С4-C8-алициклические алкилы. Ароматические группы аморфного полиамида предпочтительно замещены C1-С6 моно- или бициклическими ароматическими группами. Однако все вышеупомянутые аморфные полиамиды не являются предпочтительными в настоящем изобретении. Например, адипинамид метаксилолдиамина легко кристаллизуется при нагревании в ходе процесса термического формования или при ориентировании, поэтому, он не является предпочтительным.
Примеры предпочтительных аморфных полиамидов включают изофтальамид гексаметилендиамина, тройной полимер изофтальамид/терефтальамид гексаметилендиамина, имеющий соотношение изофталевая кислота/терефталевая кислота от 99/1 до 60/40, смесь терефтальамида 2,2,4- и 2,4,4-триметилгексаметилендиамина, сополимер гексаметилендиамина или 2-метилпентаметилендиамина и изофталевой кислоты, терефталевой кислоты или их смесей. Хотя полиамид на основе гексаметилендиамина изофтальамид/терефтальамида, который имеет высокое содержание терефталевой кислоты, является эффективным, его следует смешивать с другим диамином, таким как 2-метилдиаминопентан для того, чтобы получить аморфный полиамид, который можно перерабатывать.
Вышеупомянутый аморфный полиамид, который включает в себя только вышеупомянутые мономеры, может содержать небольшое количество лактама, такого как капролактам или лауриллактам, в качестве сомономера. Является важным, чтобы полиамид был аморфным. Следовательно, могут быть использованы любые сомономеры, которые не кристаллизуют полиамид. Кроме того, в аморфный полиамид можно вводить приблизительно 10 мас.% или меньше жидкого или твердого пластификатора, такого как глицерин, сорбит или толуолсульфонамид (Santicizer 8. фирма Monsanto). Для большинства областей применения температура стеклования Tg (измеряется в сухом состоянии, то есть при содержании воды около 0,12 мас.% или меньше) аморфного полиамида приблизительно равна 70-170°С и предпочтительно приблизительно 80-160°С. Несмешанный аморфный полиамид имеет Tg в сухом состоянии приблизительно 125°С. Нижний предел Tg точно не известен, однако 70°С приблизительно соответствует нижнему пределу. Верхний предел Tg также точно не известен. Однако когда используется полиамид с Tg около 170°С или выше, термическое формование затруднено. Поэтому полиамид, в котором кислота, а также амин имеют ароматические группы, нельзя подвергать термическому формованию из-за слишком высокой Tg, и, таким образом, он не пригоден для целей настоящего изобретения.
Кроме того, полиамид может быть полукристаллическим полиамидом. Обычно полукристаллический полиамид получают с использованием лактама, такого как найлон-6 или найлон-11, или аминокислоты, или получают путем конденсации диамина, такого как гексаметилендиамин, с двухосновной кислотой, такой как янтарная кислота, адипиновая кислота или себациновая кислота. Полиамид может быть сополимером или тройным полимером, таким как сополимер гексаметилендиамина/адипиновой кислоты и капролактама (найлон-6, -66). Также может быть использована смесь из двух или больше кристаллических полиамидов. Полукристаллические и аморфные полиамиды получают путем конденсационной полимеризации, хорошо известной из уровня техники.
Если иономер входит в состав нанокомпозиции, то предпочтительно иономер представляет собой сополимер акриловой кислоты и этилена, имеющий индекс расплава от 0,1 до 10 г/10 мин (190°С, 2160 г).
Содержание нанокомпозиции предпочтительно составляет от 0,5 до 60 мас. частей, и более предпочтительно от 4 до 30 мас. частей. Если содержание нанокомпозиции меньше, чем 0,5 мас. частей, барьерные свойства улучшаются незначительно. Если содержание нанокомпозиции больше, чем 60 мас. частей, обработка изделия затруднена.
Чем выше дисперсность интеркалированного глинозема, расслоенного в смоле, имеющей барьерные свойства в нанокомпозиции, тем лучше барьерные свойства, которые могут быть получены. Это связано с тем, что расслоенный интеркалированный глинозем образует барьерную пленку, и в результате улучшаются барьерные свойства и прочностные свойства собственно смолы, и в конечном счете улучшаются барьерные свойства и прочностные свойства формованного изделия, полученного из композиции. В соответствии с этим достигает максимума способность к образованию барьера для газа и жидкости путем компаундирования смолы, обладающей барьерными свойствами, с интеркалированным глиноземом, и диспергирование наночастиц интеркалированного глинозема в смоле, в результате достигает максимума площадь контакта полимерной цепочки и интеркалированного глинозема.
Агент совместимости улучшает совместимость полиолефиновой смолы в нанокомпозиции с целью получения формованного изделия со стабильной структурой.
Агентом совместимости может быть углеводородный полимер, имеющий полярные группы. Когда используется углеводородный полимер, имеющий полярные группы, часть углеводородного полимера увеличивает сродство агента совместимости к полиолефиновой смоле и к нанокомпозиции, обладающей барьерными свойствами, таким образом, получается формованное изделие со стабильной структурой.
Агент совместимости может включать соединение, выбранное из эпоксидно модифицированного сополимера полистирола, сополимера этилена-этиленового ангидрида-акриловой кислоты, сополимера этилена-этилакрилата, сополимера этилена-алкилакрилата-акриловой кислоты, модифицированного малеиновым ангидридом (привитой) полиэтилена высокой плотности, модифицированного малеиновым ангидридом (привитой) полипропилена, модифицированного малеиновым ангидридом (привитой) линейного полиэтилена низкой плотности, сополимера этилена-алкил(мет)акрилата-(мет)акриловой кислоты, сополимера этилена-бутилакрилата, сополимера этилена-винилацетата, модифицированного малеиновым ангидридом сополимера (привитой) этилена-винилацетата и их модификации.
Предпочтительно, содержание агента совместимости составляет от 1 до 30 мас. частей и более предпочтительно от 2 до 15 мас. частей. Если содержание агента совместимости меньше, чем 1 мас. часть, то формованное изделие из композиции имеет плохие прочностные свойства. Если содержание агента совместимости больше, чем 30 мас. частей, то формование композиции затруднено.
Когда в качестве агента совместимости используется эпоксидно модифицированный сополимер полистирола, предпочтительным является сополимер, включающий в себя основную цепочку, в которой содержится от 70 до 99 мас. частей стирола и от 1 до 30 мас. частей эпоксидного соединения, представленного формулой 1, и разветвления, в которых содержится от 1 до 80 мас. частей акрилового мономера, представленного формулой 2.
где каждый из радикалов R и R' независимо представляет собой алифатический остаток C1-C20 или ароматический остаток С5-С20, на концах которого имеются двойные связи
Каждый из модифицированного малеиновым ангидридом (привитого) полиэтилена высокой плотности, модифицированного малеиновым ангидридом (привитого) полипропилена, модифицированного малеиновым ангидридом (привитого) линейного полиэтилена низкой плотности и модифицированного малеиновым ангидридом (привитого) сополимера этилена-винилацетата предпочтительно включает в себя разветвления, имеющие от 0,1 до 10 мас. частей малеинового ангидрида в расчете на 100 мас. частей основной цепочки. Когда содержание малеинового ангидрида меньше, чем 0,1 мас. части, он не действует как агент совместимости. Когда содержание малеинового ангидрида больше 10 мас. частей, это нежелательно из-за неприятного запаха.
Упрочняющий наполнитель может быть, по меньшей мере, одним материалом, выбранным из LDPE, VLDPE, LLDPE и эластомера. Этот эластомер, пригодный к употреблению в качестве упрочняющего наполнителя, включает в себя (со)полимеры сопряженных диенов, таких как полибутадиен, полиизопрен, бутадиен-изопреновый сополимер, полихлоропрен, стирол-бутадиеновый сополимер, акрилонитрил-бутадиеновый сополимер и акрилат-бутадиеновый сополимер; гидриды (со)полимеров сопряженных диенов; олефиновые эластомеры, такие как этиленпропиленовый сополимер; акриловые эластомеры, такие как полиакрилат; полиорганосилоксан; термопластичные эластомеры; иономерный сополимер на основе этилена. Эти материалы могут быть использованы индивидуально или в сочетании из двух или больше компонентов. Среди этих материалов предпочтительными являются акриловый эластомер, сопряженные диеновые полимеры или гидриды сопряженных диеновых полимеров.
Акриловый эластомер или сопряженный диеновый полимер получается путем полимеризации алкилакрилата или сопряженного диенового соединения в качестве мономера. Акриловый эластомер или сопряженный диеновый полимер могут быть получены путем сополимеризации указанных мономеров и других монофункциональных полимеризующихся мономеров, если это необходимо. Примеры монофункциональных полимеризующихся мономеров включают метакрилаты, такие как метилметакрилат, этилметакрилат, пропилметакрилат, октилметакрилат, децилметакрилат, додецилметакрилат, октадецилметакрилат, фенилметакрилат, бензилметакрилат, нафтилметакрилат и изоборнилметакрилат; ароматические соединения, такие как стирол и альфа-метилстирол; акрилонитрил и др. Предпочтительно, содержание монофункционального полимеризующегося мономера составляет 20 мас.% или меньше от всех полимеризующихся мономеров, образующих эластомер.
Содержание упрочняющего наполнителя составляет от 1 до 10 мас. частей. Когда содержание упрочняющего наполнителя меньше, чем 1 мас. часть, то нельзя получить усиление физических свойств. Когда содержание упрочняющего наполнителя больше, чем 10 мас. частей, увеличивается эластичность продукта, и под действием внутреннего давления могут быть вызваны искривления.
Композиция сухого смешения настоящего изобретения получается путем одновременного введения гранулированной нанокомпозиции, обладающей барьерными свойствами, агента совместимости, полиолефиновой смолы и упрочняющего наполнителя при постоянном композиционном соотношении в грануляционный смеситель, и смешения этих компонентов.
В соответствии с настоящим изобретением, трубку, имеющую барьерные свойства, получают путем формования композиции сухого смешения.
В настоящем изобретении могут быть использованы обычные способы формования, в том числе экструзионное формование, штамповка, формование выдуванием и инжекционное формование.
Хотя трубка настоящего изобретения, обладающая барьерными свойствами, может быть однослойным формованным изделием, включающим в себя нанокомпозицию, предпочтительным является многослойный продукт, имеющий слой нанокомпозиции и другие слои термопластичной смолы. Подходящая смола для слоя термопластичной смолы включает в себя полиэтилен высокой, средней или низкой плотности, сополимер этилена и винилацетата, акрилата или альфа-олефина, такого как бутен или гексен, иономерную смолу, гомополимер пропилена, сополимер пропилена и альфа-олефина, полиолефины, такие как полипропилен, модифицированный эластомерным полимером или добавкой малеинового ангидрида, или его привитые смолы. Кроме того, смола для термопластичного слоя может быть полиамидной смолой, полиэфирной смолой, полистироловой смолой, поливинилхлоридной смолой, акриловой смолой, полиуретановой смолой, поликарбонатной смолой, поливинилацетатной смолой и т.д.
В многослойной трубке связующий слой смолы может быть помещен между слоем нанокомпозиции и слоем термопластичной смолы. Связующая смола может представлять собой ненасыщенную карбоновую кислоту или ее ангидрид (малеиновый ангидрид и др.), привитой олефиновый полимер или сополимер (например, LLDPE, VLDPE и др.), сополимер этилена-винилацетата или сополимер этилена-(мет)акрилата.
Способ изготовления трубки настоящего изобретения конкретно не ограничивается. Например, наиболее эффективно бесконечная трубка может быть получена путем соэкструзионного формования композиции с использованием 2 или 3 экструдеров и кольцевой фильеры для множества слоев.
Слоистая структура многослойной трубки также конкретно не ограничивается. С учетом формуемости, стоимости и др. факторов могут быть сформованы такие структуры, как слой термопластичной смолы/слой нанокомпозиции/слой термопластичной смолы, слой нанокомпозиции/слой связующей смолы/слой термопластичной смолы, слой термопластичной смолы/слой связующей смолы/слой нанокомпозиции/слой связующей смолы/слой термопластичной смолы и др., последовательно, от внешнего слоя до внутреннего. Когда образуются слои термопластичной смолы, в качестве самого внешнего и внутреннего слоев, они могут быть одинаковыми или различными. Предпочтительной является структура слой нанокомпозиции/слой связующей смолы/слой термопластичной смолы. При рассмотрении барьерных свойств в отношении газов особенно предпочтительно сформовать слой нанокомпозиции в качестве самого внешнего слоя трубки. Однако традиционные многослойные EVOH трубки имеют плохой внешний вид и барьерные свойства вследствие низкой трещиностойкости, даже когда смола, имеющая барьерные свойства в отношении газа, используется в самом внешнем слое, и, следовательно, существенно снижается их значение в качестве трубок для циркуляции горячей воды. В то же время, поскольку нанокомпозиция настоящего изобретения имеет хорошие газобарьерные свойства и трещиностойкость, могут быть представлены многослойные трубки для циркуляции горячей воды, даже когда они используются в самом внешнем слое.
Однослойные и многослойные трубки, обладающие барьерными свойствами, имеют хорошие газобарьерные свойства и трещиностойкость, и, таким образом, они могут быть использованы в качестве трубок для циркуляции горячей воды. Кроме того, они могут быть использованы в качестве трубок для различных жидкостей или газов.
Полезные результаты
Трубки настоящего изобретения имеют превосходные барьерные свойства и, следовательно, могут быть эффективно использованы в качестве наполнительных трубок для заправки автомобилей, трубок кондиционеров воздуха, трубок для подачи сжиженного природного газа и др.
Хотя настоящее изобретение конкретно продемонстрировано и описано со ссылкой на варианты его осуществления, специалисты в этой области техники могут понять, что здесь могут быть выполнены различные изменения по форме и деталям, без отклонения от духа и объема настоящего изобретения, которое определено в следующей ниже формуле изобретения.
Наилучший способ
В дальнейшем настоящее изобретение описано более подробно с помощью примеров. Следующие ниже примеры предназначены только для облегчения понимания настоящего изобретения и не означают ограничение объема изобретения.
Примеры
В следующих ниже примерах используются указанные ниже материалы:
EVOH: E105B (фирма Kuraray, Japan),
Найлон-6: EN 300 (фирма КР Chemicals),
HDPE-g-MAH: Агент совместимости, РВ3009 (фирма CRAMPTON),
Полиэтилен высокой плотности: RT DX800 (SK Chemicals),
Глинозем: Closite 30 В (SCP),
Термический стабилизатор: IR 1098 (фирма Songwon Inc.),
Связующая смола: АВ 130 (HDPE-g-MAH, LG СНЕМ),
Упрочняющий наполнитель: EG8180 (этиленоктановый сополимер, фирма Dupont-DOW).
Препаративный Пример 1
Препарат нанокомпозиции EVOH/интеркалированный глинозем
В основной бункер вращающегося в одном направлении двухшнекового экструдера (SM Platek, ϕ 40) загружают 97 мас.% сополимера этилена-виниловый спирт (EVOH; E-105 В (содержание этилена: 44 мол.%); фирма Kuraray, Japan; индекс расплава: 5.5 г/10 мин; плотность: 1,14 г/см3). Затем отдельно вводят 3 мас.% органического монтмориллонита (фирма Southern Intercalated Clay Products, USA; C20A) в качестве интеркалированного глинозема и 0,1 мас. части IR 1098 в качестве термического стабилизатора в расчете на все 100 мас. частей сополимера EVOH и органического монтмориллонита, в боковой дозатор двухшнекового экструдера для того, чтобы приготовить нанокомпозицию EVOH/интеркалированный глинозем в виде гранул. Температурный режим при экструзии соответствует 180-190-200-200-200-200-200°С, скорость вращения шнеков равна 300 об/мин, и скорость отвода продукта равна 15 кг/час.
Препаративный Пример 2
Препарат нанокомпозиции найлон-6/интеркалированный глинозем
В основной бункер вращающегося в одном направлении двухшнекового экструдера (SM Platek ϕ 40) загружают 97 мас.% полиамида (найлон-6). Затем отдельно вводят 3 мас.% органического монтмориллонита в качестве интеркалированного глинозема и 0,1 мас. части IR 1098 в качестве термического стабилизатора, в расчете на все 100 мас. частей полиамида и органического монтмориллонита, в боковой дозатор двухшнекового экструдера для того, чтобы приготовить нанокомпозицию полиамид/интеркалированны глинозем в виде гранул. Температурный режим при экструзии соответствует 220-225-245-245-245-245-245°С, скорость вращения шнеков равна 300 об/мин, и скорость отвода продукта равна 40 кг/час.
Пример 1
Нанокомпозицию EVOH/интеркалированный глинозем, полученную в Препаративном Примере 1 (15 мас. частей), 10 мас. частей агента совместимости, 72 мас. части полиэтилена высокой плотности и 3 мас. части упрочняющего наполнителя подвергают сухому смешению в смесителе с двойным конусом (MYDCM-I00) и загружают в основной бункер одношнекового экструдера (Goetffert ϕ 45, L/D: 23) для того, чтобы получить однослойную трубку с наружным диаметром 30 мм. Температурный режим экструзии соответствует 190-210-210-210-210°С, скорость вращения шнека равна 20 об/мин, и скорость отвода продукта равна 6 кг/час.
Пример 2
Нанокомпозицию найлон-6/интеркалированный глинозем, полученную в Препаративном Примере 2 (15 мас. частей), 10 мас. частей агента совместимости и 72 мас. части полиэтилена высокой плотности и 3 мас. части упрочняющего наполнителя подвергают сухому смешению в смесителе с двойным конусом (MYDCM-I00) и загружают в основной бункер одношнекового экструдера (Goetffert ϕ 45) для того, чтобы получить однослойную трубку с наружным диаметром 30 мм. Температурный режим экструзии соответствует 210-220-220-220-220°С, и скорость вращения шнека равна 20 об/мин.
Пример 3
Нанокомпозицию найлон-6/интеркалированный глинозем, полученную в Препаративном Примере 2 (15 мас. частей), 10 мас. частей агента совместимости, 72 мас. части полиэтилена высокой плотности и 3 мас. части упрочняющего наполнителя подвергают сухому смешению и одновременно загружают в основной бункер одношнекового экструдера (Goetffert ϕ 60) с помощью питателя ленточного типа (К-TRON №№1, 2 и 3), соответственно для того, чтобы получить однослойную трубку с наружным диаметром 30 мм. Температурный режим экструзии соответствует 210-220-220-220-220°С, и скорость вращения шнека равна 20 об/мин.
Пример 4
Нанокомпозицию EVOH/интеркалированный глинозем, полученную в Препаративном Примере 1 (15 мас. частей), 10 мас. частей агента совместимости, 72 мас. части полиэтилена высокой плотности и 3 мас. части упрочняющего наполнителя подвергают сухому смешению в опрокидываемом смесителе. Затем смесь вводят во внешний слой трехслойного экструдера, HDPE подают во внутренний слой экструдера, а связующую смолу подают в средний слой экструдера, чтобы получить многослойную трубку с наружным диаметром 30 мм.
Пример 5
Нанокомпозицию найлон-6/интеркалированный глинозем, полученную в Препаративном Примере 2 (4 мас. части), 2 мас. части агента совместимости, 93 мас. части полиэтилена высокой плотности и 1 мас. часть упрочняющего наполнителя подвергают сухому смешению в опрокидываемом смесителе. Затем смесь вводят во внешний слой трехслойного экструдера, HDPE подают во внутренний слой экструдера, а связующую смолу подают в средний слой экструдера, чтобы получить многослойную трубку с наружным диаметром 30 мм.
Пример 6
Нанокомпозицию найлон-6/интеркалированный глинозем, полученную в Препаративном Примере 2 (15 мас. частей), 10 мас. частей агента совместимости, 72 мас. части полиэтилена высокой плотности и 3 мас. части упрочняющего наполнителя подвергают сухому смешению в опрокидываемом смесителе. Затем смесь вводят во внешний слой трехслойного экструдера, HDPE подают во внутренний слой экструдера, а связующую смолу подают в средний слой экструдера, чтобы получить многослойную трубку с наружным диаметром 30 мм.
Пример 7
Нанокомпозицию найлон-6/интеркалированный глинозем, полученную в Препаративном Примере 2 (34 мас. частей), 18 мас. частей агента совместимости, 40 мас. частей полиэтилена высокой плотности и 8 мас. частей упрочняющего наполнителя подвергают сухому смешению в опрокидываемом смесителе. Затем смесь вводят во внешний слой трехслойного экструдера, HDPE подают во внутренний слой экструдера, а связующую смолу подают в средний слой экструдера, чтобы получить многослойную трубку с наружным диаметром 30 мм.
Сравнительный Пример 1
Полиэтилен высокой плотности, 100 мас.% HDPE, подвергают экструзии, чтобы получить однослойную трубку.
Сравнительный Пример 2
Трубку получают таким же образом, как в Примере 1, за исключением того, что не используют интеркалированный глинозем.
Сравнительный Пример 3
Трубку получают таким же образом, как в Примере 2, за исключением того, что не используют интеркалированный глинозем.
Сравнительный Пример 4
Во внешний слой трехслойного экструдера подают EVOH, HDPE вводят во внутренний слой экструдера, а связующую смолу подают в средний слой экструдера, чтобы получить многослойную трубку с наружным диаметром 30 мм.
Для полученных трубок исследуют барьерные свойства в отношении кислорода и оценивают трещиностойкость следующим образом.
Барьерные свойства в отношении кислорода
Барьерные свойства в отношении кислорода оценивают по скорости увеличения растворенного кислорода (РК). Если скорость увеличения РК мала, то барьерные свойства в отношении кислорода улучшаются. Вода, из которой кислород удаляется с помощью набивной колонки, содержащей металлическое олово, принудительно циркулирует в трубках, полученных в вышеупомянутых Примерах и Сравнительных Примерах. Скорость увеличения РК измеряют при 20°С в условии относительной влажности 65%. Скорость увеличения РК выражена как мкг/ч, и это означает, что количество кислорода, растворенного в 1 л воды, в трубке увеличивается со скоростью мкг/ч. Иными словами, когда объем воды во всей системе, включая трубку, равен V1 мл, объем воды в трубке равен V2 мл, и скорость увеличения концентрации кислорода в воде, циркулирующей в установке, за 1 час равна В мкг/ч, скорость увеличения РК, А мкг/ч, определяют из уравнения А=B(V1/V2).
Трещиностойкость
Полученные трубки нарезают длиной по 20 см и выдерживают в течение 10 мин в термостате при -15°С. Затем трубки медленно четырехкратно увеличивают с помощью металлического укрупнителя, имеющего 4 гвоздевидных детали, пока внутренний диаметр трубок не достигнет 45 мм. Наличие трещин в слое смолы обнаруживается невооруженным глазом. Это испытание проводят на 100 образцах трубок и частоту появления (скорость появления) трещин оценивают следующим образом:
А: Трещины отсутствуют.
В: Мелкие трещины (0,5 мм или меньше).
С: Мелкие трещины и крупные трещины (0,5 мм или больше).
D: Только крупные трещины.
Таблица 1 Барьерные свойства в отношении кислорода (мкг/ч) |
||||||||||
Номер примера | Номер сравнительного примера | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 |
48 | 29 | 31 | 76 | 74 | 44 | 27 | 813 | 292 | 308 | 41 |
Таблица 2 Трещиностойкость |
|||||||||||
Номер примера | Номер сравнительного примера | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | |
А | 46 | 96 | 95 | 82 | 100 | 100 | 100 | 100 | 0 | 96 | 0 |
В | 32 | 4 | 5 | 18 | 0 | 0 | 0 | 0 | 41 | 4 | 0 |
С | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 6 |
D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 94 |
Как видно из таблиц 1 и 2, трубки Примеров 1-7 превосходят трубки Сравнительных Примеров 1-4 по барьерным свойствам и по трещиностойкости.
Claims (14)
1. Трубка, обладающая барьерными свойствами, полученная путем формования композиции сухого смешения, которая содержит:
от 40 до 98 мас. ч. полиолефиновой смолы;
от 0,5 до 60 мас. ч. нанокомпозиции, обладающей барьерными свойствами и включающей прослойку глины и, по меньшей мере, одну смолу, обладающую барьерными свойствами, которую выбирают из группы, состоящей из сополимера этилена-винилового спирта (EVOH), полиамида, иономера и поливинилового спирта (ПВА);
от 1 до 30 мас. ч. агента совместимости и
от 1 до 10 мас. ч., по меньшей мере, одного упрочняющего наполнителя, который выбирают из группы, состоящей из полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), полиэтилена очень низкой плотности (VLDPE) и эластомера, причем массовое отношение смолы, имеющей барьерные свойства, к прослойке глины в нанокомпозиции составляет от 58,0:42,0 до 99,9:0,1; иономер предпочтительно представляет собой сополимер акриловой кислоты и этилена и имеет индекс расплава от 0,1 до 10 г/10 мин (190°С, 2160 г); агент совместимости представляет собой одно или несколько соединений, которые выбирают из группы, состоящей из сополимера этилена-этиленового ангидрида-акриловой кислоты, сополимера этилена-этилакрилата, сополимера этилена-алкилакрилата-акриловой кислоты, модифицированного малеиновым ангидридом (привитого) полиэтилена высокой плотности, модифицированного малеиновым ангидридом (привитого) линейного полиэтилена низкой плотности, сополимера этилена-алкил(мет)акрилата-(мет)-акриловой кислоты, сополимера этилена-бутилакрилата, сополимера этилена-винилацетата и модифицированного малеиновым ангидридом (привитого) сополимера этилена-винилацетата.
от 40 до 98 мас. ч. полиолефиновой смолы;
от 0,5 до 60 мас. ч. нанокомпозиции, обладающей барьерными свойствами и включающей прослойку глины и, по меньшей мере, одну смолу, обладающую барьерными свойствами, которую выбирают из группы, состоящей из сополимера этилена-винилового спирта (EVOH), полиамида, иономера и поливинилового спирта (ПВА);
от 1 до 30 мас. ч. агента совместимости и
от 1 до 10 мас. ч., по меньшей мере, одного упрочняющего наполнителя, который выбирают из группы, состоящей из полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), полиэтилена очень низкой плотности (VLDPE) и эластомера, причем массовое отношение смолы, имеющей барьерные свойства, к прослойке глины в нанокомпозиции составляет от 58,0:42,0 до 99,9:0,1; иономер предпочтительно представляет собой сополимер акриловой кислоты и этилена и имеет индекс расплава от 0,1 до 10 г/10 мин (190°С, 2160 г); агент совместимости представляет собой одно или несколько соединений, которые выбирают из группы, состоящей из сополимера этилена-этиленового ангидрида-акриловой кислоты, сополимера этилена-этилакрилата, сополимера этилена-алкилакрилата-акриловой кислоты, модифицированного малеиновым ангидридом (привитого) полиэтилена высокой плотности, модифицированного малеиновым ангидридом (привитого) линейного полиэтилена низкой плотности, сополимера этилена-алкил(мет)акрилата-(мет)-акриловой кислоты, сополимера этилена-бутилакрилата, сополимера этилена-винилацетата и модифицированного малеиновым ангидридом (привитого) сополимера этилена-винилацетата.
2. Трубка по п.1, в которой полиолефиновая смола представляет собой, по меньшей мере, одно соединение, выбранное из группы, состоящей из полиэтилена высокой плотности (HDPE), полиэтилена низкой плотности (LDPE), линейного полиэтилена низкой плотности (LLDPE), этилен-пропиленового сополимера, металлоценового полиэтилена и полипропилена.
3. Трубка по п.2, в которой полипропилен представляет собой, по меньшей мере, одно соединение, которое выбирают из группы, состоящей из гомополимера или сополимера пропилена, металлоценового полипропилена и композиционной смолы, полученной за счет добавления талька или огнезащитного агента в гомополимер или сополимер пропилена.
4. Трубка по п.1, в которой прослойка глины представляет собой, по меньшей мере, одно соединение, выбранное из группы, состоящей из монтмориллонита, бентонита, каолинита, слюды, гекторита, фторогекторита, сапонита, бейделлита, нонтронита, стевенсита, вермикулита, галлосита, волконскоита, суконита, магадита и кениалита.
5. Трубка по п.1, в которой прослойка глины содержит от 1 до 45 мас.% органического материала, где органический материал имеет, по меньшей мере, одну функциональную группу, состоящую из первичного амина, четвертичного аммония, фосфония, малеата, сукцината, акрилата, бензильного водорода, оксазолина и диметилдистеариламмония.
6. Трубка по п.1, в которой сополимер этилена-винилового спирта содержит от 10 до 50 мол.% этилена.
7. Трубка по п.1, в которой полиамид является найлоном-4.6, найлоном-6, найлоном-6.6, найлоном-6.10, найлоном-7, найлоном-8, найлоном-9, найлоном-11, найлоном-12, найлоном-46, MXD6, аморфным полиамидом, сополимеризованным полиамидом, содержащим, по меньшей мере, два из них, или смесь из, по меньшей мере, двух полиамидов.
8. Трубка по п.7, в которой температура стеклования аморфного полиамида составляет приблизительно 70-170°С.
9. Трубка по п.7, в которой аморфный полиамид выбирают из группы, состоящей из изофтальамида гексаметилендиамина, тройного полимера изофтальамид/терефтальамидг гексаметилендиамина, имеющего отношение изофталевой кислоты к терефталевой кислоте от 99/1 до 60/40, смесь терефтальамидов 2,2,4- и 2,4,4-триметилгексаметилендиамина и сополимер гексаметилендиамина или 2-метилпентаметилендиамина и изофталевой кислоты, терефталевой кислоты, или их смеси.
10. Трубка по п.9, в которой аморфный полиамид представляет собой тройной полимер изофтальамид/терефтальамида гексаметилендиамина, имеющий отношение изофталевой кислоты к терефталевой кислоте приблизительно 70:30.
11. Трубка по п.1, в которой эластомер представляет собой, по меньшей мере, один материал, который выбирают из группы, состоящей из (со)полимеров сопряженных диенов, гидридов (со)полимеров сопряженных диенов, олефиновых эластомеров, акриловых эластомеров, полиорганосилоксанов, термопластичных эластомеров и сополимеров этиленового иономера.
12. Трубка по п.1, которую получают путем экструзионного формования, штамповки, формования выдуванием или инжекционного формования.
13. Трубка по п.1, имеющая однослойную структуру или многослойную структуру.
14. Трубка по п.1, которая представляет собой трубку для циркуляции горячей воды, наполнительную трубку для заправки автомобилей, трубку кондиционеров воздуха или трубку для подачи сжиженного природного газа.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20040102212 | 2004-12-07 | ||
KR10-2004-0102212 | 2004-12-07 | ||
KR1020050047114A KR20060063593A (ko) | 2004-12-07 | 2005-06-02 | 차단성 파이프 |
KR10-2005-0047114 | 2005-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2348661C1 true RU2348661C1 (ru) | 2009-03-10 |
Family
ID=37159566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007125696/04A RU2348661C1 (ru) | 2004-12-07 | 2005-06-30 | Трубка, имеющая барьерные свойства |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP2008523199A (ru) |
KR (1) | KR20060063593A (ru) |
CN (1) | CN101072822A (ru) |
BR (1) | BRPI0518597A2 (ru) |
MX (1) | MX2007006748A (ru) |
RU (1) | RU2348661C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2678031C2 (ru) * | 2014-04-10 | 2019-01-22 | Мицубиси Гэс Кемикал Компани, Инк. | Формованное тело и способ его производства |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008508392A (ja) * | 2004-12-07 | 2008-03-21 | エルジー・ケム・リミテッド | 高遮断性物品 |
KR100733921B1 (ko) * | 2004-12-07 | 2007-07-02 | 주식회사 엘지화학 | 고차단성 나노복합체 조성물 |
JP2007106923A (ja) * | 2005-10-14 | 2007-04-26 | Bridgestone Corp | 樹脂組成物の製造方法、これにより得られた樹脂組成物およびその成形体 |
KR100921052B1 (ko) * | 2008-06-05 | 2009-10-08 | 현대자동차주식회사 | 내충격성 및 내알코올성이 향상된 폴리아미드 수지 조성물 |
JP5154488B2 (ja) * | 2008-08-28 | 2013-02-27 | 東海ゴム工業株式会社 | 樹脂製燃料タンク用接合部品 |
JP5154489B2 (ja) * | 2009-03-30 | 2013-02-27 | 東海ゴム工業株式会社 | 樹脂製フィラーパイプおよびこれを用いた樹脂製フィラーパイプモジュール |
CN102002191B (zh) * | 2010-11-02 | 2012-07-25 | 徐州百安居建材科技有限公司 | Ppr/evoh/poe共混高抗冲阻透管材和制造方法 |
CN102190884B (zh) * | 2011-05-16 | 2014-08-13 | 中国电力科学研究院 | 一种pa6/eva/ommt超韧阻尼防震材料及其制造方法 |
CN102796315A (zh) * | 2012-09-05 | 2012-11-28 | 东莞市信诺橡塑工业有限公司 | 原位反应增容法制备高密度聚乙烯/聚酰胺11积层阻隔材料及其方法 |
CN103247982B (zh) * | 2013-05-31 | 2015-12-23 | 杭州新世纪电力器材有限公司 | 一种用沙漠沙作为内层增强主材的线缆保护管 |
CN103244761B (zh) * | 2013-06-01 | 2015-05-06 | 杭州新世纪电力器材有限公司 | 用沙漠沙作为中间增强层主材的非金属给排水复合管道 |
US9902854B2 (en) | 2015-12-14 | 2018-02-27 | Hyundai Motor Company | Polyamide composite resin composition for fuel filler pipe |
CN106224772A (zh) * | 2016-08-31 | 2016-12-14 | 北京市煤气热力工程设计院有限公司 | 一种应用于lng杜瓦瓶灌装的加气机转换称量装置及使用方法 |
CN107061875A (zh) * | 2017-04-24 | 2017-08-18 | 江苏法利沃环保科技有限公司 | 耐燃油抗静电输油管 |
CN109134906A (zh) * | 2018-08-29 | 2019-01-04 | 佛山皖和新能源科技有限公司 | 一种纳米复合型环保阻氧管材的制备方法 |
KR102566933B1 (ko) * | 2021-03-29 | 2023-08-14 | (주)대아씨앤아이 | 유니소재 기반의 산소 차단성 수지 조성물 및 이를 이용한 산소 차단성 용기 |
CN113831643B (zh) * | 2021-10-08 | 2023-08-22 | 绍兴万荣包装有限公司 | 一种改性pp软管的制备方法 |
KR102617043B1 (ko) * | 2022-12-09 | 2023-12-27 | (주)원양건축사사무소 | 공동주택 건축물의 친환경 상수관 제조방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2659027B2 (ja) * | 1990-03-27 | 1997-09-30 | 株式会社クラレ | 樹脂組成物 |
BR9907895A (pt) * | 1998-02-13 | 2001-12-26 | Solutia Inc | Processo para preparar uma composição denanocompósito polimérica |
WO1999048973A1 (fr) * | 1998-03-20 | 1999-09-30 | Ube Industries, Ltd. | Composition de resine renforcee par des fibres de polyamide et procede de fabrication associe |
JP5153029B2 (ja) * | 2000-06-23 | 2013-02-27 | 日本合成化学工業株式会社 | 樹脂組成物の製造法 |
JP2002295741A (ja) * | 2001-03-29 | 2002-10-09 | Asahi Kasei Corp | ポリプロピレン系樹脂パイプ材料 |
KR100508907B1 (ko) * | 2001-12-27 | 2005-08-17 | 주식회사 엘지화학 | 차단성이 우수한 나노복합체 블렌드 조성물 |
JP2004263119A (ja) * | 2003-03-04 | 2004-09-24 | Asahi Kasei Chemicals Corp | 優れた耐クリープ特性を有するポリエチレンパイプ |
CN100523086C (zh) * | 2003-03-17 | 2009-08-05 | 阿托菲纳公司 | 以聚酰胺为基体并且含有纳米填料的聚酰胺和聚烯烃共混物 |
-
2005
- 2005-06-02 KR KR1020050047114A patent/KR20060063593A/ko not_active Application Discontinuation
- 2005-06-30 RU RU2007125696/04A patent/RU2348661C1/ru not_active IP Right Cessation
- 2005-06-30 BR BRPI0518597-1A patent/BRPI0518597A2/pt not_active Application Discontinuation
- 2005-06-30 CN CNA2005800419442A patent/CN101072822A/zh active Pending
- 2005-06-30 MX MX2007006748A patent/MX2007006748A/es active IP Right Grant
- 2005-06-30 JP JP2007545356A patent/JP2008523199A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2678031C2 (ru) * | 2014-04-10 | 2019-01-22 | Мицубиси Гэс Кемикал Компани, Инк. | Формованное тело и способ его производства |
Also Published As
Publication number | Publication date |
---|---|
CN101072822A (zh) | 2007-11-14 |
KR20060063593A (ko) | 2006-06-12 |
JP2008523199A (ja) | 2008-07-03 |
MX2007006748A (es) | 2007-08-02 |
BRPI0518597A2 (pt) | 2008-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2348661C1 (ru) | Трубка, имеющая барьерные свойства | |
AU2005312536B2 (en) | Pipe having barrier property | |
RU2346962C1 (ru) | Изделие, обладающее барьерными свойствами | |
CA2574543C (en) | Gas-barrier nanocomposite composition and article using the same | |
KR100733921B1 (ko) | 고차단성 나노복합체 조성물 | |
US20060121224A1 (en) | Article having high barrier property | |
JP2008518076A (ja) | 遮断性チューブ容器 | |
US20070078212A1 (en) | Nanocomposite composition having barrier property and product using the same | |
RU2340639C2 (ru) | Композиция, содержащая нанокомпозит в качестве газового барьера, и изделия из нее | |
KR100874031B1 (ko) | 차단성이 우수한 나노복합체 조성물 및 이로부터 제조된물품 | |
KR101002050B1 (ko) | 차단성 다층 물품 | |
KR20060063596A (ko) | 차단성 튜브 용기 | |
KR20070102005A (ko) | 나노복합체 블렌드 조성물 및 이로부터 제조된 연료탱크용캡 | |
KR100724552B1 (ko) | 고차단성 물품 | |
KR101630497B1 (ko) | 차단성 나노복합체 조성물, 차단성 폴리올레핀 수지 조성물 및 차단성 물품의 제조방법 | |
KR100789240B1 (ko) | 차단성 나노복합체 조성물 및 그를 이용한 물품 | |
KR100768743B1 (ko) | 차단성 나노복합체 조성물 | |
KR20060046673A (ko) | 차단성 튜브 어깨의 제조 방법 | |
KR20140147344A (ko) | 차단성 나노복합체 및 이를 포함하는 나노복합체 조성물 | |
KR20140147349A (ko) | 차단성 나노복합체 및 이를 포함하는 나노복합체 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20110701 |