RU2318836C2 - Каталитическая система (co) полимеризации лактида и гликолида - Google Patents
Каталитическая система (co) полимеризации лактида и гликолида Download PDFInfo
- Publication number
- RU2318836C2 RU2318836C2 RU2005126414/04A RU2005126414A RU2318836C2 RU 2318836 C2 RU2318836 C2 RU 2318836C2 RU 2005126414/04 A RU2005126414/04 A RU 2005126414/04A RU 2005126414 A RU2005126414 A RU 2005126414A RU 2318836 C2 RU2318836 C2 RU 2318836C2
- Authority
- RU
- Russia
- Prior art keywords
- polymerization
- lactide
- glycolide
- atom
- catalytic system
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/823—Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/81—Preparation processes using solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/87—Non-metals or inter-compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Изобретение относится к каталитической системе (со)полимеризации лактида и гликолида, а также к способу (со)полимеризации с использованием указанной каталитической системы. Описана каталитическая система, состоящая из (а) трифторметансульфоната общей формулы (1), (b) добавки (со)полимеризации общей формулы (2), причем количество добавки (со)полимеризации по отношению к катализатору составляет от 0,05 до 5 молярных эквивалентов, для (со)полимеризации лактида и гликолида. Также описан способ (со)полимеризации лактида и гликолида, а также применение полученного указанным выше способом полимера или сополимера лактида и гликолида. Технический эффект - каталитическая система, позволяющая регулировать длину цепи, природу конечных звеньев цепи полученных (со)полимеров. 3 н. и 7 з.п.
Description
Настоящее изобретение относится к каталитической системе (со)полимеризации лактида и гликолида, причем указанная система содержит в качестве катализатора трифторметансульфонат и (со)полимеризующую добавку. Настоящее изобретение также относится к способу (со)полимеризации лактида и гликолида с использованием такой каталитической системы.
В настоящее время все большее внимание уделяют синтетическим полимерам, применяемым для разработки искусственных органов и получения лекарственных средств [Chem.Eng.News 2001, 79(6), 30]. Такие полимеры должны соответствовать ряду критериев и, в частности, они должны быть биосовместимыми. Биоразлагаемый характер является дополнительным преимуществом, если полимер должен быть удален по истечении соответствующего срока, на который его имплантируют в организм. В этой связи очень большой интерес представляют сополимеры на основе молочной и гликолевой кислоты (PLGA), т.к. они чувствительны к гидролизу и разлагаются in vivo, выделяя нетоксичные побочные продукты. Область применения PLGA очень широка (Adv. Mater 1996, 8, 305 и Chemosphere 2001, 43,49). В хирургии их применяют для синтеза нитей, состоящих из множества волоконцев, швов, имплантатов, протезов. В фармакологии они обеспечивают инкапсуляцию, переход и регулируемое высвобождение активных веществ.
Для всех видов применения основным фактором является скорость разложения PLGA, которая, конечно, зависит от их структуры (длины цепи, дисперсности, пропорции, стереохимии и соединения мономеров...). В последние годы многочисленные работы были, таким образом, посвящены разработке катализаторов и/или инициаторов (со)полимеризации, т.е. полимеризации или сополимеризации лактида и гликолида, обеспечивающей получение PLGA с регулируемой структурой.
Использование металлических систем обычно приводит к загрязнению полученных таким образом сополимеров солями металлов, что в ряде случаев существенно ограничивает возможности их применения. Поэтому разработка неметаллических систем, обеспечивающих регулируемую (со)полимеризацию лактида и гликолида, является главной целью.
Заявитель предлагает простую каталитическую систему, содержащую катализатор и (со)полимеризирующую добавку, которая позволяет регулировать длину цепи, а также природу конечных звеньев цепи полученных (со)полимеров.
Объектом изобретения, таким образом, является каталитическая система, содержащая
(а) трифторметансульфонат общей формулы (1)
в которой
R1 обозначает атом водорода или дейтерия или группу формулы -Е14(R14)(R'14)(R"14);
Е14 является элементом группы 14;
R14, R'14 и R"14 независимо обозначают атом водорода, дейтерия или один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, в которых один или несколько заместителей выбирают из галогена, алкила, циклоалкила и арила,
в качестве катализатора и
(b) (со)полимеризирующую добавку общей формулы (2)
в которой
Е обозначает элемент группы 16;
R2 обозначает атом водорода или дейтерия;
R3 обозначает атом водорода или дейтерия или группу формулы -Е'14(Т14)(Т'14)(Т"14);
Е'14 является элементом группы 14;
Т14, Т'14 и Т"14 независимо обозначают атом водорода; атом дейтерия; один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, и в которых один или несколько заместителей выбирают из галогена, гидрокси, алкила, алкокси, циклоалкила, циклоалкокси, арила, арилокси, карбокси, алкоксикарбонила, циклоалкоксикарбонила и арилоксикарбонила
для (со)полимеризации лактида и гликолида.
Термин галоген обозначает фтор, хлор, бром или йод, предпочтительно хлор. Термин алкил предпочтительно обозначает линейный или разветвленный радикал алкил, содержащий от 1 до 6 атомов углерода, и, в частности, радикал алкил, содержащий от 1 до 4 атомов углерода, такой как радикалы: метил, этил, пропил, изопропил, бутил, изобутил, вторбутил и третбутил. Термин алкокси обозначает радикалы, в которых радикал алкил является таким, как описано выше, как, например, радикалы метокси, этокси, пропилокси или изопропилокси, а также линейный вторичный или третичный бутокси, пентилокси. Термин алкоксикарбонил предпочтительно обозначает радикалы, в которых радикал алкокси является таким, как описано выше, как, например, метоксикарбонил, этоксикарбонил.
Циклоалкильные радикалы выбирают из насыщенных или ненасыщенных моноциклических циклоалкилов. Насыщенные моноциклические циклоалкильные радикалы можно выбирать из радикалов, содержащих от 3 до 7 атомов углерода, таких как радикалы циклопропил, циклобутил, циклопентил, циклогексил или циклогептил. Ненасыщенные циклоалкильные радикалы можно выбирать из радикалов: циклобутен, циклопентен, циклогексен, циклопентадиен, циклогексадиен. Термин циклоалкокси означает радикалы, в которых радикал циклоалкил является таким, как описано выше, как, например, радикалы циклопропилокси, циклобутилокси, циклопентилокси, циклогексилокси, циклогептилокси, циклобутенилокси, циклопентенилокси, циклогексенилокси, циклопентадиенилокси, циклогексадиенилокси. Термин циклоалкоксикарбонил обозначает радикалы, в которых радикал циклоалкокси является таким, как описано выше, как, например, радикалы: циклопропилоксикарбонил, циклобутилоксикарбонил, циклопентилоксикарбонил, циклогексилоксикарбонил, циклогептилоксикарбонил, циклобутенилоксикарбонил, циклопентенилоксикарбонил, циклогексенилоксикарбонил.
Арильные радикалы могут быть моно- или полициклического типа. Моноциклические арильные радикады можно выбирать из фенильных радикалов, необязательно замещенных одним или несколькими алкильными радикалами, такими как толил, ксилил, мезитил, куменил. Полициклические арильные радикалы можно выбирать из нафтила, антрила, фенантрила. Термин арилокси обозначает радикалы, в которых арильный радикал является таким, как описано выше, как, например, радикалы фенилокси, толилокси, нафтилокси, антрилокси и фенантрилокси. Термин арилоксикарбонил предпочтительно обозначает радикалы, в которых радикал арилокси является таким, как описано выше, как, например, фенилоксикарбонил, толилоксикарбонил.
В настоящей заявке термин (со)полимеризация означает полимеризацию или сополимеризацию. Таким образом (со)полимеризация лактида и гликолида охватывает полимеризацию лактида, полимеризацию гликолида, а также сополимеризацию лактида и гликолида.
Предпочтительно в каталитической системе согласно настоящему изобретению количество (со)полимеризующей добавки по отношению к катализатору составляет от 0,05 до 5 молярных эквивалентов и более предпочтительно от 0,5 до 2 молярных эквивалентов.
Более конкретно объектом изобретения является каталитическая система, такая как указана выше, содержащая соединение формулы (1), в которой R1 обозначает или атом водорода, или группу формулы -Е14(R14)(R'14)(R"14).
Предпочтительно R1 обозначает атом водорода и соединение (1) обозначает трифторметансульфоновую кислоту. Также предпочтительно R1 обозначает группу формулы -Е14(R14)(R'14)(R"14), в которой Е14 обозначает атом углерода или кремния и более предпочтительно Е14 обозначает атом углерода и R14, R'14 и R"14 независимо обозначают атом водорода или радикал алкил.
Согласно настоящему изобретению (со)полимеризующая добавка формулы (2), используемая таким образом, выполняет функцию инициатора (или соинициатора) (со)полимеризации. Ее присутсвие является необходимым, т.к. без такого соединения формулы (2) реакции (со)полимеризации протекают значительно медленнее, имеют значительно меньший выход, являются невоспроизводимыми и, следовательно, непригодны для промышленного применения.
Более конкретно объектом изобретения является каталитическая система, такая как указана выше, содержащая соединение формулы (2), в которой
Е обозначает атом кислорода или серы;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы -Е'14(Т14)(T'14)(T"14);
Е'14 обозначает атом углерода или кремния;
Т14, T'14 и Т"14 независимо обозначают атом водорода или один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, в которых один или несколько заместителей выбирают из: галогена, алкила, циклоалкила, фенила, нафтила, карбокси и алкоксикарбонила,
и более конкретно
Е обозначает атом кислорода;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы -E'14(T14)(Т'14) (T''14), в которой E'14 обозначает атом углерода и T14, Т'14 и T''14 независимо обозначают атом водорода или радикал алкил.
Более конкретно объектом изобретения является каталитическая система, такая как указана выше и отличающаяся тем, что (со)полимеризирующая добавка общей формулы (2) является водой или алифатическим спиртом. Из алифатических спиртов можно, например, назвать метанол, этанол, н-пропанол, изопропанол, н-бутанол или пентан-1-ол. Предпочтительно алифатический спирт выбирают из изопропанола и пентан-1-ола.
Объектом изобретения также является способ (со)полимеризации лактида и гликолида, который осуществляют в присутствии одного или некскольких мономеров, о которых идет речь, каталитической системы, такой как указана выше, содержащей соединение общей формулы (1) и (со)полимеризующую добавку общей формулы (2) и возможно растворитель полимеризации.
(Со)полимеризацию лактида и гликолида согласно изобретению проводят (со)полимеризацией путем размыкания цикла. Такой способ можно осуществлять либо в растворе, либо в условиях переохлаждения. Если (со)полимеризацию осуществляют в растворе, для реакции в качестве растворителя используют субстрат (или один из субстратов), применяемый в каталитической реакции. Растворители, которые не интерферируют с каталитической реакцией, также являются пригодными. В качестве примера таких растворителей можно назвать ароматические углеводороды (такие как толуол, ксилол или мезитилен), возможно замещенные одной или несколькими нитрогруппами (такой как нитробензол), простые эфиры (такие как метилтретбутиловый эфир, тетрагидрофуран или диоксан), алифатические или ароматические галогениды (такие как дихлорметан, хлороформ, дихлорэтан или дихлорбензол).
В соответствии с настоящим изобретением реакции проводят при температурах от -20 до примерно 150°С. В случае, если (со)полимеризацию проводят в растворе, температура предпочтительно составляет от 0 до 30°С. Продолжительность реакций составляет от нескольких минут до 48 часов, предпочтительно от 30 минут до 20 часов. Количество (со)полимеризующей добавки по отношению к катализатору предпочтительно составляет от 0,05 до 5 молярных эквивалентов и более предпочтительно от 0,5 до 2 молярных эквивалентов. Выход способа (со)полимеризации согласно настоящему изобретению обычно составляет более 80% и может даже достигать 100% в относительно мягких условиях (комнатная температура, несколько часов), как показано в примерах.
Более конкретно объектом изобретения также является способ, такой как указано выше, с использованием каталитической системы, такой как указано выше, содержащей соединение формулы (1), в которой R1 обозначает или атом водорода, или группу формулы -Е14(R14)(R'14)(R"14).
Предпочтительно объектом изобретения является способ, такой как указано выше, отличающийся тем, что R1 обозначает атом водорода, в этом случае соединение (1) является трифторметансульфоновой кислотой. Предпочтительно также объектом изобретения является способ, такой как указано выше, отличающийся тем, что R1 обозначает группу формулы -Е14(R14)(R'14)(R"14), в которой Е14 обозначает атом углерода или кремния и более предпочтительно Е14 обозначает атом углерода и R14, R'14 и R"14 независимо обозначают атом водорода или радикал алкил.
Более конкретно объектом изобретения также является способ, такой как указано выше, с использованием каталитической системы, такой как указано выше, содержащей соединение общей формулы (2), в которой
Е обозначает атом кислорода или серы;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы -Е'14(Т14)(T'14)(T"14),
Е'14 обозначает атом углерода или серы;
Т14, T'14 и Т"14 независимо обозначают атом водорода или один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, в которых один или несколько заместителей выбирают из: галогена, алкила, циклоалкила, фенила, нафтила, карбокси и алкоксикарбонила,
и более конкретно
Е обозначает атом кислорода;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы -Е'14(Т14)(T'14)(T"14), в которой Е'14 обозначает атом углерода и Т14, T'14 и Т"14 независимо обозначают атом водорода или радикал алкил.
Более конкретно объектом изобретения является способ (со)полимеризации лактида и гликолида, такой как указано выше, с использованием каталитическая системы, (со)полимеризующая добавка которой является либо водой, либо алифатическим спиртом, и предпочтительно алифатический спирт выбирают из метанола, этанола, пропанола и бутанола.
Способ (со)полимеризации лактида и гликолида согласно настоящему изобретению позволяет таким образом регулировать природу конечных звеньев (со)полимерной цепи и очень хорошо подходит для получения (со)полимеров, конечными звеньями которых являются кислота-спирт или сложный эфир-спирт, как показано в экспериментальной части.
Способ (со)полимеризации лактида и гликолида согласно настоящему изобретению также очень хорошо подходит для получения (со)полимеров, масса которых составляет от 500 до 50000 Дальтон, более конкретно от 1000 до 20000 Дальтон.
Способ (со)полимеризации лактида и гликолида согласно настоящему изобретению имеет ряд преимуществ, в частности:
- каталитическая система состоит из катализатора и (со)полимеризующей добавки, которые являются легкодоступными и недорогостоящими;
- использование добавки в качестве ингибитора (со)полимеризации позволяет не только значительно улучшить ход (со)полимеризации, на также точно регулировать длину цепи, которая практически равна первоначальному соотношению мономера и инициатора;
- использование добавки в качестве ингибитора (со)полимеризации позволяет также регулировать природу конечных звеньев цепи полученных (со)полимеров;
- (со)полимеризацию можно проводить в очень мягких температурных условиях, таких как комнатная температура, при этом продолжительность реакции, необходимая для почти полного преобразования одного или нескольких мономеров, не превышает несколько часов и максимально 24 часов;
- (со)полимеризацию можно действительно проводить в однородной среде таким образом, что распределение массы полученных (со)полимеров является ограниченным; индексы полидисперсности полученных согласно настоящему изобретению (со)полимеров действительно составляют от 1,0 до 1,5;
- полученные (со)полимеры можно подвергнуть легкой, быстрой и эффективной очистке без изменения их свойств. Остаточные следы мономеров, а также остатки катализаторов действительно удаляют количественно путем обычного фильтрования через щелочной глинозем и/или промывания в две стадии водным раствором гидрокарбоната.
Наконец, изобретение относится к полимерам или сополимерам лактида и гликолида, полученным или которые можно получить путем осуществления способа, такого как описано выше. Такие (со)полимеры могут иметь регулируемые конечные группы кислота/спирт или сложный эфир/спирт. Такие (со)полимеры могут также иметь небольшую массу от 500 до 50000 Дальтон и предпочтительно от 1000 до 20000 Дальтон.
Объектом настоящего изобретения являются (со)полимеры лактида и гликолида с регулируемыми конечными группами кислота/спирт или сложный эфир/спирт. Объектом настоящего изобретения также являются (со)полимеры лактида и гликолида, масса которых составляет от 500 до 50000 Дальтон и предпочтительно от 1000 до 20000 Дальтон. Более предпочтительно объектом настоящего изобретения являются (со)полимеры лактида и гликолида с регулируемыми конечными группами кислота/спирт или сложный эфир/спирт, масса которых составляет от 500 до 50000 Дальтон и предпочтительно от 1000 до 20000 Дальтон.
Продукты общей формулы (1) и (2) являются коммерческими или могут быть получены известными специалисту способами.
Если их иное смысловое значение не оговорено, все технические и научные термины, используемые в настоящей заявке, имеют смысловое значение, обычно понимаемое средним специалистом в данной области, которому принадлежит изобретение. Также все публикации, заявки на патент и все другие ссылки, упомянутые в настоящем описании, включены в него в качестве ссылки.
Для иллюстрации способов приведены нижеследующие примеры, которые ни в коем случае не следует рассматривать как ограничение объема изобретения.
Пример 1: Получение полимера (D,L-лактида) с конечными группами кислота-спирт
В трубку Шленка с магнитным бруском, продутую аргоном, вводят последовательно 22 г D,L-лактида (0,153 моль), 150 мл дихлорметана, 1,35 мл трифторметансульфоновой кислоты (0,0153 моль) и 0,3 мл воды (0,0153 моль). Реакционную смесь перемешивают при комнатной температуре. Ход полимеризации контролируют протонным ЯМР. Через три часа с начала реакции преобразование мономера составляет 100%. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит полимеры, имеющие близкие значения массы (Mw=2600 Дальтон, Mw/Mn=1,48). Природу конечных звеньев цепи кислота/спирт определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 2: Получение полимера (D,L-лактида) с конечными группами сложный эфир-спирт
В трубку Шленка с магнитным бруском, продутую аргоном, вводят последовательно 22 г D,L-лактида (0,153 моль), 150 мл дихлорметана, 1,35 мл трифторметансульфоновой кислоты (0,0153 моль) и 1,17 мл изопропанола (0,0153 моль). Реакционную смесь перемешивают при комнатной температуре в течение трех часов. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование мономера составляет 100%. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит полимеры, имеющие близкие значения массы (Mw=2070 Дальтон, Mw/Mn=1,25). Природу конечных звеньев цепи сложный эфир/спирт определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 3: Получение сополимера (D,L-лактид/гликолид) 75/25 с конечными группами сложный эфир-спирт
В трубку Шленка с магнитным бруском, продутую аргоном, вводят 16,5 г D,L-лактида (0,115 моль) и 4,4 г гликолида (0,038 моль), растворенного в 150 мл дихлорметана. Затем последовательно вводят 1,35 мл трифторметансульфоновой кислоты (0,0153 моль) и 1,17 мл изопропанола (0,0153 моль). Реакционную смесь перемешивают при комнатной температуре в течение двух часов. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование каждого из мономеров составляет более 95%. Соотношение интегралов сигналов, соответствующих части полилактида (5,2 м.д.) и полигликолида (4,85 м.д.), позволяет определить состав сополимера: 79% лактида и 21% гликолида. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит сополимеры, имеющие близкие значения массы (Mw=2100 Дальтон, Mw/Mn=1,34). Природу конечных звеньев определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 4: Получение полимера (D,L-лактида) с конечными группами сложный эфир-спирт
В трубку Шленка с магнитным бруском, продутую аргоном, вводят последовательно 22 г D,L-лактида (0,153 моль), 150 мл дихлорметана, 190 мкл трифторметансульфоновой кислоты (0,002 моль) и 170 мкл изопропанола (0,002 моль). Реакционную смесь перемешивают при комнатной температуре в течение десяти часов. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование мономера составляет 100%. Присутствие на конце цепи сложного изопропилового эфира также выявляют с помощью протонного ЯМР. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит полимеры, имеющие близкие значения массы (Mw=13000 Дальтон, Mw/Mn=1,15).
Пример 5: Получение олигомера (D,L-лактида) с конечными группами сложный эфир-спирт (Mw составляет примерно 1000 Да)
В трубку Шленка с магнитным бруском, продутую аргоном, вводят последовательно 19,39 г D,L-лактида (0,135 моль), 160 мл дихлорметана, 3,00 мл трифторметансульфоновой кислоты (0,0336 моль) и 3,65 мл пентан-1-ола (0,0336 моль). Реакционную смесь перемешивают при комнатной температуре в течение часа. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование мономера составляет 100%. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит полимеры, имеющие близкие значения массы (Mw=1008 Дальтон, Mw/Mn=1,13). Природу конечных звеньев цепи сложный эфир-спирт определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 6: Получение соолигомера (D,L-лактид/гликолид) 80/20 с конечными группами сложный эфир-спирт (Mw составляет примерно 1000 Да)
В трубку Шленка с магнитным бруском, продутую аргоном, вводят 18,81 г D,L-лактида (0,128 моль), 4,00 г гликолида (0,031 моль) и 160 мл дихлорметана. Затем последовательно вводят 3,5 мл трифторметансульфоновой кислоты (0,039 моль) и 3,4 мл пентан-1-ола (0,039 моль). Реакционную смесь перемешивают при комнатной температуре в течение часа. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование каждого из мономеров составляет более 95%. Соотношение интегралов сигналов, соответствующих части полилактида (5,2 м.д.) и полигликолида (4,85 м.д.), позволяет определить состав сополимера: 80% лактида и 20% гликолида. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит сополимеры, имеющие близкие значения массы (Mw=1030 Дальтон, Mw/Mn=1,23). Природу конечных звеньев определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 7: Получение соолигомера (D,L-лактид/гликолид) 60/40 с конечными группами сложный эфир-спирт (Mw составляет примерно 1000 Да)
В трубку Шленка с магнитным бруском, продутую аргоном, вводят 2,68 г D,L-лактида (0,0186 моль), 1,44 г гликолида (0,0124 моль) и 40 мл дихлорметана. Затем последовательно вводят 0,69 мл трифторметансульфоновой кислоты (0,0077 моль) и 0,85 мл пентан-1-ола (0,0077 моль). Реакционную смесь перемешивают при комнатной температуре в течение двух часов. Затем в реакционную смесь вводят щелочной глинозем. Перемешивают в течение часа, после чего среду фильтруют через фритту и растворитель удаляют при пониженном давлении. Полимер определяют с помощью протонного ЯМР; преобразование каждого из мономеров составляет более 95%. Соотношение интегралов сигналов, соответствующих части полилактида (5,2 м.д.) и полигликолида (4,85 м.д.), позволяет определить состав сополимера: 60% лактида и 40% гликолида. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит сополимеры, имеющие близкие значения массы (Mw=953 Дальтон, Mw/Mn=1,26). Природу конечных звеньев определяют масс-спектрометрией (ионизация электроспреем, детекция в режиме положительных ионов, образец растворен в ацетонитриле со следами гидроксида аммония).
Пример 8: Получение полимера (D,L-лактида) с конечными группами кислота-спирт и Mw, составляющим около 7000 Да
В трубку Шленка с магнитным бруском, продутую аргоном, последовательно вводят 22,1 г D,L-лактида (0,153 моль), 140 мл дихлорметана, 0,486 мл трифторметансульфоновой кислоты (0,0055 моль) и 0,10 мл воды (0,0055 моль). Реакционную смесь перемешивают при комнатной температуре. Ход полимеризации контролируют протонным ЯМР. Через шесть часов с начала реакции преобразование мономера составляет более 95%. Реакционную смесь переливают в делительную воронку и промывают насыщенным водным раствором NaHCO3, затем рассолом. Раствор сушат на безводном Na2SO4, фильтруют и растворитель удаляют при пониженном давлении. Согласно анализу GPC (гель-проникающая хроматография) путем тарирования, осуществляемого в соответствии с эталонами полистирола (PS), имеющими массу от 761 до 400000, образец содержит полимеры, имеющие близкие значения массы (Mw=7200 Дальтон, Mw/Mn=1,32).
Claims (10)
1. Каталитическая система, состоящая из
(а) трифторметансульфоната общей формулы (1)
в которой R1 обозначает атом водорода или дейтерия в качестве катализатора и полимеризации лактида и гликолида (b) добавки (со)полимеризации общей формулы (2)
в которой Е обозначает атом кислорода или серы;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы -
E'14(T14)(T'14)(T''14);
E'14 является атомом углерода или кремния;
T14, T'14 и T''14 независимо обозначают атом водорода или один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, в которых один или несколько заместителей выбирают из галогена, алкила, циклоалкила, фенила, нафтила, карбокси и алкосикарбонила,
причем количество добавки (со)полимеризации по отношению к катализатору составляет от 0,05 до 5 молярных эквивалентов,
для (со)полимеризации лактида и гликолида.
2. Каталитическая система по п.1, отличающаяся тем, что количество добавки (со)полимеризации по отношению к катализатору составляет от 0,5 до 2 молярных эквивалентов.
3. Каталитическая система по п.1, отличающаяся тем, что R1 обозначает атом водорода.
4. Каталитическая система по п.1, отличающаяся тем, что
Е обозначает атом кислорода;
R2 обозначает атом водорода;
R3 обозначает атом водорода или группу формулы E'14(T14)(T'14)(T''14), в которой E'14 обозначает атом углерода и T14, Т'14 и T''14 независимо обозначают атом водорода или радикал алкил.
5. Каталитическая система по любому из пп.1-4, отличающаяся тем, что соединение общей формулы (2) является или водой, или алифатическим спиртом.
6. Каталитическая система по п.5, отличающаяся тем, что соединение общей формулы (2) является алифатическим спиртом, выбранным из изопропанола или пентан-1-ола.
7. Способ (со)полимеризации лактида и гликолида, который осуществляют в присутствии одного или нескольких рассмотренных мономеров, каталитической системы, такой как указана в одном из пп.1-6, и возможно растворителя полимеризации.
8. Способ по п.7, отличающийся тем, что способ осуществляют при температуре от 0 до 30°С.
9. Способ по одному из пп.7 и 8, отличающийся тем, что продолжительность реакций составляет от нескольких минут до 48 ч, и предпочтительно от 30 мин до 20 ч.
10. Полимеры или сополимеры лактида и гликолида, получаемые способом по одному из пп.7-9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03290134.0 | 2003-01-21 | ||
EP03290134A EP1440992A1 (fr) | 2003-01-21 | 2003-01-21 | Système catalytique de (co)polymérisation du lactide et du glycolide |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2005126414A RU2005126414A (ru) | 2006-03-20 |
RU2318836C2 true RU2318836C2 (ru) | 2008-03-10 |
Family
ID=32524267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005126414/04A RU2318836C2 (ru) | 2003-01-21 | 2004-01-19 | Каталитическая система (co) полимеризации лактида и гликолида |
Country Status (19)
Country | Link |
---|---|
US (2) | US20060149030A1 (ru) |
EP (2) | EP1440992A1 (ru) |
JP (1) | JP5268254B2 (ru) |
KR (1) | KR101074609B1 (ru) |
CN (1) | CN1329424C (ru) |
AU (1) | AU2004207648B2 (ru) |
BR (1) | BRPI0406517B1 (ru) |
CA (1) | CA2513594C (ru) |
DK (1) | DK1587851T3 (ru) |
ES (1) | ES2423411T3 (ru) |
HK (1) | HK1088913A1 (ru) |
IS (1) | IS2954B (ru) |
MX (1) | MXPA05007682A (ru) |
NO (1) | NO337440B1 (ru) |
NZ (1) | NZ540860A (ru) |
PL (1) | PL217078B1 (ru) |
PT (1) | PT1587851E (ru) |
RU (1) | RU2318836C2 (ru) |
WO (1) | WO2004067602A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715383C1 (ru) * | 2019-06-20 | 2020-02-27 | Общество с ограниченной ответственностью "ТВС" | Способ получения (со)полимера гликолида и/или лактида для изготовления рассасывающихся хирургических изделий |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2009000525A (es) | 2006-07-14 | 2009-01-27 | Kimberly Clark Co | Poliester alifatico biodegradable para usarse en telas no tejidas. |
FR2912751B1 (fr) * | 2007-02-16 | 2012-07-13 | Arkema France | Procede de preparation de polylactones et polylactames |
FR2912752B1 (fr) * | 2007-02-16 | 2012-10-05 | Arkema France | Procede de preparation d'un copolymere d'au moins un monomere cyclique |
CN101445595B (zh) * | 2008-12-26 | 2011-01-19 | 上海新上化高分子材料有限公司 | 聚乙丙交酯及其制备方法和应用 |
FR2967416B1 (fr) * | 2010-11-15 | 2012-12-21 | Ipsen Pharma Sas | Procede de preparation de polymeres a architecture variee et amorcage amide |
FR2967415B1 (fr) * | 2010-11-15 | 2012-11-30 | Ipsen Pharma Sas | Procede de preparation de polymeres etoiles |
WO2012105149A1 (ja) * | 2011-02-02 | 2012-08-09 | 国立大学法人名古屋工業大学 | 有機触媒によるポリエステル合成方法 |
WO2013087812A1 (en) * | 2011-12-15 | 2013-06-20 | Total Research & Technology Feluy | Process for the preparation of defined functional lactic acid oligomers |
CZ305046B6 (cs) * | 2013-12-05 | 2015-04-08 | Vysoké Učení Technické V Brně | Způsob přípravy blokového kopolymeru |
CN107722250B (zh) * | 2017-11-07 | 2019-07-12 | 青岛科技大学 | 一种二元催化体系的制备方法与应用 |
EP3482964A1 (de) * | 2017-11-13 | 2019-05-15 | Mitsubishi HiTec Paper Europe GmbH | Wärmeempfindliches aufzeichnungsmaterial auf basis von pla |
EP3603650A1 (fr) | 2018-08-01 | 2020-02-05 | Edix O Sarl | Compositions injectables et a duree d'action prolongee pour leur utilisation dans le traitement de maladies de l'ongle et/ou pour accelerer la croissance de l'ongle |
DK3829601T3 (da) | 2018-08-01 | 2024-09-02 | Edix O Sarl | Injicerbare sammensætninger med depotvirkning til anvendelse til behandling af neglesygdomme |
EP4370581A1 (en) * | 2021-07-13 | 2024-05-22 | Purdue Research Foundation | Substantially sequence-uniform aliphatic copolyester and method of making the same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273920A (en) * | 1979-09-12 | 1981-06-16 | Eli Lilly And Company | Polymerization process and product |
IE52535B1 (en) * | 1981-02-16 | 1987-12-09 | Ici Plc | Continuous release pharmaceutical compositions |
JPS5813624A (ja) * | 1981-07-20 | 1983-01-26 | Mitsui Toatsu Chem Inc | ポリグリコ−ル酸の製造方法 |
CA1256638A (en) * | 1984-07-06 | 1989-06-27 | Motoaki Tanaka | Polymer and its production |
GB8500887D0 (en) * | 1985-01-12 | 1985-02-20 | Bp Chem Int Ltd | Polygycollic acid manufacture |
US5856401A (en) * | 1993-05-06 | 1999-01-05 | Saam Associates | Method of preparing condensation polymers by emulsion polymerization |
US5412067A (en) * | 1993-05-10 | 1995-05-02 | Mitsui Toatsu Chemicals, Inc. | Preparation process of polyester |
DE69524113D1 (de) * | 1994-09-29 | 2002-01-03 | Idemitsu Petrochemical Co | Verfahren zur herstellung von monocarbon- und/oder dicarbonsaeuren |
US5514828A (en) * | 1995-04-21 | 1996-05-07 | General Electric Company | Process for polymerizing polyfluoroalkylsiloxane cyclic trimer |
JPH1160713A (ja) * | 1997-08-11 | 1999-03-05 | Daicel Chem Ind Ltd | 脂肪族ポリエステルの製造方法 |
JP4139516B2 (ja) * | 1998-04-28 | 2008-08-27 | 三井化学株式会社 | ポリエステルの製造方法 |
US6140458A (en) * | 1998-04-28 | 2000-10-31 | Mitsui Chemicals, Inc. | Preparation process of polyester |
JP2000119420A (ja) * | 1998-10-19 | 2000-04-25 | Nissan Motor Co Ltd | イオン交換膜およびその製造方法 |
US6362308B1 (en) * | 2000-08-10 | 2002-03-26 | Alkermes Controlled Therapeutics Inc. Ii | Acid end group poly(d,l-lactide-co-glycolide) copolymers high glycolide content |
ATE296848T1 (de) * | 2001-04-10 | 2005-06-15 | Scras | Verwendung von zinkderivaten als polymerisationskatalysatoren von cyclischen estern |
JP4794096B2 (ja) * | 2001-09-27 | 2011-10-12 | 旭化成ケミカルズ株式会社 | グリコール酸系共重合体の製造方法 |
JP3665819B2 (ja) * | 2002-04-19 | 2005-06-29 | 独立行政法人産業技術総合研究所 | 希土類金属化合物触媒によるポリエステルの製造方法 |
-
2003
- 2003-01-21 EP EP03290134A patent/EP1440992A1/fr not_active Withdrawn
-
2004
- 2004-01-19 DK DK04703200.8T patent/DK1587851T3/da active
- 2004-01-19 RU RU2005126414/04A patent/RU2318836C2/ru active
- 2004-01-19 BR BRPI0406517A patent/BRPI0406517B1/pt not_active IP Right Cessation
- 2004-01-19 KR KR1020057013343A patent/KR101074609B1/ko active IP Right Grant
- 2004-01-19 MX MXPA05007682A patent/MXPA05007682A/es active IP Right Grant
- 2004-01-19 PL PL376506A patent/PL217078B1/pl unknown
- 2004-01-19 NZ NZ540860A patent/NZ540860A/en not_active IP Right Cessation
- 2004-01-19 AU AU2004207648A patent/AU2004207648B2/en not_active Ceased
- 2004-01-19 US US10/541,735 patent/US20060149030A1/en not_active Abandoned
- 2004-01-19 ES ES04703200T patent/ES2423411T3/es not_active Expired - Lifetime
- 2004-01-19 JP JP2006502104A patent/JP5268254B2/ja not_active Expired - Fee Related
- 2004-01-19 PT PT47032008T patent/PT1587851E/pt unknown
- 2004-01-19 WO PCT/FR2004/000100 patent/WO2004067602A1/fr active Application Filing
- 2004-01-19 EP EP04703200.8A patent/EP1587851B1/fr not_active Expired - Lifetime
- 2004-01-19 CN CNB2004800024547A patent/CN1329424C/zh not_active Expired - Fee Related
- 2004-01-19 CA CA2513594A patent/CA2513594C/fr not_active Expired - Fee Related
-
2005
- 2005-06-09 NO NO20052806A patent/NO337440B1/no not_active IP Right Cessation
- 2005-08-02 IS IS7968A patent/IS2954B/is unknown
-
2006
- 2006-08-21 HK HK06109223A patent/HK1088913A1/xx not_active IP Right Cessation
-
2008
- 2008-12-11 US US12/316,328 patent/US7999061B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715383C1 (ru) * | 2019-06-20 | 2020-02-27 | Общество с ограниченной ответственностью "ТВС" | Способ получения (со)полимера гликолида и/или лактида для изготовления рассасывающихся хирургических изделий |
Also Published As
Publication number | Publication date |
---|---|
KR101074609B1 (ko) | 2011-10-17 |
EP1587851A1 (fr) | 2005-10-26 |
CN1738846A (zh) | 2006-02-22 |
PT1587851E (pt) | 2013-07-18 |
KR20050113174A (ko) | 2005-12-01 |
NZ540860A (en) | 2008-11-28 |
RU2005126414A (ru) | 2006-03-20 |
EP1587851B1 (fr) | 2013-05-22 |
US20090171066A1 (en) | 2009-07-02 |
EP1440992A1 (fr) | 2004-07-28 |
NO20052806L (no) | 2005-07-06 |
CA2513594C (fr) | 2012-09-11 |
IS2954B (is) | 2016-11-15 |
PL217078B1 (pl) | 2014-06-30 |
HK1088913A1 (en) | 2006-11-17 |
PL376506A1 (en) | 2005-12-27 |
WO2004067602A1 (fr) | 2004-08-12 |
BRPI0406517A (pt) | 2005-12-20 |
US7999061B2 (en) | 2011-08-16 |
BRPI0406517B1 (pt) | 2016-09-27 |
CA2513594A1 (fr) | 2004-08-12 |
NO337440B1 (no) | 2016-04-11 |
AU2004207648A1 (en) | 2004-08-12 |
US20060149030A1 (en) | 2006-07-06 |
IS7968A (is) | 2005-08-02 |
DK1587851T3 (da) | 2013-08-26 |
ES2423411T3 (es) | 2013-09-20 |
JP5268254B2 (ja) | 2013-08-21 |
MXPA05007682A (es) | 2005-09-30 |
CN1329424C (zh) | 2007-08-01 |
JP2006515899A (ja) | 2006-06-08 |
AU2004207648B2 (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2318836C2 (ru) | Каталитическая система (co) полимеризации лактида и гликолида | |
CN110283305B (zh) | 一种医药用生物可降解高分子材料聚乙丙交酯的制备方法 | |
CA2653295C (en) | Bio-degradable/absorbable polymer having reduced metal catalyst content, and process for production thereof | |
RU2380381C2 (ru) | Применение каталитической системы для (со)олигомеризации лактида и гликолида | |
ES2209918T3 (es) | Catalizadores de polimerizacion. | |
RU2589876C2 (ru) | Способ получения звездообразных полимеров | |
CN115536823B (zh) | 一种用于开环聚合制备聚酯的催化剂及其制备聚酯的方法 | |
CN110563941B (zh) | 一种医药用生物可降解高分子材料聚己内酯的制备方法 | |
RU2294336C2 (ru) | Использование цинковых производных в качестве катализаторов полимеризации циклических сложных эфиров | |
JP3131493B2 (ja) | ラクトン重合体の製造方法 | |
CN118834378A (en) | Medical poly-L-lactide and epsilon-caprolactone random copolymer and preparation method thereof | |
Agarwal et al. | Diiodosamarium based polymerisations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |