RU2279442C2 - Компоненты катализатора для полимеризации олефинов, катализатор, способ получения пропиленовых полимеров и пропиленовый полимер - Google Patents

Компоненты катализатора для полимеризации олефинов, катализатор, способ получения пропиленовых полимеров и пропиленовый полимер Download PDF

Info

Publication number
RU2279442C2
RU2279442C2 RU2002118701/04A RU2002118701A RU2279442C2 RU 2279442 C2 RU2279442 C2 RU 2279442C2 RU 2002118701/04 A RU2002118701/04 A RU 2002118701/04A RU 2002118701 A RU2002118701 A RU 2002118701A RU 2279442 C2 RU2279442 C2 RU 2279442C2
Authority
RU
Russia
Prior art keywords
electron
catalyst
extractable
alkyl
catalyst component
Prior art date
Application number
RU2002118701/04A
Other languages
English (en)
Other versions
RU2002118701A (ru
Inventor
Джампьеро МОРИНИ (IT)
Джампьеро МОРИНИ
Джулио БАЛЬБОНТИН (IT)
Джулио Бальбонтин
Original Assignee
Базелль Полиолефин Италия С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Базелль Полиолефин Италия С.П.А. filed Critical Базелль Полиолефин Италия С.П.А.
Publication of RU2002118701A publication Critical patent/RU2002118701A/ru
Application granted granted Critical
Publication of RU2279442C2 publication Critical patent/RU2279442C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Настоящее изобретение относится к компоненту катализатора для полимеризации олефинов, содержащему Mg, Ti, галоген и по меньшей мере два электронодонорных соединения, причем указанный компонент катализатора отличается тем, что по меньшей мере одно из электронодонорных соединений, присутствующее в количестве в диапазоне от 20 до 50% (мол.) по отношению к полному количеству доноров, выбирают из эфиров янтарных кислот, которые являются неэкстрагируемыми на более чем 25% (мол.), и по меньшей мере еще одного электронодонорного соединения, которое является экстрагируемым на более чем 35% (мол.). Указанные компоненты катализатора позволяют получать полимеры с хорошим уровнем нерастворимости в ксилоле, высоким уровнем содержания стереоблоков и широким MWD, что подходит для получения полимеров, используемых в секторе применения ВОРР. Изобретение также относится к катализатору для полимеризации олефинов, способу получения пропиленовых полимеров и пропиленовому полимеру. 4 н. и 20 з.п.ф-лы, 3 табл.

Description

Настоящее изобретение относится к компонентам катализатора для полимеризации олефинов, в частности пропилена, содержащим носитель на основе дигалогенида Mg, на который наносят соединение Ti, в котором имеется по меньшей мере одна связь Ti-галоген, и по меньшей мере два электронодонорных соединения, выбираемые из определенных классов. Настоящее изобретение дополнительно относится к катализаторам, полученным из указанных компонентов, и к их использованию в способах полимеризации олефинов. Катализаторы настоящего изобретения позволяют получать пропиленовые гомополимеры с высокими выходами, отличающиеся хорошими уровнями нерастворимости в ксилоле, широким диапазоном изотактичности и, в конкретных состояниях, очень высоким уровнем содержания стереоблоков.
Компоненты катализатора для стереоспецифической полимеризации олефинов широко известны на современном уровне техники. Наиболее широко распространенное семейство каталитических систем включает твердый компонент катализатора, содержащий дигалогенид магния, на который нанесены соединение титана и внутреннее электронодонорное соединение, используемый в комбинации с Al-алкильным соединением. Однако обычно, если требуется более высокая степень кристалличности полимера, то для того чтобы получить более высокую изотактичность, также необходим и внешний донор (например, алкилалкоксисилан). Один из предпочтительных классов внутренних доноров образован эфирами фталевой кислоты, причем используемым в наибольшей степени является диизобутилфталат. Данная каталитическая система позволяет добиваться очень хороших эксплуатационных характеристик, выражаемых через активность, изотактичность и уровень нерастворимости в ксилоле, при условии использования внешнего электронодонорного соединения. Если внешний донор не использовать, то будут иметь место низкие выходы, плохой уровень нерастворимости в ксилоле и неудовлетворительная изотактичность. С другой стороны, если внешний донор будет использован, хорошие уровни нерастворимости в ксилоле будут получаться только вместе с высокой изотактичностью. Кроме того, молекулярно-массовое распределение (MWD) в условиях обычной одностадийной полимеризации нешироко (показатель полидисперсности находится в диапазоне 3,6-4,5). Данные характеристики, хотя и подходят для определенных приложений, нежелательны в некоторых других областях, таких как получение двуосно-ориентированных полипропиленовых пленок (ВОРР). Для применения в данной области, собственно говоря, требуется, чтобы у полипропиленов были бы широкое MWD (показатель полидисперсности, превышающий 5), более низкий модуль упругости при изгибе (получаемый при уменьшении степени кристалличности полимера) при сохранении в то же время хорошего уровня нерастворимости в ксилоле. Кроме того, было обнаружено, что полимерами, подходящими для применения в данной области, являются те, для которых в дополнение к приведенным выше требованиям имеет место также и относительно высокий уровень содержания так называемых стереоблоков, то есть фракций полимера, которые, несмотря на преобладающую изотактичность, содержат не пренебрежимо малое количество неизотактических последовательностей пропиленовых звеньев. В обычных методиках фракционирования, таких как TREF (фракционирование с элюированием при повышении температуры), элюирование таких фракций происходит при температурах, более низких, чем температуры, которые необходимы для более изотактических фракций. В ЕР 658577 описан способ получения ПП-гомополимеров с высоким уровнем содержания стереоблоков. Он включает полимеризацию пропилена в присутствии катализатора, содержащего (i) твердый компонент катализатора, в котором соединение Ti и диизобутилфталат наносят на носитель MgCl2, (ii) Al-алкильное соединение в качестве сокатализатора и (iii) 3,3,3-трифторпропил(алкил)диметоксисилан в качестве внешнего донора. В примере 1 можно видеть, что несмотря на то что полимеризацию проводят в две последовательные стадии при различных условиях, MWD полученного бимодального полимера недостаточно широко (показатель полидисперсности 4,7). Кроме того, в случае бимодальных полимеров могут возникать проблемы с однородностью вследствие присутствия заметных количеств фракций с ярко выраженным различием в средней Mw. В указанном примере массовое процентное содержание фракции стереоблоков, измеренное при использовании TREF для полимера после легкого крекинга, приблизительно равно 31%, тогда в другом прогоне (в таблице 2) содержание фракции стереоблоков было равно приблизительно 26%. С учетом сказанного выше было бы желательно иметь компонент катализатора с еще более улучшенными характеристиками, и который, в частности, позволял бы получить полимеры с хорошим уровнем нерастворимости в ксилоле, высоким уровнем содержания стереоблоков и широким MWD, что подходит для получения полимеров, используемых в секторе применения ВОРР.
В настоящее время неожиданно был обнаружен компонент катализатора, обладающий указанными выше преимуществами, который содержит Mg, Ti, галоген и два электронодонорных соединения, выбираемых из определенных классов. Поэтому предметом настоящего изобретения является компонент катализатора для полимеризации олефинов CH2=CHR, в которых R представляет собой водород или углеводородный радикал, состоящий из 1-12 углеродных атомов, содержащий Mg, Ti, галоген и по меньшей мере два электронодонорных соединения, причем указанный компонент катализатора отличается тем, что по меньшей мере одно из электронодонорных соединений, которое присутствует в количестве в диапазоне от 15 до 50% (мол.) по отношению к полному количеству доноров, выбирают из эфиров янтарных кислот, которые нельзя проэкстрагировать, в условиях, описанных ниже, на более чем 20% (мол.), и по меньшей мере еще одного электронодонорного соединения, которое можно проэкстрагировать в тех же самых условиях на более чем 30% (мол.).
В соответствии с настоящим изобретением эфиры янтарных кислот, не экстрагируемые на более чем 20% (мол.), будут называться неэкстрагируемыми сукцинатами. Электронодонорные соединения, экстрагируемые более чем на 30% (мол.), будут называться экстрагируемыми электронодонорными соединениями. Количество неэкстрагируемых сукцинатов предпочтительно находится в диапазоне от 20 до 45, а более предпочтительно от 22 до 40% (мол.) по отношению к полному количеству электронодонорных соединений. В предпочтительном варианте реализации используют сукцинат, который нельзя проэкстрагировать на более чем 15%, и еще одно электронодонорное соединение, которое можно проэкстрагировать на более чем 35%.
Среди указанных выше неэкстрагируемых сукцинатов в особенности предпочтительны сукцинаты, описываемые приведенной ниже формулой (I)
Figure 00000001
в которой радикалы R1 и R2, одинаковые или различные, означают C1-C20 линейную или разветвленную алкильную, алкенильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, необязательно содержащую гетероатомы; а радикалы R3 и R4, одинаковые или различные, означают C1-C20 алкильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, необязательно содержащую гетероатомы, при условии, что по меньшей мере один из них является разветвленным алкилом; причем указанные соединения являются по отношению к двум асимметричным углеродным атомам, обозначенным в структуре формулы (I), стереоизомерами, относящимися к типу (S,R) или (R,S), которые присутствуют в чистых формах или в виде смесей.
R1 и R2 предпочтительно являются C1-C8 алкильной, циклоалкильной, арильной, арилалкильной и алкиларильной группами. В особенности предпочтительны соединения, в которых R1 и R2 выбраны из первичных алкилов и, в особенности, из разветвленных первичных алкилов. Примерами групп, подходящих для R1 и R2, являются метил, этил, н-пропил, н-бутил, изобутил, неопентил, 2-этилгексил. В особенности предпочтительны этил, изобутил и неопентил.
В особенности предпочтительны соединения, в которых радикалы R3 и/или R4 являются вторичными алкилами, подобными изопропилу, втор-бутилу, 2-пентилу, 3-пентилу, или циклоалкилами, подобными циклогексилу, циклопентилу, циклогексилметилу.
Примерами указанных выше соединений являются формы (S,R) (S,R), чистые или в виде смеси, необязательно в виде рацемата, диэтил 2,3-бис(триметилсилил)сукцината, диэтил 2,3-бис(2-этилбутил)сукцината, диэтил 2,3-дибенэилсукцината, диэтил 2,3-диизопропилсукцината, диизобутил 2,3-диизопропилсукцината, диэтил 2,3-бис(циклогексилметил)сукцината, диэтил 2,3-диизобутилсукцината, диэтил 2,3-динеопентилсукцината, диэтил 2,3-дициклопентилсукцината, диэтил 2,3-дициклогексилсукцината.
Среди экстрагируемых электронодонорных соединений в особенности предпочтительны эфиры одно- и двухосновных карбоновых органических кислот, такие как бензоаты, малонаты, фталаты и сукцинаты. Среди малонатов в особенности предпочтительны соединения, описываемые формулой (II):
Figure 00000002
где R1 означает Н или C1-C20 линейную или разветвленную алкильную, алкенильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, R2 означает C1-C20 линейную или разветвленную алкильную, алкенильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, R3 и R4, одинаковые или различные, означают C1-C20 линейные или разветвленные алкильные группы или С320 циклоалкильные группы.
R3 и R4, предпочтительно являются первичными, линейными или разветвленными, C1-C20 алкильными группами, более предпочтительно, когда они являются первичными разветвленными С420 алкильными группами, такими, как изобутильная или неопентильная группы.
R2, в особенности если R1 означает Н, предпочтительно означает линейную или разветвленную С320 алкильную, циклоалкильную или арилалкильную группу; R2, более предпочтительно, означает С320 вторичную алкильную, циклоалкильную или арилалкильную группу.
Предпочтительные эфиры ароматических карбоновых кислот выбирают из C1-C20 алкильных или арильных эфиров бензойной и фталевой кислот, возможно замещенных. Причем предпочтительны алкиловые эфиры указанных кислот. В особенности предпочтительны C1-C6 линейные или разветвленные алкиловые эфиры. Конкретными примерами являются этилбензоат, н-бутилбензоат, п-метоксиэтилбенэоат, п-этоксиэтилбензоат, изобутилбензоат, этил п-толуат, диэтилфталат, ди-н-пропилфталат, ди-н-бутилфталат, ди-н-пентилфталат, диизопентилфталат, бис(2-этилгексил)фталат, этилизобутилфталат, этил н-бутилфталат, ди-н-гексилфталат, диизобутилфталат.
Среди сукцинатов имеется много подклассов соединений, которые могут быть использованы в качестве экстрагируемых доноров в соответствии с настоящим изобретением. Одной из предпочтительных групп соединений является группа, описываемая формулой (III)
Figure 00000003
в которой радикалы R3-R5 означают водород, a R6 означает разветвленный алкильный, циклоалкильный, арильный, арилалкильный и алкиларильный радикал, содержащий от 3 до 10 углеродных атомов. В особенности предпочтительными являются соединения, в которых R6 означает разветвленную первичную алкильную группу или циклоалкильную группу, содержащую от 3 до 10 углеродных атомов. Конкретными примерами являются диэтил втор-бутилсукцинат, диэтил трет-гексилсукцинат, диэтилциклопропилсукцинат, диэтилнорборнилсукцинат, диэтил (10)-пергидронафтилсукцинат, диэтилтриметилсилилсукцинат, диэтилметоксисукцинат, диэтил п-метоксифенилсукцинат, диэтил п-хлорфенилсукцинат, диэтилфенилсукцинат, диэтилциклогексилсукцинат, диэтилбензилсукцинат, диэтил (циклогексилметил)сукцинат, диэтил трет-бутилсукцинат, диэтилизобутилсукцинат, диэтилизопропилсукцинат, диэтилнеопентилсукцинат.
Другим подклассом предпочтительных соединений является подкласс, описываемый формулой (III), в которой R3 и R4 означают водород, a R5 и R6 выбраны из C1-C20 линейной или разветвленной алкильной, алкенильной, циклоалкильной, арильной, арилалкильной или алкиларильной группы, необязательно содержащей гетероатомы. Конкретными примерами подходящих 2,2-дизамещенных сукцинатов являются: диэтил 2,2-диметилсукцинат, диэтил 2-этил-2-метилсукцинат, диэтил 2-бензил-2-изопропилсукцинат, диэтил 2-{циклогексилметил)-2-изобутилсукцинат, диэтил 2-циклопентил-2-н-пропилсукцинат, диэтил 2,2-диизобутилсукцинат, диэтил 2-циклогексил-2-этилсукцинат, диэтил 2-изопропил-2-метилсукцинат, диэтил 2,2-диизопропилдиэтил-2-изобутил-2-этилсукцинат, диэтил 2-(1,1,1-трифтор-2-пропил)-2-метилсукцинат, диэтил 2-изопентил-2-изобутилсукцинат, диэтил 2-фенил-2-н-бутилсукцинат, диизобутил 2,2-диметилсукцинат, диизобутил 2-этил-2-метилсукцинат, диизобутил 2-бензил-2-изопропилсукцинат, диизобутил 2-(циклогексилметил)-2-изобутилсукцинат, диизобутил 2-циклопентил-2-н-пропилсукцинат.
Кроме того, также предпочтительны формы (S,S), (R,R) или мезо-формы сукцинатов, описываемых приведенной выше формулой (I).
В качестве неэкстрагируемых доноров могут быть использованы смеси различных сукцинатов, описываемых формулой (I), и могут быть также использованы смеси экстрагируемых доноров. В частности, было обнаружено, что в особенности выгодно использовать сукцинаты, описываемые формулой (I), в которых R3 и R4 одинаковые, как в качестве экстрагируемых, так и в качестве неэкстрагируемых доноров электронов. Фактически соединения, описываемые формулой (I), в которых R3 и R4 одинаковые, часто являются смесями мезо-формы (S,S и R,R) и рацемической формы (S,R и R,S), что является прямым результатом способа их получения. Поэтому в определенных случаях специалисты в данной области уже располагают смесью экстрагируемых и неэкстрагируемых доноров для использования при получении катализатора данного изобретения. В зависимости от конкретных количеств индивидуальных доноров в смесях могут потребоваться дополнительные количества экстрагируемых доноров, чтобы ввести конечную композицию катализатора в рамки диапазона, предложенного выше.
В особенности интересным было признано использование компонента катализатора, содержащего рацемическую форму диэтил или диизобутил 2,3-диизопропилсукцината в качестве неэкстрагируемого донора и мезо-форму диэтил или диизобутил 2,3-диизопропилсукцината совместно с алкилфталатом в качестве экстрагируемых доноров.
Как уже объяснялось выше, компоненты катализатора данного изобретения содержат в дополнение к указанным выше донорам электронов Ti, Mg и галоген. В частности, компоненты катализатора содержат соединение титана, в котором имеется по меньшей мере одна связь Ti-галоген, и указанные выше электронодонорные соединения, нанесенные на носитель галогенид Mg. Галогенидом магния предпочтительно является MgCl2 в активной форме, который широко известен в патентной литературе в качестве носителя для катализаторов Циглера-Натта. Патенты USP 4298718 и USP 4495338 были первыми, в которых описано использование данных соединений в катализе Циглера-Натта. Из данных патентов известно, что дигалогениды магния в активной форме, используемые в качестве носителя или совместного носителя в компонентах катализаторов для полимеризации олефинов, характеризуются рентгеновскими спектрами, в которых наиболее интенсивная линия дифракции, которая наблюдается в спектре неактивного галогенида, уменьшается по интенсивности и заменяется на гало, максимальная интенсивность которого смещена в направлении меньших углов по отношению к положению более интенсивной линии.
Предпочтительными соединениями титана, используемыми в компоненте катализатора настоящего изобретения, являются TiCl4 и TiCl4; кроме того, также могут быть использованы и галогеналкоголяты Ti формулы Ti(OR)n-yXy, где n означает валентность титана, у означает число в диапазоне от 1 до n-1, Х означает галоген, a R означает углеводородный радикал, содержащий от 1 до 10 углеродных атомов.
Получение твердого компонента катализатора может быть проведено несколькими способами. В соответствии с одним из данных способов дихлорид магния в безводном состоянии, соединение титана и электронодонорные соединения перемалывают друг с другом в условиях, при которых происходит активирование дихлорида магния. Полученный таким образом продукт можно обработать один или несколько раз избытком TiCl4 при температуре в диапазоне от 80 до 135°С. После данной обработки проводят промывание углеводородными растворителями до тех пор, пока не исчезнут хлорид-ионы. В соответствии с еще одним способом продукт, полученный в результате совместного перемалывания хлорида магния в безводном состоянии, соединения титана и электронодонорных соединений, обрабатывают галогенированными углеводородами, такими, как 1,2-дихлорэтан, хлорбензол, дихлорметан и тому подобное. Обработку проводят в течение промежутка времени от 1 до 4 часов и при температуре в диапазоне от 40°С до температуры кипения галогенированного углеводорода. Полученный продукт затем обычно промывают инертными углеводородными растворителями, такими как гексан.
В соответствии с еще одним способом дихлорид магния предварительно активируют в соответствии с хорошо известными способами и затем обрабатывают избытком TiCl4 при температуре в диапазоне от приблизительно 80 до 135°С в присутствии электронодонорных соединений. Обработку с использованием TiCl4 повторяют и твердую фазу промывают гексаном для того, чтобы удалить непрореагировавший TiCl4.
Еще один способ включает проведение реакции между алкоголятами или хлоралкоголятами магния (в особенности хлоралкоголятами, полученными в соответствии с USP 4220554) и избытком TiCl4 в присутствии электронодонорных соединений при температуре в диапазоне от приблизительно 80 до 120°С.
В соответствии с предпочтительным способом твердый компонент катализатора может быть получен в результате реакции соединения титана формулы Ti(OR)n-yXy, где n означает валентность титана, а у означает число в диапазоне от 1 до n, редпочтительно TiCl4 с хлоридом магния, получающимся из аддукта формулы MgCl2pROH, где р означает число в диапазоне от 0,1 до 6, предпочтительно от 2 до 3,5, a R означает углеводородный радикал, содержащий 1-18 углеродных атомов. Аддукт может быть подходящим образом получен в сферической форме в результате смешивания спирта и хлорида магния в присутствии инертного углеводорода, несмешивающимся с аддуктом при проведении процесса в условиях перемешивания при температуре плавления аддукта (100-130°С). Затем эмульсию быстро охлаждают, стимулируя таким образом затвердевание аддукта в виде сферических частиц. Примеры сферических аддуктов, полученных в соответствии с данной методикой, описаны в USP 4399054 и USP 4469648. Полученный таким образом аддукт может быть непосредственно введен в реакцию с соединением Ti, или же он может быть сначала подвергнут деалкоголированию в термически контролируемых условиях (80-130°С) таким образом, чтобы получить аддукт, в котором число молей спирта в общем случае меньше 3, предпочтительно находится в диапазоне от 0,1 до 2,5. Реакцию с соединением Ti можно проводить в результате суспендирования аддукта (деалкоголированного или как такового) в холодном TiCl4 (обычно при 0°С); смесь нагревают вплоть до 80-130°С и выдерживают при данной температуре в течение 0,5-2 часов. Обработку с использованием TiCl4 можно проводить один или несколько раз. Электронодонорные соединения могут быть добавлены во время обработки с использованием TiCl4. Они могут быть добавлены совместно в ходе той же самой обработки с использованием TiCl4 или же отдельно в ходе двух или более обработок.
Получение компонентов катализатора в сферической форме описано, например, в Европейских патентных заявках ЕР-А-395083, ЕР-А-553805, ЕР-А-553806, ЕРА-601525 и WO 98/44009.
Твердые компоненты катализатора, полученные в соответствии с указанным выше способом, характеризуются величиной площади удельной поверхности (согласно методу Браунауэра-Эммета-Теллера) обычно в диапазоне от 20 до 500 м2/г, предпочтительно от 50 до 400 м2/г, и полной пористостью (согласно методу Браунауэра-Эммета-Теллера), превышающей 0,2 см3/г, предпочтительно находящейся в диапазоне от 0,2 до 0,6 см3/г. Пористость (ртутный метод), обусловленная наличием пор с радиусом вплоть до 10000 Å, обычно находится в диапазоне от 0,3 до 1,5 см3/г, предпочтительно от 0,45 до 1 см3/г.
Еще один способ получения твердого компонента катализатора данного изобретения включает галогенирование производных дигидрокарбилоксида магния, таких как диалкоксид или диарилоксид магния, раствором TiCl4 в ароматическом углеводороде (таком, как толуол, ксилол и тому подобное) при температурах в диапазоне от 80 до 130°С. Обработку с использованием TiCl4 в растворе ароматического углеводорода можно повторить один или несколько раз, и во время одной или нескольких данных обработок добавляют электронодонорные соединения.
В любом из данных способов получения желательные электронодонорные соединения и, в особенности, те, которые выбраны из эфиров карбоновых кислот, могут быть добавлены как таковые, или в альтернативном варианте они могут быть получены по месту с использованием подходящего предшественника, способного превращаться в желательное электронодонорное соединение в результате, например, известных химических реакций, таких как этерификация, переэтерификация и тому подобное.
Вне зависимости от использованного способа получения конечное количество двух или более электронодонорных соединений таково, что мольное отношение в расчете на MgCl2 находится в диапазоне от 0,01 до 1, предпочтительно от 0,05 до 0,5.
Твердые компоненты катализатора, соответствующие настоящему изобретению, превращаются в катализаторы для полимеризации олефинов в результате их реакции с алюмоорганическими соединениями в соответствии с известными способами.
В частности, предметом настоящего изобретения является катализатор для полимеризации олефинов CH2=CHR, в которых R означает водород или углеводородный радикал, содержащий 1-12 углеродных атомов, который содержит продукт реакции между:
(i) твердым компонентом катализатора, описанным выше,
(ii) металлорганическим соединением и
(iii) внешним электронодонорным соединением.
Металлорганическое соединение (ii) предпочтительно выбирают среди Al-алкильных соединений и, в особенности, среди производных триалкилалюминия, таких как, например, триэтилалюминий, триизобутилалюминий, три-н-бутилалгалиний, три-н-гексилалюминий, три-н-октилалюминий. Также возможно использование галогенидов алкилалюминия, гидридов алкилалюминия или сесквихлоридов алкилалюминия, таких, как AlEt2Cl и Al2Et3Cl3, возможно в смеси с указанными выше триалкилалюминиями.
Подходящие внешние доноры электронов (iii) включают силаны, простые эфиры, сложные эфиры, амины, гетероциклические соединения и кетоны. Конкретным классом предпочтительных внешних донорных соединений является класс силанов формулы Ra5Rb6Si(OR7)c, где а и b означают целые числа в диапазоне от 0 до 2, с означает целое число в диапазоне от 1 до 4, и сумма (a+b+с) равна 4; R5, R6 и R7 означают алкильные, алкиленовые, циклоалкильные или арильные радикалы с 1-18 углеродными атомами, необязательно содержащие гетероатомы. В особенности предпочтительны соединения кремния, в которых а равен 1, b равен 1, с равен 2, по меньшей мере один из R5 и R6 выбран из разветвленных алкильной, циклоалкильной или арильной групп с 3-10 углеродными атомами, необязательно содержащих гетероатомы, a R7 означает C1-C10 алкильную группу, в частности метильную. Примерами таких предпочтительных соединений кремния являются метилциклогексилдиметоксисилан, дициклопентилдиметоксисилан.
Несмотря на то что описанные выше катализаторы позволяют получать пропиленовые полимеры с хорошим уровнем нерастворимости в ксилоле, высоким уровнем содержания стереоблоков и широким MWD, было обнаружено, что полимеры с особенно увеличенным уровнем содержания стереоблоков и широким MWD могут быть получены при использовании в качестве внешних доноров определенных силанов, описываемых приведенной выше формулой, с относительно низкой способностью стереорегулирования. Термином «низкая способность стереорегулирования» обозначены силаны, которые в стандартных условиях полимеризации, описанных ниже, позволяют получать пропиленовые полимеры с уровнем содержания пентад (mmmm), равным или меньшим 97%. Специалист в данной области легко сможет охарактеризовать способность стереорегулирования соответствующих силанов, проведя тестовую полимеризацию в условиях, описанных ниже. В дополнение к этому было обнаружено, что группой силанов с низкой способностью стереорегулирования являются силаны, описываемые формулой, приведенной выше, в которой R5 означает метил, R6 означает C1-C15 линейный алкил, а R7 означает линейный C1-C4 алкил. Предпочтительными примерами таких силанов являются н-пропилметилдиметоксисилан; н-бутилметилдиметоксисилан; н-пентилметилдиметоксисилан; н-гексилметилдиметоксисилан; н-октилметилдиметоксисилан; н-децилметилдиметоксисилан. Еще одной группой силанов с низкой способностью стереорегулирования является группа, описываемая формулой, приведенной выше, в которой с равен 3 или 4. В особенности предпочтительны алкилтриалкоксисиланы и тетраалкоксисиланы, в которых R7 означает линейный C1-C8 алкил.
Еще одной группой силанов с низкой способностью стереорегулирования являются силаны, описываемые формулой, приведенной выше, в которой R5 означает трифторпропильную группу, необязательно замещенную, R6 означает C1-C6 линейную алкильную или пиперидильную группу, необязательно замещенную, а R7 означает линейный C1-C4 алкил. Предпочтительными примерами таких силанов являются (3,3,3-трифтор-н-пропил)(2-этилпиперидинил)диметоксисилан, метил(3,3,3-трифтор-н-пропил)диметоксисилан.
Электронодонорное соединение (iii) используют в таком количестве, чтобы обеспечить получение мольного отношения между алюмоорганическим соединением и указанным электронодонорным соединением (iii) в диапазоне от 0,1 до 500, предпочтительно от 1 до 300, а более предпочтительно от 3 до 100.
Способ полимеризации может быть реализован в соответствии с известными методиками, например, суспензионной полимеризации с использованием в качестве разбавителя инертного углеводородного растворителя или полимеризации в массе с использованием в качестве реакционной среды жидкого мономера (например, пропилена). Кроме того, можно реализовать способ полимеризации в газовой фазе, проводя реакцию в одном или нескольких реакторах в псевдоожиженном или механически перемешиваемом слое.
Полимеризацию в общем случае проводят при температуре в диапазоне от 20 до 120°С, предпочтительно от 40 до 80°С. Если полимеризацию проводят в разовой фазе, то рабочее давление обычно будет находиться в диапазоне от 0,5 до 5 МПа, предпочтительно от 1 до 4 МПа. При полимеризации в массе рабочее давление обычно находится в диапазоне от 1 до 8 МПа, предпочтительно от 1,5 до 5 МПа.
Как уже объяснялось выше, катализаторы данного изобретения при использовании для полимеризации пропилена позволяют получать полимеры с диапазоном изотактичности (выраженной через процентное содержание пентад mmmm), MWD, уровнем содержания стереоблоков, такими, что они становятся в особенности подходящими для использования в области применения ВОРР. В особенности следует отметить то, что высокие значения показателя полидисперсности (P.I.) получают при полимеризации в одну стадию, то есть при по существу мономодальном распределении, что позволяет предотвращать появление каких-либо проблем, обусловленных неоднородностью продукта.
Поэтому еще один предмет настоящего изобретения составляет пропиленовый полимер со следующими характеристиками:
уровень содержания стереоблоков 18% или выше согласно измерению по методу TREF, описанному ниже;
показатель полидисперсности, по меньшей мере, равный 5, и
процентное содержание пентад (mmmm), измеренное методом ЯМР, меньшее или равное 97.
Уровень содержания стереоблоков предпочтительно выше чем 20, а более предпочтительно выше чем 22. P.I. предпочтительно выше чем 5,3, а процентное содержание пентад предпочтительно меньше 96,5, а более предпочтительно меньше 95,5. Кроме того, было обнаружено, что в особенности интересными полипропиленами являются такие, которые описаны выше и которые дополнительно характеризуются тем, что обнаруживают при анализе по методике TREF наличие фракции, элюируемой при температуре в диапазоне от 110° до 114°С, на которую приходится более чем 25% от полной массы полимера. На нее предпочтительно приходится более 33%. Также предпочтительны полипропилены с профилем TREF, таким, что на фракцию, элюированную при температуре в диапазоне от 115° до 120°С, приходится величина в диапазоне от 0,1 до 10%, предпочтительно от 0,5 до 5% от полной массы полимера.
СПОСОБЫ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК.
Тест на экстрагируемость электронодонорных (ED) соединений.
А. Получение твердого компонента катализатора.
В продутую азотом четырехгорлую круглую колбу объемом 500 мл при 0°С вводили 250 мл TiCl4. При перемешивании вводили 10,0 г микросфероидального MgCl2 ·2,8C2H5OH (полученного в соответствии со способом, описанным в примере 2 в USP 4399054, но при проведении реакции при 3000 оборотах в минуту вместо 10000). Также добавляли 4,4 ммоль выбранного электронодонорного соединения.
Температуру увеличивали до 100°С и данную температуру поддерживали в течение 120 мин. Затем перемешивание прекращали, давали возможность твердому продукту осесть, а жидкий супернатант сливали сифоном.
Добавляли 250 мл свежего TiCl4. Смесь подвергали реакции при 120°С в течение 60 мин при перемешивании и затем жидкий супернатант сливали сифоном. Твердую фазу (А) промывали шесть раз безводным гексаном (6×100 мл) при 60°С, сушили в вакууме и анализировали для количественного определения содержания Mg и электронодонорного соединения. Тип электронодонорного соединения и его мольное отношение в расчете на Mg (отношение А) приведены в таблице 1.
В. Обработка твердой фазы А.
В стеклянный реактор с рубашкой, механической мешалкой и фильтрационной мембраной объемом 250 мл в атмосфере азота вводили 190 мл безводного н-гексана, 19 ммоль AlEt3 и 2 г компонента катализатора, полученного, как описано в А. Смесь нагревали при 60°С в течение 1 часа при перемешивании (скорость перемешивания 400 оборотов в минуту). Затем смесь фильтровали, промывали четыре раза н-гексаном при 60°С и, наконец, сушили в вакууме в течение 4 часов при 30°С. Затем твердую фазу анализировали для количественного определения содержания Mg и электронодонорного соединения. Тип электронодонорного соединения и его мольное отношение в расчете на Mg (отношение В) приведены в таблице 1. Экстрагируемость электронодонорного соединения рассчитывали в соответствии со следующей формулой: % экстрагированного ED = (отношение А - отношение В)/отношение А.
Анализ микроструктуры полимера.
50 мг каждой фракции, нерастворимой в ксилоле, растворяли в 0,5 мл C2D2Cl4.
Спектры 13С ЯМР получали на приборе Bruker DPX-400 (100,61 МГц, импульс 90°, задержка между импульсами 12 с). Для каждого спектра накапливали приблизительно 3000 переходных состояний; в качестве пика сравнения использовали пик пентад mmmm (21,8 м.д.).
Анализ микроструктуры проводили, как описано в литературе (Polymer, 1984, 25, 1640, by Jnoue Y. et al. и Polymer, 1994, 35, 339, by Chujo R. et al.).
Определение уровня нерастворимости в ксилоле (X.I.).
2,5 г полимера растворяли в 250 мл о-ксилола при перемешивании при 135°С в течение 30 минут, затем раствор охлаждали до 25°С и спустя 30 минут нерастворимый полимер отфильтровывали. Получившийся в результате раствор упаривали в потоке азота, а остаток сушили и взвешивали для определения процентного содержания растворимого полимера, а затем по разности X.I. в %.
Метод TREF.
Фракционирование полимера по методу TREF проводили растворением 1 г пропиленового полимера в о-ксилоле при 135°С и медленным охлаждением (20 часов) до 25°С на колонке, заполненной стеклянными шариками. Элюирование о-ксилолом (600 мл/час) сначала проводили при 25°С в течение 1 часа для получения фракции, растворимой в ксилоле. Температуру колонки затем увеличивали с 25 до 95°С со скоростью 0,7°С/мин без элюирования и температуру поддерживали на уровне 95°С в течение 2 часов, затем элюировали при данной температуре в течение 1 часа для получения индивидуальной фракции. Наконец, элюирование продолжали, увеличивая температуру с 95 до 120°С со скоростью 3°С/час, собирая индивидуальные фракции для температурных интервалов, равных 1°С. В соответствии с настоящим изобретением уровень содержания стереоблоков рассматривается как полная масса фракций, нерастворимых в ксилоле при 25°С, которые элюируются при температуре, меньшей 100°С, в расчете на полную массу полимера.
Определение показателя полидисперсности (P.I.).
Данное свойство жестко связано с молекулярно-массовым распределением рассматриваемого полимера. В частности, оно обратно пропорционально сопротивлению ползучести полимера в расплавленном состоянии. Указанное сопротивление, называемое разделением модулей при низком значении модуля (500 Па), определяли при температуре 200°С, используя пластометр с параллельными пластинами модели RMS-800, поставляемый фирмой RHEOMETRICS (США), функционирующий при частоте колебаний, которая увеличивается от 0,1 рад/сек до 100 рад/сек. Из величины разделения модулей можно получить P.I., используя уравнение:
P.I.=54,6·(разделение модулей)-1,76,
где разделение модулей определяют как:
разделение модулей = частота при G'=500 Па/частота при G''=500 Па,
где G' представляет модуль накопления, a G'' представляет собой модуль потерь.
Стандартная тестовая полимеризация для определения стереорегулирования силана.
Получение твердого компонента катализатора.
В продутую азотом четырехгорлую круглую колбу объемом 500 мл при 0°С вводили 250 мл TiCl4. При перемешивании вводили 10,0 г микросфероидального MgCl2·2,8C2H5OH (полученного в соответствии со способом, описанным в примере 2 в USP 4399054, но при проведении реакции при 3000 оборотах в минуту вместо 10000) и 10,1 ммоль диизобутилфталата. Температуру увеличивали до 100°С и поддерживали в течение 120 мин. Затем перемешивание прекращали, давали возможность твердому продукту осесть и жидкий супернатант сливали сифоном. Затем добавляли 250 мл свежего TiCl4. Омесь подвергали реакции при 120°С в течение 60 мин и затем жидкий супернатант сливали сифоном. Твердую фазу промывали шесть раз безводным гексаном (6×100 мл) при 60°С. Наконец твердую фазу сушили в вакууме.
В продутый потоком азота при 70°С в течение одного часа автоклав объемом 4 литра в потоке пропилена при 30°С вводили 75 мл безводного гексана, содержащего 800 мг AlEt3, силан в таком количестве, чтобы получить отношение Al/Si, равное 20, и 10 мг твердого компонента катализатора, полученного, как описано выше. Автоклав закрывали. Добавляли 1,5 н.л водорода и затем при перемешивании подавали 1,2 кг жидкого пропена. Температуру увеличивали до 70°С за пять минут и полимеризацию проводили при данной температуре в течение двух часов. Непрореагировавший пропилен удаляли, полимер собирали, сушили при 70°С в вакууме в течение трех часов, взвешивали и определяли уровень нерастворимости в ксилоле. Нерастворимую часть анализировали для определения процентного содержания пентад (mmmm) в соответствии с методом, описанным выше.
Примеры 1-4 и сравнительные примеры 1-3.
Получение твердых компонентов катализатора.
В продутую азотом четырехгорлую круглую колбу объемом 500 мл при 0°С вводили 250 мл TiCl4. При перемешивании вводили 10,0 г микросфероидального MgCl2·2,8C2H5OH (полученного в соответствии со способом, описанным в примере 2 в USP 4399054, но при проведении реакции при 3000 оборотах в минуту вместо 10000). В качестве внутреннего донора (доноров) также вводили 7,6 ммоль ранее полученной смеси сложных эфиров. Тип (типы) внутренних доноров и их количества приведены в таблице 2.
Температуру увеличивали до 100°С и поддерживали температуру в течение 120 мин. Затем перемешивание прекращали, давали возможность твердому продукту осесть и жидкий супернатант сливали сифоном.
Добавляли 250 мл свежего TiCl4. Смесь подвергали реакции при 120°С в течение 60 мин и затем жидкий супернатант сливали сифоном. Твердую фазу промывали шесть раз безводным гексаном (6×100 мл) при 60°С. Наконец, твердую фазу сушили в вакууме и анализировали. Типы и количества сложных эфиров (% (мас.)) и количество Ti (% (мас.)), содержащиеся в твердом компоненте катализатора, приведены в таблице 2.
Примеры полимеризации 5-17 и сравнительные примеры С4-С10.
В продутый потоком азота при 70°С в течение одного часа автоклав объемом 4 литра в потоке пропилена при 30°С вводили 75 мл безводного гексана, содержащего 7 ммоль AlEt3, внешний донор (тип и количество приведены в таблице 3) и 10 мг твердого компонента катализатора. Автоклав закрывали. Добавляли 1,5 н.л водорода и затем при перемешивании подавали 1,2 кг жидкого пропилена. Температуру увеличивали до 70°С за пять минут и полимеризацию проводили при данной температуре в течение двух часов. Непрореагировавший пропилен стравливали, полимер извлекали и сушили при 70°С в вакууме в течение трех часов, а затем взвешивали и фракционировали с использованием о-ксилола для определения количества фракции, нерастворимой в ксилоле (X.I.) при 25°С, и его микроструктуры.
Результаты полимеризации приведены в таблице 3.
Таблица 1.
ED Отношение A ED/Mg (ммоль/грамм-атом) Отношение А ED/Mg (ммоль/грамм-атом) Экстрагированный ED (% (мол.))
Тип
Рацемический диэтил 2,3-диизопропилсукцинат 65,2 62,8 4
Мезо-диэтил 2,3-диизопропилсукцинат 39,3 23,9 39
Диизобутилфталат 48,8 8,8 82
Таблица 2.
Условия получения Состав
Пример Подаются при получении Ti Неэкстрагируемой сукцинат Экстрагируемый ED % неэкстрагируемого сукцината в расчете на полное содержание
донора
Неэкстрагируемой сукцинат Экстрагируемой ED
Тип ммоль Тип (типы) ммоль % (масс.) Тип % (масс.) Тип % (масс.) % (мол.)
1 А 0,76 В 6,84 3,3 А 2,4 В 7,6 24
2 А 1,14 В 6,46 3,8 А 3,24 В 7,56 30
3 А 1,67 В 1,37 4,2 А 3,53 В 1,17 30
DIBP 4,56 DIBP 7,6
4 С 1,25 D 1,79 3,4 С 4,4 D 1,46 33
DIBP 4,56 DIBP 6,6
C1 --- --- В 7,6 3,8 --- В 10,7 ---
С2 А 2,8 В 4,8 3,5 А 7,75 В 7,45 51
С3 --- --- DIBP 7,6 2,5 --- DIBP 7,1 ---
А = рацемической диэтил 2,3-диизопропилсукцинат.
В = мезо диэтил 2,3-диизопропилсукцинат.
С = рацемическая диизобутил 2,3-диизопропилсукцина.
D = мезо диизобутил 2,3-диизопропилсукцинат.
DIBP = диизобутилфталат.
Figure 00000004
Figure 00000005

Claims (24)

1. Твердый компонент катализатора для полимеризации олефинов CH2=CHR, где R означает водород или углеводородный радикал, состоящий из 1-12 углеродных атомов, содержащий соединение титана, в котором имеется по меньшей мере одна связь Ti-галоген, и по меньшей мере два электронодонорных соединения, нанесенные на носитель дихлорид Mg, причем общее количество электронодонорных соединений находится в молярном отношении к MgCl2, составляющем от 0,01 до 1, отличающийся тем, что по меньшей мере одно из электронодонорных соединений, которое присутствует в количестве в диапазоне 15-50 моль.% по отношению к полному количеству доноров, выбирают из эфиров янтарных кислот, которые являются неэкстрагируемыми, на более чем 20 моль.%, и по меньшей мере другого электронодонорного соединения, которое выбрано из сложных эфиров моно- или дикарбоновых органических кислот, которое является экстрагируемым на более чем 30 моль.%, где экстрагируемость расчитывается по формуле:
% экстрагированного электродонорного соединения = ((отношение А - отношение В)/отношение А)·100%,
где отношение А - мольное отношение электродонорного соединения к магнию, определенное после получения тестируемого компонента катализатора, включающего TiCl4 и MgCl2·C2H5OH;
отношение В - мольное отношение того же электродонорного соединения к магнию, определенное после дополнительной обработки вышеуказанного тестируемого компонента катализатора триэтилалюминием;
при этом неэкстрагируемость электродонорного соединения определяется в тех же условиях, что и экстрагируемость.
2. Твердый компонент катализатора по п.1, отличающийся тем, что количество неэкстрагируемого сукцината находится в диапазоне от 20 до 40 моль.% в расчете на полное количество электронодонорных соединений, содержащихся в катализаторе.
3. Твердый компонент катализатора по п.1, отличающийся тем, что неэкстрагируемый сукцинат можно проэкстрагировать не более чем на 15 моль.%.
4. Твердый компонент катализатора по п.1, отличающийся тем, что экстрагируемое электронодонорное соединение можно проэкстрагировать более чем на 40 моль.%.
5. Твердый компонент катализатора по п.1, отличающийся тем, что не экстрагируемыми сукцинатами являются соединения, описываемые формулой (I)
Figure 00000006
в которой радикалы R1 и R2, одинаковые или различные, означают C1-C20 линейную или разветвленную алкильную, алкенильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, необязательно содержащую гетероатомы, а радикалы R3 и R4, одинаковые или различные, означают C1-C20 алкильную, циклоалкильную, арильную, арилалкильную или алкиларильную группу, необязательно содержащую гетероатомы, при условии, что по меньшей мере один из них является разветвленным алкилом;
причем указанные соединения являются по отношению к двум асимметричным углеродным атомам, обозначенным в структуре формулы (I), стереоизомерами, относящимися к типу (S,R) или (R,S), которые присутствуют в чистых формах или в виде смесей.
6. Твердый компонент катализатора по п.1, где экстрагируемое электронодонорное соединение выбирают из эфиров фталевых кислот.
7. Твердый компонент катализатора по п.1, где экстрагируемое электронодонорное соединение выбирают из алкиловых эфиров фталевых кислот.
8. Твердый компонент катализатора по п.1, где экстрагируемое электронодонорное соединение выбирают из (S,S), (R,R) или мезоформ сукцинатов формулы (I).
9. Твердый компонент катализатора по п.8, дополнительно содержащий алкиловые эфиры фталевых кислот в качестве экстрагируемых доноров.
10. Твердый компонент катализатора по п.1, где в качестве неэкстрагируемых доноров используют смесь сукцинатов по п.5.
11. Твердый компонент катализатора по п.1 с величиной площади удельной поверхности (согласно методу Браунауэра-Эммета-Теллера) в диапазоне от 20 до 500 м2/г и полной пористостью (согласно методу Браунауэра-Эммета-Теллера), превышающей 0,2 см3/г.
12. Катализатор для полимеризации олефинов, содержащий
(i) твердый компонент катализатора по п.1,
(ii) металлорганическое соединение и
(iii) внешнее электронодонорное соединение.
13. Катализатор по п.12, где металлорганическим соединением является Al-алкильное соединение.
14. Катализатор по п.12, где внешнее электронодонорное соединение выбирают из силанов формулы Ra5Rb6Si(OR7)c, где а и b означают целые числа в диапазоне от 0 до 2, с означает целое число в диапазоне от 1 до 4 и сумма (а+b+с) равна 4; R5, R6 и R7 означают алкильные, алкиленовые, циклоалкильные или арильные радикалы с 1-18 углеродными атомами, необязательно содержащие гетероатомы.
15. Катализатор по п.14, где силан выбирают из силанов с низкой способностью стереорегулирования.
16. Катализатор по п.14, где силан выбирают из соединений, у которых R5 означает метил, R6 означает C1-C15 линейный алкил, а R7 означает линейный C1-C4 алкил.
17. Катализатор по п.14, где силан выбирают из соединений, у которых R5 означает трифторпропильную группу, необязательно замещенную, R6 означает C16 линейную алкильную или пиперидинильную группу, необязательно замещенную, а R7 означает линейный C1-C4 алкил.
18. Катализатор по п.14, где силан выбирают из силанов, у которых с равен 3 или 4.
19. Способ получения пропиленовых полимеров, отличающийся тем, что полимеризацию проводят в присутствии катализатора по любому из пп.12-18.
20. Пропиленовый полимер, имеющий следующие характеристики: уровень содержания стереоблоков 18% или выше согласно измерению по методу TREF; показатель полидисперсности по меньшей мере равный 5, и процентное содержание пентад (mmmm), измеренное методом ЯМР, меньшее или равное 97.
21. Пропиленовый полимер по п.20 с уровнем содержания стереоблоков выше чем 20%.
22. Пропиленовый полимер по п.20 или 21 с Индексом Полидисперсности (P.I.) выше чем 5,3.
23. Пропиленовый полимер по любому из пп.20-22 с процентным содержанием пентад ниже 96,5.
24. Пропиленовый полимер по любому из пп.20-23, обнаруживающий при анализе по методике TREF наличие фракции, элюируемой при температуре в диапазоне от 110° до 114°С, на которую приходится более чем 25% от полной массы полимера.
RU2002118701/04A 2000-10-13 2001-09-24 Компоненты катализатора для полимеризации олефинов, катализатор, способ получения пропиленовых полимеров и пропиленовый полимер RU2279442C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00203535 2000-10-13
EP00203535.0 2000-10-13

Publications (2)

Publication Number Publication Date
RU2002118701A RU2002118701A (ru) 2004-01-10
RU2279442C2 true RU2279442C2 (ru) 2006-07-10

Family

ID=8172130

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002118701/04A RU2279442C2 (ru) 2000-10-13 2001-09-24 Компоненты катализатора для полимеризации олефинов, катализатор, способ получения пропиленовых полимеров и пропиленовый полимер

Country Status (21)

Country Link
US (2) US6825309B2 (ru)
EP (1) EP1272533B1 (ru)
JP (1) JP4964396B2 (ru)
KR (1) KR100899958B1 (ru)
CN (2) CN1221573C (ru)
AR (1) AR030989A1 (ru)
AT (1) ATE407153T1 (ru)
AU (1) AU781278B2 (ru)
BR (1) BR0107335B1 (ru)
CA (1) CA2396232C (ru)
DE (1) DE60135643D1 (ru)
ES (1) ES2312484T3 (ru)
HU (1) HUP0204041A3 (ru)
MX (1) MXPA02005825A (ru)
MY (1) MY128622A (ru)
PL (1) PL355609A1 (ru)
RU (1) RU2279442C2 (ru)
SA (1) SA01220540B1 (ru)
TW (1) TWI289144B (ru)
WO (1) WO2002030998A1 (ru)
ZA (1) ZA200204396B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580822C2 (ru) * 2010-08-12 2016-04-10 Чайна Петролеум Энд Кемикл Корпорейшн Компонент катализатора, предназначенного для реакции полимеризации олефина, и содержащий его катализатор
RU2674026C2 (ru) * 2013-10-18 2018-12-04 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора для полимеризации олефинов, способ его получения и катализатор, содержащий таковой

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2225415C2 (ru) * 1999-04-15 2004-03-10 Базелль Текнолоджи Компани Б.В. Компоненты и катализаторы полимеризации олефинов
BR0306195B1 (pt) * 2002-08-01 2012-12-25 processo para a preparaÇço de polÍmeros, polÍmeros obtidos pelo mesmo, filmes ou folhas e artigos laminados multicamadas.
TWI253451B (en) * 2002-08-29 2006-04-21 Toho Catalyst Co Ltd Solid catalyst component, catalyst for polymerization of olefins, and polymerizing method of olefins
US7550528B2 (en) * 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7541402B2 (en) * 2002-10-15 2009-06-02 Exxonmobil Chemical Patents Inc. Blend functionalized polyolefin adhesive
EP2261292B1 (en) * 2002-10-15 2014-07-23 ExxonMobil Chemical Patents Inc. Polyolefin adhesive compositions
US7700707B2 (en) * 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
TW200427763A (en) 2003-04-03 2004-12-16 Basell Poliolefine Spa Impact resistant polyolefin compositions
US7572860B2 (en) 2003-08-05 2009-08-11 Basell Poliolefine Italia S.R.L. Polyolefin articles
CN1957034B (zh) 2004-05-21 2011-07-13 巴塞尔聚烯烃意大利有限责任公司 耐冲击聚烯烃组合物
CN100338103C (zh) * 2004-09-02 2007-09-19 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分和催化剂
CN1328293C (zh) * 2004-09-02 2007-07-25 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分和催化剂
CN1318457C (zh) * 2004-09-02 2007-05-30 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分和催化剂
WO2006037705A1 (en) 2004-10-04 2006-04-13 Basell Poliolefine Italia S.R.L. Elastomeric polyolefin compositions
JP4688135B2 (ja) * 2005-01-18 2011-05-25 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分および触媒
US7888438B2 (en) 2005-01-19 2011-02-15 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and process for olefin polymerization
EP2623523B1 (en) 2005-01-19 2015-03-11 Mitsui Chemicals, Inc. Process for producing olefin polymer
JP4632299B2 (ja) * 2005-01-26 2011-02-16 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、その製造方法および触媒
EP1844100B1 (en) 2005-02-03 2009-10-28 Basell Poliolefine Italia S.r.l. Propylene polymer composition for injection molding
WO2006102106A1 (en) * 2005-03-17 2006-09-28 University Of Maryland, College Park Methods for modulated degenerative transfer living polymerization and isotactic-atactic stereoblock and stereogradient poly(olefins) thereby
CN101163738B (zh) * 2005-04-21 2011-07-13 巴塞尔聚烯烃意大利有限责任公司 双轴取向丙烯聚合物膜
KR20080005988A (ko) * 2005-04-28 2008-01-15 바셀 폴리올레핀 이탈리아 에스.알.엘 강화 폴리프로필렌 파이프
RU2411252C2 (ru) 2005-05-12 2011-02-10 Базелль Полиолефин Италия С.Р.Л. Сополимеры этилена и пропилена и способ их получения
JP4540056B2 (ja) * 2005-05-30 2010-09-08 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
MX2008000386A (es) 2005-07-01 2008-03-07 Basell Poliolefine Srl Polimeros de propileno que tienen una distribucion de peso molecular amplia.
CN100429243C (zh) * 2005-07-07 2008-10-29 中国石油化工股份有限公司 一种烯烃聚合反应催化剂组分的制备方法
AU2006268772A1 (en) 2005-07-11 2007-01-18 Basell Poliolefine Italia S.R.L. Metallized propylene polymer film with good barrier retention properties
RU2413742C2 (ru) * 2005-08-08 2011-03-10 Базелль Полиолефин Италия С.Р.Л. Способ зародышеобразования полипропиленовых смол
BRPI0620531B1 (pt) 2005-11-22 2018-01-30 Basell Poliolefine Italia S.R.L. Composições poliolefínicas resistentes a impacto
US7947348B2 (en) * 2005-12-20 2011-05-24 Basell Poliolefine Italia, s.r.l. Polypropylene compositions for stretched articles
EP1966256B1 (en) * 2005-12-20 2011-06-22 Basell Poliolefine Italia S.r.l. Soft non-woven fabrics
EP1987098B2 (en) * 2006-02-23 2013-02-13 Basell Poliolefine Italia S.r.l. Propylene polymers for injection molding applications
EP1845112A1 (en) 2006-04-12 2007-10-17 Total Petrochemicals Research Feluy Controlled distribution of active sites in Ziegler-Natta catalysts systems
CN100491458C (zh) * 2006-04-20 2009-05-27 中国石油化工股份有限公司 高性能聚丙烯组合物的制备方法
JP5479734B2 (ja) 2006-07-18 2014-04-23 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
EP2046845B1 (en) * 2006-07-28 2012-06-06 Basell Poliolefine Italia S.r.l. Propylene polymers
CN101195666B (zh) * 2006-12-06 2012-03-07 中国石油天然气股份有限公司 一种烯烃聚合用负载型催化剂及其制备方法
EP2099834B1 (en) 2006-12-21 2010-03-03 Basell Poliolefine Italia S.R.L. High shrink polypropylene films
ATE485317T1 (de) * 2007-05-22 2010-11-15 Basell Poliolefine Srl Weiche propylenpolymerzusammensetzungen
CN101679557B (zh) * 2007-05-22 2012-08-15 巴塞尔聚烯烃意大利有限责任公司 用于制备软质丙烯聚合物组合物的方法
US8507628B2 (en) 2007-10-02 2013-08-13 Fina Technology, Inc. Propylene based polymers for injection stretch blow molding
BRPI0818758B1 (pt) * 2007-10-15 2018-11-21 Basell Poliolefine Italia Srl processo para a preparação de polímeros de propileno com alta fluidez
SG194361A1 (en) 2007-11-27 2013-11-29 Mitsui Chemicals Inc Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization process
EP2070954A1 (en) * 2007-12-14 2009-06-17 Total Petrochemicals Research Feluy Process for the production of a propylene polymer having a broad molecular weight distribution and a low ash content
EP2222781B1 (en) 2007-12-18 2014-01-15 Basell Poliolefine Italia S.r.l. Transparent polyolefin compositions
WO2009080497A2 (en) * 2007-12-20 2009-07-02 Basell Poliolefine Italia S.R.L. Highly stereoregular polypropylene with improved properties
WO2009083500A1 (en) * 2007-12-28 2009-07-09 Basell Poliolefine Italia S.R.L. Plastic tanks made from random copolymers of propylene and hexene-1
KR101539286B1 (ko) * 2008-05-21 2015-07-29 릴라이언스 인더스트리즈 리미티드 올레핀 중합을 위한 촉매 시스템
CN101671409B (zh) * 2008-09-11 2011-12-07 中国石油天然气股份有限公司 烯烃聚合固体催化剂
CN101735346B (zh) 2008-11-07 2012-05-30 中国石油天然气股份有限公司 一种丙烯均聚和共聚的催化剂及其制备方法和应用
ES2393976T3 (es) * 2008-12-03 2013-01-03 Süd-Chemie Ip Gmbh & Co. Kg Composición donadora de electrones para un catalizador sólido, composición para catalizadores sólidos utilizada en la polimerización de alfa-olefinas, y proceso para la producción de un polímero consistente en unidades de alfa-olefinas que utilizan la composición para catalizadores sólidos.
CN101824107B (zh) * 2009-03-04 2013-04-24 中国石油天然气股份有限公司 用于烯烃聚合的固体主催化剂
KR101693062B1 (ko) 2009-03-23 2017-01-04 바셀 폴리올레핀 이탈리아 에스.알.엘 사출 성형에 적합한 폴리올레핀 마스터배치 및 조성물
US9090000B2 (en) * 2009-03-26 2015-07-28 Fina Technology, Inc. Injection stretch blow molded articles and random copolymers for use therein
EP2432809B1 (en) 2009-05-21 2015-01-21 Basell Poliolefine Italia S.r.l. Propylene polymer compositions
EP2264099A1 (en) 2009-05-21 2010-12-22 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
US20110031645A1 (en) * 2009-08-07 2011-02-10 Dow Global Technologies Inc. Polypropylene for use in bopp applications
RU2525402C2 (ru) 2009-08-13 2014-08-10 Чайна Петролеум Энд Кемикал Корпорейшн Каталитический компонент для полимеризации олефинов и катализатор, включающий таковой
CN101993507B (zh) * 2009-08-13 2012-10-24 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及其催化剂
CN102146145B (zh) * 2010-02-10 2012-11-21 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及催化剂
BR112012006343B1 (pt) 2009-09-22 2019-08-20 Basell Poliolefine Italia S.R.L. Composições de polímero de propileno
WO2011035994A1 (en) 2009-09-22 2011-03-31 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
WO2011036021A1 (en) 2009-09-22 2011-03-31 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
BR112012006518B1 (pt) 2009-09-22 2020-06-23 Basell Poliolefine Italia S.R.L. Composições de polímero de propileno
WO2011036002A1 (en) 2009-09-22 2011-03-31 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
WO2011045194A1 (en) 2009-10-13 2011-04-21 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
KR101114073B1 (ko) * 2009-12-08 2012-02-22 삼성토탈 주식회사 프로필렌 중합용 고체촉매의 제조 방법
US8211819B2 (en) * 2009-12-21 2012-07-03 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts
US8569195B2 (en) * 2010-02-24 2013-10-29 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts II
US8318626B2 (en) * 2010-03-01 2012-11-27 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts III
US8829126B2 (en) 2010-03-04 2014-09-09 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins
BR112012021964A2 (pt) 2010-03-04 2019-09-24 Basell Poliolefine Italia Srl componentes dos catalisadores para a polimerização das olefinas
JP2013525581A (ja) 2010-05-05 2013-06-20 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ プロピレンポリマー組成物
WO2011144486A1 (en) 2010-05-19 2011-11-24 Basell Poliolefine Italia Srl Polypropylene tub for washing machine
US20130116385A1 (en) 2010-05-20 2013-05-09 Basell Poliolefine Italia, s.r.l. Propylene polymer compositions
WO2012010678A1 (en) 2010-07-23 2012-01-26 Basell Poliolefine Italia Srl Propylene polymer compositions
CN103097419B (zh) 2010-07-29 2015-12-02 巴塞尔聚烯烃意大利有限责任公司 丙烯无规共聚物
CN103167945B (zh) 2010-10-26 2016-08-10 巴塞尔聚烯烃意大利有限责任公司 用于生产注射拉伸吹塑聚烯烃容器的方法
KR101907376B1 (ko) 2011-03-10 2018-10-12 바셀 폴리올레핀 이탈리아 에스.알.엘 폴리올레핀계 용기
EP2505606B1 (en) 2011-03-29 2017-03-01 Basell Poliolefine Italia S.r.l. Polyolefin composition for pipe systems
US8765626B2 (en) 2011-11-30 2014-07-01 Basf Corporation Internal donor structure for olefin polymerization catalysts and methods of making and using same
WO2013083576A1 (en) 2011-12-05 2013-06-13 Basell Poliolefine Italia S.R.L. Propylene terpolymers
EP2666793A1 (en) 2012-05-21 2013-11-27 Basell Poliolefine Italia S.r.l. Propylene based terpolymer
EP3653631A1 (en) * 2012-09-24 2020-05-20 INDIAN OIL CORPORATION Ltd. Processes for the preparation of an olefin polymerization catalyst based on treating solid organomagnesium compounds with titanium moieties
EP2743307A1 (en) 2012-12-12 2014-06-18 Basell Poliolefine Italia S.r.l. Polyolefin composition
EP2778265A1 (en) 2013-03-11 2014-09-17 Basell Polyolefine GmbH Multilayer fibers
US8933180B2 (en) 2013-03-14 2015-01-13 Basf Corporation Internal and external donor compounds for olefin polymerization catalysts IV
US9284392B2 (en) 2013-03-15 2016-03-15 Basf Corporation Mixed internal donor structures for 1-olefin polymerization catalysts
CN104558285B (zh) * 2013-10-24 2017-02-15 中国石油化工股份有限公司 烯烃聚合用固体催化剂组分及催化剂
CN105658687B (zh) 2013-10-30 2017-08-15 巴塞尔聚烯烃意大利有限公司 丙烯和1‑己烯的多峰共聚物
EP3094681B1 (en) 2014-01-15 2021-01-20 ExxonMobil Chemical Patents Inc. Propylene-based impact copolymers
CN104804112B (zh) * 2014-01-24 2017-11-17 大唐国际化工技术研究院有限公司 一种主催化剂、其制备方法、应用和含其的催化剂组合物
US9593184B2 (en) 2014-10-28 2017-03-14 Formosa Plastics Corporation, Usa Oxalic acid diamides as modifiers for polyolefin catalysts
CN107428872B (zh) 2015-03-19 2020-08-04 巴塞尔聚烯烃意大利有限公司 基于丙烯的三元共聚物
US9777084B2 (en) 2016-02-19 2017-10-03 Formosa Plastics Corporation, Usa Catalyst system for olefin polymerization and method for producing olefin polymer
WO2017178191A1 (en) 2016-04-14 2017-10-19 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
US11427660B2 (en) 2016-08-17 2022-08-30 Formosa Plastics Corporation, Usa Organosilicon compounds as electron donors for olefin polymerization catalysts and methods of making and using same
US9815920B1 (en) 2016-10-14 2017-11-14 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
RU2728551C1 (ru) 2016-10-14 2020-07-30 Базелл Полиолефин Италия С.Р.Л. Пропилен-полимерная композиция с зародышеобразователями кристаллизации
JP6684392B2 (ja) 2016-11-23 2020-04-22 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 充填ポリオレフィン組成物
US11453767B2 (en) 2017-03-27 2022-09-27 Basell Poliolefine Italia S.R.L. Propylene ethylene random copolymer
CN108659150B (zh) * 2017-03-30 2020-01-10 中国科学院化学研究所 一种有机硅烷的应用以及聚丙烯及其制备方法
CN108659151B (zh) * 2017-03-30 2020-01-10 中国科学院化学研究所 一种有机硅烷的应用以及聚丙烯及其制备方法
US10124324B1 (en) 2017-05-09 2018-11-13 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US10822438B2 (en) * 2017-05-09 2020-11-03 Formosa Plastics Corporation Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer
WO2019052822A1 (en) 2017-09-14 2019-03-21 Basell Poliolefine Italia S.R.L. STATISTIC COPOLYMER OF PROPYLENE AND ETHYLENE
US11376829B2 (en) 2018-02-28 2022-07-05 Basell Poliolefine Italia S.R.L. Permeable polymer film
EP3853270B1 (en) 2018-09-20 2024-07-17 Basell Poliolefine Italia S.r.l. Propylene terpolymer
EP3890969B1 (en) 2018-12-05 2024-02-14 Basell Poliolefine Italia S.r.l. Bopp multilayer film
US11840775B2 (en) 2019-06-11 2023-12-12 Basell Poliolefine Italia S.R.L. Fiber comprising propylene ethylene random copolymer
WO2020249387A1 (en) 2019-06-11 2020-12-17 Basell Poliolefine Italia S.R.L. Core-skin fiber comprising propylene ethylene random copolymer
EP3766652B1 (en) 2019-07-16 2023-04-12 Basell Poliolefine Italia S.r.l. Use of injection molded container for microwave
US20230312897A1 (en) 2020-06-30 2023-10-05 Basell Poliolefine Italia S.R.L. Polypropylene composition
WO2022017757A1 (en) 2020-07-21 2022-01-27 Basell Poliolefine Italia S.R.L. High flow heterophasic polypropylene as appearance improver in polyolefin compositions
US20230383107A1 (en) 2020-10-19 2023-11-30 Basell Poliolefine Italia S.R.L. Polypropylene composition
EP4392469A1 (en) 2021-08-24 2024-07-03 Basell Poliolefine Italia S.r.l. Propylene ethylene copolymer
CN117980352A (zh) 2021-10-06 2024-05-03 巴塞尔聚烯烃意大利有限公司 聚丙烯组合物
CN116041577A (zh) 2021-10-28 2023-05-02 中国石油化工股份有限公司 烯烃聚合催化剂组分、催化剂体系及应用和烯烃聚合方法
EP4448653A1 (en) 2021-12-14 2024-10-23 Basell Poliolefine Italia S.r.l. Propylene based polymer composition
WO2024083610A1 (en) 2022-10-20 2024-04-25 Basell Poliolefine Italia S.R.L. Polypropylene composition with good sealing properties
WO2024184131A1 (en) 2023-03-07 2024-09-12 Basell Poliolefine Italia S.R.L. Propylene ethylene random copolymer
WO2024184190A1 (en) 2023-03-07 2024-09-12 Basell Poliolefine Italia S.R.L. Polymer composition comprising propylene ethylene random copolymer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL162661B (nl) 1968-11-21 1980-01-15 Montedison Spa Werkwijze om een katalysator te bereiden voor de poly- merisatie van alkenen-1.
YU35844B (en) 1968-11-25 1981-08-31 Montedison Spa Process for obtaining catalysts for the polymerization of olefines
GB1603724A (en) 1977-05-25 1981-11-25 Montedison Spa Components and catalysts for the polymerisation of alpha-olefins
IT1096661B (it) 1978-06-13 1985-08-26 Montedison Spa Procedimento per la preparazione di prodotti in forma sferoidale solidi a temperatura ambiente
IT1098272B (it) 1978-08-22 1985-09-07 Montedison Spa Componenti,di catalizzatori e catalizzatori per la polimerizzazione delle alfa-olefine
JPS5883006A (ja) * 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
IT1190683B (it) * 1982-02-12 1988-02-24 Montedison Spa Componenti e catalizzatori per la polimerizzazione di olefine
JP2537506B2 (ja) * 1987-03-13 1996-09-25 三井石油化学工業株式会社 オレフインの重合方法
IT1230134B (it) 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
IT1262935B (it) 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1262934B (it) 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1256648B (it) 1992-12-11 1995-12-12 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione delle olefine
EP0658577B1 (en) * 1993-12-16 1997-07-16 Montell North America Inc. Propylene homopolymer resins having a high stereoblock content
CN1108313C (zh) * 1995-10-11 2003-05-14 三井化学株式会社 烯烃聚合用的固体钛催化剂制备方法以及聚烯烃制备方法
EP0914351B1 (en) 1997-03-29 2004-02-18 Basell Poliolefine Italia S.p.A. Magnesium dichloride-alcohol adducts, process for their preparation and catalyst components obtained therefrom
EP0982328B1 (en) 1998-08-25 2003-07-23 Idemitsu Petrochemical Co., Ltd. Propylene resin compositions, process for the preparation thereof, and use thereof.
RU2225415C2 (ru) * 1999-04-15 2004-03-10 Базелль Текнолоджи Компани Б.В. Компоненты и катализаторы полимеризации олефинов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kong X. et al. Temperature rising elution fractionation of polypropylen produced by heterogeneous ziegler-natta catalysts. European Polymer Journal, Pergamon Press Ltd. Oxford, GB, vol.34, no.3-41, march 1998, pages 431-434, ISSN: 0014-3057. Sobota Piotr et al. Ionization of TiCl4 and MgCl2 during the formation of a high-activity alpha-olefin polymerization catalyst. Crystal structures of [cis-{C2H4(CO2Et)2}2Cl2Ti][SbCl6]·CH2Cl2 and [Mg{C2H4(CO2Et)2}3][MgCl4]·2CH2Cl2. Inorg. Chem. (1996), 35 (7), 1778-1781. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580822C2 (ru) * 2010-08-12 2016-04-10 Чайна Петролеум Энд Кемикл Корпорейшн Компонент катализатора, предназначенного для реакции полимеризации олефина, и содержащий его катализатор
RU2674026C2 (ru) * 2013-10-18 2018-12-04 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора для полимеризации олефинов, способ его получения и катализатор, содержащий таковой

Also Published As

Publication number Publication date
RU2002118701A (ru) 2004-01-10
CA2396232A1 (en) 2002-04-18
AR030989A1 (es) 2003-09-03
PL355609A1 (en) 2004-05-04
AU781278B2 (en) 2005-05-12
WO2002030998A1 (en) 2002-04-18
CN1398270A (zh) 2003-02-19
KR20020063217A (ko) 2002-08-01
HUP0204041A2 (hu) 2003-03-28
EP1272533B1 (en) 2008-09-03
EP1272533A1 (en) 2003-01-08
BR0107335B1 (pt) 2011-09-06
CA2396232C (en) 2011-09-20
ATE407153T1 (de) 2008-09-15
US6825309B2 (en) 2004-11-30
CN1721455A (zh) 2006-01-18
MY128622A (en) 2007-02-28
AU1589702A (en) 2002-04-22
ES2312484T3 (es) 2009-03-01
DE60135643D1 (de) 2008-10-16
BR0107335A (pt) 2002-08-27
JP4964396B2 (ja) 2012-06-27
MXPA02005825A (es) 2003-10-14
US7169871B2 (en) 2007-01-30
SA01220540B1 (ar) 2008-03-23
JP2004511590A (ja) 2004-04-15
TWI289144B (en) 2007-11-01
KR100899958B1 (ko) 2009-05-28
ZA200204396B (en) 2003-11-26
US20050131172A1 (en) 2005-06-16
US20030060581A1 (en) 2003-03-27
HUP0204041A3 (en) 2004-08-30
CN1221573C (zh) 2005-10-05

Similar Documents

Publication Publication Date Title
RU2279442C2 (ru) Компоненты катализатора для полимеризации олефинов, катализатор, способ получения пропиленовых полимеров и пропиленовый полимер
EP1165633B1 (en) Components and catalysts for the polymerization of olefins
US6818583B1 (en) Components and catalysts for the polymerization of olefins
EP1082359B1 (en) Components and catalysts for the polymerization of olefins
EP0912617B1 (en) Components and catalysts for the polymerization of olefins
WO1999057160A1 (en) Catalyst components for the polymerization of olefins
EP1730204B1 (en) Components and catalysts for the polymerization of olefins
WO2003002617A1 (en) Components and catalysts for the polymerization of olefins
EP0984988A1 (en) Prepolymerized catalyst components for the polymerization of olefins
AU9262498A (en) Components and catalysts for the polymerization of olefins
KR20070011382A (ko) 올레핀 중합용 성분 및 촉매

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170925