RU2242281C1 - Способ регенерации серебряного катализатора получения формальдегида - Google Patents

Способ регенерации серебряного катализатора получения формальдегида Download PDF

Info

Publication number
RU2242281C1
RU2242281C1 RU2003124028/04A RU2003124028A RU2242281C1 RU 2242281 C1 RU2242281 C1 RU 2242281C1 RU 2003124028/04 A RU2003124028/04 A RU 2003124028/04A RU 2003124028 A RU2003124028 A RU 2003124028A RU 2242281 C1 RU2242281 C1 RU 2242281C1
Authority
RU
Russia
Prior art keywords
catalyst
silver
iron
solution
regeneration
Prior art date
Application number
RU2003124028/04A
Other languages
English (en)
Other versions
RU2003124028A (ru
Inventor
В.Е. Алексеев (RU)
В.Е. Алексеев
В.И. Ерофеев (RU)
В.И. Ерофеев
С.П. Леонтьев (RU)
С.П. Леонтьев
П.Н. Кондрашкин (RU)
П.Н. Кондрашкин
А.М. Димитров (RU)
А.М. Димитров
В.П. Рыбин (RU)
В.П. Рыбин
А.В. Шишов (RU)
А.В. Шишов
В.В. Кашлинов (RU)
В.В. Кашлинов
Н.В. Тихонова (RU)
Н.В. Тихонова
И.Ю. Грушевенко (RU)
И.Ю. Грушевенко
Original Assignee
Общество с ограниченной ответственностью "Томскнефтехим"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Томскнефтехим" filed Critical Общество с ограниченной ответственностью "Томскнефтехим"
Priority to RU2003124028/04A priority Critical patent/RU2242281C1/ru
Application granted granted Critical
Publication of RU2242281C1 publication Critical patent/RU2242281C1/ru
Publication of RU2003124028A publication Critical patent/RU2003124028A/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к химической промышленности, в частности к способам регенерации серебряных катализаторов процесса получения формальдегида из метанола. Цель изобретения - разработка способа регенерации отработанного серебряного катализатора путем удаления коксовых и железосодержащих отложений с последующим восстановлением содержания серебра в катализаторе до первоначального и последующей активацией катализатора; исключение потерь серебра в процессе регенерации. Технический результат достигается тем, что отработанный серебряный катализатор, прокаленный от коксовых отложений для удаления железосодержащих соединений с поверхности катализатора и восстановления содержания серебра до первоначального количества, и последующей активации катализатор обрабатывают смесью 10-20%-ной азотной кислоты с расчетным количеством азотнокислого серебра, недостающего до первоначального содержания серебра в катализаторе, при температуре 100-120°С и доведении рН раствора до рН 1-2, отделении катализатора от полученного раствора. Удаление железосодержащих соединений из раствора азотнокислового серебра осуществляют путем их осаждения раствором 25%-ной аммиачной воды и последующей фильтрацией раствора, содержащего азотнокислое серебро, от соединений железа с последующей активацией катализатора путем дополнительной пропитки катализатора горячим отфильтрованным раствором азотнокислого серебра, выпариванием, сушкой, прокалкой и охлаждением. Предлагаемый способ обеспечивает возможность восстановления у отработанного серебряного катализатора активности и селективности до первоначального состояния, упрощает технологию регенерации катализатора, позволяет проведение многократной регенерации отработанных серебряных катализаторов и исключает потери серебра из отработанного катализатора в условиях регенерации. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к химической промышленности, а именно к способам регенерации серебряных катализаторов процесса получения формальдегида.
Основным промышленным процессом получения формальдегида является процесс окислительного дегидрирования метанола на серебряных катализаторах, который проводится при температуре 650-700°C.
Недостатками процесса окислительного дегидрирования метанола в формальдегид являются быстрое зауглероживание и дезактивация серебряного катализатора за счет отложения на поверхности катализатора кокса и соединений железа.
Обычно регенерацию серебряных катализаторов проводят газофазным окислением коксовых отложений с поверхности катализатора при прокаливании в печи, однако удаления железосодержащих отложений с катализатора практически не происходит, и его активность значительно ниже активности свежеприготовленного серебряного катализатора.
Известен способ регенерации серебряных катализаторов получения формальдегида, заключающийся в том, что зауглероженный катализатор выгружают из реактора, прокаливают при температуре 600-800°C в течение 5-7 ч в токе воздуха или кислорода. Прокаленный катализатор двукратно промывают соляной кислотой, сушат при 120°C, затем обрабатывают азотной кислотой, для восстановления равномерного распределения серебра на поверхности носителя, вновь сушат при 120°C и прокаливают при 600-650°C для разложения азотнокислого серебра.
Прокаливание при высокой температуре приводит к повышенной диффузии серебра из пор носителя на поверхность, а в местах локальных перегревов происходит выплавление металлического серебра, что, в свою очередь, приводит к резкому снижению общей активной поверхности серебра и, как следствие этого, к существенному снижению общей и полезной конверсии метанола, уменьшению селективности процесса.
Катализаторы, регенерированные окислением поверхностно-адсорбированных отложений кислородом воздуха, восстанавливают свою активность на 90-92% (Технологический регламент производства катализатора “серебро на пемзе” Куйбышевского завода СК, 1972 и А.с. № 799211 от 09.07.79).
Недостатками данного способа регенерации катализатора являются:
а) обработка катализатора соляной кислотой приводит не только к удалению железосодержащих соединений, но и к значительным потерям серебра из катализатора,
б) требуется длительная отмывка катализатора деминерализованной водой от Cl-ионов.
По технической сущности к предлагаемому способу регенерации серебряных катализаторов наиболее близок способ регенерации катализатора, заключающийся в том, что отработанный катализатор прокаливают в токе воздуха при температуре 560-650°C с последующей обработкой катализатора раствором 6 н. азотной кислоты для восстановления равномерного распределения серебра на поверхности носителя (Яковенко З.И., Кругликов А.А., Курина Л.Н., Воронцова Н.В., Пономаренко С.А. Регенерация катализаторов синтеза формальдегида на основе пемзы и носителя ФН. //Хим. промышленность. 1972, № 9, с.70).
Однако каталитическая активность катализатора восстанавливается неполностью, селективность и выход формальдегида на регенерированном серебряном катализаторе в среднем на 10-12% ниже, чем на свежеприготовленном катализаторе.
Задача изобретения – разработка способа регенерации отработанного серебряного катализатора путем удаления коксовых и железосодержащих отложений с последующим восстановлением содержания серебра в катализаторе до первоначального и последующей активацией катализатора; исключение потерь серебра в процессе регенерации.
Технический результат достигается тем, что отработанный серебряный катализатор подвергают прокаливанию на воздухе в печи при 580-620°С в течение 6-8 ч для удаления коксовых отложений и после охлаждения определяют содержание железа и серебра в катализаторе (прокаленный катализатор). Затем прокаленный от кокса пемзосеребряный катализатор подвергают обработке смесью 10-20%-ной HNO3 c расчетным количеством азотнокислого серебра, недостающего до первоначального содержания серебра в катализаторе. С целью растворения железосодержащих отложений процесс ведут при 100-120°С и доводят рН раствора до рН 1-2. После этого раствор азотнокислого серебра и железосодержащих соединений отделяют от катализатора, катализатор промывают деминерализованной водой при температуре 70-80°С. Затем раствор азотнокислого серебра с растворенными соединениями железа и промывными водами нагревают до 70-80°С и нейтрализуют аммиачной водой (25 мас.% NH3) до рН 5-6, при этом из раствора выделяется гидроокись железа в виде мелкодисперсного осадка. Горячий раствор азотнокислого серебра (70-80°С) фильтруют от гидроокиси железа несколько раз до полного отделения осадка гидроокиси железа от раствора и фильтр промывают деминерализованной водой. Затем отфильтрованный горячий раствор азотнокислого серебра и промывные воды заливают обратно в чашу с отмытым пемзосеребряным катализатором и упаривают раствор при постоянном перемешивании до сыпучего состояния катализатора. Катализатор выгружают в противни и прокаливают в печи при 350-450°С 2-3 ч до полного разложения азотнокислого серебра, затем при 450°С при перемешивании в течение 2-3 ч и при 650°С в течение 1-2 ч, после чего катализатор охлаждают в печи без доступа воздуха до комнатной температуры (регенерированный катализатор).
Восстановление активности и селективности отработанного серебряного катализатора до первоначального состояния достигается за счет удаления не только коксовых, но и железосодержащих отложений, с последующим восстановлением содержания серебра до первоначального количества в катализаторе, путем его дополнительного довнесения в процессе регенерации и последующей активацией катализатора. Предлагаемый способ обеспечивает возможность восстановления у отработанного серебряного катализатора активности и селективности до первоначального состояния, упрощает технологию регенерации катализатора за счет исключения ряда стадий (обработка соляной кислотой, отмывка от Cl-ионов), позволяет проведение многократной регенерации отработанных серебряных катализаторов и исключает потери серебра из отработанного катализатора в условиях регенерации.
Предлагаемое изобретение иллюстрируется следующими примерами.
Пример 1 (по прототипу). 3 г зауглероженного промышленного пемзосеребряного катализатора (фракция 2-3 мм) после 3-го цикла работы (3×3=9 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид подвергают прокаливанию на воздухе в печи при 580-620°C в течение 5-7 ч для удаления коксовых отложений, затем охлаждают в печи до комнатной температуры и определяют содержание железа и серебра в катализаторе. Затем прокаленный от кокса катализатор для удаления железосодержащих соединений двукратно обрабатывают 10%-ной соляной кислотой и промывают деминерализованной водой до полного удаления Cl-ионов. После этого катализатор обрабатывают смесью 20%-ной HNO3 c растворенным азотнокислым серебром, недостающим до первоначального содержания серебра в катализаторе, и выпаривают при постоянном перемешивании до сыпучего состояния катализатора. Противни с высушенным катализатором загружают в печь и прокаливают сначала при 350-450°C до полного разложения азотнокислого серебра, затем катализатор прокаливают при температуре 450°C при перемешивании в течение 2-3 ч, при температуре 650°C в течение 3-4 ч и охлаждают без доступа воздуха до комнатной температуры. После этого в регенерированном пемзосеребряном катализаторе определяют содержание железа и серебра.
Пример 2 (по прототипу). Так же, как в примере 1, но вместо 3 г зауглероженного промышленного пемзосеребряного катализатора после 3-го цикла работы (3×3=9 месяцев работы) берут 3 г зауглероженного промышленного пемзосеребряного катализатора после 5-го цикла работы (3×5=15 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид.
Пример 3. 3 г зауглероженного промышленного пемзосеребряного катализатора (фракция 2-3 мм) после 1-го цикла работы (3 месяца работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид подвергают прокаливанию на воздухе в печи при 580-620°С в течение 6-8 ч для удаления коксовых отложений и после охлаждения в печи до комнатной температуры определяют содержание железа и серебра в катализаторе. Затем прокаленный от кокса пемзосеребряный катализатор подвергают обработке смесью 20%-ной HNO3 и AgNO3 c расчетным количеством серебра, недостающего до первоначального содержания серебра в катализаторе. С целью растворения железосодержащих отложений процесс ведут при 100-120°C и доводят рН раствора до рН 1-2. После этого раствор азотнокислого серебра и железосодержащих соединений отделяют от катализатора и катализатор промывают деминерализованной водой при температуре 70-80°С. Затем раствор азотнокислого серебра с растворенными соединениями железа и промывные воды нагревают до 70-80°C и нейтрализуют аммиачной водой (25 мас.% NH3) с доведением рН раствора до рН 5-6, при этом из раствора выделяется гидроокись железа в виде мелкодисперсного осадка. Горячий раствор азотнокислого серебра (70-80°С) отделяют от гидроокиси железа фильтрацией несколько раз до полного отделения осадка гидроокиси железа от раствора, фильтр промывают деминерализованной водой. Затем отфильтрованный горячий раствор азотнокислого серебра вместе с промывными водами заливают обратно в чашу с отмытым пемзосеребряным катализатором и упаривают раствор при постоянном перемешивании до сыпучего состояния катализатора. После этого катализатор выгружают в противни и прокаливают в печи при 350-450°С 2-3 ч до полного разложения азотнокислого серебра, затем прокаливают при 450°С при перемешивании в течение 2-3 ч и при 650°С в течение 1-2 ч, после этого катализатор охлаждают в печи без доступа воздуха до комнатной температуры. После этого в регенерированном и восстановленном пемзосеребряном катализаторе определяют содержание железа и серебра.
Пример 4. Так же, как в примере 3, но вместо 3 г зауглероженного промышленного пемзосеребряного катализатора после 1-го цикла работы (3 месяца работы) берут 3 г зауглероженного промышленного пемзосеребряного катализатора после 2-го цикла работы (2×3=6 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид и прокаленный от кокса пемзосеребряный катализатор подвергают обработке смесью не 20%-ной HNO3, а 10%-ной HNO3 и AgNO3 c расчетным количеством серебра, недостающего до первоначального содержания серебра в катализаторе.
Пример 5. Так же, как в примере 3, но вместо 3 г зауглероженного промышленного пемзосеребряного катализатора после 1-го цикла работы (3 месяца работы) берут 3 г зауглероженного промышленного пемзосеребряного катализатора после 3-го цикла работы (3×3=9 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид.
Пример 6. Так же, как в примере 3, но вместо 3 г зауглероженного промышленного пемзосеребряного катализатора после 1-го цикла работы (3 месяца работы) берут 3 г зауглероженного промышленного пемзосеребряного катализатора после 4-го цикла работы (3×4=12 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид.
Пример 7. Так же, как в примере 6, но вместо 3 г зауглероженного промышленного пемзосеребряного катализатора после 1-го цикла работы (3 месяца работы) берут 3 г зауглероженного промышленного пемзосеребряного катализатора после 5-го цикла работы (3×5=15 месяцев работы) в промышленном процессе окислительного дегидрирования метанола в формальдегид.
Пример 8 (сравнительный). В проточный кварцевый реактор загружают 3 см3 (2,5 г) свежеприготовленного пемзосеребряного катализатора с содержанием серебра 40 мас.% и через него пропускают спиртовоздушную смесь с мольным соотношением кислород : метанол = 0,315 (расход метанола 30,12 г/ч, концентрация метанола в спиртоводной смеси 70 мас.%, расход воздуха 33,15 л/ч, температура процесса 695°C). Определяют конверсию метанола, селективность образования формальдегида и активность свежеприготовленного пемзосеребряного катализатора. Активность свежего пемзосеребряного катализатора (конверсия метанола) принимается за 100%.
Затем определяют конверсию метанола и селективность образования формальдегида всех регенерированных пемзосеребряных катализаторов по прототипу (примеры 1-2) и по предлагаемой методике (примеры 3-7). Результаты исследований приведены в таблице.
Приведенные в таблице примеры уточняют изобретение, не ограничивая его.
Как видно из таблицы, содержание железосодержащих отложений в прокаленных пемзосеребряных катализаторах с каждым циклом работы катализатора (удален только кокс) увеличивается, так, например, содержание железа в прокаленном пемзосеребряном катализаторе после 5-го цикла работы в процессе окисления метанола в формальдегид составляет 0,0806 мас.% (пример 2, 7), а в свежем катализаторе – 0,020 мас.% (пример 8), т.е. содержание железа в отработанном пемзосеребряном катализаторе после 5-го цикла работы увеличивается по сравнению со свежим катализатором в 4 раза.
При проведении регенерации отработанных серебряных катализаторов по предлагаемому способу происходит удаление с поверхности катализатора не только коксовых отложений, но и удаление железосодержащих соединений за счет растворения их в смеси 10-20%-ной азотной кислоты с расчетным количеством азотнокислого серебра при проведении процесса при температуре 100-120°C и доведении рН раствора до рН 1-2. Внесение расчетного количества азотнокислого серебра позволяет одновременно произвести довнесение недостающего в катализаторе серебра.
Содержание железа в регенерированном пемзосеребряном катализаторе даже после пяти циклов работы в промышленных условиях процесса окислительного дегидрирования метанола в формальдегид (пример 7) на уровне свежеприготовленного пемзосеребряного катализатора составляет 0,0208 мас.% против 0,0292 мас.% по прототипу (пример 2).
Серебряный катализатор после пяти циклов регенераций полностью восстанавливает свою активность (69,4%) и селективность образования формальдегида (74,8%) в сравнении со свежеприготовленным пемзосеребряным катализатором.
Как видно из примеров таблицы, катализаторы (примеры 3-7) после проведения процесса регенерации практически полностью восстанавливают свою каталитическую активность в сравнении со свежеприготовленным катализатором (пример 8) и имеют более высокую каталитическую активность по сравнению с прототипом (примеры 1-2).
Восстановление активности и селективности отработанного катализатора до первоначального состояния достигается за счет удаления не только коксовых, но и железосодержащих отложений с отработанного серебряного катализатора с последующим восстановлением содержания серебра в катализаторе до первоначального количества путем его дополнительного довнесения в процессе регенерации и последующей активацией катализатора.
Таким образом, предлагаемый способ регенерации отработанных серебряных катализаторов процесса получения формальдегида из метанола обеспечивает возможность восстановления у отработанного серебряного катализатора активности и селективности до первоначального состояния, позволяет увеличить общий срок службы пемзосеребряного катализатора, упрощает технологию регенерации за счет исключения ряда стадий (обработка соляной кислотой, отмывка от Cl-ионов), позволяет проведение многократной регенерации отработанных серебряных катализаторов и исключает потери серебра из отработанного катализатора в процессе регенерации.
Figure 00000001

Claims (2)

1. Способ регенерации серебряного катализатора получения формальдегида из метанола, включающий газофазное окисление адсорбированных на поверхности коксовых отложений, удаление железосодержащих соединений, восстановление содержания серебра в катализаторе до первоначального количества и последующую активацию, отличающийся тем, что удаление железосодержащих соединений с поверхности катализатора и восстановление содержания серебра до первоначального содержания осуществляют путем обработки прокаленного катализатора смесью 10-20%-ной азотной кислоты с расчетным количеством азотнокислого серебра, недостающего до первоначального содержания серебра в катализаторе, при температуре 100-120°С и доведении рН раствора до 1-2, отделение катализатора от полученного раствора, удаление железосодержащих соединений из раствора азотнокислового серебра путем их осаждения раствором аммиачной воды и фильтрации раствора, содержащего азотнокислое серебро, от соединений железа с последующей активацией катализатора путем дополнительной пропитки катализатора горячим отфильтрованным раствором азотнокислого серебра с дальнейшими выпариванием, сушкой, прокалкой и охлаждением.
2. Способ регенерации серебряного катализатора по п.1, отличающийся тем, что осаждение железосодержащих соединений из раствора азотнокислого серебра проводят путем обработки 25% -ной аммиачной водой при температуре 70-80°С и доведения рН раствора до 5-6 с последующей фильтрацией.
RU2003124028/04A 2003-07-30 2003-07-30 Способ регенерации серебряного катализатора получения формальдегида RU2242281C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003124028/04A RU2242281C1 (ru) 2003-07-30 2003-07-30 Способ регенерации серебряного катализатора получения формальдегида

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003124028/04A RU2242281C1 (ru) 2003-07-30 2003-07-30 Способ регенерации серебряного катализатора получения формальдегида

Publications (2)

Publication Number Publication Date
RU2242281C1 true RU2242281C1 (ru) 2004-12-20
RU2003124028A RU2003124028A (ru) 2005-02-20

Family

ID=34388439

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003124028/04A RU2242281C1 (ru) 2003-07-30 2003-07-30 Способ регенерации серебряного катализатора получения формальдегида

Country Status (1)

Country Link
RU (1) RU2242281C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447056C1 (ru) * 2008-02-11 2012-04-10 Каталитик Дистиллейшн Текнолоджиз Способ непрерывного получения органических карбонатов или органических карбаматов и твердые катализаторы для его осуществления
CN112495376A (zh) * 2020-11-10 2021-03-16 珠海格力电器股份有限公司 银-活性炭复合材料及其制备方法
RU2804022C1 (ru) * 2023-01-09 2023-09-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Способ подготовки проб отработанного серебряного катализатора на пористом носителе для определения содержания серебра

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Яковенко З.И., Кругликов А.А., Курина Л.Н., Воронцова Н.В., Пономаренко С.А. Регенерация катализаторов синтеза формальдегида на основе пемзы и носителя ФН. // Хим. Промышленность. - 1972, №9, с. 70. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447056C1 (ru) * 2008-02-11 2012-04-10 Каталитик Дистиллейшн Текнолоджиз Способ непрерывного получения органических карбонатов или органических карбаматов и твердые катализаторы для его осуществления
US8222444B2 (en) 2008-02-11 2012-07-17 Catalytic Distillation Technologies Process for continuous production of organic carbonates or organic carbamates and solid catalysts therefore
US8361919B2 (en) 2008-02-11 2013-01-29 Catalytic Distillation Technologies Process for continuous production of organic carbonates or organic carbamates and solid catalysts therefore
US8415495B2 (en) 2008-02-11 2013-04-09 Catalytic Distillation Technologies Process for continuous production of organic carbonates or organic carbamates and solid catalysts therefore
CN112495376A (zh) * 2020-11-10 2021-03-16 珠海格力电器股份有限公司 银-活性炭复合材料及其制备方法
CN112495376B (zh) * 2020-11-10 2021-11-16 珠海格力电器股份有限公司 银-活性炭复合材料及其制备方法
RU2804022C1 (ru) * 2023-01-09 2023-09-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Способ подготовки проб отработанного серебряного катализатора на пористом носителе для определения содержания серебра

Also Published As

Publication number Publication date
RU2003124028A (ru) 2005-02-20

Similar Documents

Publication Publication Date Title
CA2553857A1 (en) A method of restoring catalytic activity of a spent hydroprocessing catalyst, a spent hydroprocessing catalyst having restored catalytic activity and a hydroprocessing process
JPH01502962A (ja) 活性炭触媒の製造法
JP2009525174A (ja) パラジウム−金触媒の製造
CN111036201A (zh) 一种负载型单原子Pt催化剂及其制备方法和应用
CN111298803A (zh) 用于处理废水的臭氧催化氧化催化剂及其制备方法
RU2242281C1 (ru) Способ регенерации серебряного катализатора получения формальдегида
JP2012521288A (ja) 鉄イオンが担持されたゼオライト触媒、その製造方法、及びその触媒を利用してアンモニア還元剤により亜酸化窒素単独或いは亜酸化窒素及び一酸化窒素を同時に低減する方法
CN110449164B (zh) 钙钛矿型氧化物改性活性炭负载贵金属催化剂的制备方法
JP5858572B2 (ja) 使用済み触媒金属坦持炭素系触媒を用いた再生触媒金属坦持炭素系触媒の製造方法
JP4497926B2 (ja) エチレンオキシド触媒担体の調製
US2973326A (en) Process for regenerating an ironmolybdenum containing oxidation catalyst
JP2004097893A (ja) 水処理用触媒および水処理方法
JP3760257B2 (ja) アンモニア合成触媒の製造方法および同方法で得られた触媒
JP4264642B2 (ja) 熱的劣化触媒の再生方法
JP2016513582A (ja) 基材から鉄物質を除去する方法
JP3053414B2 (ja) 金属触媒支承体としての有効性を改善するための新しい或は古いグラファイト粉末の処理方法
CN110732351A (zh) 废催化裂化催化剂的脱金属复活方法
JP5526369B2 (ja) 脱硝触媒の再生方法
CN106669698B (zh) 一种用于合成1,4-丁炔二醇的铜铋催化剂及其制备方法
CN109248692B (zh) 一种氰化氢水解增效催化剂的制备方法及应用
RU2414301C1 (ru) Способ регенерации металлоксидных промышленных катализаторов органического синтеза
JP4439872B2 (ja) 水処理用ゼオライト触媒の製造方法
KR20210049215A (ko) 암모니아를 이용한 질소산화물 제거용 선택적 환원촉매 및 그 제조방법 및 이를 이용한 질소산화물 제거방법
JPH04227063A (ja) 非活性化された被毒白金触媒の再生方法
RU2378051C1 (ru) Способ приготовления катализатора

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20061215

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130731