RU2183611C2 - Способ переработки тяжелых ароматических углеводородов - Google Patents

Способ переработки тяжелых ароматических углеводородов Download PDF

Info

Publication number
RU2183611C2
RU2183611C2 RU2000100988/04A RU2000100988A RU2183611C2 RU 2183611 C2 RU2183611 C2 RU 2183611C2 RU 2000100988/04 A RU2000100988/04 A RU 2000100988/04A RU 2000100988 A RU2000100988 A RU 2000100988A RU 2183611 C2 RU2183611 C2 RU 2183611C2
Authority
RU
Russia
Prior art keywords
benzene
zeolite
toluene
product
transalkylation
Prior art date
Application number
RU2000100988/04A
Other languages
English (en)
Other versions
RU2000100988A (ru
Inventor
младший БИЧ Джеймс Хардинг (US)
младший БИЧ Джеймс Хардинг
Стюарт Деймон ХЕЛЛРИНГ (US)
Стюарт Деймон ХЕЛЛРИНГ
Терри Юджин ХЕЛТОН (US)
Терри Юджин ХЕЛТОН
Тимоти Фредерик Кинн (US)
Тимоти Фредерик КИНН
Сейди МИЗРАХИ (US)
Сейди МИЗРАХИ
Норман Джозеф РУЛО (US)
Норман Джозеф РУЛО
Original Assignee
Мобил Ойл Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мобил Ойл Корпорейшн filed Critical Мобил Ойл Корпорейшн
Publication of RU2000100988A publication Critical patent/RU2000100988A/ru
Application granted granted Critical
Publication of RU2183611C2 publication Critical patent/RU2183611C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу превращения тяжелых ароматических углеводородов в более легкие ароматические соединения, такие как бензол, контактированием фракции С9 + ароматических углеводородов и толуола над первым катализатором, содержащим цеолит, имеющий индекс проницаемости 0,5 - 3, и компонент гидрогенизации, и над второй каталитической композицией, содержащей цеолит со средним размером пор, имеющий индекс проницаемости 3 - 12, при отношении диоксида кремния к оксиду алюминия по крайней мере 5, при этом снижается количество или предотвращается образование совместно кипящих соединений. Технический результат - получение бензола высокой степени чистоты, увеличение выхода. 2 c. и 5 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к способу превращения тяжелых ароматических углеводородов, в особенности С9 + ароматических углеводородов, в более легкие ароматические продукты. В особенности изобретение относится к производству бензола, имеющего повышенный уровень чистоты.
Источником бензола и ксилола является продукт каталитического риформинга, который получают смешением лигроина с водородом и контактированием смеси с сильным катализатором гидрогенизации/дегидрогенизации, таким как платина, на умеренно кислой подложке, такой как обработанный галогеном алюминий. Обычно от продукта риформинга отделяют фракцию от С6 до С8, проводят экстракцию растворителем, селективным по отношению к ароматическим или алифатическим углеводородам, для того, чтобы разделить соединения этих двух классов и получить смесь ароматических углеводородов практически свободную от алифатических соединений. Эта смесь ароматических соединений обычно содержит бензол, толуол и ксилолы (БТК) наряду с этилбензолом.
Нефтеперерабатывающие заводы также сосредоточились на производстве бензола и ксилола путем трансалкилирования С9 + ароматических углеводородов и толуола над цеолитными катализаторами, содержащими благородные металлы. Во время процесса превращения С9 + ароматических углеводородов и толуола путем трансалкилирования в более ценные нефтехимические продукты, такие как бензол и ксилол, над катализаторами, содержащими благородные металлы, обычно в течение первых нескольких месяцев в потоке образуются побочные продукты в виде насыщенных соединений. Эти побочные насыщенные соединения, определенные как совместно кипящие, могут кипеть в том же самом диапазоне температур, что и ценные нефтехимические продукты, затрудняя их отделение с высокой степенью чистоты. Например, уровень чистоты такого продукта, как бензол для коммерческой продажи должен превышать 99,85%. Однако первоначальная чистота такого продукта как бензол после перегонки продукта реакции трансалкилирования обычно составляет только от 99,2 до 99,5% из-за присутствия совместно кипящих соединений, таких как метилциклопентан, циклогексан, 2,3-диметилпентан, диметилциклопентан и 3-метилгексан. Поэтому для дальнейшего повышения чистоты бензольного продукта до необходимого уровня обычно требуется дополнительная стадия экстракции.
Ввиду возникающих трудностей при получении нефтехимических продуктов, содержащих бензол высокой степени чистоты из-за присутствия в них совместно кипящих продуктов, образующихся в процессе трансалкилирования С9 + ароматических углеводородов и толуола над содержащими благородный металл цеолитными катализаторами, желательно снизить концентрацию совместно кипящих продуктов, которые образуются в процессе трансалкилирования. Преимущество снижения концентрации совместно кипящих соединений, образующихся в процессе трансалкилирования, заключается в том, что такой продукт как бензол может быть получен с высокой степенью чистоты после перегонки продукта реакции трансалкилирования, при этом не требуется проведения дополнительной стадии экстракции, что приводит к сокращению числа стадий процесса, которые необходимы для получения бензола, имеющего уровень чистоты по крайней мере 99,85%.
Настоящее изобретение в общем относится к способу превращения тяжелых ароматических углеводородов в более легкие ароматические соединения. В особенности настоящее изобретение направлено на способ снижения концентрации совместно кипящих соединений, которые образуются в процессе трансалкилирования тяжелых ароматических углеводородов, а именно С9 + ароматических углеводородов и толуола, в бензол и ксилол.
Изобретение относится к способу превращения сырья, содержащего С9 + ароматические углеводороды и толуол, в продукт, содержащий бензол и ксилол, который включает стадию контактирования сырья, содержащего C9 + ароматические углеводороды и толуол, в условиях реакции трансалкилирования с первой каталитической композицией, содержащей цеолит, имеющий индекс проницаемости, находящийся в интервале 0,5 - 3, и компонент гидрогенизации, и с второй каталитической композицией, содержащей цеолит со средним размером пор, имеющий индекс проницаемости, находящийся в интервале 3 - 12, при отношении диоксида кремния к оксиду алюминия по крайней мере 5, с получением продукта реакции трансалкилирования, содержащего бензол и ксилол. Бензольный продукт, имеющий уровень чистоты по крайней мере 99,85%, может быть получен путем отгонки бензола от продукта процесса трансалкилирования без необходимости проведения стадии экстракции.
На чертеже представлена типичная технологическая схема протекания процесса трансалкилирования.
Настоящее изобретение в общем направлено на процесс превращения тяжелых ароматических углеводородов в более легкие ароматические продукты.
В особенности настоящее изобретение направлено на способ снижения концентрации совместно кипящих соединений, которые образуются в процессе трансалкилирования тяжелых ароматических углеводородов, а именно С9 + ароматических углеводородов и толуола, в бензол и ксилол, для получения продукта реакции трансалкилирования, содержащего бензол и ксилол. Бензольный продукт, имеющий уровень чистоты по крайней мере 99,85%, может быть получен путем отгонки бензола от продукта процесса трансалкилирования без необходимости проведения стадии экстракции.
Особенность изобретения, при котором достигается получение бензола высокой степени чистоты, заключается в снижении или предотвращении образования совместно кипящих продуктов при трансалкилировании тяжелых ароматических углеводородов и толуола в бензол и ксилол путем использования первой каталитической композиции, содержащей цеолит, имеющий индекс проницаемости 0,5 - 3, и компонент гидрогенизации, и второй каталитической композиции, содержащей цеолит со средним размером пор, имеющий индекс проницаемости 3 - 12, при отношении диоксида кремния к оксиду алюминия, составляющему по крайней мере 5. Способ, согласно которому определяют индекс проницаемости цеолита, полностью описан в US 4016218.
Преимущество в отношении снижения или предотвращения образования совместно кипящих соединений в процессе трансалкилирования тяжелых ароматических углеводородов и толуола в бензол и ксилол заключается в том, что исключается стадия экстракции, которая, как правило, требуется в случае получения бензола высокой степени чистоты.
Первая каталитическая композиция
Реакция, лежащая в основе этого изобретения, катализируется путем контакта с первой каталитической композицией, содержащей цеолит, имеющий индекс проницаемости 0,5 - 3. Цеолиты, которые являются особенно приемлемыми, включают цеолиты марки МСМ-22, PSH-3, SSZ-25, ZSM-12 и цеолит бета.
Цеолит бета особенно подробно описан в US Re 28341 (патент US 3308069).
ZSM-12 особенно подробно описан в US 3832449.
SSZ-25 описан в US 4954325.
PSH-3 описан в US 4439409.
Цеолит МСМ-22, или просто "МСМ-22", особенно подробно описан в US 4954325.
Может быть желательным смешать цеолит с другим материалом, который является стойким по отношению к нагреванию и другим условиям, используемым в процессе по этому изобретению. Такие материалы включают активные и инертные соединения, как синтетические, так и природные цеолиты, а также неорганические материалы типа глин, диоксида кремния и/или оксидов металлов, такие как оксид алюминия. Неорганический материал может быть как природного происхождения, так и полученный в форме студенистых осадков или гелей, включая смеси диоксида кремния и оксидов металлов.
Использование материала в сочетании с цеолитом, например, путем его объединения с ним или путем введения во время синтеза, который в свою очередь является каталитически активным, может изменить конверсию и/или селективность каталитической композиции. Инертные материалы соответственно служат в качестве разбавителей для контролирования величины конверсии так, чтобы продукты процесса трансалкилирования могли быть получены экономично и надлежащим образом без использования других средств контролирования скорости реакции. Эти каталитически активные или инертные материалы могут быть включены в, например, природные глины, такие как бентонит и каолин, для повышения сопротивления к раздавливанию у каталитической композиции в условиях коммерческой эксплуатации. Желательно обеспечить каталитической композиции хорошее сопротивление к раздавливанию, поскольку при коммерческом использовании желательно предотвратить разрушение каталитической композиции до превращения ее в порошкообразный материал.
Природные глины, которые могут быть смешаны с цеолитом, как описано в настоящем изобретении, в качестве связующего компонента каталитической композиции включают монтмориллонит и семейство каолина, которое включает подбентониты, и каолины обычно известные как Дикси (Dixie), МакНами (McNamee), Джорджия (Georgia) и (Florida) Флорида глины или другие, в которых главная минеральная составляющая является алюмосиликатом, каолинитом, дискайтом (dickite), накритом или анаокситом (anauxite). Такие глины могут использоваться в сыром виде после непосредственной добычи или вначале их подвергают обжигу, кислотной обработке или химической модификации.
В дополнение к перечисленным материалам цеолит может быть смешан с пористым матричным связующим веществом, таким как неорганический оксид, выбранным из группы, состоящей из диоксида кремния, оксида алюминия, оксида циркония, диоксида титана, оксида тория, оксида бериллия, оксида магния и их смесей, таких как диоксид кремния - оксид алюминия, диоксид кремния- оксид магния, диоксид кремния - оксид циркония, диоксид кремния - оксид тория, диоксид кремния - оксид бериллия, диоксид кремния - диоксид титана, а также как тройные составы типа диоксид кремния - оксид алюминия - оксид тория, диоксид кремния - оксид алюминия - оксид циркония, диоксид кремния - оксид алюминия - оксид магния и диоксид кремния - оксид магния - оксид циркония. Может быть также выгодным обеспечить присутствие по крайней мере части указанного выше пористого матричного связующего вещества в коллоидной форме для того, чтобы облегчить прессование каталитической композиции.
Цеолит обычно смешивают со связующим или матричным материалом так, что окончательный состав каталитической композиции содержит связующий компонент или матричный материал в количестве, находящимся в пределах от 5 до 90 мас.% и предпочтительно от 10 до 60 мас.%.
Цеолит первой каталитической композиции используют в комбинации с по крайней мере одним компонентом гидрогенизации, таким как металл, выбранный из Группы VIII Периодической таблицы Элементов (CAS версия, 1979). Конкретные примеры используемых компонентов гидрогенизации включают железо, рутений, осмий, никель, кобальт, родий, иридий или благородный металл типа платины или палладия.
Количество компонента гидрогенизации выбирают согласно балансу между гидрогенизующей активностью и каталитическими функциональными возможностями. Меньшее количество компонента гидрогенизации требуется в том случае, когда используют такие металлы, как платина, которые более активны по сравнению с палладием, который не обладает такой сильной гидрогенизующей активностью. Обычно используют менее 10 мас.% и часто не более 1 мас.%.
Компонент гидрогенизации может быть включен в первую каталитическую композицию при совместной кристаллизации, введен путем обмена в составе каталитической композиции с элементом Группы IIIА, например алюминием, который находится в структуре, импрегнирован или смешан с цеолитом и связующим компонентом. Такой компонент может быть импрегнирован в или на цеолит, например в случае платины, путем обработки цеолита раствором, содержащим ион металла платины. Подходящие соединения платины для импрегнирования (пропитки) катализатора платиной включают платинохлористоводородную кислоту, двухлористую платину и различные соединения, содержащие аминоплатиновый комплекс, такой как Pt(MH3)4Cl2•H2O. Альтернативно соединение компонента гидрогенизации может быть добавлено к цеолиту, когда его смешивают со связующим компонентом, или после того, как цеолит и связующий компонент сформируют в частицы прессованием или гранулированием.
После обработки компонентом гидрогенизации катализаторную композицию обычно высушивают, нагревая ее при 66 - 160oС (150 - 320oF) и более предпочтительно 110 - 143oС (230 - 290oF), по крайней мере 1 мин и обычно не более 24 ч, при давлении 0 - 0,1 МПа (0 - 15 фунт/дюйм2). После этого каталитическую композицию прокаливают в потоке сухого газа, такого как воздух или азот, при 260 - 649oС (500 - 1200oF) в течение 1 - 20 ч. Прокаливание предпочтительно проводится при давлении 0,1 - 0,21 МПа (15 - 30 фунт/дюйм2).
Перед использованием может быть проведена обработка катализатора паром для того, чтобы минимизировать ароматическую гидрогенизующую активность каталитической композиции в отношении ароматики. В процессе обработки паром каталитическую композицию обычно контактируют с 5 - 100% пара, при по крайней мере 260 - 649oС (500 - 1200oF) в течение по крайней мере 1 ч, конкретнее в течение 1 - 20 ч, при давлении 0,098 - 2,53 МПа (14 - 360 фунт/дюйм2).
Вторая каталитическая композиция
Вторая каталитическая композиция в соответствии с настоящим изобретением включает цеолит со средним размером пор, имеющий индекс проницаемости 3 - 12, при отношении диоксида кремния к оксиду алюминия по крайней мере 5. Цеолит, который является особенно используемым, включает ZSM-5, который описан в US 3702886, или его протонную или водородную форму, а именно HZSM-5. Цеолит второй каталитической композиции способен к преобразованию нежелательных С6 и неароматических соединений С7 в течение относительно короткого контактного времени от 1 мин или более и предпочтительно 2 мин или более.
Цеолит второй каталитической композиции может быть смешан с пористым матричным связующим веществом, таким как неорганический оксид, выбранным из группы, состоящей из диоксида кремния, оксида алюминия, оксида циркония, диоксида титана, оксида тория, оксида бериллия, оксида магния и их смесей, таких как диоксид кремния - оксид алюминия, диоксид кремния - оксид магния, диоксид кремния - оксид циркония, диоксид кремния - оксид тория, диоксид кремния - оксид бериллия, диоксид кремния - диоксид титана, а также как тройные составы типа диоксид кремния - оксид алюминия - оксид тория, диоксид кремния - оксид алюминия - оксид циркония, диоксид кремния - оксид алюминия - оксид магния и диоксид кремния - оксид магния - оксид циркония. Может быть также выгодным обеспечить присутствие по крайней мере части указанного выше пористого матричного связующего вещества в коллоидной форме для того, чтобы облегчить прессование каталитической композиции.
Цеолит обычно смешивают со связующим или матричным материалом так, что окончательный состав каталитической композиции содержал связующий компонент или матричный материал в количестве 5 - 90 мас.% и предпочтительно 10 - 60 мас.%.
Вторая каталитическая композиция может составлять 1 - 20 мас.% и предпочтительно 10 - 15 мас.% в расчете на общую массу первой и второй каталитических композиций в зоне реактора трансалкилирования. Например, вторая каталитическая композиция может быть заменена порцией первой каталитической композиции на дне реактора, при этом первая каталитическая композиция находится в первом каталитическом слое и вторая каталитическая композиция находится во втором каталитическом слое в этом же реакторе. Альтернативно первая каталитическая композиция может находиться в первом реакторе и вторая каталитическая композиция может находиться во втором реакторе.
Сырье
С9 + ароматические углеводороды, используемые в этом процессе, обычно включают одно или более ароматическое соединение, содержащее по крайней мере 9 атомов углерода, например триметилбензолы, диметилбензолы, диэтилбензолы и т. д. Конкретные С9 + ароматические углеводороды включают мезитилен (1,3,5-триметилбензол), дурол (1,2,4,5-тетраметилбензол), гемимеллитол (1,2,3-триметилбензол), псевдокумол (1,2,4-триметилбензол), 1,2-метилэтилбензол, 1,3-метилэтилбензол, 1,4-метилэтилбензол, пропилзамещенные бензолы, бутилзамещенные бензолы, изомеры диметилэтилбензолов и т.д.
Пригодными источниками C9 + ароматических углеводородов является любая С9 + фракция любого процесса нефтеперегонки, богатая ароматическими углеводородами. Эта фракция ароматических углеводородов содержит существенную долю С9 + ароматических углеводородов, например по крайней мере 80 мас.% С9 + ароматических углеводородов, причем предпочтительно по крайней мере 80 мас.% и более предпочтительно более 90 мас.% углеводородов входят в интервал С9 -C12. Типичные фракции нефтепереработки, которые могут быть использованы, включают продукты каталитического риформинга, фракции каталитического крекинга в псевдоожижженном слое (FCC) или фракцию каталитического крекинга, процесс "Термофор" (ТСС).
Источником толуола может быть установка для экстракции ароматических углеводородов или любой другой коммерческий источник.
Обычно сырьевой поток, подаваемый в зону реакции трансалкилирования включает C9 + ароматические углеводороды и толуол. Сырьевой поток может также включать возвратный/непрореагировавший толуол и С9 + ароматические углеводороды, получаемые путем перегонки выходящего продукта непосредственно после трансалкилирования. Обычно толуол составляет 40 - 90% и предпочтительно 50 - 70% от общей массы входящего потока. С9 + ароматические углеводороды составляют 10 - 60% и предпочтительно 30 - 50% от общей массы сырьевого потока в зоне реакции трансалкилирования.
Процесс углеводородной конверсии
Процесс может быть проведен в любом соответствующем реакторе, включая реактор, имеющий радиальный поток, неподвижный слой, непрерывный нисходящий поток или реактор с кипящим слоем. Трансалкилирование обычно проводится в интервале 343 - 510oС (650 - 950oF) и предпочтительно 399 - 455oС (750 - 850oF), давлении 0,7 - 4,2 МПа (100 - 600 фунт/дюйм2) и предпочтительно 1,4 - 3,5 МПа (200 - 500 фунт/дюйм2), при мольном отношении водорода к углеводороду от 1 до 5 и предпочтительно от 1 до 3. Скорость пропускания над первой каталитической композицией лежит в интервале 1 - 7 WHSV (объемная скорость - количество нефтепродукта на единицу веса катализатора в час) и предпочтительно 2,5 - 4,5 WHSV, и скорость пропускания над второй каталитической композицией лежит в интервале 5 - 100 WHSV и предпочтительно 15 - 35 WHSV. Условия реакции трансалкилирования пригодны для осуществления конверсии потока тяжелой ароматики в продукт, содержащий существенные количества С68 ароматических соединений, таких как бензол, толуол и ксилолы, особенно бензол и ксилол.
Обращаясь к чертежу, можно видеть, что на нем изображена упрощенная схема технологического процесса. Поток С9 + ароматических углеводородов наряду с толуолом и водородом поступает через линию 10 в реактор 12, который содержит первую и вторую каталитические композиции. В реакторе поддерживаются условия, достаточные для того, чтобы толуол и метилзамещенные ароматические углеводороды (толуол, ксилолы, триметилбензолы и тетраметилбензолы) достигли термодинамического равновесия в результате трансалкилирования. Продукт из реактора 12 удаляют через линию 14 и вводят в сепаратор водорода 16, в котором отделяют водород для рецикла в реактор 12 через линию 18. Затем поток проходит через линию 20 к секции стабилизатора 22, в которой удаляют C5 топливный газ известными методами. После этого продукт подвергают фракционированию на потоки бензола, толуола и потоки ксилолов в ректификационных колоннах 24, 26 и 28 соответственно для разделения этих потоков. Оставшийся продукт, содержащий непрореагировавшие С9 + исходные и любые тяжелые ароматические углеводороды, разделяют на два потока - поток ароматических углеводородов С9 + (поток 30) и поток С10 + ароматических углеводородов (поток 29). Поток 30 рециклизуют в исходный реакционный поток, удаляют из процесса или делают их комбинацию (частичный рецикл). Поток 29 С10 + ароматических углеводородов пригоден в качестве добавки к бензину или может быть использован в качестве растворителей.
Пример. ZSM-5 катализатор со связующим оксидом алюминия разбавляют с помощью викора и загружают в реактор, имеющий наружный диаметр 9,5 мм (3/8 дюймов), а затем высушивают в потоке азота при 399oС (750oF). Затем поток азота заменяют потоком водорода и продуктом, получаемым пропусканием смеси С9 + ароматических углеводородов, толуола и водорода над первым цеолитным катализатором, имеющим индекс проницаемости 0,5 - 3, которую вводили в реактор при различных скоростях потока, поддерживая мольное соотношение водорода к углеводороду как 3/1 и давление 2,46 МПа (350 фунт/дюйм2).
Данные газохроматографического анализа, выходящего из реактора потока с использованием колонны petrocol, 150 м с водородом, в качестве газа носителя, и стандартизированные данные для ключевых компонентов приведены в табл. 1. Чистоту перегнанного бензола рассчитывают на основе приведенных стандартизированных данных, используя массовые факторы, разработанные исходя из моделируемой дистилляции, с использованием программного обеспечения Provisionтм от Simulation Sciences согласно следующему уравнению,
Чистота перегнанного бензола = 100 х Бензол/(Бензол+а+b+с+d),
где
а = 0,1 • С6 -парафины,
b = 0,7 • Метилциклопентан,
с = Циклогексан,
d = С7нафтены (диметилциклопентаны, метилциклогексан и т.д.).
Как видно из данных, приведенных в табл. 1, при постоянных температуре 399oС и давлении 2,46 МПа (750oF, 350 фунт/дюйм2) чистота бензола повышается при более низкой WHSV благодаря увеличению конверсии неароматических компонентов. Снижение конверсии метилциклопентана и метилциклогексана с увеличением WHSV приводит к увеличению загрязнения перегнанного бензола. Однако, чистота перегнанного бензола повышается до отметки 99,85% даже при значении WHSV, равном 29. Одновременно повышение температуры приводит к более значительному улучшению чистоты перегнанного бензола по сравнению с улучшением, достигаемым за счет снижения концентрации этих метилнафтенов. Кроме того, концентрация циклогексана резко уменьшается при увеличении температуры.

Claims (7)

1. Способ превращения углеводородного сырья, содержащего С9 + ароматические углеводороды в более легкие ароматические соединения, заключающийся во взаимодействии (i) С9 + ароматических углеводородов и (ii) толуола или бензола в присутствии водорода в условиях реакции трансалкилирования над первой каталитической композицией, содержащей цеолит, имеющий индекс проницаемости 0,5 - 3, и компонент гидрогенизации, отличающийся тем, что продукт трансалкилирования контактирует со второй каталитической композицией, содержащей цеолит со средним размером пор, имеющий индекс проницаемости 3 - 12, при отношении диоксида кремния к оксиду алюминия по крайней мере 5, с получением продукта реакции трансалкилирования, содержащего (i) бензол или толуол и (ii) ксилол.
2. Способ получения бензола, заключающийся во (а) взаимодействии (i) С9+ ароматических углеводородов и (ii) толуола или бензола в присутствии водорода в условиях реакции трансалкилирования над первой каталитической композицией, содержащей цеолит, имеющий индекс проницаемости 0,5 - 3, и компонент гидрогенизации, отличающийся тем, что продукт трансалкилирования контактирует с второй каталитической композицией, содержащей цеолит со средним размером пор, имеющий индекс проницаемости 3 - 12, при отношении диоксида кремния к оксиду алюминия по крайней мере 5, с получением потока продукта, содержащего (i) бензол или толуол и (ii) ксилол, и (b) отгоняют бензол или толуол от указанного потока продукта трансалкилирования для получения продукта бензола или толуола повышенной чистоты.
3. Способ по п. 2, отличающийся тем, что бензол - продукт стадии (b) имеет чистоту по крайней мере 99,85%.
4. Способ по п. 3, отличающийся тем, что бензол - продукт стадии (b) имеет чистоту по крайней мере 99,85% без необходимости проведения дополнительной стадии экстракции.
5. Способ по п. 1, отличающийся тем, что компонент гидрогенизации первой каталитической композиции представляет собой по крайней мере один металл, выбранный из VIII группы Периодической таблицы элементов, и цеолит первой каталитической композиции выбирают из группы, состоящей из МСМ-22, РSH-3, SSZ-25, ZSM-12 и цеолита бета.
6. Способ по п. 5, отличающийся тем, что цеолит второй каталитической композиции представляет собой цеолит ZSM-5.
7. Способ по п. 1, отличающийся тем, что условия проведения реакции трансалкилирования включают температуру в пределах 343 - 510oС, давление в пределах 7,0 - 4,2 МПа и мольное отношение водорода к углеводороду в интервале 1 - 5.
RU2000100988/04A 1997-06-13 1998-06-12 Способ переработки тяжелых ароматических углеводородов RU2183611C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/874,875 1997-06-13
US08/874,875 US5942651A (en) 1997-06-13 1997-06-13 Process for converting C9 + aromatic hydrocarbons to lighter aromatic products by transalkylation in the prescence of two zeolite-containing catalysts

Publications (2)

Publication Number Publication Date
RU2000100988A RU2000100988A (ru) 2001-10-20
RU2183611C2 true RU2183611C2 (ru) 2002-06-20

Family

ID=25364770

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000100988/04A RU2183611C2 (ru) 1997-06-13 1998-06-12 Способ переработки тяжелых ароматических углеводородов

Country Status (16)

Country Link
US (1) US5942651A (ru)
EP (1) EP0988265B1 (ru)
JP (1) JP4021943B2 (ru)
KR (1) KR100534062B1 (ru)
CN (1) CN1111518C (ru)
AU (1) AU738979B2 (ru)
BG (1) BG103960A (ru)
CA (1) CA2290694C (ru)
DE (1) DE69807476T2 (ru)
ES (1) ES2180181T3 (ru)
ID (1) ID24255A (ru)
PL (1) PL337778A1 (ru)
PT (1) PT988265E (ru)
RU (1) RU2183611C2 (ru)
TW (1) TW402587B (ru)
WO (1) WO1998056741A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484078C2 (ru) * 2005-08-30 2013-06-10 Бп Корпорейшн Норт Америка Инк. Способ получения изомеров ксилола (варианты)
WO2014055212A1 (en) * 2012-10-05 2014-04-10 Uop Llc Low pressure transalkylation process
RU2665477C2 (ru) * 2014-10-31 2018-08-30 Чайна Петролеум & Кемикал Корпорейшн Способ получения ароматических углеводородов

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750446B2 (en) * 2001-01-17 2004-06-15 Fuji Photo Film Co., Ltd. Ultrasonic-welding apparatus, optical sensor and rotation sensor for the ultrasonic-welding apparatus
US6815570B1 (en) * 2002-05-07 2004-11-09 Uop Llc Shaped catalysts for transalkylation of aromatics for enhanced xylenes production
US7553791B2 (en) * 2002-11-14 2009-06-30 Exxonmobil Chemical Patents Inc. Heavy aromatics conversion catalyst composition and processes therefor and therewith
US7148391B1 (en) * 2002-11-14 2006-12-12 Exxonmobil Chemical Patents Inc. Heavy aromatics processing
US6893624B2 (en) 2002-11-15 2005-05-17 Exxonmobil Chemical Patents Inc. High activity small crystal ZSM-12
ITMI20022712A1 (it) * 2002-12-20 2004-06-21 Polimeri Europa Spa Composizione catalitica e processo per la transalchilazione di idrocarburi.
US6855854B1 (en) * 2003-06-13 2005-02-15 Uop Llc Process and apparatus for ethylbenzene production and transalkylation to xylene
US6958425B1 (en) * 2003-06-13 2005-10-25 Uop Llc Aromatics transalkylation to ethylbenzene and xylenes
US6872866B1 (en) * 2003-12-15 2005-03-29 Uop Llc Liquid phase process for C8 alkylaromatic isomerization
US6972348B2 (en) * 2004-03-24 2005-12-06 Uop Llc Catalytic conversion of polycyclic aromatics into xylenes
FR2877665B1 (fr) * 2004-11-09 2006-12-29 Inst Francais Du Petrole Procede de transalkylation d'hydrocarbures alkylaromatiques mis en oeuvre dans deux zones reactionnelles
RU2448937C2 (ru) 2006-03-29 2012-04-27 Торэй Индастриз, Инк. Способ превращения этилбензола и способ получения пара-ксилола
US7456124B2 (en) * 2006-09-12 2008-11-25 Uop Llc Rhenium-containing transalkylation catalysts and processes for making the same
US7847137B2 (en) * 2007-07-30 2010-12-07 Uop Llc Xylene production processes with integrated feedstock treatment
US7776283B2 (en) * 2007-07-30 2010-08-17 Uop Llc Xylene production apparatus with integrated feedstock treatment
CN103934018B (zh) * 2007-10-31 2016-08-17 埃克森美孚化学专利公司 重芳烃加工催化剂及其使用方法
JP5340620B2 (ja) * 2008-03-27 2013-11-13 Jx日鉱日石エネルギー株式会社 触媒組成物及び芳香族炭化水素の製造方法
US20100029467A1 (en) 2008-07-30 2010-02-04 Tomoyuki Inui Multiple zeolite catalyst
US8653315B2 (en) 2008-07-30 2014-02-18 King Fahd University Of Petroleum And Minerals Multiple zeolite catalyst and method of using the same for toluene disproportionation
CN201340888Y (zh) * 2009-01-08 2009-11-04 东莞新能源科技有限公司 锂离子电池
US8163966B2 (en) * 2009-11-30 2012-04-24 Exxonmobil Chemical Patents Inc. Aromatics processing catalyst system
US8183424B2 (en) 2010-02-03 2012-05-22 Exxonmobil Chemical Patents Inc. Transalkylation of heavy aromatic hydrocarbon feedstocks
US8071828B2 (en) * 2010-02-03 2011-12-06 Exxonmobil Chemical Patents Inc. Transalkylation of heavy aromatic hydrocarbon feedstocks
US8586809B2 (en) 2010-07-30 2013-11-19 Exxonmobil Chemical Patents Inc. Purification of transalkylation feedstock
CN103120954B (zh) * 2011-11-18 2015-04-08 中国石油化工股份有限公司 稠环芳烃制取单环芳烃催化剂
CN103120952B (zh) * 2011-11-18 2015-02-11 中国石油化工股份有限公司 歧化与烷基转移催化剂及其制备方法
WO2013095815A1 (en) 2011-12-22 2013-06-27 Uop Llc Enhanced aromatics production by low pressure end point reduction and selective hydrogenation and hydrodealkylation
JP6290180B2 (ja) * 2012-04-19 2018-03-07 サウジ アラビアン オイル カンパニー キシレン生成を最大化するための複合重質リフォメートの脱アルキル化−トランスアルキル化法
WO2014193563A1 (en) 2013-05-31 2014-12-04 Exxonmobil Chemical Patents Inc. Transalkylation system
CN103467238B (zh) * 2013-08-23 2016-08-10 宁夏宝塔石化科技实业发展有限公司 一种对二甲苯的生产方法
US9783462B2 (en) 2013-09-10 2017-10-10 Saudi Basic Industries Corporation Toluene methylation with transalkylation of heavy aromatics
WO2015187363A1 (en) * 2014-06-04 2015-12-10 Exxonmobil Chemical Patents Inc. Transalkylation of heavy aromatic hydrocarbon feedstocks
PL3185979T3 (pl) 2014-08-06 2019-06-28 Bp Corporation North America Inc. Integracja ciepła w procesach dysproporcjonowania lub transalkilowania
US10450243B2 (en) 2014-12-19 2019-10-22 Exxonmobil Chemical Patents Inc. Sulfiding process for aromatic transalkylations
US10781149B2 (en) 2014-12-19 2020-09-22 Exxonmobil Chemical Patents Inc. Transalkylation process
US10118165B2 (en) 2015-02-04 2018-11-06 Exxonmobil Chemical Patents Inc. Catalyst compositions and use in heavy aromatics conversion processes
US10053403B2 (en) 2015-02-04 2018-08-21 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in transalkylation of heavy aromatics to xylenes
US10800718B2 (en) 2016-10-04 2020-10-13 Exxonmobil Chemical Patents Inc. Disproportionation and transalkylation of heavy aromatic hydrocarbons
RU2754416C2 (ru) * 2016-10-10 2021-09-02 Эксонмобил Кемикэл Пейтентс Инк. Способы превращения тяжелых ароматических соединений в бтк и применяющиеся в них каталитические композиции
CN108264445B (zh) * 2017-01-04 2021-02-09 中国石油化工股份有限公司 甲苯歧化与/或烷基转移反应的方法
US10173950B2 (en) 2017-01-04 2019-01-08 Saudi Arabian Oil Company Integrated process for the production of benzene and xylenes from heavy aromatics
US10464868B2 (en) 2017-05-26 2019-11-05 Saudi Arabian Oil Company Process for maximizing production of xylenes from heavy reformate without purge
US10035742B1 (en) 2017-05-26 2018-07-31 Saudi Arabian Oil Company Process for maximizing xylenes production from heavy aromatics for use therein
US10252958B2 (en) 2017-05-26 2019-04-09 Saudi Arabian Oil Company Process for xylene production with energy optimization
US10661260B2 (en) 2017-06-15 2020-05-26 King Fahd University Of Petroleum And Minerals Zeolite composite catalysts for conversion of heavy reformate to xylenes
EP3539652A1 (en) 2018-03-14 2019-09-18 Saudi Arabian Oil Company Method of heavy reformate conversion into btx over metal-impregnated zsm-5+mesoporous mordenite zeolite composite catalyst
EP3539651A1 (en) 2018-03-14 2019-09-18 Saudi Arabian Oil Company Method of heavy reformate conversion into btx over metal-impregnated zsm-5+layered mordenite zeolite composite catalyst; said composite catalyst
EP3785797B1 (en) 2018-03-14 2024-04-24 Saudi Arabian Oil Company Heavy reformate conversion into xylenes using composite zeolite catalysts
EP3539650B1 (en) 2018-03-14 2021-03-31 Saudi Arabian Oil Company Methods of producing composite zeolite catalysts for heavy reformate conversion into xylenes
US10894755B2 (en) 2018-10-15 2021-01-19 Saudi Arabian Oil Company Integrated process for optimum production of para-xylene
US10696609B2 (en) 2018-10-15 2020-06-30 Saudi Arabian Oil Company Integrated process for maximizing production of para-xylene from full reformate
US10501389B1 (en) 2018-10-25 2019-12-10 Saudi Arabian Oil Company Process and system for the production of para-xylene and benzene from streams rich in C6 to C12+ aromatics
TWI749489B (zh) * 2019-03-29 2021-12-11 美商艾克頌美孚化學專利股份有限公司 用於轉化芳族化合物之觸媒及方法
CN112745926A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 处理催化裂解汽油的方法和系统、多产低碳烯烃和轻质芳烃的工艺和装置
US10981160B1 (en) 2019-12-19 2021-04-20 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
JP2023542418A (ja) 2020-09-27 2023-10-06 中国石油化工股▲ふん▼有限公司 不均化およびトランスアルキル化触媒、ならびに調製、ならびにそれらの利用

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308069A (en) * 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3729409A (en) * 1970-12-24 1973-04-24 Mobil Oil Corp Hydrocarbon conversion
US3832449A (en) * 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3767568A (en) * 1971-03-19 1973-10-23 Mobil Oil Corp Hydrocarbon conversion
US3957621A (en) * 1974-06-17 1976-05-18 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US3948758A (en) * 1974-06-17 1976-04-06 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US3965208A (en) * 1975-01-06 1976-06-22 Mobil Oil Corporation Methylation of toluene
US4100215A (en) * 1974-09-25 1978-07-11 Mobil Oil Corporation Selective production of para-xylene
US3965209A (en) * 1975-01-06 1976-06-22 Mobil Oil Corporation Selective production of para-xylene
US4001346A (en) * 1975-01-06 1977-01-04 Mobil Oil Corporation Selective production of para-xylene
US4052476A (en) * 1975-04-24 1977-10-04 Mobil Oil Corporation Toluene disproportionation over zeolite catalyst
US4016218A (en) * 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4016219A (en) * 1975-08-22 1977-04-05 Mobil Oil Corporation Disproportionation of toluene
US4007231A (en) * 1975-11-24 1977-02-08 Mobil Oil Corporation Selective production of para-xylene
US4029716A (en) * 1975-12-08 1977-06-14 Mobil Oil Corporation Selective production of para-xylene
US4011276A (en) * 1976-04-28 1977-03-08 Mobil Oil Corporation Disproportionation of toluene
US4117026A (en) * 1976-05-12 1978-09-26 Mobil Oil Corporation Selective production of para dialkyl substituted benzenes
US4150062A (en) * 1976-12-20 1979-04-17 Mobil Oil Corporation Light olefin processing
US4127471A (en) * 1977-07-28 1978-11-28 Texaco Inc. Hydrocracking alkylaromatic-containing hydrocarbons at mild cracking conditions and then subjecting the alkylaromatic hydrocarbon to alkyl transfer
US4152364A (en) * 1978-01-19 1979-05-01 Mobil Oil Corporation Selective production of para-xylene
US4418235A (en) * 1980-02-14 1983-11-29 Mobil Oil Corporation Hydrocarbon conversion with zeolite having enhanced catalytic activity
US4380685A (en) * 1980-05-19 1983-04-19 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
DE3117135A1 (de) * 1981-04-30 1982-11-18 Bayer Ag, 5090 Leverkusen Kristallines alumosilicat, verfahren zu dessen herstellung sowie dessen verwendung zur katalytischen umwandlung von methanol und/oder dimethylether in kohlenwasserstoffe
US4365104A (en) * 1981-06-26 1982-12-21 Mobil Oil Corporation Para-selective zeolite catalysts treated with sulfur compounds
US4367359A (en) * 1981-06-26 1983-01-04 Mobil Oil Corporation Para-selective zeolite catalysts treated with carbon dioxide
US4370508A (en) * 1981-06-26 1983-01-25 Mobil Oil Corporation Para-selective zeolite catalysts treated with nitrogen compounds
ZA861382B (en) * 1986-02-24 1987-10-28 Mobil Oil Corp Process for improving the octane number of cracked gasolines
US4954325A (en) * 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
US4812223A (en) * 1987-05-01 1989-03-14 Mobil Oil Corporation Hydrocracking naphthas using mildly steamed, noble metal-containing zeolite beta
US4857666A (en) * 1987-09-11 1989-08-15 Uop Alkylation/transalkylation process
US4891458A (en) * 1987-12-17 1990-01-02 Innes Robert A Liquid phase alkylation or transalkylation process using zeolite beta
US5030787A (en) * 1990-01-24 1991-07-09 Mobil Oil Corp. Catalytic disproportionation/transalkylation utilizing a C9+ aromatics feed
US5406016A (en) * 1993-06-07 1995-04-11 Exxon Research And Engineering Company Transalkylation of benzene with heavy catalytic naphtha
TW504501B (en) * 1995-02-10 2002-10-01 Mobil Oil Corp Process for converting feedstock comprising C9+ aromatic hydrocarbons to lighter aromatic products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484078C2 (ru) * 2005-08-30 2013-06-10 Бп Корпорейшн Норт Америка Инк. Способ получения изомеров ксилола (варианты)
WO2014055212A1 (en) * 2012-10-05 2014-04-10 Uop Llc Low pressure transalkylation process
RU2665477C2 (ru) * 2014-10-31 2018-08-30 Чайна Петролеум & Кемикал Корпорейшн Способ получения ароматических углеводородов

Also Published As

Publication number Publication date
ES2180181T3 (es) 2003-02-01
DE69807476T2 (de) 2003-01-02
CN1111518C (zh) 2003-06-18
EP0988265B1 (en) 2002-08-28
CN1259930A (zh) 2000-07-12
TW402587B (en) 2000-08-21
CA2290694A1 (en) 1998-12-17
KR100534062B1 (ko) 2005-12-07
AU8070598A (en) 1998-12-30
BG103960A (en) 2000-06-30
AU738979B2 (en) 2001-10-04
EP0988265A4 (en) 2000-10-04
JP4021943B2 (ja) 2007-12-12
JP2002504946A (ja) 2002-02-12
ID24255A (id) 2000-07-13
EP0988265A1 (en) 2000-03-29
CA2290694C (en) 2008-07-29
DE69807476D1 (de) 2002-10-02
PT988265E (pt) 2002-11-29
KR20010013333A (ko) 2001-02-26
PL337778A1 (en) 2000-09-11
US5942651A (en) 1999-08-24
WO1998056741A1 (en) 1998-12-17

Similar Documents

Publication Publication Date Title
RU2183611C2 (ru) Способ переработки тяжелых ароматических углеводородов
EP0808299B1 (en) Heavy aromatics processing
EP0234684B1 (en) Xylene isomerization process
US3948758A (en) Production of alkyl aromatic hydrocarbons
US4113788A (en) Selective production of para-xylene
JP5349312B2 (ja) レニウム含有トランスアルキル化触媒とその製造方法および使用
KR20120099157A (ko) 중질 방향족 탄화수소 공급원료의 트랜스알킬화
JP2010535223A (ja) 供給材料の統合処理を用いるキシレン製造方法及び装置
US6518472B1 (en) Stabilized dual bed xylene isomerization catalyst system
JP2019531298A (ja) 重質芳香族炭化水素の不均化およびトランスアルキル化
CS207496B1 (en) method of isomerization of the xylene
JPS6024770B2 (ja) キシレンの接触異性化方法
US5082984A (en) Dual function catalyst and isomerization therewith
RU2727190C2 (ru) Улучшенный катализатор превращения этилбензола в способе изомеризации ксилола
KR20010033329A (ko) 메타-크실렌의 제조 방법
CA2209658C (en) Heavy aromatics processing
EP0434347A1 (en) Xylene isomerization process
US11053176B2 (en) Process for co-production of mixed xylenes and high octane C9+ aromatics
JP2023523928A (ja) 重質芳香族化合物の、低環飽和のより軽質の芳香族化合物への変換、及び炭化水素クラッキング
MXPA97006078A (en) Aromatic processing pesa

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040613