RU2168687C2 - Способ снижения выброса nox из печной установки - Google Patents

Способ снижения выброса nox из печной установки Download PDF

Info

Publication number
RU2168687C2
RU2168687C2 RU98117067/03A RU98117067A RU2168687C2 RU 2168687 C2 RU2168687 C2 RU 2168687C2 RU 98117067/03 A RU98117067/03 A RU 98117067/03A RU 98117067 A RU98117067 A RU 98117067A RU 2168687 C2 RU2168687 C2 RU 2168687C2
Authority
RU
Russia
Prior art keywords
zone
fuel
furnace
burned
temperature
Prior art date
Application number
RU98117067/03A
Other languages
English (en)
Other versions
RU98117067A (ru
Inventor
Хундебель Серен
Original Assignee
Ф.Л. Смидт Энд Ко. А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8090335&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2168687(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ф.Л. Смидт Энд Ко. А/С filed Critical Ф.Л. Смидт Энд Ко. А/С
Publication of RU98117067A publication Critical patent/RU98117067A/ru
Application granted granted Critical
Publication of RU2168687C2 publication Critical patent/RU2168687C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Ecology (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Изобретение относится к способу снижения выброса NOx из печной установки для тепловой обработки сырьевых материалов, в которой топливо можно сжигать в, по меньшей мере, трех разных зонах. В одной из этих, по меньшей мере, трех зон сжигают топлива в количестве "с", во второй из этих зон - в количестве "b", причем в эту вторую зону подают также NO-содержащие отходящие газы из других, по меньшей мере, двух зон. В оставшейся из этих трех зон сжигают топливо в количестве "а", и в эти зоны подают, по меньшей мере, часть сырьевых материалов вместе с кислородсодержащим газом. Общее количество топлива, b + а, сжигаемое во второй и в последней зонах, определяют с учетом необходимости обработки сырьевых материалов. Когда печная установка используется для производства цементного клинкера, тепловая обработка состоит в предварительном нагревании, кальцинировании, спекании и охлаждении минеральных сырьевых материалов. Перед и после в направлении технологического процесса регулируют количества топлива "b" и "а", пока не будет достигнуто минимальное содержание NO в отходящих газах из зоны, в которую подают NO-содержащие отходящие газы из всех других зон сжигания. Технический результат - снижение выброса NOx из печной установки. Одновременное использование топлива с низкой активностью нефтяного кокса, антрацита и других сортов угля с низким газосодержанием. 9 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу снижения выброса NOx из печной установки, в которой для тепловой обработки сырьевых материалов используются виды топлива с низкой испаряемостью и в которой топливо можно сжигать, по меньшей мере, в трех разных зонах. В одной из этих, по меньшей мере, трех зон топливо сжигают в количестве "c", а во второй из этих зон - в количестве "b", причем в эту вторую зону подают также NO-содержащие отходящие газы из других, по меньшей мере, двух зон. В оставшейся из этих, по меньшей мере, трех зон сжигают топливо в количестве "a", и в эти зоны подают, по меньшей мере, часть сырьевых материалов вместе с кислородсодержащим газом. Общее количество топлива b + a, сжигаемое во второй и в последних зонах, определяют с учетом необходимости обработки сырьевых материалов, при этом количества топлива "a" и "b", сжигаемые во второй и последней зонах, регулируют до и после по направлению технологического процесса до тех пор, пока в отходящих газах из второй зоны не будет достигнуто минимальное содержание NO.
Окислы азота NOx образуются во время горения вследствие окисления азота, содержащегося в топливе, и окисления азота, содержащегося в воздухе для горения. В случае, если температура в зоне горения меньше, чем 1200oC, NOx образуются только на основе азота, который присутствует в топливе. Этот вид NOx называют топливными Nox. Если температуру повысить до уровня выше 1200oC, окислы азота будут также образовываться на основе азота, содержащегося в воздухе для горения. Этот вид NOx называют термическими NOx. Приблизительно 95% окислов азота, которые образуются в виде топливных NOx и термических NOx, составляет окись азота NO.
В системе, в которой сжигают азотсодержащее топливо, могут происходить следующие виды реакций:
(1) Nтопливо + O ---> NO
(2) Nтопливо + NO ---> N2 + O
Реакция (1) показывает, что образование NO в зоне будет зависеть от содержания азота в топливе и от содержания кислорода в газах в этой зоне. Реакция (2) показывает, что если NO уже присутствует в газе, который подают в эту зону, то количество NO, присутствующего в поданном газе, будет уменьшено посредством соединений азота, которые выделяются из топлива. Таким образом, результирующее образование NO также зависит от содержания NO в поданном газе, а так как с повышением температуры скорость реакции (2) увеличивается быстрее, чем скорость реакции (1), то повышение температуры в конечном счете приведет к снижению количества NOx, которые выбрасываются из зоны кальцинирования. В связи с высокотемпературным горением в кальцинаторе известно, что если повысить температуру приблизительно на 100oC, то можно будет снизить выброс NOx из кальцинатора на 10-15%. Верхний предел этого предпочтения составляет 1200oC, так как при этой температуре образование термических NOx из воздуха для горения будет превышать уменьшение NO по реакции (2).
Когда печная установка используется для производства цементного клинкера, тепловая обработка состоит в предварительном нагревании, кальцинирования, спекании и охлаждении минеральных сырьевых материалов.
Три зоны, где сжигается азотосодержащее топливо, находятся в зоне спекания в печи и в двух местах в зоне кальцинирования - в кальцинаторе и, по меньшей мере, в одной обжиговой камере. Согласно описанию этого изобретения "обжиговой камерой" является зона, где сжигается топливо и куда одновременно вводятся обрабатываемые материалы. "Кальцинатором" является обжиговая камера, расположенная на газоходе печи, через который будут пропускать отходящие газы из печи.
В печной установке для производства цементного клинкера температура будет превышать 1200oC только в самой печи для спекания. Необходимые температура и время пребывания в печи зависят от свойств сырьевых материалов. Для сырьевого материала с плохой способностью к обжигу, следовательно, потребуются более высокая температура и/или удлиненное время пребывания. Такие условия с высокой температурой пламени вплоть до 2000oC существенно увеличат степень выброса NOx.
Как показали измерения, содержание летучих компонентов в используемом топливе и температура, при которой осуществляется кальцинирование, являются факторами, которые влияют на образование NOx в зоне кальцинирования. Чем выше содержание летучих компонентов в топливе, тем, по-видимому, меньше количество Nfuel *) (x)Nfuel - азот топлива /прим. перев./), который превращается в NOx.
Общепризнанным фактором является то, что можно достигнуть различных преимуществ, создавая зону кальцинирования с дополнительной обжиговой камерой, которая расположена таким образом, чтобы в нее поступал исключительно третичный воздух от холодильника. Такая обжиговая камера считалась бы включенной в зону кальцинирования, если бы в эту камеру вводились сырьевые материалы.
Установка этого типа описана в Европейском патенте N 103423 /Ф.Л. Шмидт энд кампэни, A/C, соответствует DK-C-151319/. Отсюда известна установка /SLC-S/ для кальцинирования сырьевых материалов для производства цемента, в которой учтено то, что может оказаться трудным полное выгорание топлива, которое используется в кальцинаторе. В этой установке сырьевую муку после прохождения через циклонный подогреватель (18, 18', 19, 20, 21) подают в обжиговую камеру 4, в которой сырьевой материал кальцинируют в горячем воздухе от холодильника 2. После подогрева сырьевую муку направляют в зону кальцинирования в два места: в обжиговую камеру 4 и в газоход печи 28 или камеру для выдерживания 29. Как указано в п. 4 формулы изобретения, в газоход печи 28 топливо можно подавать через горелку 45, но это дополнительное топливо подается с целью обеспечения возможности увеличения количества сырьевой муки в газоходе печи.
Из патента США N 4.014.641 /Мицубиси/ известна установка для кальцинирования сырьевых материалов для производства цемента, в которой количество окиси азота в отходящих газах печи снижено путем образования в газоходе печи зоны, в которую подают восстановительный газ. Горячий воздух из холодильника /по трубопроводу 5/ и горячий воздух из печи /по трубопроводу 13/ направляют в циклонный подогреватель (14, 15, 16, 17), в котором сырьевой материал подогревают в противотоке с горячим газом от холодильника и от печи. В зоне газохода печи, которая расположена ниже подающего трубопровода 5 от холодильника, создают восстановительные условия, вводя восстановительные газы по трубопроводу 12. Восстановительные газы образуются в кальцинаторе 8, так как объем воздуха, вводимого в кальцинатор, является достаточным для газификации топлива в кальцинаторе, но недостаточным для полного выгорания топлива в кальцинаторе. Особый недостаток этой установки заключается в том, что невозможно использовать виды топлива, которые трудно воспламеняются и медленно горят, как например, нефтяной кокс, антрацит и другие сорта угля с низким газосодержанием, так как они образовывали бы большой несгоревший коксовый остаток, который осаждался бы во вращающейся печи, и, как следствие этого, создавал бы проблемы в виде выброса серы и образования отложений.
Из патента США N 5364265 (КЛЕ) известна еще одна система кальцинирования, в которой ограничен выброс NOx благодаря образованию восстановительных газов, а именно CO и H в обжиговой камере 20. Кокс, образующийся в обжиговой камере во время этого процесса, обладает весьма характерными реакционноспособными свойствами. Однако оптимизация этого способа в отношении минимального выброса NOx является сравнительно трудной, так как во время работы можно регулировать лишь несколько параметров. Количество топлива, сжигаемого в обжиговой камере, полностью зависит от желаемой степени кальцинирования сырьевой муки.
Из (I) известен способ снижения выброса NOx из печной установки для тепловой обработки сырьевых материалов, в которой N-содержащее топливо можно сжигать в двух разных зонах.
Изобретение направлено на создание способа, посредством которого достигается снижение выброса NOx из печной установки, позволяя одновременно использовать виды топлива с низкой активностью, как например, нефтяной кокс, антрацит и другие сорта угля с низким газосодержанием в зонах со сравнительно низкой температурой. При производстве цементного клинкера зоны со сравнительно низкой температурой находятся в устройстве (устройствах) для кальцинирования, расположенном перед вводом сырьевой муки, в печь.
Согласно изобретению эта цель достигается тем, что перед и после в направлении технологического процесса соответственно регулируют количество топлива "b", используемого для сжигания в зоне, в которую подают NO-содержащие отходящие газы, и количество топливо "a", используемого для сжигания в зоне, в которую подают сырьевые материалы и кислородсодержащий газ, пока не будет достигнуто минимальное содержание NO в отходящих газах из зоны, в которую подают NO-содержащие отходящие газы из всех других зон сжигания. Температура в зонах, где сжигают топливо "b" и "a", составляет в пределах 900-1200oC.
В действительности этот способ со сжиганием топлива в обжиговой камере, расположенной на трубопроводе для третичного воздуха, и в кальцинаторе, который является обжиговой камерой, расположенной на газоходе печи, представляет собой комбинацию ILC-установки /с установленным в линию кальцинатором/ и SLC-S-установки /с расположенным на отдельной линии кальцинатором и с единственным подогревателем/. Следовательно, было бы разумно предположить, что выброс NOx из такой комбинированной установки представлял бы собой среднюю величину между выбросом NOx из ILC-установки и выбросом из SLC-S-установки, равнозначный производительности. Однако, весьма неожиданно оказалось, что выброс NOx из установки, которая действует согласно способу по п. 1 формулы изобретения, ниже, чем выброс, достигаемый в любой из двух традиционных установках типов ILC и SLC-S.
Кроме того, весьма несложно преобразовать существующие ILC-установки в установку, которая может работать согласно способу по п. 1 формулы изобретения, а это означает возможность использования видов топлива, которые трудно сжигать в зоне кальцинирования.
В существующих SLC-S-установках, описанных в Европейском патенте N 103423, уже можно сжигать топливо в газоходе печи для образования восстановительной зоны, и, следовательно, изобретение может быть применено в этих установках без необходимости в каких-либо больших изменениях в конструкции установки.
Даже если в газовом канале печи будет сжигаться умеренное количество "b" топлива, например, около 10% от общего количества топлива, которое используют в зоне кальцинирования, можно будет достигнуть значительного снижения выброса NOx из зоны кальцинирования, но обычно будет обнаруживаться минимум выброса NOx из зоны кальцинирования, когда в кальцинаторе будут сжигать топливо в количестве "b", находящемся в пределах между 25 и 75%.
Чтобы во время процесса производства цементного клинкера уменьшить до минимума выброс NOx, процесс в обжиговой камере и в кальцинаторе полезно проводить при сравнительно высокой температуре, так как скорость реакции (2) увеличивается относительно скорости реакции (1). Кроме того, при более высоких температурах увеличивается сгорание медленно сгорающих видов топлива, как например, нефтяного кокса и антрацита. При использовании этого процесса для производства цемента верхний предел рабочих температур составляет около 1200oC. При температуре около 1200oC начинается образование жидкой фазы в сырьевой муке, в результате чего сырьевая мука становится липкой.
Предпочтительным способом регулирования температуры в кальцинаторе и обжиговой камере является подача контролируемым образом сырьевой муки в зону кальцинирования. Так, особенно полезным оказалось разделение сырьевой муки, подаваемой в зону кальцинирования, на три отдельных потока. Эти три отдельных потока затем вводят перед кальцинатором в него и после него в дополнение к вводу сырьевой муки в обжиговую камеру. В связи с этим разделением на потоки устанавливают температуру в 1000 - 1150oC в той части зоны кальцинирования, которая следует непосредственно после смеси, состоящей из отходящих газов из печи, отходящих газов и частично кальцинированных сырьевых материалов из обжиговой камеры и топлива в кальцинаторе, но перед введением остальной части сырьевых материалов. Эта температурная зона обеспечивает подходящее разложение NOx даже при использовании трудносгораемого топлива, как например, нефтяного кокса и антрацита.
Теперь изобретение будет подробнее описано со ссылкой на чертежи, на которых:
фиг. 1 показывает пример установки, посредством которой может быть осуществлен способ согласно формуле изобретения;
фиг. 2 показывает выброс NOx из ряда ILC-установок как функцию количества NOx, вводимых в кальцинатор;
фиг. 3 показывает выброс NOx из кальцинатора как функцию количества топлива, вводимого в кальцинатор относительно общего количества топлива, вводимого в зону кальцинирования.
Печная установка на фиг. 1 представляет собой печную установку для производства цементного клинкера. Она содержит печь 1, кальцинатор 2 и обжиговую камеру 3. После печи 1 расположен холодильник 4 для охлаждения клинкера, из которого горячий воздух по трубопроводу 5 направляется в зону кальцинирования. Горячий воздух распределяется между двумя трубопроводами 5a и 5b, которые направляют воздух в кальцинатор 2 и обжиговую камеру 3. В кальцинатор 2 по трубопроводу 6 поступают горячие отходящие газы из печи 1, а по трубопроводу 7 - горячие отходящие газы из обжиговой камеры 3, смешанные с частично кальцинированным материалом.
Из кальцинатора 2 кальцинированный материал во взвешенном состоянии направляется по трубопроводу 8 в сепарирующий циклон 9. В сепарирующем циклоне 9 взвесь материала в газе разделяется на поток кальцинированного материала и поток горячего газа. Кальцинированный сырьевой материал по трубопроводу 10 подается во вращающуюся печь 1, а поток горячего газа по трубопроводу 11 направляется в подогреватель взвеси с несколькими циклонами. На фиг. 1 показан только самый нижний циклон 12 в подогревателе.
Из циклона 12 подогретый сырьевой материал через трехперегородочное устройство 13 направляется вниз в зону кальцинирования по трем трубопроводам 14, 15 и 16. Сырьевой материал по трубопроводу 14 подается в место после кальцинатора 2 или в собственно кальцинатор 2, по трубопроводу 15 - в отходящие газы из печи 1, так чтобы сырьевая мука направлялась в кальцинатор 2, и по трубопроводу 16 - в обжиговую камеру 3. По трубопроводу 16 материал может направляться или непосредственно в обжиговую камеру 5, или в трубопровод 5 для третичного воздуха. На фиг. 1 показан последний вариант.
Общий поток сырьевого материала контролируемым образом непрерывно распределяется между тремя трубопроводами 14, 15 и 16, а в особых случаях можно, например, выбрать прекращение потока материала через один или несколько трубопроводов 14, 15 и 16.
В этой установке топливо можно сжигать в кальцинаторе 2 с помощью горелки 17 (b ккал/кг клинкера), в обжиговой камере 3 с помощью горелки 18 (a ккал/кг клинкера) и в печи 1 с помощью горелки 19 (c ккал/кг клинкера).
На фиг.2 показаны зарегистрированные данные по образованию NO в ряде ILC-кальцинаторах как функция количества NO, которое поступает в кальцинатор из печи. Так как эти данные относятся к измерениям, сделанным с многих разных установок, на которых обжиг проводился с разными видами топлива, имеющими различия в отношении теплотворной способности и содержания азота, выбрано безразмерное представление данных, где
Figure 00000002
;
Figure 00000003

- коэффициент пересчета Nтоплива в NO,
и NOвх, NOвых и Nтопливо подсчитаны в кмоль/ч или кг N-эквивалентов/кг клинкера.
Если построить кривую по экспериментальным данным, то выясняется следующая зависимость:
y = 15 • exp(-X) - 1
Если можно выбрать величину x, то x следует выбирать так, чтобы y < 0, что означает, что количество NOx, выходящих из кальцинатора, меньше количества NOx, поступающих в кальцинатор. Если сжигание можно будет проводить в трех местах в печной установке, как это описано в п. 1 формулы изобретения, то можно будет выбрать такую величину x.
Когда пример вычислений с использованием вышеуказанного выражения для y делают для установки, в которой топливо можно сжигать в кальцинаторе, а также в обжиговой камере, то получают кривую на фиг. 3.
В этом примере в печной установке сжигается топливо в общем количестве 750 ккал/кг клинкера, из которого c - 300 ккал/кг клинкера сжигается во вращающейся печи. Если во вращающейся печи в качестве топлива использовался бы нефтяной кокс, то коэффициент пересчета Nтопливо в NO был бы сравнительно небольшим вследствие того факта, что температура пламени нефтяного кокса является не особенно высокой и, следовательно, количество образующихся термических NOx будет очень небольшим, хотя в то же самое время температура в печи, равная около 1400oC, будет достаточно высокой для того, чтобы сделать реакцию (2) доминирующей. Вследствие этого коэффициент пересчета для печи устанавливается равным yпечи = 0,3, что является типичным для печей со сжиганием нефтяного кокса.
В зоне кальцинирования сжигание происходит при a + b = 450 ккал/кг клинкера, которое распределяется на b ккал/кг клинкера в кальцинаторе и 450-b ккал/кг клинкера в обжиговой камере. Если температура в обжиговой камере будет поддерживаться равной около 1100oC, то коэффициент пересчета для обжиговой камеры обычно будет составлять порядка Yобжиг = 0,5 в случае сжигания нефтяного кокса.
К кальцинатору применимы следующие формулы:
Figure 00000004

Figure 00000005

Если b/a + a = 0, то установка используется как SLC-S-установка, и в этом случае NOx находится на абсолютно максимальном уровне. Если b/a + a = 1, то тогда a = 0, и установка используется как ILC-установка.
Как ясно из фиг. 3, существует минимальный предел для выброса NOx при b/a + a ≈ 0,5.
Этот минимальный предел по существу зависит от количества NOx, образующихся в печи. Чем больше ввод NOx из печи в кальцинатор, тем меньше количество "a" топлива, подлежащего сжиганию в обжиговой камере.

Claims (10)

1. Способ снижения выброса NOx из печной установки для тепловой обработки сырьевых материалов, в которой N-содержащее топливо можно сжигать в двух разных зонах, отличающийся тем, что N-содержащее топливо сжигают дополнительно в третьей зоне, в первой зоне сжигают топливо в количестве "с" и подают кислородсодержащий газ, во второй зоне сжигают топливо в количестве "b" и подают NO-содержащие отходящие газы по трубопроводу из первой зоны, и по трубопроводу из третьей зоны, а отходящие газы, выходящие из второй зоны, удаляют из печной установки, в третьей зоне сжигают топливо в количестве "а", и подают кислородосодержащий газ, при этом общее количество топлива b + a, которое сжигают во второй и третьей зонах, определяют по потребности в энергии для достижения желаемой степени тепловой обработки сырьевых материалов, подаваемых в первую зону, при этом отношение "b" к "а" регулируют для достижения минимального содержания NO в отходящих газах из второй зоны, при этом поток сырьевого материала из подогревателя разделяют на три потока, чтобы регулировать температуру во второй и в третьей зоне в пределах 900 - 1200oС, при этом первый из потоков подают в отходящие газы, текущие по трубопроводу из первой зоны во вторую, а второй из этих потоков подают в третью зону, третий поток подают в поток материала через вторую зону после трубопровода, по которому частично кальцинированный материал подают из третьей зоны.
2. Способ по п.1, отличающийся тем, что третий из потоков подают в поток материала в месте после второй зоны.
3. Способ по п. 1 или 2, отличающийся тем, что первой зоной является печь, второй зоной - кальцинатор и третьей зоной, по меньшей мере, одна обжиговая камера.
4. Способ по пп.1, 2 или 3, отличающийся тем, что сырьевые материалы и кислородосодержащий газ подают в верхнюю часть обжиговой камеры (камер), топливо сжигают также в верхней части обжиговой камеры (камер) и, по меньшей мере, частично кальцинированный материал и отходящие газы отводят с низа обжиговых камер.
5. Способ по любому из пп.1 - 4, отличающийся тем, что температура в кальцинаторе находится в пределах 900 - 1150oС.
6. Способ по любому из пп.1 - 5, отличающийся тем, что температура в обжиговой камере (камерах) находится в пределах 900 - 1200oС.
7. Способ по любому из пп.1 - 6, отличающийся тем, что температура в обжиговой камере (камерах) находится в пределах 1000 - 1200oС.
8. Способ по любому из пп.1 - 7, отличающийся тем, что температура в кальцинаторе находится в пределах 950 - 1150oС.
9. Способ по любому из пп.1 - 6, отличающийся тем, что температура в обжиговой камере (камерах) находится в пределах 1050 - 1200oС.
10. Способ по любому из пп.1 - 7, отличающийся тем, что температура в кальцинаторе находится в пределах 1000 - 1150oС.
RU98117067/03A 1996-02-14 1997-01-22 Способ снижения выброса nox из печной установки RU2168687C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK15096 1996-02-14
DK0150/96 1996-02-14

Publications (2)

Publication Number Publication Date
RU98117067A RU98117067A (ru) 2000-07-20
RU2168687C2 true RU2168687C2 (ru) 2001-06-10

Family

ID=8090335

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98117067/03A RU2168687C2 (ru) 1996-02-14 1997-01-22 Способ снижения выброса nox из печной установки

Country Status (20)

Country Link
US (1) US5975891A (ru)
EP (1) EP0880481B1 (ru)
JP (1) JP4302185B2 (ru)
KR (1) KR100450040B1 (ru)
CN (1) CN1124998C (ru)
AU (1) AU702018B2 (ru)
BR (1) BR9707516A (ru)
CA (1) CA2240442C (ru)
CZ (1) CZ295517B6 (ru)
DE (1) DE69704657T2 (ru)
DK (1) DK0880481T3 (ru)
ES (1) ES2157061T3 (ru)
GR (1) GR3036257T3 (ru)
ID (1) ID15941A (ru)
PL (1) PL183836B1 (ru)
RU (1) RU2168687C2 (ru)
TW (1) TW410263B (ru)
UA (1) UA49875C2 (ru)
WO (1) WO1997030003A1 (ru)
ZA (1) ZA97975B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507460C2 (ru) * 2008-08-25 2014-02-20 Полизиус Аг Способ и шахтная печь для обжига кускового материала

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210154B1 (en) 1997-04-22 2001-04-03 Blue Circle Industries, Inc. Treatment of exhaust gases from kilns
HN1998000031A (es) * 1997-06-11 1999-06-10 Basf Ag Metodo y aparatos mejorados para recuperar la energia de desechos mediante combustion de los mismos hornos industriales .
US6383283B1 (en) 1997-12-02 2002-05-07 Cement Petcoptimizer Company Control of cement clinker production by analysis of sulfur in the end product
US6050813A (en) * 1997-12-02 2000-04-18 Cement Petcoptimizer Company Control of cement clinker production by analysis of sulfur in the end product
DK174194B1 (da) * 1998-02-04 2002-09-09 Smidth & Co As F L Ovnanlæg, samt fremgangsmåde til fremstilling af cement
DE19854582B4 (de) * 1998-11-25 2007-11-22 Khd Humboldt Wedag Gmbh Verfahren zur thermischen Behandlung von Zementrohmehl
US6183244B1 (en) 1999-04-14 2001-02-06 Cement Petcoptimizer Company Control of cement clinker production in a wet process rotary kiln by analysis of sulfur in the end product
CZ292416B6 (cs) * 1999-06-10 2003-09-17 Psp Engineering A. S. Kalcinační zařízení
US6447288B1 (en) * 2000-06-01 2002-09-10 Energy Research Company Heat treating apparatus
DK174307B1 (da) * 2000-08-24 2002-12-02 Smidth & Co As F L Fremgangsmåde samt anlæg til fremstilling af cementklinker.
US6672865B2 (en) * 2000-09-11 2004-01-06 Cadence Enviromental Energy, Inc. Method of mixing high temperature gases in mineral processing kilns
ATE298872T1 (de) * 2002-03-07 2005-07-15 Smidth As F L Verfahren und anlage zur herstellung von zementklinker
US6773259B1 (en) * 2003-08-05 2004-08-10 Giant Cement Holding Inc. Continuous solid waste derived fuel feed system for calciner kilns
DE10340414A1 (de) * 2003-09-02 2005-03-24 Polysius Ag Anlage und Verfahren zur thermischen Behandlung von mehlförmigen Rohmaterialien
DE10358317A1 (de) * 2003-12-12 2005-07-14 Polysius Ag Anlage und Verfahren zur thermischen Behandlung von Rohmaterial
DE102004018571A1 (de) * 2004-04-16 2005-11-03 Polysius Ag Anlage und Verfahren zur Herstellung von Zementklinker
US7551982B2 (en) * 2005-09-20 2009-06-23 Holcim (Us) Inc. System and method of optimizing raw material and fuel rates for cement kiln
DE102005044840A1 (de) * 2005-09-20 2007-03-29 Polysius Ag Anlage und Verfahren zur Herstellung von Zementklinker aus Zementrohmaterial
CN100436610C (zh) * 2007-04-06 2008-11-26 中国科学院过程工程研究所 一种在冶金烧结过程中脱除NOx的方法
CN103512373B (zh) * 2012-06-26 2015-07-15 肖开标 水泥干法窑的节能脱硝装置和方法
CN103335515A (zh) * 2013-07-19 2013-10-02 北京汉能清源科技有限公司 一种水泥回转窑炉的低氮燃烧系统
CN104634097A (zh) * 2014-12-26 2015-05-20 中国建筑材料科学研究总院 降低回转窑内氮氧化物的方法及系统
BR112021008525A2 (pt) 2018-11-02 2021-08-03 Gcp Applied Technologies Inc. produção de cimento
KR102330077B1 (ko) * 2019-10-29 2021-11-24 한국생산기술연구원 실시간 분석 및 저 NOx 연소와 후처리 기술을 적용한 NOx가 저감된 시멘트 제조 장치 및 방법
KR102140953B1 (ko) * 2020-03-18 2020-08-04 킬른에이드 주식회사 소성로 고온 공정가스를 이용한 요소수 증발장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3100661A1 (de) * 1981-01-12 1982-08-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zur thermischen behandlung von feinkoernigem gut, insbesondere zur herstellung von zementklinker
DK151319C (da) * 1982-09-02 1988-05-09 Smidth & Co As F L Anlaeg til braending af pulverformet materiale
DE3426296A1 (de) * 1984-07-17 1986-01-30 Verein Deutscher Zementwerke e.V., 4000 Düsseldorf Verfahren und vorrichtung zur verringerung des stickstoffoxidgehaltes in den abgasen eines zementdrehrohrofens
DE3522883A1 (de) * 1985-06-26 1987-01-08 Krupp Polysius Ag Verfahren und anlage zur waermebehandlung von feinkoernigem gut
DE4123306C2 (de) * 1991-07-13 2000-05-25 Deutz Ag Anlage zur thermischen Behandlung von mehlförmigen Rohmaterialien

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507460C2 (ru) * 2008-08-25 2014-02-20 Полизиус Аг Способ и шахтная печь для обжига кускового материала

Also Published As

Publication number Publication date
CZ258398A3 (cs) 1998-12-16
WO1997030003A1 (en) 1997-08-21
BR9707516A (pt) 1999-07-27
KR100450040B1 (ko) 2004-11-26
UA49875C2 (ru) 2002-10-15
ZA97975B (en) 1997-08-05
EP0880481A1 (en) 1998-12-02
CZ295517B6 (cs) 2005-08-17
CN1124998C (zh) 2003-10-22
DK0880481T3 (da) 2001-06-18
AU1540297A (en) 1997-09-02
PL328405A1 (en) 1999-01-18
TW410263B (en) 2000-11-01
EP0880481B1 (en) 2001-04-25
US5975891A (en) 1999-11-02
ID15941A (id) 1997-08-21
GR3036257T3 (en) 2001-10-31
CA2240442A1 (en) 1997-08-21
AU702018B2 (en) 1999-02-11
JP2000504665A (ja) 2000-04-18
KR19990082334A (ko) 1999-11-25
DE69704657D1 (de) 2001-05-31
CN1211229A (zh) 1999-03-17
ES2157061T3 (es) 2001-08-01
DE69704657T2 (de) 2001-10-11
CA2240442C (en) 2003-09-16
JP4302185B2 (ja) 2009-07-22
PL183836B1 (pl) 2002-07-31

Similar Documents

Publication Publication Date Title
RU2168687C2 (ru) Способ снижения выброса nox из печной установки
US6626662B2 (en) System for manufacturing cement clinker
CN111587233B (zh) 熟料生产装置以及用于在此类装置中生产熟料的方法
RU2181866C1 (ru) Установка для обжига и способ производства цемента
JPS5935850B2 (ja) 粉状原料のか焼方法およびそのプラント装置
CA2417376C (en) Method and plant for manufacturing cement clinker
CS219873B2 (cs) Způsob tepelného zpracování jemnozrnného materiálu a zařízení provádění způsobu
JPH0222018B2 (ru)
KR860001027Y1 (ko) 가연성분이 함유된 분말원료를 사용하는 시멘트원료의 소성장치
JP2021165211A (ja) セメント焼成装置
RU2063594C1 (ru) Способ обжига карбонатного сырья и регенеративная шахтная печь для обжига карбонатного сырья
JP2023028050A (ja) セメントクリンカの製造方法、及びセメントクリンカ製造装置
RU2052717C1 (ru) Способ сжигания твердого топлива
JPH0146466B2 (ru)
SU1567541A1 (ru) Способ обжига цементной сырьевой смеси
SU1446122A2 (ru) Способ получени извести в циклонной печи
Hundeb et al. Method for reducing NO x emission from a kiln plant
JPS6044263B2 (ja) 石炭焚き流動床ボイラの排出灰処理法
JPH0222016B2 (ru)
WO2001023318A1 (en) Method for reducing nox emission from a plant for manufacturing cement clinker
PL122680B2 (en) Method of partial burning of lime-bearing material and apparatus therefor
JPS6023781A (ja) 炉の脱硝装置
PL139408B1 (en) Method of partially burning a raw material mixture,in particular cement meal and apparatus therefor
JPS58151353A (ja) 可燃分を含む粉末原料を使用するセメント原料焼成方法
JPS595541B2 (ja) 竪型焼成装置の石炭燃焼方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150123