RU2167897C2 - Полиолефиновая формовочная масса и формованное изделие - Google Patents

Полиолефиновая формовочная масса и формованное изделие Download PDF

Info

Publication number
RU2167897C2
RU2167897C2 RU93050061/04A RU93050061A RU2167897C2 RU 2167897 C2 RU2167897 C2 RU 2167897C2 RU 93050061/04 A RU93050061/04 A RU 93050061/04A RU 93050061 A RU93050061 A RU 93050061A RU 2167897 C2 RU2167897 C2 RU 2167897C2
Authority
RU
Russia
Prior art keywords
polyolefin
transparency
molding
nmm
mol
Prior art date
Application number
RU93050061/04A
Other languages
English (en)
Other versions
RU93050061A (ru
Inventor
Винтер Андреас (DE)
Винтер Андреас
БОРМУТ Хорст (DE)
БОРМУТ Хорст
Бахманн Бернд (DE)
Бахманн Бернд
Original Assignee
Хехст АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6467713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2167897(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Хехст АГ filed Critical Хехст АГ
Publication of RU93050061A publication Critical patent/RU93050061A/ru
Application granted granted Critical
Publication of RU2167897C2 publication Critical patent/RU2167897C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Abstract

Описывается новая полиолефиновая формовочная масса для тонкостенного литья под давлением, состоящая в основном из полиолефина, полученного из олефина, по крайней мере с 3 С-атомами формулы Ra -CH=CH-Rb, где Ra и Rb, одинаковые или разные, означают водород или C1-15-алкил с прямой или разветвленной цепью или Ra и Rb образуют со связанными с ними атомами кольцо, причем полиолефин может содержать до 10 вес.% этилена или второго олефина с мольной массой более 80000 г/моль, полидисперсностью Мwn = 1:8 - 3,5, коэффициентом вязкости более 70 см3/г, температурой плавления 130-160°С, длиной изотактического блока 30-100, направленной прозрачностью более 30% и экстрагируемой простым эфиром частью менее 2 вес.%. Описывается также формованное изделие. Технический результат - создание формовочной массы, отличающейся высокими прозрачностью и жесткостью и не имеющей запаха и желтой окраски. 2 с. и 3 з.п.ф-лы, 6 табл.

Description

Изобретение относится к очень твердой, прозрачной и жесткой полиолефиновой формовочной массе для использования при литье под давлением, предпочтительно при тонкостенном литье под давлением.
Получение полиолефинов с высокой прозрачностью известно. Для этой цели получают так называемые статистические сополимеры, которые значительно прозрачнее по сравнению с гомополимерами. Однако при этом имеет место отрицательное свойство, а именно снижение температуры плавления, твердости, жесткости и сопротивления при нагрузке по сравнению с гомополимерами (EР-A-0433987, EP-A-0384263).
Для большинства случаев при литье под давлением ухудшение этих свойств недопустимо. Особенно справедливо это для тонкостенного литья под давлением; для получения этим способом формованных изделий, например бокалов, высокая твердость является очень важным и решающим критерием при выборе сырья.
Таким требованиям удовлетворяют полиолефины, например полипропилен, который после полимеризации дополнительно обрабатывают перекисью.
Эти формовочные массы, обозначаемые как КР-полимеры (КР = контролируемые реологией), имеют два существенных недостатка:
1) дополнительная обработка перекисью удорожает целевые продукты и
2) при взаимодействии с перекисью образуются низкомолекулярные фрагменты, имеющие неприятный запах, который проявляется и в изготовленном из полимера фасонном изделии. Как раз в случае, например, бокалов или продовольственных упаковок этот запах нежелателен.
Дополнительно перекисная обработка может вызывать еще и желтое окрашивание.
Наиболее близким техническим решением является полиолефиновая формовочная масса согласно EP 0485322. Известный продукт может использоваться, например, в автомобилестроении в качестве амортизаторов. Однако известная формовочная масса обладает плохой морфологией порошка и, соответственно, не может использоваться для получения формованных изделий путем литья под давлением, особенно тонкостенного литья под давлением.
Таким образом, задачей данного изобретения является получение формовочной массы для литья под давлением, особенно для тонкостенного литья под давлением, которая не проявляет известных из уровня техники отрицательных свойств, то есть формовочной массы в виде порошка с высокой прозрачностью и жесткостью, и сверх этого не имеет запаха и желтой окраски и в то же время с хорошей морфологией порошка.
Показано, что определенные полиолефиновые формовочные массы, которые преимущественно получены полимеризацией с помощью металлоценовых катализаторов без дополнительной обработки как в случае с обработкой перекисью, удовлетворяют вышеназванным требованиям.
Кроме того, неожиданно показано, что эти полиолефиновые формовочные массы при сравнении с КР-полимерами непосредственно на оборудовании для литья под давлением значительно снижают время цикла, следовательно, можно повысить производительность оборудования.
Более высокая жесткость по сравнению с КР-полимерами, кроме того, позволяет уменьшить толщину стенок формованных деталей, что способствует экономии сырья.
Таким образом, предметом настоящего изобретения является полиолефиновая формовочная масса, в основном состоящая из полиолефина, который получен из олефина с, по меньшей мере, 3 C-атомами формулы Ra-CH = CH-Rb, где Ra и Rb одинаковы или различны и означают водород или C1-C15-алкил (с прямой или разветвленной цепью) или Ra и Rb образуют со связанными с ними атомами кольцо. Полиолефиновая формовочная масса может содержать до 10 вес.% этилена и второго олефина, определенного выше, в качестве сомономера.
Полиолефиновая формовочная масса имеет мольную массу Mw более 80000 г/моль, предпочтительно более 100000 г/моль, полидисперсность Mw/Mn от 1,8 до 3,5, предпочтительно от 2,0 до 3,0, коэффициент вязкости более 70 см3/г, предпочтительно более 100 см3/г, температуру плавления от 130 до 160oC, предпочтительно от 140 до 160oC, длину изотактического блока nизо = 30-100, направленную прозрачность более 30%, предпочтительно более 35%, и экстрагируемую простым эфиром часть менее чем 2 вес.%, предпочтительно менее чем 1 вес. %.
Формовочная масса состоит, в основном, из изотактических высокомолекулярных полиолефинов, предпочтительно полипропилена.
Полиолефиновая формовочная масса согласно изобретению предназначена для получения формованных изделий путем литья под давлением, особенно тонкостенного литья под давлением, при этом полиолефиновая масса получена путем полимеризации в присутствии металлоценового катализатора с использованием водорода в количестве не более 3 об.%.
Кроме полиолефина формовочная масса согласно изобретению может содержать еще обычные добавки, например средства для образования центров кристаллизации, стабилизаторы, антиоксиданты, УФ-абсорберы, светостабилизаторы, дезактиваторы металлов, акцепторы радикалов, наполнители и усилители, агенты совместимости, мягчители, добавки для улучшения переработки, эмульгаторы, пигменты, оптические отбеливатели, антипирены, антистатики, вспенивающие агенты. Особенно предпочтительно использование средств для образования центров кристаллизации. Благодаря этому значительно улучшается как жесткость, так и прозрачность. Известными специалисту, подходящими средствами для образования центров кристаллизации являются имеющиеся в больших промышленных масштабах, например, тонкоразмолотые тальк, бензоат натрия или производные сорбитола, как, например, бензилиденсорбитол или дибензилиденсорбитол.
Формовочная масса согласно изобретению отличается высокой прозрачностью и одновременно высокой жесткостью. Обычно эти формовочные массы в виде отлитых под давлением формованных изделий используются повсеместно, где требуется высокая прозрачность и жесткость. Формовочные массы, кроме того, отличаются отсутствием запаха и желтой окраски.
Областью использования формовочных масс по изобретению является тонкостенное литье под давлением.
Следующие примеры подробнее объясняют изобретение:
Mw - мольная средневесовая масса (г/моль), определенная гельпроникающей хроматографией;
Mw/Mn - полидисперсность, определенная гельпроникающей хроматографией;
ИИ - индекс изотактичности (13C-ЯМР-спектроскопия);
nизо - средняя длина изотактического блока (13C-ЯМР-спектроскопия);
nпэ - средняя длина полиэтиленового блока (13C-ЯМР-спектроскопия);
KB - коэффициент вязкости, измеренный при 135oC для 0,1%-ного раствора декагидронафталина в капиллярном вискозиметре;
ИР (230/2,16) - индекс расплава при 230oC, нагрузка 2,16 кг (DIN 53735);
Определение температуры плавления с помощью DSC (20oC/мин);
Прозрачность - отлитые под давлением пластины 80 х 80 х 1 мм, измерение пропускаемого количества света в видимой области (Tнапр, направленная светопроницаемость, в последующем обозначена как прозрачность);
ТВШ - твердость при вдавливании шарика (в приложении к DIN 53456, формованный (4 мм) образец для испытания на растяжение типа A по ISO 3167, температура литья 240oC);
E - модуль растяжения - показатель секущей линии по DIN 53497-Z;
Ударная вязкость по Изоду - ISO 180/IC (измерена при 20oC);
Нормированная величина желтизны (НЖ) - по ASTM D 1925-77, DIN 6167 (испытуемый образец: пластины, сформованные литьем под давлением, 80х80х2,0 мм);
Плотность - определение плотности при 23oC по DIN 53479, способ А;
Тепловое испытание на сжатие с использованием шарика - по IEC 335/1, раздел 30.1;
Теплостойкость (А по Вику) - по ISO 306 - 1987 или DIN 53460.
Требуемые согласно стандарту испытуемые образцы (формованные изделия) получены на литьевой машине Kraus Maffei KM 90/210 В. Температура массы составляла 250±2oC. Скорость фронта течения составляла (300±20) мм/с, температура пресс-формы (30±3)oC. Параметры цилиндра пластикации: диаметр шнека 30 мм, число оборотов шнека 420 об/мин, давление впрыска 2222 бар и расчетный объем впрыска при 135 мм длины хода составлял 95 см3.
A. Полимеризация
Металлоценовые катализаторы получены как описано, например, в DE-P 4035883.6 (EP-заявка N 0485823 A.1). В опытах по полимеризации ориентировались, например, на DE-P 4035886.0 (EP-заявка N 0485822 A2), однако они имеют только ориентировочный характер.
ПРИМЕР 1
Сухой 150 дм3-реактор промывали пропиленом и загружали при 20oC 80 дм3 бензиновой фракции с интервалом кипения 100-120oC. После подачи 50 л жидкого пропилена добавляли 64 см3 раствора метилалюмоксана (раствор в толуоле, из расчета на 100 ммолей Al). Содержимое реактора нагревали до 40oC и дозировали водород до достижения его содержания в газовой камере реактора 1,2 об.%. 19, 8 мг рац-диметилсилилбис(2-метил-1-инденил)циркондихлорида растворяли в 32 мл толуольного раствора метилалюмоксана (из расчета на 50 ммолей Al) и вводили в реактор. Поддерживая постоянное содержание водорода в реакторе, равное 1,2±0,2 об.%, полимеризовали при 40oC 18 ч. Полимеризацию прерывали газообразным CO2 и суспензию полимера спускали в дополнительно подключенный реактор. Суспензионная среда отделялась от порошка полимера через фильтровальный патрон и с помощью перегонки с водным паром, и водная суспензия полимера отделялась от воды с помощью напорного нутч-фильтра. Порошок сушили при 80oC/100 мбар 24 ч. Выход: 19,6 кг.
Для порошка измерены следующие параметры: ИР (230/2,16) = 32 г/10 мин; КВ = 142 см3/г; Mw = 170500 г/моль, Mw/Mn = 2,2; температура плавления 151oC, ИИ = 97,2%, nизо = 59, прозрачность более 30%.
ПРИМЕР 2
Был повторен пример 1, однако использовали концентрацию водорода 1,8±0,2, количество металлоцена составляло 17,3 мг. Получено 17,9 кг порошкообразного полимера.
Для порошка измерены следующие параметры: ИР (230/2,16) = 58 г/10 мин; KB = 114 см3/г; Mw = 126000 г/моль, Mw/Mn = 2,1; температура плавления 150oC, ИИ = 96,8%, nизо = 53, прозрачность более 35%.
ПРИМЕР 3
Был повторен пример 2, однако 250 г этилена равномерно подавали в реактор в течение всего времени полимеризации (15 ч). Получено 18,5 кг порошкообразного полимера.
Для порошка измерены следующие параметры: содержание этилена 1,25 вес.%, nпэ < 1,2 (то есть большое число этиленовых звеньев изолированы в полимерной цепи). ИР (230/2,16) = 49 г/10 мин; КВ = 131 см3/г; Mw = 139000 г/моль, Mw/Mn = 2,4; температура плавления 148oC, прозрачность более 35%.
ПРИМЕР 4
Повторен пример 2, однако использовали металлоцен рац-диметилсилилбис (2-метил-4-фенил-1-инденил)-ZrCl2, температура полимеризации 50oC и использованное количество водорода составляло 2,95 об.%.
Получено 17,0 кг порошка полимера.
Для порошка измерены следующие параметры: ИР (230/2,16) = 30 г/10 мин; KB - 147 см3/г; Mw = 189500 г/моль, Mw/Mn = 2,0; температура плавления 159oC, прозрачность более 30%.
ПРИМЕР 5
Повторен пример 3, однако 750 г этилена равномерно подавали в реактор в течение всего времени полимеризации. Получено 19,5 кг порошка полимера.
Для порошка измерены следующие параметры: содержание этилена 3,2 вес.%, nпэ < 1,2 (изолированное встраивание этиленовых молекул в полипропиленовую цепь). ИР (230/2,36) = 32 г/10 мин; КВ = 156 см3/г; Mw = 194000 г/моль, Mw/Mn = 2,2; температура плавления 147oC, прозрачность более 35%.
ПРИМЕР 6
Повторен пример 4, однако использованное количество водорода составило (2,3±0,3)об.%. Получено 16,9 кг порошка полимера.
Для порошка измерены следующие параметры: ИР (230/2,16) = 19 г/10 мин; КB = 169 см3/г; Mw = 214500 г/моль, Mw/Mn = 2,0; температура плавления 160oC, прозрачность более 35%.
ПРИМЕР 7
Сухой 150 дм3-реактор промывали пропиленом и наполняли при 20oC 80 дм3 бензиновой фракции с интервалом кипения 100-120oC. После подачи 50 л жидкого пропилена прибавляли 64 см3 метилалюмоксанового раствора (раствор в толуоле, из расчета 100 ммолей Al). Содержимое реактора нагревали до 40oC и дозировали водород до достижения его содержания в реакторе 0,7 об.%. 11,0 мг рац-диметилсилилбис(2-метил-1-инденил)циркондихлорида растворяли в 32 мл толуольного метилалюмоксанового раствора (из расчета 50 ммолей Al) и добавляли в реактор. Поддерживая постоянное содержание водорода в реакторе, равное (0,73±0,1) об. %, при 40oC полимеризовали 24 ч. Полимеризацию прерывали газообразным CO2 и полимерную суспензию спускали в дополнительно подключенный реактор. Суспензионная среда отделялась от порошка полимера через фильтр и с помощью перегонки водным паром, водная суспензия полимера отделялась от воды с помощью нутч-фильтра. При 80oC/100 мбар порошок сушили 24 ч. Выход: 14,5 кг.
Для порошка измерены следующие параметры: ИР (230/5) = 4,8 г/10 мин; КВ = 294 см3/г; Mw = 352000 г/моль, Mw/Mn = 2,3; температура плавления 151oC, ИИ = 97,0%, nизо = 65, прозрачность более 35%.
ПРИМЕР 8
При 20oC аналогично примеру 7 получен порошок полимера со следующими свойствами (выход: 10,1 кг):
ИР (230/5) = 2,0 г/10 мин; КВ = 385 см3/г; Mw = 485000 г/моль, Mw/Mn = 2,3; температура плавления 157oC, ИИ = 97,3%, nизо = 70, прозрачность более 35%.
ПРИМЕРЫ 9-11
Порошок полимера получали как в примере 7, однако при этом варьировали количество водорода:
0,4±0,05 об.% H2 (пример 9), 0,9±0,1 об.% H2 (пример 10) и 1,5±0,3 об.% H2 (пример 11).
Выход порошков составил: 18,7 кг (пример 9), 16,9 кг (пример 10) и 20,6 кг (пример 11), прозрачность более 30%.
В таблице 1 приведены результаты измерений для этих порошков.
ПРИМЕРЫ 12 и 13
Полимеризацию по примеру 7 повторяли со следующими изменениями. В качестве металлоцена вводили рац-Me2Si инденил2HfCl2 (сравни EPA-0336127). Полимеризацию проводили при 60oC с 0,4 об.% водорода (пример 12) и при 50oC с 0,15 об.% водорода (пример 13). Для порошков получены приведенные в таблице 2 данные.
Использование формовочных масс для получения формованных изделий согласно изобретению описано в нижеследующих примерах.
ПРИМЕР 14
Использовали порошок полимера из примера 1, который смешивали с 0,07 вес.% пентаэритрит-тетракис 3-(3,5-ди-трет- бутил-4-гидроксифенил)пропионата, 0,07 вес.% трис(2,4-ди-трет- бутилфенил)фосфита, 0,1 вес.% смеси из 90% моностеарата глицерина и 10% дистеарата глицерина (GMS, Atmer 129) и 0,25 вес.% метилдибензилиденсорбитола (MDBS, Millad 3940) в качестве добавок для улучшения устойчивости к окислению, переработки и удаления из формы, а также в качестве центров кристаллизации и затем гранулировали с помощью двухшнекового экструдера ZSK 28 der Fa. Werner und Pfleiderer. Температура в пяти обогреваемых зонах экструдера была при этом 150oC (вход), 210oC, 260oC, 280oC и 260oC (пластинчатая фильера). Температура массы составляла 260oC, шнеки экструдера эксплуатировались при 280 об/мин. Получали бесцветный, прозрачный гранулят. Для измерения механических и оптических характеристик изготавливали согласно стандарту изделия способом литья под давлением.
Для этих полученных формованных изделий определены следующие характеристики: ИР (230/2,16) = 35 г/10 мин; прозрачность 65%, ТВШ (358 Н) = 75 нмм-2; Е-модуль растяжения (показатель по секущей) 1610 нмм-2, ударная вязкость по Изоду 58 мДж•мм-2; НЖ = 5,5. Перерабатываемость формовочной массы испытывалась с помощью тонкостенного литья под давлением (изготовление стаканчиков объемом 175 мл с толщиной стенки 0,5 мм) на машине для литья под давлением Netstal 110/45. Критериями являлись характер потери формы, а также достигаемое время цикла без неполадок во время работы 3 ч при максимальной скорости. Температура переработки 230oC, безотказный цикл составил 32 впрыска/мин (время цикла 1,9 сек). Полученные стаканчики были прозрачными, светлыми и без запаха.
ПРИМЕР 15
Осуществляли пример 14, однако вместо 0,25 вес.% метилдибензилиденсорбитола вводили 0,3 вес.% талька ультратонкого в качестве центров кристаллизации.
Для формованных изделий определены следующие параметры: плотность = 0,904 г/см3; ИР (230/2,16) = 33 г/10 мин; прозрачность 41%; ТВШ (358 Н) = 71 нмм-2; Е-модуль растяжения 1430 нмм-2; ударная вязкость по Изоду 52 мДж•мм-2; НЖ = 6,5.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, показал время цикла 2,1 сек.
ПРИМЕР 16
Осуществляли пример 14, однако не использовали ни стеарат глицерина, ни сорбитол.
Для формованных изделий определены следующие параметры: плотность 0,901 г/см3; ИР (230/2,16) = 33 г/10 мин; прозрачность 35%; ТВШ (358 Н) = 69 нмм-2; Е-модуль растяжения 1430 нмм-2, ударная вязкость по Изоду 68 мДж•мм-2; НЖ = 6,5.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, показал время цикла 2,3 сек.
ПРИМЕР СРАВНЕНИЯ 1
Пример 14 повторили с полипропиленом для литья под давлением (Hostalen PPV 1770 S3A), который получен с использованием обычного катализатора Циглера-Натта (TiCl4/MgCl2/диэтиловый эфир фталевой кислоты). Полимер имел экстрагируемую простым эфиром часть 4,2% атактического полипропилена. Длина изотактического блока составляла 150, Mw/Mn = 3,6 и температура плавления 164oC. Для полученных из этого полимера формованных изделий измерены следующие параметры: плотность 0,902 г/см3; ИР (230/2,16) = 27 г/10 мин; прозрачность 23%; ТВШ (356 Н) = 64 нмм-2; Е-модуль растяжения 1200 нмм-2; ударная вязкость по Изоду 65 мДж•мм-2; НЖ = 8,5.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, показал время цикла 2,5 сек.
По сравнению с формованными изделиями, изготовленными из формовочных масс согласно изобретению по примерам с 1 по 3, формованные изделия примера сравнения характеризуются значительно меньшей жесткостью (ТВШ, Е-модуль растяжения), меньшей прозрачностью и более сильным желтым окрашиванием (НЖ-значение).
При переработке с получением стаканчивов время цикла было больше, полученные стаканчики были значительно менее прозрачны и обнаруживали типичный для КР-продуктов запах.
ПРИМЕР 17
Пример 14 повторен с полимером примера 2.
Для формованных изделий определены следующие параметры: ИР (230/2,16) = 53 г/10 мин; прозрачность 65%; ТВШ (358 Н) = 65 нмм-2; Е-модуль растяжения 1600 нмм-2; ударная вязкость по Изоду 40 мДж•мм-2; НЖ = 5,2.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, однако при температуря переработки 220oC, показал время цикла 1,7 сек. Полученные стаканчики были прозрачны, светлые как вода и без запаха.
ПРИМЕР 18
Повторен пример 15, однако в качестве полимера был использован полипропилен по примеру 2.
Для формованных изделий определены следующие параметры: ИР (230/2,16) = 56 г/10 мин; плотность 0,906 г/см3; прозрачность 40%; ТВШ (358 Н) = 75 нмм-2; Е-модуль растяжения 1550 нмм-2; ударная вязкость по Изоду 46 мДж•мм-2; НЖ = 5,3.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, однако при температуре переработки 220oC, показал время цикла 1,6 сек.
ПРИМЕР СРАВНЕНИЯ 2
Пример 18 повторили с полипропиленом для литья под давлением (Hostalen PPW 1780 S2A), который получен с использованием обычного катализатора Циглера-Натта (TiCl4/MgCl2/диэтиловый эфир фталевой кислоты).
Для этого полимера измерены следующие параметры: 3,7 вес.% атактического полипропилена (экстракция простым эфиром); ИР (230/2,16) = 54 г/10 мин; КВ = 140 см3/г; Mw = 161000 г/моль, Mw/Mn = 3,8; температура плавления 162oC.
Для формованных изделий, полученных из формовочных масс, не относящихся к изобретению, измерены следующие параметры: плотность 0,907 г/см3; ИР (230/2,16) = 51 г/10 мин; прозрачность 30%; ТВШ (358 Н) = 75 нмм-2; Е-модуль растяжения 1400 нмм-2; ударная вязкость по Изоду 45 мДж•мм-2; НЖ = 8,0.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, показал большую продолжительность цикла 2,0 сек, полученные стаканчики значительно менее прозрачны и обнаруживали типичный для КР-продуктов запах.
ПРИМЕР 19
Повторен пример 14, однако использован полимер примера 3. Для полученных формованных изделий измерены следующие параметры: ИР (230/2,16) = 48 г/10 мин; прозрачность 70%; ТВШ (358 Н) = 72 нмм-2; Е-модуль растяжения 1500 нмм-2; ударная вязкость по Изоду 95 мДж•мм-2; НЖ = 6,0.
Опыт по изготовлению стаканчиков литьем под давлением, аналогичный примеру 14, показал время цикла 1,7 сек, полученные стаканчики имели прекрасную прозрачность и не обнаруживали никакого запаха.
ПРИМЕР 20
Повторен пример 14, однако использован полимер примера. 4. Для полученных формованием изделий измерены следующие параметры: плотность 0,908 г/см3; ИР (230/2,16) = 32 г/10 мин; прозрачность 42%; ТВШ (358 Н) = 84 нмм-2; Е-модуль растяжения 1700 нмм-2; НЖ = 5,8.
Опыт по изготовлению стаканчиков литьем под давлением показал время цикла 1,4 сек.
ПРИМЕР 21
Повторен опыт 14, однако использован полимер примера 5. Для полученных формованием под давлением изделий измерены следующие параметры: ИР (230/2,16) = 35 г/10 мин; прозрачность 80%; ТВШ (358 Н; = 68 нмм-2; Е-модуль растяжения 1550 нмм-2; ударная вязкость по Изоду: без разрушения; НЖ = 6,0.
Опыт по изготовлению стаканчиков литьем под давлением показал время цикла 1,7 сек.
ПРИМЕР 22
Повторен пример 14, однако использован полимер примера 6. Для полученных формованием под давлением изделий измерены следующие параметры: ИР (230/2,16) = 18 г/10 мин; прозрачность 50%; плотность 0,907 г/см3; ТВШ (358 Н) = 80 нмм-2; Е-модуль растяжения 1650 нмм-2; НЖ = 5,5.
Опыт по изготовлению стаканчиков литьем под давлением показал время цикла 1,4 сек.
ПРИМЕР 23
Повторен пример 14, однако использован полимер примера 5. Для полученных формованием под давлением изделий определены следующие параметры: ИР (230/2,16) = 35 г/10 мин; прозрачность 70%; ТВШ (358 H) = 66 нмм-2; Е-модуль растяжения 1350 нмм-2, ударная вязкость по Изоду 85 мДж•мм-2; НЖ = 6,0.
В опыте по изготовлению стаканчиков литьем под давлением получены стаканчики с превосходной прозрачностью и без запаха.
ПРИМЕР 24
Использован порошок полимера примера 8. Для измерения механических и оптических свойств изготавливали формованные изделия согласно стандарту (отлитые под давлением изделия, для измерения ТВШ прессованные пластинки 4 мм). Для этой цели порошок полимера тщательно смешивали с 0,3 вес.% пентаэритритилтетракис 3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионата и 0,05 вес. % стеарата кальция и расплавляли, гомогенизировали и гранулировали с помощью двухшнекового экструдера ZSK 28 фирмы Werner und Prieiderer. При этом температуры в пяти обогреваемых зонах экструдера составляли 150oC (вход), 200oC, 270oC, 280oC и 255oC (пластинчатая фильера). Температура массы составляла 255oC, шнеки экструдера эксплуатировались при 300 об/мин. Получен бесцветный гранулят.
Для полученных из этой формовочной массы изделий или непосредственно для этой формовочной массы определены следующие параметры: ИР (230/5) - 5,2 г/10 мин; КВ = 283 см3/г; Mw = 346000 г/моль, Mw/Mn = 2,2; температура плавления 152oC, ИИ = 97,0%; nизо = 65. Прозрачность 48%; A по Вику = 147oC; тепловое испытание на сжатие с использованием шарика 1,5 мм при 110oC; Е-модуль растяжения = 1376 нмм-2; ТВШ = 74 нмм-2; ТВШ для отлитых под давлением изделий по DIN 53456 (358 Н): 76 нмм-2.
ОПЫТ СРАВНЕНИЯ 3
Для полученных формованием изделий, изготовленных из не относящихся к изобретению формовочных масс (статистический сополимер Hostalen PPU 5736 S2G Хехст АГ, Франкфурт, ФРГ (сополимер этилена с пропиленом) с содержанием этилена 2,3%), проведены аналогичные измерения:
ИР (230/5) = 56 г/10 мин; КВ = 183 см3/г; Mw = 251000 г/моль, Mw/Mn = 3,8; температура плавления 157oC. Прозрачность составляла 50%, А-значение по Вику 140oC. Е-модуль растяжения 1100 нмм-2, твердость при вдавливании шарика ТBШ = 60 нмм-2.
Показано, что формованное изделие, полученное из статистических сополимеров, при аналогичной прозрачности обнаруживает значительно меньшую теплостойкость, а также пониженную твердость и жесткость по сравнению с формованным изделием согласно изобретению из примера 24.
ПРИМЕР СРАВНЕНИЯ 4
Аналогичным образом исследована формовочная масса из обычного товарного полипропилена (Hostalen PPN 1060, Хехст, АГ, Франкфурт, ФРГ):
ИР (230/5) = 8 г/10 мин; КВ = 290 см3/г; nизо = 109; Mw= 280000 г/моль, Mw/Mn = 6,0; температура плавления 164oC.
Механические и оптические характеристики полученного из Hostalen PPN 1060 формованного изделия: прозрачность 24%; А по Вику 152oC; Е-модуль растяжения 1300 нмм-2; ТВШ = 80 нмм-2.
Показано, что при сравнимых механических характеристиках и теплостойкости прозрачность, соответствующая изделию согласно изобретению, не достигается.
ПРИМЕР 25
Использовали порошок полипропилена из примера 8, формовочную массу получали аналогично примеру 24, температура в зкструдере 135oC (вход), 175oC, 290oC, 280oC и 250oC (пластинчатая фильера), температура массы 280oC, шнеки экструдера эксплуатировались при 300 об/мин.
ИР (230/5) = 1,8 г/10 мин; КВ = 385 см3/г; Mw = 471000 г/моль, Mw/Mn = 2,7; температура плавления 156oC; ИИ = 97,4%, nизо = 70; прозрачность 56%; А по Вику 152oC; тепловое испытание на сжатие с использованием шарика 1,7 мм при 100oC; Е-модуль растяжения 1561 нмм-2; ТВШ = 79 нмм-2.
Формованные изделия, полученные из формовочной массы, сочетают высокую прозрачность с высокой теплостойкостью, твердостью и жесткостью.
ПРИМЕРЫ 26-28
Использовали порошки полипропилена из примеров 9 (пример 26), 10 (пример 27) и 11 (пример 28).
Из порошков полимеров получены формованные изделия согласно изобретению (аналогично примеру 24).
Экструдер эксплуатировался следующим образом (см. табл. А).
Результаты измерений для гранулятов и полученных формованием изделий представлены в таблице 3.
ПРИМЕРЫ 29 И 30
Использовали порошки полимеров из примеров 12 (пример 29) и 13 (пример 30). Аналогично примеру 24 полученные формованием изделия получали экструзией.
Экструдер эксплуатировался следующим образом (см. табл. В).
Результаты измерений для гранулятов и полученных формованием изделий представлены в таблице 4.
ПРИМЕР 31
а) Получение полимеров.
Сухой 150 дм3-реактор промывали азотом и пропиленом и при 20oC наполняли очищенной от ароматических соединений фракцией бензина с интервалом кипения 100-120oC. После прибавления 50 л жидкого пропилена прибавляли 64 см3 толуольного метилалюмоксанового раствора (из расчета 100 ммолей Al). Содержимое реактора нагревали до 50oC и дозировали в него водород до достижения в газовой камере реактора содержания 2,9 об. %; 10,6 мг рац-диметилсилилбис(2-метил-4-фенил-1-инденил)пиркондихлорида растворяли в 16 мл толуольного метилалюмоксанового раствора (25 ммолей Al) и вводили в реактор. Поддерживая постоянное содержание водорода в газовой камере реактора, равное 2,9 об.%, при 50oC полимеризовали до остаточного давления пропилена 1 бар. Реакцию полимеризации прерывали газообразным CO2 и суспензию полимера подавали в дополнительно подключенный реактор. Суспензионную среду отделяли от порошка полимера через фильтр и с помощью перегонки водяным паром, водную суспензию полимера отделяли от воды с помощью нутч-фильтра. Порошок при 80oC/100 мбар сушили 24 ч.
Выход: 20,8 кг.
ИР (230/5) = 37 г/10 мин; КВ = 182 см3/г; Mw = 197500 г/моль. Mw/Mn = 2,4; температура плавления 160oC, ИИ = 98,8%, nизо = 100, прозрачность более 35%.
b) Получение формовочной массы.
Формовочную массу получали аналогично примеру 24. Температуры в экструдере были 150oC (вход), 200oC, 290oC, 280oC и 260oC (пластинчатая фильера), температура массы 275oC, шнеки экструдера эксплуатировались при 250 об/мин. Для полученных формованных изделий установлены следующие параметры: ИР (230/5) = 35 г/10 мин; КВ = 185 см3/г; Mw = 200500 г/моль, Mw/Mn = 2,4; температура плавления 160oC; прозрачность 54%; А по Вику 156oC; тепловое испытание на сжатие с использованием шарика 1,8 мм при 100oC; E-модуль растяжения 1640 нмм-2; ТВШ = 84 нмм-2.
Формованные изделия, полученные из формовочной массы, отличались высокой прозрачностью, теплостойкостью, твердостью и жесткостью.
ПРИМЕР 32
а) Получение системы сокатализатор/металлоцен.
аа) Получение нанесенного сокатализатора проводили согласно ЕР 92107331.8 в реакторе из высококачественной стали во взрывобезопасном исполнении с перекачивающей системой ступени давления 60 бар, со снабжением инертным газом, поддержанием температуры с помощью охлаждающей рубашки и вторым охлаждающим контуром через теплообменник на перекачивающей системе. Перекачивающая система отсасывает содержимое реактора через подключение в днище реактора, прогоняя его насосом в смеситель и с помощью нагнетательного трубопровода через теплообменник назад в реактор. Смеситель подключался таким образом, что в подающей линии находилась суженная в поперечном сечении труба, где возникала повышенная скорость потока, в турбулентной зоне которой аксиально и навстречу направлению потока направляли тонкую подводящую линию, через которую - ритмично - в определенный момент можно было подводить определенное количество воды под давлением аргона 40 бар. Контроль реакции осуществлялся через пробоотборник на перекачивающем циркуляционном контуре.
В вышеописанный реактор объемом 16 дм3 подавали 5 дм3 декана в инертных условиях. Прибавляли 0,3 дм3 (3,1 моля) триметилалюминия. Затем через воронку для твердых веществ в реактор дозировали 250 г силикагеля SD 3216-30 (Grace AG), который до этого сушили при 120oC в кипящем аргоновом слое и гомогенизировали с помощью мешалки и перекачивающей системы. Суммарное количество 45,9 г воды подавали в реактор порциями по 0,1 см3 каждые 15 с в течение 2 часов. Давление, создаваемое аргоном и выделяющимися газами, поддерживали клапанами, регулирующими давление, постоянным ~ 10 бар. После введения всей воды перекачивающую систему отключали и перемешивание продолжали еще 5 часов при 25oC. С помощью нутч-фильтра удаляли растворитель и твердый катализатор промывали деканом. Затем сушили в вакууме.
ab) Взаимодействие сокатализатора с металлоценом рац-диметилсиландиилбис(2-метил-4- фенил-1-инденил)ZrCl2.
1,5 г твердого вещества (106 ммолей), получение которого описано в аа), суспендировали в сосуде с перемешиванием в 100 см3 толуола и охлаждали до -30oC. Одновременно 155 мг (0,246 ммоля) рац-диметилсиландиилбис (2-метил-4-фенилинде- нил)циркондихлорида растворяли в 75 см3 толуола и прикапывали в течение 30 минут к суспензии. Медленно при перемешивании нагревали до комнатной температуры, причем суспензия окрашивалась в красный цвет.
В заключение перемешивали 1 час при 80oC и после охлаждения до комнатной температуры смесь фильтровали и твердый остаток промывали 3•100 см3 толуола и 1•100 см3 гексана.
Остаток на фильтре сушили в вакууме от гексана. Получено 12,9 г свободно текучего, светло-красного нанесенного катализатора. Анализ показал содержание 10,1 мг цирконоцена на грамм катализатора.
b) Полимеризация.
2,8 г катализатора, описанного в ab), суспендировали в 50 см3 очищенной от ароматических соединений фракции бензина с интервалом кипения 100-120oC.
Параллельно этому сухой 75 дм3-реактор споласкивали сначала азотом и затем пропиленом, после чего наполняли 0,75 дм3 (при нормальном давлении) водорода и 40 дм3 жидкого пропилена. Затем разбавляли 12 см3 триизобутилалюминия (48 ммолей), 100 мл гексана вводили в реактор и содержимое перемешивали 15 минут при 30oC.
В заключение вводили в реактор суспензию катализатора, нагревали до температуры полимеризации 70oC (10oC/мин) и выдерживали полимеризационную систему в течение 1 часа при 70oC.
Полимеризацию прерывали добавлением 50 мл изопропанола. Избыток мономера дегазировали, полимер сушили в вакууме.
В результате получено 5,0 кг порошка полипропилена.
Для порошка определены следующие параметры: ИР(230/5) = 6,1 г/10 мин; КВ = 305 см3/г; Mw = 382000 г/моль, Mw/Mn = 2,2; температура плавления 150oC, прозрачность более 35%.
с) Получение формовочной массы.
Формовочная масса получена аналогично примеру 24. Температура в экструдере 150oC (вход), 200oC, 250oC, 280oC и 270oC (пластинчатая фильера), температура массы 270oC, число оборотов шнека 240 об/мин.
Для формовочной массы и полученных формованием изделий измерены следующие характеристики: ИР (230/5) = 6,5 г/10 мин; КВ = 285 см3/г; Mw = 379000 г/моль, Mw/Mn = 2,2; температура плавления 151oC. Прозрачность 45%; тепловое испытание на сжатие с использованием шарика 1,4 мм при 110oC; А по Вику 147oC; ТВШ = 79 нмм-2; Е-модуль растяжения 1487 нмм-2.

Claims (5)

1. Полиолефиновая формовочная масса для тонкостенного литья под давлением, состоящая в основном из полиолефина, полученного из олефина по крайней мере с 3 С-атомами формулы
Ra - CH = CH - Rb,
где Ra и Rb, одинаковые или разные, означают водород или С1-15-алкил с прямой или разветвленной цепью или Ra и Rb образуют со связанными с ними атомами кольцо, причем полиолефин может содержать до 10 вес.% этилена или второго олефина, с мольной массой более 80000 г/моль, полидисперсностью Mw/Mn 1,8 - 3,5, коэффициентом вязкости более 70 см3/г, температурой плавления 130 - 160°С, длиной изотактического блока 30 - 100, направленной прозрачностью более 30% и экстрагируемой простым эфиром частью менее 2 вес.%.
2. Полиолефиновая формовочная масса по п.1, отличающаяся тем, что она имеет мольную массу более 100000 г/моль, полидисперсность Mw/Mn 2 - 3, коэффициент вязкости более 100 см3/г и температуру плавления 140 - 160°С.
3. Полиолефиновая формовочная масса по п.1 или 2, отличающаяся тем, что полиолефин является полипропиленом.
4. Полиолефиновая формовочная масса по пп.1, 2 или 3, отличающаяся тем, что она дополнительно содержит средства для образования центров кристаллизации, стабилизаторы, антиоксиданты, УФ-абсорберы, светостабилизаторы, дезактиваторы металлов, акцепторы радикалов, наполнители и усилители, совмещающие агенты, мягчители, добавки для улучшения переработки, эмульгаторы, пигменты, оптические отбеливатели, антипирены, антистатики или вспенивающие агенты.
5. Формованное изделие, изготовленное путем тонкостенного литья под давлением, отличающееся тем, что оно изготовлено из полиолефиновой формовочной массы по пп.1 - 4.
RU93050061/04A 1992-09-11 1993-09-10 Полиолефиновая формовочная масса и формованное изделие RU2167897C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4230372 1992-09-11
DEP4230372.9 1992-09-11

Publications (2)

Publication Number Publication Date
RU93050061A RU93050061A (ru) 1996-08-20
RU2167897C2 true RU2167897C2 (ru) 2001-05-27

Family

ID=6467713

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93050061/04A RU2167897C2 (ru) 1992-09-11 1993-09-10 Полиолефиновая формовочная масса и формованное изделие

Country Status (13)

Country Link
US (1) US5597881A (ru)
EP (1) EP0593888B1 (ru)
JP (1) JP3457030B2 (ru)
KR (1) KR100292211B1 (ru)
AT (1) ATE165386T1 (ru)
AU (1) AU676182B2 (ru)
CA (1) CA2105916A1 (ru)
DE (1) DE59308434D1 (ru)
ES (1) ES2114985T3 (ru)
FI (1) FI933956A (ru)
RU (1) RU2167897C2 (ru)
TW (1) TW272985B (ru)
ZA (1) ZA936694B (ru)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW275076B (ru) * 1992-12-02 1996-05-01 Hoechst Ag
WO1995032091A1 (en) * 1994-05-24 1995-11-30 Exxon Chemical Patents Inc. Fibers and fabrics incorporating lower melting propylene polymers
IT1272923B (it) * 1995-01-23 1997-07-01 Spherilene Srl Composti metallocenici,procedimento per la loro preparazione,e loro utilizzo in catalizzatori per la polimerizzazione delle olefine
EP0745638A1 (de) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxial orientierte Polypropylenfolie mit verbessertem Weiterreisswiderstand
EP0745637A1 (de) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxial orientierte Polypropylenfolie mit hohem Flächenmodul
EP0745639A1 (de) * 1995-05-31 1996-12-04 Hoechst Aktiengesellschaft Biaxial orientierte Polypropylenfolie mit guten optischen Eigenschaften
US6130305A (en) * 1996-09-19 2000-10-10 Idemitsu Petrochemical Co., Ltd. Propylenic copolymer and its film
US6649725B2 (en) * 1996-02-05 2003-11-18 Idemitsu Petrochemical Co., Ltd. Propylenic copolymer, and its film
DE19746741A1 (de) 1996-10-30 1998-05-07 Idemitsu Petrochemical Co Propylen-Copolymer und Folie daraus
JP3569739B2 (ja) 1996-11-25 2004-09-29 出光石油化学株式会社 プロピレン系ランダム共重合体の製造方法
TW482770B (en) 1997-08-15 2002-04-11 Chisso Corp Propylene/ethylene random copolymer, molding material, and molded article
DE19738051A1 (de) * 1997-09-01 1999-03-04 Targor Gmbh Spritzgieß-Artikel aus Metallocen-Polypropylen
EP1865007B1 (en) * 1998-06-25 2009-03-25 Idemitsu Kosan Co., Ltd. Propylene polymer and composition containing the same, molded object and laminate comprising these, and processes for producing propylene polymer and composition containing the same
US6593004B1 (en) 1998-10-14 2003-07-15 Union Carbide Chemicals & Plastics Technology Corporation Extrusion coating composition
MXPA01006372A (es) * 1998-12-21 2002-06-04 Exxonmobil Chem Patents Inc Composiciones de etileno-propileno semi-cristalinas, ramificadas.
KR100578390B1 (ko) * 1999-02-02 2006-05-10 삼성토탈 주식회사 가공성과 투명성이 우수한 폴리프로필렌 수지 조성물
JP2004514775A (ja) * 2000-11-30 2004-05-20 エクソンモービル・ケミカル・パテンツ・インク 精密射出成形用ポリプロピレンポリマー
US20040044106A1 (en) * 2001-11-08 2004-03-04 Portnoy Robert C. Polypropylene for precision injection molding applications
US7201284B2 (en) 2001-11-27 2007-04-10 Playtex Products, Inc. Vented container
NZ549262A (en) * 2004-03-17 2010-08-27 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US7671131B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom
US7795321B2 (en) * 2004-03-17 2010-09-14 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom
US7671106B2 (en) * 2004-03-17 2010-03-02 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US7582716B2 (en) * 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US7608668B2 (en) * 2004-03-17 2009-10-27 Dow Global Technologies Inc. Ethylene/α-olefins block interpolymers
CN1976965B (zh) * 2004-03-17 2012-10-10 陶氏环球技术有限责任公司 用于形成乙烯多嵌段共聚物的包含梭移剂的催化剂组合物
US7622529B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
AR053693A1 (es) 2004-03-17 2007-05-16 Dow Global Technologies Inc Composiciones de interpolimero de etileno/alfa-olefina multibloque adecuado para peliculas
US7897689B2 (en) * 2004-03-17 2011-03-01 Dow Global Technologies Inc. Functionalized ethylene/α-olefin interpolymer compositions
US7579408B2 (en) * 2004-03-17 2009-08-25 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene/α-olefins
US7803728B2 (en) * 2004-03-17 2010-09-28 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/α-olefins
US7355089B2 (en) * 2004-03-17 2008-04-08 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
US7863379B2 (en) * 2004-03-17 2011-01-04 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US7666918B2 (en) * 2004-03-17 2010-02-23 Dow Global Technologies, Inc. Foams made from interpolymers of ethylene/α-olefins
US7714071B2 (en) * 2004-03-17 2010-05-11 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/α-olefins and flexible molded articles made therefrom
US7622179B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
US7662881B2 (en) * 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US7687442B2 (en) * 2004-03-17 2010-03-30 Dow Global Technologies Inc. Low molecular weight ethylene/α-olefin interpolymer as base lubricant oils
US7741397B2 (en) * 2004-03-17 2010-06-22 Dow Global Technologies, Inc. Filled polymer compositions made from interpolymers of ethylene/α-olefins and uses thereof
US8273838B2 (en) * 2004-03-17 2012-09-25 Dow Global Technologies Llc Propylene/α-olefins block interpolymers
US8084537B2 (en) * 2005-03-17 2011-12-27 Dow Global Technologies Llc Polymer blends from interpolymers of ethylene/α-olefin with improved compatibility
AR055879A1 (es) * 2005-03-17 2007-09-12 Dow Global Technologies Inc Fibras realizadas de copolimeros de etileno/(alpha)-olefinas
TWI374151B (en) 2005-03-17 2012-10-11 Dow Global Technologies Llc Compositions of ethylene/alpha-olefin multi-block interpolymer for elastic films and laminates
JP5231987B2 (ja) * 2005-03-17 2013-07-10 ダウ グローバル テクノロジーズ エルエルシー エチレン/α−オレフィン共重合体から製造される接着剤およびマーキング用組成物
US7098301B1 (en) 2005-07-29 2006-08-29 Exxonmobil Chemical Patents Inc. High pressure filter method of separating polymer solids and unreacted monomer
US7678341B2 (en) * 2005-07-29 2010-03-16 Exxonmobil Chemical Patents Inc. Loop reactor heat removal
KR20080055838A (ko) * 2005-09-15 2008-06-19 다우 글로벌 테크놀로지스 인크. 다중심 셔틀링제를 통한 중합체 구성 및 분자량 분포의제어
SG156614A1 (en) * 2005-09-15 2009-11-26 Dow Global Technologies Inc Catalytic olefin block copolymers via polymerizable shuttling agent
US8394907B2 (en) 2005-10-21 2013-03-12 Basell Polyolefine Gmbh Polypropylene for injection molding
CN101341021B (zh) * 2005-10-26 2012-07-25 陶氏环球技术有限责任公司 多层、弹性制品
BRPI0620567B1 (pt) * 2005-12-09 2018-05-29 Dow Global Technologies Inc. Processo para produzir uma composição de interpolímero de etileno/(alfa)-olefina
US8153243B2 (en) * 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
EP2006314B2 (en) 2006-03-29 2019-07-31 Mitsui Chemicals, Inc. Propylene random block copolymer, resin compositions containing the copolymer, and moldings of both
BRPI0714747A2 (pt) * 2006-09-06 2013-05-14 Dow Global Technologies Inc pano entrelaÇado , roupa , fibra apropriada para artigos tÊxteis , artigo entrelaÇado empenado e artigo entrelaÇado circular
BRPI0717715A2 (pt) * 2006-11-30 2013-10-22 Dow Global Technologies Inc Tecido e peça de vestuário
AU2007325009A1 (en) * 2006-11-30 2008-06-05 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
BRPI0717718A2 (pt) 2006-11-30 2013-10-22 Dow Global Technologies Inc "tecido estirável capaz de ser submetido a um tratamento antienrugamento e peça de vestuario"
CA2674991A1 (en) * 2007-01-16 2008-07-24 Dow Global Technologies Inc. Cone dyed yarns of olefin block compositions
CN101595253A (zh) * 2007-01-16 2009-12-02 陶氏环球技术公司 烯烃嵌段组合物的不褪色织物和衣物
AU2008206334A1 (en) * 2007-01-16 2008-07-24 Dow Global Technologies Inc. Stretch fabrics and garments of olefin block polymers
US20090068436A1 (en) * 2007-07-09 2009-03-12 Dow Global Technologies Inc. Olefin block interpolymer composition suitable for fibers
WO2009042602A1 (en) * 2007-09-28 2009-04-02 Dow Global Technologies Inc Thermoplastic olefin composition with improved heat distortion temperature
KR101161969B1 (ko) * 2007-09-28 2012-07-04 가부시키가이샤 프라임 폴리머 주사기용 폴리프로필렌 수지 및 이것을 원료로 하여 얻어지는 주사기 및 프리필드 주사기 제제
EP2052857A1 (en) * 2007-10-22 2009-04-29 Dow Global Technologies Inc. Multilayer films
US9333716B2 (en) * 2007-12-20 2016-05-10 Novartis Ag Method for cast molding contact lenses
JP2009242808A (ja) * 2009-07-16 2009-10-22 Prime Polymer Co Ltd 発泡成形品及び発泡成形方法
EP3647329A4 (en) * 2017-06-30 2021-03-24 Mitsui Chemicals, Inc. PROPYLENE-BASED POLYMER, ASSOCIATED PREPARATION PROCESS, PROPYLENE-BASED RESIN COMPOSITION AND MOLDED BODY
KR102402638B1 (ko) * 2018-11-02 2022-05-25 주식회사 엘지화학 프로필렌 랜덤 공중합체

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3904469A1 (de) * 1989-02-15 1990-08-16 Hoechst Ag Verfahren zur herstellung eines statistischen propylen-copolymers
DE3907965A1 (de) * 1989-03-11 1990-09-13 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen polyolefins
DE3907964A1 (de) * 1989-03-11 1990-09-13 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen polyolefins
DE3942366A1 (de) * 1989-12-21 1991-06-27 Hoechst Ag Verfahren zur herstellung eines syndiotaktischen propylen-copolymers
DE4005947A1 (de) * 1990-02-26 1991-08-29 Basf Ag Loesliche katalysatorsysteme zur polymerisation von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-alk-1-enen
ES2091273T3 (es) * 1990-11-12 1996-11-01 Hoechst Ag Procedimiento para la preparacion de un polimero olefinico de alto peso molecular.
EP0485823B1 (de) * 1990-11-12 1995-03-08 Hoechst Aktiengesellschaft 2-Substituierte Bisindenylmetallocene, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren bei der Olefinpolymerisation
US5243001A (en) * 1990-11-12 1993-09-07 Hoechst Aktiengesellschaft Process for the preparation of a high molecular weight olefin polymer
US5239022A (en) * 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Энциклопедия полимеров. - М.: Советская энциклопедия, 1977, т.3, с.214. *

Also Published As

Publication number Publication date
JPH06192332A (ja) 1994-07-12
ES2114985T3 (es) 1998-06-16
EP0593888A1 (de) 1994-04-27
DE59308434D1 (de) 1998-05-28
ATE165386T1 (de) 1998-05-15
FI933956A (fi) 1994-03-12
FI933956A0 (fi) 1993-09-09
KR100292211B1 (ko) 2001-10-24
ZA936694B (en) 1994-04-05
AU4626193A (en) 1994-03-17
JP3457030B2 (ja) 2003-10-14
CA2105916A1 (en) 1994-03-12
US5597881A (en) 1997-01-28
EP0593888B1 (de) 1998-04-22
AU676182B2 (en) 1997-03-06
KR940007066A (ko) 1994-04-26
TW272985B (ru) 1996-03-21

Similar Documents

Publication Publication Date Title
RU2167897C2 (ru) Полиолефиновая формовочная масса и формованное изделие
US5868984A (en) Process for producing fibers, filaments and webs by melt spinning
RU2657872C1 (ru) Мультимодальный полипропилен с учетом содержания сомономера
JP4982365B2 (ja) 高透明性のプロピレンコポリマー組成物
RU2337114C2 (ru) Композиции на основе сополимеров пропилена, имеющие хорошую ударную вязкость при низких температурах и высокую степень прозрачности
US4981938A (en) Highly crystalline polypropylene
US6143683A (en) Metallocene catalyst and catalyst system for polymerizing an olefin having at least 3 carbon atoms
US20090018267A1 (en) Polypropylene Composition Comprising a Propylene Homopolymer Component
US8822021B2 (en) Process for the production of propylene random copolymers for injection moulding applications
CA2606271A1 (en) Propylene polymer composition for thermoforming
RU2337115C2 (ru) Эластичные композиции на основе сополимера пропилена, имеющие высокую степень прозрачности
EP1844100A1 (en) Propylene polymer composition for injection molding
AU2006278060A1 (en) Process for the nucleation of Polypropylene resins
KR102568458B1 (ko) 높은 강성을 갖는 핵화된 프로필렌 중합체 조성물
RU2275382C2 (ru) Высокомолекулярный полипропилен с широким молекулярно-массовым распределением и с небольшой длиной изотактических последовательностей
US11208510B2 (en) High purity polypropylenes and polypropylene compositions for molding
EP2247424A1 (en) Polyolefin compositions
JP2562915B2 (ja) 高剛性高溶融粘弾性エチレン−プロピレンブロック共重合体組成物
RU2670985C2 (ru) Состав полиэтилена и его использование в полиолефиновых композициях
JP2933497B2 (ja) ポリプロピレン樹脂組成物
WO2021175649A1 (en) Propylene based copolymer for containers
JP2000109519A (ja) 結晶性ポリプロピレン及び結晶性ポリプロピレン樹脂組成物並びにそれを成形してなる成形体
MXPA01004822A (en) Impact-resitant polyolefin compositions
EP0507576A1 (en) Polypropylene-based resin compositions
JPS63284243A (ja) 高剛性高溶融粘弾性プロピレン単独重合体組成物

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC4A Invention patent assignment

Effective date: 20070202

MM4A The patent is invalid due to non-payment of fees

Effective date: 20120911