RU2167713C1 - Способ получения катализатора для разложения вредных примесей - Google Patents

Способ получения катализатора для разложения вредных примесей Download PDF

Info

Publication number
RU2167713C1
RU2167713C1 RU2000103105A RU2000103105A RU2167713C1 RU 2167713 C1 RU2167713 C1 RU 2167713C1 RU 2000103105 A RU2000103105 A RU 2000103105A RU 2000103105 A RU2000103105 A RU 2000103105A RU 2167713 C1 RU2167713 C1 RU 2167713C1
Authority
RU
Russia
Prior art keywords
catalyst
ozone
temperature
water
manganese dioxide
Prior art date
Application number
RU2000103105A
Other languages
English (en)
Inventor
Н.П. Васильев
С.Г. Киреев
В.М. Мухин
Э.В. Романчук
В.Ф. Смирнов
В.В. Чебыкин
Original Assignee
Государственное унитарное предприятие Электростальское научно-производственное объединение "Неорганика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное унитарное предприятие Электростальское научно-производственное объединение "Неорганика" filed Critical Государственное унитарное предприятие Электростальское научно-производственное объединение "Неорганика"
Priority to RU2000103105A priority Critical patent/RU2167713C1/ru
Application granted granted Critical
Publication of RU2167713C1 publication Critical patent/RU2167713C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к неорганической химии и может быть использовано, в частности, для приготовления катализатора, применяемого для разложения озона в производствах с его участием, а именно: водоподготовке, очистке сточных вод, обработке полупроводников в электронной промышленности, стерилизации в медицине и дезинфекции в сельском хозяйстве; для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей. Описан способ получения катализатора, включающий смешение диоксида марганца и оксида меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку при 450-750°С. Предложенный способ позволяет получить водостойкий катализатор, высокоактивный в разложении озона и окислении оксида углерода. 1 табл.

Description

Изобретение относится к области неорганической химии и может быть использовано, в частности, для приготовления катализатора, применяемого для разложения озона в производствах с его участием, а именно: водоподготовке, очистке сточных вод, обработке полупроводников в электронной промышленности, стерилизации в медицине и дезинфекции в сельском хозяйстве; для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей.
Известен способ получения катализатора для разложения вредных примесей, включающий смешение диоксида марганца, оксида меди и связующего (талюма) в соотношении (30-40):(20-30):(30-50), формование гранул посредством прессования смеси компонентов в матрице с последующим выдавливанием гранул, их гидротермальную обработку при температуре 90-100oC в течение 2 часов и прокаливание при температуре 300oC в течение 3 часов (А.с. СССР N 1768247 от 29.12.90, кл. В 01 J 23/84, 53/36).
Недостатком известного способа является низкая производительность технологического процесса промышленного получения катализатора вследствие невозможности формования гранул на шнековом грануляторе из-за низкой пластичности пасты смеси компонентов.
Известен также способ получения катализатора, включающий смешение диоксида марганца и оксида меди со связующим (талюмом), предварительно обработанным водой при температуре 70-100oC в течение 0,5-5,0 часов и прокаленным при температуре 200-1000oC в течение 1-6 часов, формование гранул на шнековом грануляторе, гидротермальную обработку, сушку и прокаливание при температуре 300-400oC (Пат. РФ N 2077947 от 04.04.95, кл. В 01 J 23/889, 37/04//(В 01 J 23/84, 101:62)).
Недостатком указанного способа является высокая себестоимость промышленного процесса получения катализатора, обусловленная значительным износом фильер при формовании гранул, вследствие сильных абразивных свойств формуемой катализаторной массы.
Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является способ получения катализатора, включающий смешение диоксида марганца и оксида меди со связующим бентонитовой глиной, при этом диоксид марганца смешивают с оксидом меди одновременно с приготовлением последнего при температуре 50-95oC в течение 0,5-3,0 часов, а затем диоксид марганца и оксид меди смешивают со связующим, формование гранул, сушку сформованных гранул при температуре 60-90oC в течение 10-15 часов, дробление и термообработку при температуре 250-370oC (Пат. РФ N 2083279 от 31.10.95, кл. В 01 J 23/889, 37/04//(В 01 J 23/84, 101:62)).
Недостатком известного способа является нестойкость гранул полученного катализатора по отношению к воде, а именно разрушение гранул при контакте с водой в виде жидкой фазы.
Заявляемое изобретение направлено на решение следующей задачи: получение водостойкого катализатора, высокоактивного в разложении озона и окислении оксида углерода, что достигается предложенным способом, включающим смешение диоксида марганца и оксида меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку.
Отличие предложенного способа от известного заключается в том, что термообработку ведут при температуре 450-750oC.
Из научно-технической литературы авторам неизвестна технологическая операция термообработки формованных гранул, состоящих из диоксида марганца, оксида меди и бентонитовой глины, при температуре 450-750oC.
Способ осуществляется следующим образом.
Готовят водную суспензию диоксида марганца и добавляют в нее едкий натрий.
После растворения последнего в суспензию добавляют медный купорос и ведут перемешивание при температуре 50-95oC в течение 0,5-3,0 часов. Затем суспензию фильтруют и отмывают пасту от сульфат-ионов. Полученную пасту смешивают со связующим бентонитовой глиной, пластифицируют и формуют гранулы на шнековом грануляторе при температуре 100-110oC и давлении 35-45 атм через фильеры с диаметром отверстий 1,0-1,5 мм. Сформованные гранулы сушат при температуре 60-90oC в течение 10-15 часов, дробят, отсеивают фракцию 1-3 мм и проводят термообработку при температуре 450-750oC. Полученный катализатор имеет следующий состав: диоксид марганца 50-70 мас.%, оксид меди 10-25 мас. %, бентонитовая глина 10-20 мас.%, примеси - остальное. Каталитическая активность полученного водостойкого катализатора в окислении оксида углерода составила 1,68-2,13 ммоль/г, степень очистки от озона составила 95,4-99,6 %.
Пример 1.
В смеситель, снабженный подогревающим и перемешивающим устройствами, заливают 4 л воды, включают перемешивающее устройство и загружают 4 кг пасты диоксида марганца с влажностью 50%. Перемешивание ведут в течение 30 минут до образования однородной водной суспензии диоксида марганца. Затем в смеситель добавляют 0,59 кг едкого натрия и продолжают перемешивание в течение 20 минут. После растворения едкого натрия, установив в смесителе температуру 20oC и не прекращая перемешивания, в смеситель постепенно в течение 10 минут добавляют 4,2 л раствора медного купороса с концентрацией 240 г/дм3. После добавления медного купороса перемешивание продолжают в течение 30 минут, поддерживая при этом установленную температуру. По окончании перемешивания пасту смеси диоксида марганца и оксида меди фильтруют и отмывают от сульфат-ионов. Полученную пасту с влажностью 50% в количестве 5 кг загружают в лопастной смеситель, снабженный паровой рубашкой, добавляют 0,5 кг связующего - бентонитовой глины и ведут процесс пластификации пасты при температуре 50oC в течение 0,7 часа до влажности 30%. Полученную пасту выгружают и формуют на шнековом грануляторе при давлении 40 атм и температуре 110oC через фильеры с диаметром отверстий 1,1 мм. Сформованные гранулы сушат при температуре 80oC в течение 12 часов. Высушенные гранулы дробят, отсеивают фракцию 1-3 мм и проводят термообработку при температуре 450oC. Полученный катализатор имеет следующий состав: диоксид марганца 60 мас.%, оксид меди 15 мас.%, бентонитовая глина 15 мас.%, примеси - остальное. Каталитическая активность полученного водостойкого катализатора в окислении оксида углерода составила 2,13 ммоль/г, степень очистки от озона составила 99,3%.
Пример 2.
Ведение процесса, как в примере 1, за исключением температуры термообработки, которая составила 600oC. Полученный катализатор имеет следующий состав: диоксид марганца 60 мас.%, оксид меди 15 мас.%, бентонитовая глина 15 мас. %, примеси - остальное. Каталитическая активность полученного водостойкого катализатора в окислении оксида углерода составила 1,75 ммоль/г, степень очистки от озона составила 97,8%.
Пример 3.
Ведение процесса, как в примере 1, за исключением температуры термообработки, которая составила 750oC. Полученный катализатор имеет следующий состав: диоксид марганца 60 мас.%, оксид меди 15 мас.%, бентонитовая глина 15 мас. %, примеси - остальное. Каталитическая активность полученного водостойкого катализатора в окислении оксида углерода составила 1,68 ммоль/г, степень очистки от озона составила 95,4%.
Результаты исследования влияния температуры термообработки на степень очистки от озона и каталитическую активность полученного катализатора в окислении оксида углерода приведены в таблице.
Как следует из данных, приведенных в таблице, высокая активность водостойкого катализатора в разложении озона и окислении оксида углерода наблюдается при проведении термообработки при температуре 450-750oC. При снижении температуры термообработки менее 450oC не представляется возможным получить продукт, обладающий достаточной устойчивостью к воде. Увеличение температуры термообработки более 750oC приводит к заметному уменьшению активности катализатора в разложении озона и окислении оксида углерода.
Сущность предложенного способа заключается в следующем. Высокая активность водостойкого катализатора в разложении озона и окислении оксида углерода при проведении термообработки при температуре 450-750oC обусловлена, вероятно, следующими причинами. В составе катализатора, полученного по предложенному способу, диоксид марганца выступает в роли активного компонента, оксид меди играет роль промотора, усиливая каталитические свойства первого, бентонитовая глина является связующим веществом, обеспечивая связь между частицами активного компонента и промотора, а также пластификатором, способствуя образованию в процессе смешения компонентов высокопластичной пасты, пригодной для формования на шнековом грануляторе. Основным минералом бентонитовой глины является монтмориллонит, который относится к слоистым минералам с расширяющейся решеткой. Смешение в водной среде приводит к тому, что в межпакетное пространство монтмориллонита внедряются молекулы воды и решетка первичных пор расширяется, способствуя усилению связующих и пластифицирующих свойств. Кроме того, входящий в состав монтмориллонита алюминат кальция в результате реакции гидратации под действием воды переходит в гидроалюминат кальция и гидроокись алюминия. Поскольку дисперсность бентонитовой глины существенно выше таковой для диоксида марганца и оксида меди, то сформованная гранула представляет собой систему, которая состоит из частиц бентонитовой глины как связующего вещества, образующей пространственный каркас, включающий в себя частицы активного компонента и промотора. Высокотемпературная обработка такой системы приводит к тому, что происходит переход к оксиднокальциевым соединениям, прочно связанным между собой. Т.к. соединения подобного класса являются нерастворимыми в воде, то и гранулы полученного катализатора являются водостойкими. Температура термообработки менее 450oC является недостаточной для того, чтобы указанные реакции прошли в полном объеме и привели к образованию жесткой пространственной структуры, обладающей достаточной устойчивостью по отношению к воде. С другой стороны, проведение термообработки при температуре более 750oC приводит к заметному уменьшению активности полученного катализатора в разложении озона и окислении оксида углерода, вследствие того, что при таких температурах происходит восстановление четырехвалентного марганца в составе диоксида до состояний низшей валентности, которые не обладают сколько-нибудь заметными каталитическими свойствами.
Таким образом, предложенный способ позволяет получить водостойкий катализатор, обладающий высокой активностью в разложении озона и окислении оксида углерода.
Реализация предложенного способа позволит значительно расширить область применения катализатора, применяемого для разложения озона в производствах с его участием, а именно: водоподготовке, очистке сточных вод, обработке полупроводников в электронной промышленности, стерилизации в медицине и дезинфекции в сельском хозяйстве; для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей, что даст возможность эффективно решить широкий круг экологических и технологических проблем.
Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на решение поставленной задачи, а именно: получение водостойкого катализатора, высокоактивного в разложении озона и окислении оксида углерода, а вся совокупность является достаточной для характеристики заявленного технического решения.

Claims (1)

  1. Способ получения катализатора для разложения вредных примесей, включающий смешение диоксида марганца и оксида меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку, отличающийся тем, что термообработку ведут при 450 - 750oC.
RU2000103105A 2000-02-08 2000-02-08 Способ получения катализатора для разложения вредных примесей RU2167713C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000103105A RU2167713C1 (ru) 2000-02-08 2000-02-08 Способ получения катализатора для разложения вредных примесей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000103105A RU2167713C1 (ru) 2000-02-08 2000-02-08 Способ получения катализатора для разложения вредных примесей

Publications (1)

Publication Number Publication Date
RU2167713C1 true RU2167713C1 (ru) 2001-05-27

Family

ID=20230374

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000103105A RU2167713C1 (ru) 2000-02-08 2000-02-08 Способ получения катализатора для разложения вредных примесей

Country Status (1)

Country Link
RU (1) RU2167713C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767407C1 (ru) * 2020-11-17 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" (СПбГУПТД) Способ получения катализатора для разложения озона

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767407C1 (ru) * 2020-11-17 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" (СПбГУПТД) Способ получения катализатора для разложения озона

Similar Documents

Publication Publication Date Title
JP6688640B2 (ja) 触媒担体及びその製造方法、並びに触媒担持体及び水処理材
EA001175B1 (ru) Способ производства гранул цеолита х с низким содержанием двуокиси кремния с низким содержанием инертного связующего
CN101186351A (zh) 含白云石凹凸棒石粘土处理工业废酸液并制备干燥剂的方法
RU2167713C1 (ru) Способ получения катализатора для разложения вредных примесей
RU2007136844A (ru) Способ изготовления каталитически действующего минерала на базе каркасного силиката
RU2156659C1 (ru) Способ получения катализатора для разложения вредных примесей
CN1608726A (zh) 一种吸附用活性氧化铝球生产方法
RU2445160C1 (ru) Способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром
RU2213616C1 (ru) Способ получения катализатора
RU2218211C1 (ru) Способ получения катализатора для разложения озона
JPH11349320A (ja) 活性炭の製造方法
RU2193923C1 (ru) Способ получения катализатора
RU2083279C1 (ru) Способ получения катализатора окисления оксида углерода
RU2169041C1 (ru) Способ получения катализатора
RU2077947C1 (ru) Способ получения катализатора
JPH01145369A (ja) シリカーアルミナ押出物
JP7170263B2 (ja) アンモニア含有水の処理方法
RU2018145777A (ru) Блочный микропористый углеродный адсорбент и способ его получения
RU2130803C1 (ru) Способ получения катализатора
RU2530890C1 (ru) Способ получения катализатора окисления оксида углерода
CN109248678A (zh) 一种轻质钨酸铋净化材料的制备方法
RU2789338C1 (ru) Способ получения бипористого гранулированного оксида алюминия
RU2254922C1 (ru) Способ приготовления катализатора для среднетемпературной конверсии оксида углерода водяным паром
CN103894149A (zh) 一种水处理用复合陶瓷球及其制备方法
RU2102144C1 (ru) Способ получения катализатора для разложения вредных примесей