RU2130803C1 - Способ получения катализатора - Google Patents

Способ получения катализатора Download PDF

Info

Publication number
RU2130803C1
RU2130803C1 RU97121683A RU97121683A RU2130803C1 RU 2130803 C1 RU2130803 C1 RU 2130803C1 RU 97121683 A RU97121683 A RU 97121683A RU 97121683 A RU97121683 A RU 97121683A RU 2130803 C1 RU2130803 C1 RU 2130803C1
Authority
RU
Russia
Prior art keywords
catalyst
carbon monoxide
oxidation
alumina
binder
Prior art date
Application number
RU97121683A
Other languages
English (en)
Inventor
С.К. Аникин
Н.П. Васильев
С.Г. Киреев
Н.К. Куликов
В.М. Мухин
Original Assignee
Открытое акционерное общество "Электростальский химико-механический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Электростальский химико-механический завод" filed Critical Открытое акционерное общество "Электростальский химико-механический завод"
Priority to RU97121683A priority Critical patent/RU2130803C1/ru
Application granted granted Critical
Publication of RU2130803C1 publication Critical patent/RU2130803C1/ru

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к очистке газов от вредных примесей и может быть использовано, в частности, для очистки газовых смесей от озона в системах водоподготовки, очистки сточных вод, обработки полупроводников в микроэлектронной промышленности, дезинфекции в медицине и сельском хозяйстве, а также для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей. Описывается способ получения водостойкого катализатора, включающий смешение диоксида марганца, оксида меди и связующего, в качестве которого берут смесь талюма и оксида алюминия в соотношении 1 : (2 - 3) в количестве 30 - 50 мас.%, формование гранул, гидротермальную обработку, сушку и прокаливание. Способ позволяет получить катализатор, значительно превосходящий известные по каталитической активности в окислении оксида углерода. 1 табл.

Description

Изобретение относится к очистке газов от вредных примесей и может быть использовано, в частности, для очистки газовых смесей от озона в системах водоподготовки, очистки сточных вод, обработки полупроводников в микроэлектронной промышленности, дезинфекции в медицине и сельском хозяйстве, а также для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросов промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей.
Известен способ получения катализатора для очистки газовых смесей от токсичных примесей, включающий добавление к виброизмельченному порошку оксида алюминия нитрата меди, небольшого количества воды для придания массе пластичности, формование в шнек-регуляторе, термообработку полученных гранул в течение 3 - 4 часов при температуре 280 - 300oC с последующей пропиткой раствором нитрата марганца в соотношении CuO:MnO2 = (2,0 - 2,7):1,0 и повторную термообработку (авт. св. СССР N 986482, кл. B 01 J 23/84, B 01 D 53/36, 1980).
Недостатком известного способа является сложность проведения технологического процесса приготовления катализатора, обусловленная необходимостью пропитки термообработанных гранул раствором нитрата марганца и последующей термообработкой.
Известен также способ получения катализатора для разложения вредных примесей, включающий смешение диоксида марганца, оксида меди и связующего (бентонитовой глины) в соотношении 100:(15 - 30):14, формование гранул, их сушку при температуре 60 - 90oC в течение 9 - 15 часов и термообработку в течение 20 - 40 минут при температуре 260 - 350oC (патент СССР N 1806008, кл. B 01 J 37/04, 23/84, 1991).
Недостатком данного способа является нестойкость гранул полученного катализатора по отношению к воде.
Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является способ получения водостойкого катализатора включающий смешение диоксида марганца, оксида меди и связующего (талюма) в соотношении (30 - 40): (20 - 30):(30 - 50), формование гранул посредством прессования смеси компонентов в матрице с последующим выдавливанием гранул, их гидротермальную обработку при температуре 90 - 100oC в течение 4 часов, сушку при температуре 200oC в течение 2 часов и прокаливание при температуре 300oC в течение 3 часов (авт.св. СССР N 1768274, кл. B 01 J 23/84, B 01 D 53/36, 1990).
Недостатком указанного способа является низкая каталитическая активность полученного катализатора в окислении оксида углерода.
Целью изобретения является повышение каталитической активности водостойкого катализатора в окислении оксида углерода при сохранении на высоком уровне степени очистки от озона.
Поставленная цель достигается предложенным способом, включающим смешение диоксида марганца, оксида меди и связующего, содержащего талюм, формование гранул, гидротермальную обработку, сушку и прокаливание.
Отличие предложенного способа от известного заключается в том, что используют связующее, дополнительно содержащее оксид алюминия, в массовом отношении талюма к оксиду алюминия, равном, 1:(2 - 3), в количестве 30 - 50 мас.%.
Способ осуществляется следующим образом.
Берут 0,15 - 0,33 кг талюма, обрабатывают его водой при температуре 70 - 100oC в течение 0,5 - 5,0 часов, а затем прокаливают при температуре 200 - 1000oC в течение 1 - 6 часов. Обработанный таким образом талюм загружают в лопастной смеситель с паровой рубашкой, в который предварительно загружено 0,6 - 0,8 кг диоксида марганца и 0,4 - 0,6 кг оксида меди (в пересчете на сухое вещество), добавляют 0,3 - 0,67 кг оксида алюминия и ведут процесс перемешивания при температуре 40 - 70oC в течение 0,3 - 1,0 ч. Полученную пасту выгружают и формуют на шнековом грануляторе при температуре 100 - 120oC и давлении 35 - 45 атм через фильеры с диаметром отверстий 1,0 - 3,5 мм. Сформованные гранулы выдерживают на воздухе в течение 8 - 30 часов, подвергают гидротермальной обработке при температуре 80 - 100oC в течение 2 - 5 ч, сушат при температуре 80 - 200oC в течение 3 - 10 ч и прокаливают при температуре 300 - 400oC. Каталитическая активность полученного водостойкого катализатора в окислении оксида углерода составила 0,16 - 0,18 ммоль/г, степень очистки от озона составила 98,1 - 99,2%.
Пример 1.
Берут 0,15 кг талюма и обрабатывают его водой при температуре 90oC в течение 4 ч, а затем прокаливают при температуре 400oC в течение 3,5 ч. Обработанный таким образом талюм загружают в лопастной смеситель с паровой рубашкой, в который предварительно загружают 1,4 кг пасты диоксида марганца с влажностью 50% и 0,6 кг пасты оксида меди с влажностью 50% и добавляют 0,3 кг оксида алюминия. Соотношение талюма и оксида алюминия составляло 1 : 2, количество связующего составляло 30 мас.%. Процесс перемешивания ведут при температуре 50oC в течение 0,5 часа. Полученную пасту выгружают и формуют на шнековом грануляторе через фильеры с диаметром отверстий 1,1 мм. Сформованные гранулы выдерживают на воздухе при комнатной температуре в течение 20 ч, подвергают гидротермальной обработке при температуре 90oC в течение 4 ч, сушат при температуре 120oC в течение 6 ч и прокаливают при температуре 300oC. Каталитическая активность полученного катализатора в окислении оксида углерода составила 0,18 ммоль/г, степень очистки от озона составила 99,2%.
Пример 2.
Ведение процесса как в примере 1, за исключением количества талюма, которое составило 0,33 кг, и количества добавленного оксида алюминия, которое составило 0,67 кг. Соотношение талюма и оксида алюминия составило 1 : 2; общее количество связующего составило 50 мас.%. Каталитическая активность катализатора в окислении оксида углерода составила 0,16 ммоль/г, степень очистки от озона составила 98,1%.
Пример 3.
Ведение процесса как в примере 1, за исключением количества талюма, которое составило 0,2 кг, и количества добавленного оксида алюминия, которое составило 0,5 кг. Соотношение талюма и оксида алюминия составило 1 : 2,5; общее количество связующего составило 40 мас.%. Каталитическая активность катализатора в окислении оксида углерода составила 0,17 ммоль/г, степень очистки от озона составила 98,4%.
Пример 4.
Ведение процесса как в примере 1, за исключением количества талюма, которое составило 0,25 кг, и количества добавленного оксида алюминия, которое составило 0,75 кг. Соотношение талюма и оксида алюминия составило 1 : 3; общее количество связующего составило 50 мас.%. Каталитическая активность полученного катализатора в окислении оксида углерода составила 0,17 ммоль/г, степень очистки от озона составила 98,3%.
Результаты исследования влияния соотношения талюма и оксида алюминия и общего количества связующего на каталитическую активность полученного катализатора в окислении оксида углерода и степень очистки от озона приведена в таблице.
В таблице: 1. Каталитическая активность в окислении оксида углерода и степень очистки от озона не были измерены ввиду того, что при данном соотношении талюма и оксида алюминия не удалось получить водостойкий катализатор.
2. Каталитическая активность в окислении оксида углерода и степень очистки от озона не были измерены ввиду того, что при указанном содержании связующего не удалось получить катализатор с достаточной механической прочностью.
3. Каталитическую активность в окислении оксида углерода (A) рассчитывали по формуле
Figure 00000001

где v - удельная скорость газовоздушного потока, 0,32 л/(мин•см2);
τ - время появления за слоем катализатора оксида углерода с концентрацией 0,1 C0;
C0 - исходная концентрация оксида углерода, 6,2 мг/л;
s - сечение слоя катализатора, 3,14 см2;
m - величина навески катализатора, 7,9 г;
M - молекулярная масса оксида углерода.
4. Степень очистки от озона (α) рассчитывали по формуле
Figure 00000002

Условия опытов: скорость потока 0,33 м/с, температура 20oC, длина слоя 2 см, Cисходная = 0,3 об.%.
Как следует из результатов, приведенных в таблице, наибольшая каталитическая активность в окислении оксида углерода наблюдается для катализатора, где в качестве связующего берут смесь талюма и оксида алюминия в соотношении 1:(2 - 3) в количестве 30 - 50 мас.%. При содержании оксида алюминия менее 2 частей на 1 часть талюма каталитическая активность катализатора в окислении оксида углерода заметно снижается, однако при этом не наблюдается существенного снижения степени очистки от озона; при содержании оксида алюминия более 3 частей на 1 часть талюма не удается приготовить водостойкий катализатор. С другой стороны при общем содержании связующего менее 30 мас.% не удается приготовить катализатор с достаточной механической прочностью, а при общем содержании связующего более 50 мас.% имеет место снижение каталитической активности в окислении оксида углерода, также при этом наблюдается незначительное снижение степени очистки от озона.
Сущность предложенного способа заключается в следующем.
Повышение каталитической активности водостойкого катализатора в окислении оксида углерода при использовании в качестве связующего смеси талюма и оксида алюминия в соотношении 1:(2 - 3) в количестве 30 - 50 мас.% обусловлено, вероятно, следующими причинами. Во-первых, водостойкость катализатора обеспечивается присутствием в его составе талюма. При этом при содержании талюма менее 1 части на 3 части оксида алюминия и при общем содержании связующего 30 мас. %. (т.е. при содержании талюма менее 7,5 мас.%) не удается приготовить водостойкий катализатор. С другой стороны, при общем содержании связующего менее 30 мас.% не удается приготовить катализатор с достаточной механической прочностью. Т.е. и талюм, и оксид алюминия играют роль связующих веществ, но при этом основной вклад в придании катализатору водостойких свойств вносит именно талюм. Во-вторых, при содержании оксида алюминия менее 2 частей на 1 часть талюма (т.е. при увеличении содержания талюма в связующем) наблюдается снижение каталитической активности катализатора в окислении оксида углерода. Возможно, это происходит вследствие того, что на поверхности талюма имеются кислотные центры значительной силы, которые оказывают подавляющее воздействие на каталитические активные центры, поскольку известно, что кислоты являются каталитическими ядами для оксидно-марганцевых систем в реакции окисления оксида углерода, что и приводит к снижению каталитической активности. С другой стороны, поверхностные кислотные центры оксида алюминия по своей силе слабее, чем у талюма, и увеличение содержания оксида алюминия в составе катализатора приводит к меньшему отравлению каталитических активных центров и соответственно меньшему снижению каталитической активности. При этом изменение соотношения талюма и оксида алюминия в связующем не оказывает сколько-нибудь существенного влияния на степень очистки от озона. Оптимальным соотношением талюма и оксида алюминия является 1:(2 - 3), т.к. при этом соотношении обеспечивается высокая каталитическая активность и водостойкость катализатора. В-третьих, увеличение содержания связующего более 50 мас.% приводит к заметному снижению каталитической активности в окислении оксида углерода. Очевидно, это связано с тем, что при увеличении содержания связующего неизбежно уменьшается количество активных каталитических центров, ответственных за окисление оксида углерода. При этом также наблюдается незначительное снижение степени очистки от озона. Оптимальным количеством связующего является 30 - 50 мас.%, поскольку при этом обеспечивается достаточная механическая прочность катализатора, его высокая каталитическая активность в окислении оксида углерода и степень очистки от озона.
Таким образом, предложенный способ позволяет получить водостойкий катализатор, значительно превосходящий известный по каталитической активности в окислении оксида углерода.
Этот катализатор позволит проводить более эффективную очистку газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания, выбросах промышленных предприятий, выхлопных газов двигателей внутреннего сгорания и дает возможность эффективно решить широкий круг экологических и технологических проблем.
Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а именно на повышение каталитической активности водостойкого катализатора в окислении оксида углерода, а вся совокупность является достаточной для характеристики заявленного технического решения.

Claims (1)

  1. Способ получения катализатора, включающий смешение диоксида марганца, оксида меди и связующего, содержащего талюм, формование гранул, гидротермальную обработку, сушку и прокаливание, отличающийся тем, что используют связующее, дополнительно содержащее оксид алюминия, в массовом отношении талюма к оксиду алюминия, равном 1 : (2-3), в количестве 30-50 мас.%.
RU97121683A 1997-12-23 1997-12-23 Способ получения катализатора RU2130803C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97121683A RU2130803C1 (ru) 1997-12-23 1997-12-23 Способ получения катализатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97121683A RU2130803C1 (ru) 1997-12-23 1997-12-23 Способ получения катализатора

Publications (1)

Publication Number Publication Date
RU2130803C1 true RU2130803C1 (ru) 1999-05-27

Family

ID=20200529

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97121683A RU2130803C1 (ru) 1997-12-23 1997-12-23 Способ получения катализатора

Country Status (1)

Country Link
RU (1) RU2130803C1 (ru)

Similar Documents

Publication Publication Date Title
US6479429B1 (en) Particulate compositions
JPS6233540A (ja) 二価金属−アルミネ−ト触媒
FR2773144A1 (fr) Catalyseur a base de ferrierite/fer pour la reduction catalytique de la teneur de gaz en protoxyde d'azote. son procede d'obtention. application au traitement de gaz industriels
RU2130803C1 (ru) Способ получения катализатора
RU2213616C1 (ru) Способ получения катализатора
RU2156659C1 (ru) Способ получения катализатора для разложения вредных примесей
RU2102144C1 (ru) Способ получения катализатора для разложения вредных примесей
RU2103067C1 (ru) Способ получения катализатора окисления оксида углерода
RU2083279C1 (ru) Способ получения катализатора окисления оксида углерода
RU2193923C1 (ru) Способ получения катализатора
JPH0523590A (ja) オゾン分解用触媒
RU2281159C1 (ru) Способ получения хемосорбента
RU2167713C1 (ru) Способ получения катализатора для разложения вредных примесей
RU2218211C1 (ru) Способ получения катализатора для разложения озона
RU2119387C1 (ru) Способ получения катализатора окисления оксида углерода
RU2054322C1 (ru) Способ получения катализатора окисления оксида углерода
RU2103066C1 (ru) Способ получения катализатора окисления оксида углерода
JPH0299142A (ja) 窒素酸化物分解触媒
RU2105606C1 (ru) Катализатор окисления оксида углерода
JPH02144155A (ja) オゾン分解用触媒の製造法
SU762964A1 (ru) Способ приготовления гранулированного катализатора для окисления окиси углеро) в двуокись углерода
RU2116833C1 (ru) Способ получения низкотемпературного катализатора окисления оксида углерода
RU2129914C1 (ru) Способ получения катализатора окисления оксида углерода
RU2323877C1 (ru) Способ получения хемосорбента
JP3221115B2 (ja) 亜酸化窒素分解用触媒