RU2148683C1 - Способ формирования полученного из расплава волокнистого полотна и устройство для его осуществления - Google Patents
Способ формирования полученного из расплава волокнистого полотна и устройство для его осуществления Download PDFInfo
- Publication number
- RU2148683C1 RU2148683C1 RU98119447A RU98119447A RU2148683C1 RU 2148683 C1 RU2148683 C1 RU 2148683C1 RU 98119447 A RU98119447 A RU 98119447A RU 98119447 A RU98119447 A RU 98119447A RU 2148683 C1 RU2148683 C1 RU 2148683C1
- Authority
- RU
- Russia
- Prior art keywords
- spinning line
- filaments
- shafts
- fiber spinning
- melt
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000004744 fabric Substances 0.000 title abstract description 9
- 238000009987 spinning Methods 0.000 claims abstract description 137
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 46
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 238000001125 extrusion Methods 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 12
- 239000000155 melt Substances 0.000 claims description 44
- 239000002861 polymer material Substances 0.000 claims description 38
- -1 polyethylene terephthalate Polymers 0.000 claims description 37
- 239000007789 gas Substances 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 17
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 17
- 239000004743 Polypropylene Substances 0.000 claims description 15
- 229920001155 polypropylene Polymers 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 4
- 230000006378 damage Effects 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 239000000112 cooling gas Substances 0.000 claims description 2
- 239000000428 dust Substances 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000004745 nonwoven fabric Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 239000007858 starting material Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 230000000739 chaotic effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010724 circulating oil Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004746 geotextile Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Treatment Of Fiber Materials (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Изобретение относится к получению нетканых полотен из волокон, применяемых при производстве одежды, мебели, фильтров, подложек для ковров, кровельных материалов и т.п. Термопластичный полимерный материал экструдируют в расплавленном состоянии для формирования многоволоконной прядильной линии из множества элементарных нитей, вытягивают многоволоконную прядильную линию, пропускают ее через зону охлаждения с отверждением составляющих ее нитей, собирают ее на опоре с формированием волокнистого полотна и ее скреплением. Прядильную линию пропускают в продольном направлении между зоной охлаждения и опорой с обводом нитей вокруг по меньшей мере двух отстоящих друг от друга приводных вытяжных валов с прочными гладкими поверхностями, которые окружены кожухом на участках контактирования прядильной линии с валами, причем кожух имеет входной и выходной края и расположен с возможностью приема своим входным краем прядильной линии. На прядильную линию оказывают тянущее усилие валы и пропуск ее через пневматическое сопло, расположенное у выходного края кожуха для создания непрерывного потока газа с входного края на выходной для контакта прядильной линии с валами и для выведения линии от выходного края кожуха в направлении опоры. Устройство для осуществления способа содержит множество экструзионных отверстий для формирования прядильной линии, зону охлаждения, расположенную за зоной экструдирования, по меньшей мере два отстоящих друг от друга вытяжных вала с прочными гладкими поверхностями, окруженные кожухом на участках контакта с прядильной линией. Кожух имеет входной и выходной края и расположен с возможностью приема линии. Устройство содержит также пневматическое вытяжное сопло, способствующее созданию непрерывного потока газа с входного края на выходной, контакту линии с валами и выводу линии из выходного края кожуха, и опору, расположенную под соплом, для приема линии и средство для скрепления линии, расположенное за зоной формирования волокнистого полотна. Такое выполнение обеспечивает надежный контакт линии с вытяжными валами, что делает возможным получение равномерной и стабильной вытяжки прядильной линии и, следовательно, позволяет производить качественные нетканые изделия. 2 с. и 18 з.п. ф-лы, 2 ил.
Description
Изобретение относится к нетканым полотнам из волокон, полученных прядением из расплава.
Нетканые волокнистые полотна из волокон, полученных прядением из расплава, являются важными как в сфере бытового, так и промышленного потребления. Такие продукты обычно обладают текстилеподобным тактильным восприятием и внешним видом и применимы в качестве компонентов одноразовых пеленок, в автомобилях, в формировании медицинской одежды, в мебели для жилых помещений, для изготовления фильтров, подложек для ковров, смягчающих прослоек для материалов, кровельных материалов, геотекстильных материалов и т.д.
В соответствии с существующей из известного уровня техники технологией расплавленный пригодный для переработки в расплавленном состоянии термопластичный полимерный материал пропускают через фильеру для формирования многоволоконной прядильной линии, вытягивают его для повышения прочности, пропускают через зону охлаждения, где происходит отверждение, собирают на опоре для формирования волокнистого полотна и скрепляют для формирования волокнистого полотна из волокон, полученных прядением из расплава. Вытяжку и утонение полученной экструзией из расплава прядильной линии волокон раньше производили путем ее пропускания через пневматическое сопло или путем пропускания вокруг приводных вытяжных валов. Устройство, в котором использованы и вытяжные валы, и газовый поток, описано в патенте США N 5439364. Оборудование, использовавшееся ранее для производства нетканых полученных из расплава волокнистых полотен, обычно требовало относительно больших затрат, множества прядильных головок, больших объемов воздуха и/или создавало большой разброс в линейной плотности элементарных нитей, когда предпринимали попытку быстрого получения нетканого холста в промышленном масштабе.
Известен способ формирования полученного из расплава волокнистого полотна, включающий пропускание расплава через фильеры для формирования множества нитей, вытягивание нитей и сбор их на опоре, причем вытягивание нитей в их продольном направлении осуществляют с обводом нитей вокруг по меньшей мере двух отстоящих друг от друга приводных вытяжных валов, которые окружены кожухом на участках, где осуществляется вытяжка, кожух имеет входной и выходной участки с возможностью приема и вывода нитей из кожуха, при этом на нити тянущее усилие преимущественно оказывают приводные валы для вытяжки и воздушный поток, создаваемый у выходного участка кожуха, способствующий прижатию нитей к валам и выводу нитей в продольном направлении у выходного участка кожуха (а.с. СССР N 499352).
Из этого же авторского свидетельства известно устройство для формирования полученного из расплава волокнистого полотна, содержащее множество фильер для формирования множества нитей из расплава, по меньшей мере два отстоящих друг от друга приводных вытяжных вала, окруженные кожухом на участках их контакта с множеством нитей, полученных из расплава, причем кожух имеет входной и выходной участки и выполнен с возможностью приема нитей, вытяжные валы выполнены с возможностью создания тянущего усилия на нити для осуществления их вытяжки, вытяжное средство для создания воздушного потока, расположенное у выходного участка кожуха и обеспечивающего контакт нитей с вытяжными валами и с возможностью вывода нитей в продольном направлении из выходного участка, и опору, предназначенную для приема нитей.
Однако в указанных способе и устройстве отсутствие пневматических направляющих сопл не позволяет достичь плавного и равномерного протекания воздуха по длине кожуха. За счет этого не достигается равномерный и надежный контакт прядильной линии с вытяжными валами и стабильная вытяжка прядильной линии.
Целью настоящего изобретения является создание усовершенствованного способа формирования полученного из расплава волокнистого полотна.
Целью настоящего изобретения является также создание способа формирования полученного из расплава волокнистого полотна, которое может быть осуществлено достаточно быстро, для получения по существу равномерного изделия, обладающего удовлетворительным соотношением свойств.
Целью настоящего изобретения является также создание способа формирования полученного из расплава волокнистого полотна, которое относительно приятно для потребителя и предоставляет возможность нормально производить качественные нетканые изделия при по существу отсутствии вызывающих затруднения намоток на валы.
Целью настоящего изобретения является также создание усовершенствованного способа формирования полученного из расплава волокнистого полотна, в котором прядильная линия может самостоятельно заправляться и требует минимального вмешательства оператора.
Целью настоящего изобретения является также создание усовершенствованной технологии, гибкой в отношении химического состава перерабатываемого в расплавленном состоянии термопластичного полимерного материала, служащего исходным сырьем.
Целью настоящего изобретения является также создание способа, который обеспечивает возможность осуществления хорошего контроля за линейной плотностью при производстве по существу равномерных, легких, полученных из расплава волокнистых изделий при относительно высоких скоростях формирования с высокой надежностью.
Другой целью настоящего изобретения является создание усовершенствованного способа формирования полученного из расплава волокнистого полотна, обеспечивающего возможность сокращения капитальных вложений и производственных затрат.
Еще одной целью настоящего изобретения является создание способа формирования полученного из расплава волокнистого полотна, где сокращение производственных затрат возможно за счет снижения потребностей в воздушном потоке при сравнении с известной ранее технологией, включавшей использование воздушного сопла, служившего для утонения элементарных нитей.
Еще одной целью настоящего изобретения является создание усовершенствованного устройства для формирования полученного из расплава волокнистого полотна.
Эти и другие цели, так же как и объем, природа и область использования настоящего изобретения, станут очевидными для специалистов в технологии производства нетканых материалов после ознакомления с последующим подробным описанием и прилагаемой формулой изобретения.
Эти цели согласно одному аспекту изобретения достигаются посредством способа формирования полученного из расплава волокнистого полотна, заключающегося в пропускании расплавленного, пригодного для переработки в расплавленном состоянии термопластического полимерного материала через множество экструзионных отверстий для формирования многоволоконной прядильной линии, вытягивании многоволоконной прядильной линии для повышения прочности составляющих ее нитей, пропускании ее через зону охлаждения с отверждением составляющих ее нитей, сборе ее на опоре с формированием волокнистого полотна и ее скреплении для формирования полученного из расплава волокнистого полотна, причем пропускают многоволоконную прядильную линию из множества элементарных нитей в их продольном направлении между зоной охлаждения и опорой с обводом нитей вокруг по меньшей мере двух отстоящих друг от друга приводных вытяжных валов с прочными гладкими поверхностями, которые окружены кожухом на участках, где многоволоконная прядильная линия из множества элементарных нитей контактирует с вытяжными валами, причем кожух имеет входной край и выходной край и расположен с возможностью приема своим входным краем многоволоконной прядильной линии из множества элементарных нитей, при этом на многоволоконную прядильную линию из множества элементарных нитей оказывают тянущее усилие преимущественно путем воздействия отстоящих друг от друга приводных вытяжных валов для вытяжки элементарных нитей многоволоконной прядильной линии вблизи экструзионных отверстий и путем пропуска многоволоконной прядильной линии через пневматическое сопло, расположенное около выходного края кожуха, способствующее достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей с отстоящими друг от друга приводными вытяжными валами, и выводящее многоволоконную прядильную линию в ее продольном направлении от выходного края кожуха в направлении опоры.
Предпочтительно, чтобы в качестве расплавленного пригодного для переработки в расплавленном состоянии термопластичного полимерного материала использовали полиэтилентерефталат.
Целесообразно, чтобы в качестве расплавленного пригодного для переработки в расплавленном состоянии термопластичного полимерного материала использовали полипропилен.
Желательно, чтобы пригодный для переработки в расплавленном состоянии полимерный материал пропускали через множество экструзионных отверстий, выполненных в прямоугольной фильере.
Преимущественно, чтобы зона охлаждения была выполнена в виде поперечно направленного охлаждающего потока.
Полезно, чтобы по меньшей мере двум отстоящим один от другого приводным вытяжным валам сообщали окружную скорость в пределах приблизительно 1000-5000 м/мин.
Возможно, чтобы многоволоконную прядильную линию из множества элементарных нитей после ее пропуска через пневматическое сопло собирали на поверхности бесконечного полотна, расположенного на расстоянии от пневматического сопла.
Предпочтительно, чтобы многоволоконная прядильная линия из множества элементарных нитей при осаждении на опору содержала элементарные нити, линейная плотность каждой из которых составляла приблизительно 1,1-22,0 дтекс.
Целесообразно, чтобы многоволоконную прядильную линию из множества элементарных нитей формировали главным образом из полиэтилентерефталата, и она при осаждении на опору содержала элементарные нити, линейная плотность каждой из которых составляла приблизительно 0,55-8,8 дтекс.
Преимущественно, чтобы многоволоконную прядильную линию из множества элементарных нитей формировали главным образом из изотактического полипропилена, и она при осаждении на опору содержала элементарные нити, линейная плотность каждой из которых составляла приблизительно 1,1-11,0 дтекс.
Желательно, чтобы волокнистое полотно после осаждения на опору скрепляли в соответствии с заданным рисунком при формировании полученного из расплава волокнистого полотна.
Полезно, чтобы волокнистое полотно после осаждения на опору скрепляли по поверхности при формировании полученного из расплава волокнистого полотна.
Возможно, чтобы полученное из расплава волокнистое полотно имело поверхностную плотность приблизительно 13,6-271,7 г/м2.
Эти цели согласно другому аспекту изобретения достигаются посредством устройства для изготовления полученного из расплава волокнистого полотна, содержащего:
множество выпускных экструзионных отверстий для формирования многоволоконной прядильной линии из множества элементарных нитей путем экструдирования расплава термопластичного полимерного материала;
зону охлаждения для отверждения многоволоконной прядильной линии из множества элементарных нитей из расплавленного термопластичного полимерного материала, расположенную вслед за зоной экструдирования расплава;
по меньшей мере два отстоящих друг от друга приводных вытяжных вала с прочными гладкими поверхностями, расположенных ниже по технологической линии от зоны охлаждения, окруженные кожухом на участках их контакта с многоволоконной прядильной линией из множества элементарных нитей из расплавленного термопластичного полимерного материала, причем кожух имеет входной край и выходной край и расположен с возможностью приема многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала, а вытяжные валы выполнены с возможностью создания тянущего усилия на многоволоконную прядильную линию из множества элементарных нитей из термопластичного полимерного материала для осуществления ее вытяжки рядом с выпускными экструзионными отверстиями;
пневматическое вытяжное сопло, расположенное у выходного края кожуха, выполненное с возможностью способствования достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала с отстоящими друг от друга приводными вытяжными валами и с возможностью вывода многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала в ее продольном направлении из выходного края кожуха;
опору, расположенную на расстоянии под пневматическим вытяжным соплом, предназначенную для приема многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала и улучшения ее укладки с образованием волокнистого полотна;
средство для скрепления многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала, размещенное по технологической линии за зоной формирования волокнистого полотна для формирования полученного из расплава волокнистого полотна.
множество выпускных экструзионных отверстий для формирования многоволоконной прядильной линии из множества элементарных нитей путем экструдирования расплава термопластичного полимерного материала;
зону охлаждения для отверждения многоволоконной прядильной линии из множества элементарных нитей из расплавленного термопластичного полимерного материала, расположенную вслед за зоной экструдирования расплава;
по меньшей мере два отстоящих друг от друга приводных вытяжных вала с прочными гладкими поверхностями, расположенных ниже по технологической линии от зоны охлаждения, окруженные кожухом на участках их контакта с многоволоконной прядильной линией из множества элементарных нитей из расплавленного термопластичного полимерного материала, причем кожух имеет входной край и выходной край и расположен с возможностью приема многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала, а вытяжные валы выполнены с возможностью создания тянущего усилия на многоволоконную прядильную линию из множества элементарных нитей из термопластичного полимерного материала для осуществления ее вытяжки рядом с выпускными экструзионными отверстиями;
пневматическое вытяжное сопло, расположенное у выходного края кожуха, выполненное с возможностью способствования достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала с отстоящими друг от друга приводными вытяжными валами и с возможностью вывода многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала в ее продольном направлении из выходного края кожуха;
опору, расположенную на расстоянии под пневматическим вытяжным соплом, предназначенную для приема многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала и улучшения ее укладки с образованием волокнистого полотна;
средство для скрепления многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала, размещенное по технологической линии за зоной формирования волокнистого полотна для формирования полученного из расплава волокнистого полотна.
Целесообразно, чтобы множество отверстий для экструдирования из расплава было выполнено в виде прямоугольной фильеры.
Предпочтительно, чтобы зона охлаждения была выполнена с возможностью обеспечения охлаждающего потока, направленного в поперечном направлении, в котором охлаждающий газ сталкивается с многоволоконной прядильной линией из множества расплавленных элементарных нитей из термопластичного полимерного материала, и расположена вслед за зоной экструдирования расплава.
Преимущественно, чтобы кожух включал полимерные насадки, выполненные с возможностью их расположения в непосредственной близости к вытяжным валам для обеспечения по существу полного ограждения валов на участках их охвата многоволоконной прядильной линией из множества элементарных нитей из термопластичного полимерного материала, и полимерные насадки были выполнены с возможностью их легкого разрушения и превращения в мелкую пыль при контакте с вытяжными валами.
Желательно, чтобы опора представляла собой бесконечное полотно.
Полезно, чтобы средство скрепления было выполнено с возможностью формирования скрепленного в соответствии с определенным рисунком полученного из расплава волокнистого полотна.
Возможно, чтобы средство скрепления было выполнено с возможностью формирования скрепленного по поверхности, полученного из расплава волокнистого полотна.
На фиг. 1 схематически представлено устройство, выполненное в соответствии с настоящим изобретением, которое предназначено для выполнения усовершенствованного способа производства полученного из расплава волокнистого полотна в соответствии с настоящим изобретением.
На фиг. 2 более подробно показана в поперечном сечении конструкция полимерных краев, которые могут быть расположены в зонах, в которых кожух приближен к вытяжным валам, для создания по существу непрерывного волокнопровода.
Исходным материалом для использования в производстве полученного из расплава волокнистого полотна является перерабатываемый в расплавленном виде термопластичный полимерный материал, который можно в расплавленном состоянии экструдировать с образованием непрерывных элементарных нитей. Подходящими полимерными материалами являются полиолефины, такие как полипропилен, и полиэфиры. Изотактический полипропилен является предпочтительным из полипропиленов. Особенно предпочтительный изотактический полипропилен демонстрирует текучесть в расплавленном состоянии, составляющую приблизительно 4-50 г/10 мин, при определении по стандарту ASTM D-1238. Полимеры обычно получают в результате реакции ароматической дикарбоновой кислоты (например, терефталевой кислоты, изофталевой кислоты, нафталановой дикарбоновой кислоты и т.д.) с алкиленгликолем (например, этиленгликолем, пропиленгликолем и т.д.) в качестве диола. В предпочтительном варианте осуществления изобретения в качестве полиэфира на первом месте стоит полиэтилентерефталат. Особенно предпочтительный исходный материал - полиэтилентерефталат - обладает собственной вязкостью (СВ), составляющей приблизительно 0,64-0,69 (например, 0,685) г/дл, температура стеклования составляет приблизительно 75-80oC и температура плавления составляет приблизительно 260oC. Такая собственная вязкость может быть воспроизведена, если 0,1 г полиэтилентерефталата растворить в 25 мл растворителя, состоящего в пропорции 1:1 в весовом отношении из трифторуксусной кислоты и хлористого метилена, и производить измерение вискозиметром N 50 фирмы "Кенон-Венске" при температуре 25oC. Другие сополимеризированные повторно расплавляющиеся частицы в полимерных цепях помимо полиэтилентерефталата произвольно могут присутствовать в минимальных концентрациях. Кроме того, некоторое количество элементарных нитей полэтиленизофталата произвольно может быть включено в полимерную прядильную линию в минимальных концентрациях для того, чтобы получаемое волокнистое полотно можно было бы легко подвергать термоскреплению. Дополнительные представленные термопластичные полимерные материалы включают полиамиды (например, найлон-6 и найлон-66), полиэтилен (например, полиэтилен высокого давления), полиуретан и т.д. Так как технология настоящего изобретения относительно благоприятна для пользователя, то далее можно использовать рециклируемые материалы и/или остатки термопластичных полимерных материалов, пригодных к переработке в расплавленном состоянии (например, рециркулируемый для повторного использования полиэтилен-терефталат).
Когда исходным термопластичным полимерным материалом является полиэфир (например, полиэтилентерефталат), рекомендуется, чтобы частицы этого полимера были предварительно обработаны нагреванием при перемешивании при температуре, превышающей температуру стеклования, но ниже температуры плавления, в течение достаточно большого срока времени, чтобы исключить влагу и привести их поверхность к такому физическому состоянию, при котором они становятся неслипающимися. Благодаря такой предварительной обработке происходит упорядочeние или кристаллизация поверхностей частиц исходного материала, и после этого обеспечиваются лучшие условия прохождения полимерных частиц, и их транспортировка происходит в хорошо контролируемом порядке при подаче в плавильно-экструдирующее устройство. При отсутствии такой предварительной обработки имеет место тенденция к слипанию частичек полиэфира. Исходные материалы, такие как изотактический полипропилен, не требуют такой предварительной обработки, так как склонность к слипанию им присуща в меньшей степени. Содержание влаги в исходном материале - полиэтилентерефталате - предпочтительно не превышает 25 частей на тысячу перед экструзией.
Способный к переработке в расплавленном состоянии термопластичный полимерный материал нагревают до температуры, превышающей его температуру плавления (например, обычно до температуры, приблизительно превышающей на 20-60oC температуру плавления), и подают к множеству экструдирующих расплав отверстий (например, фильер, содержащих множество отверстий). Обычно полимерный материал расплавляют при пропуске его через обогреваемый экструдер, фильтруют при прохождении через прядильный комплект, расположенный в фильерном блоке, и пропускают через экструдирующее отверстие с контролируемой скоростью, используя дозирующий насос.
Важно, чтобы любая твердая частица удалялась из расплавленного термопластичного полимера, с тем чтобы предотвратить забивку экструзионных отверстий фильеры. Размер экструзионных отверстий выбирают таким образом, чтобы сделать возможным формирование многоволоконной прядильной линии, в которой отдельные элементарные нити имеют желаемую линейную плотность после вытяжки или удлинения и перед полным отверждением, как было описано ранее. Соответствующие диаметры экструзионных отверстий обычно находятся в диапазоне приблизительно 0,254-0,762 мм (10-30 мил). Поперечные сечения таких отверстий могут быть круглыми по форме или им может быть придана другая конфигурация, такая как, например, треугольная, восьмигранная, звездчатая, в виде гантели и т.д. Представительные давления в прядильных комплектах обычно составляют приблизительно 8268-41340 кПа (1200-6000 пси) при прядении полиэтилентерефталата и приблизительно 6890-31005 кПа (1000-4500 пси) обычно составляют при использовании изотактического полипропилена. Когда исходным материалом является полиэтилентерефталат, представительные производительности выпуска обычно составляют 0,4-2,0 г/мин через одно отверстие, а когда в качестве исходного материала используют изотактический полипропилен, представительные производительности выпуска обычно составляют 0,2-1,5 г/мин через одно отверстие. Количество экструзионных отверстий и их расположение может варьировать в широких пределах. Такое количество экструзионных отверстий соответствует тому количеству непрерывных элементарных нитей, которое предполагается иметь в конечном многоволоконном материале. Например, количество экструзионных отверстий обычно может быть в пределах приблизительно от 200 до 65000. Такие отверстия обычно располагают с плотностью порядка 2-16. В предпочтительном варианте осуществления изобретения рисунок расположения экструзионных отверстий образует прямоугольную сетку (это называется прямоугольной фильерой). Например, такие прямоугольные фильеры могут иметь ширину приблизительно 0,1-4,0 м или больше в зависимости от ширины полученного из расплава волокнистого полотна, которое предполагают формировать. В альтернативном варианте осуществления изобретения может быть использовано многопозиционное прядильное устройство.
Зона охлаждения для отверждения многоволоконной прядильной линии из расплавленного термопластичного полимерного материала, следующая по ходу технологического процесса за зоной экструзии из расплава, расположена под экструзионными отверстиями. Расплавленную многоволоконную прядильную линию пропускают в продольном ее направлении через зону охлаждения, снабженную потоком газа, вытекающего с малой скоростью при большом объеме, где его предпочтительно охлаждают по существу равномерно в условиях отсутствия нежелательной турбулентности. В зоне охлаждения расплавленную многоволоконную прядильную линию преобразуют из расплавленного состояния в полуотвержденное и из полуотвержденного в полностью отвержденное состояние. Перед отверждением на участке, непосредственно ниже экструзионных отверстий, многоволоконную прядильную линию подвергают существенной вытяжке и ориентированию полимерных молекул. Газовая среда, присутствующая в зоне охлаждения, предпочтительно циркулирует таким образом, чтобы обеспечить наиболее эффективную теплопередачу. В предпочтительном варианте осуществления изобретения процесс создания газовой среды в зоне охлаждения ведут при температуре порядка 10-60oC (например, 10-50oC) и более предпочтительно - порядка 10-30oC (например, при комнатной температуре или ниже). Химический состав газовой среды не имеет существенного значения для проведения процесса, если только газовая среда не вступает в нежелательную реакцию с перерабатываемым в расплавленном состоянии термопластичным полимерным материалом. В особенно предпочтительном варианте осуществления процесса для образования газовой среды в зоне охлаждения используют воздух с влажностью приблизительно 50%. Газовую среду предпочтительно вводят в зону охлаждения в поперечном направлении, и она воздействует в существенной степени постоянно на одну или на обе стороны прядильной линии. Могут быть использованы другие устройства для подачи охлаждающего потока сходным образом. Типичная длина зоны охлаждения обычно составляет 0,5-2,0 м. Такая зона охлаждения может быть закрыта и снабжена средством для контролирования вывода газового потока, который вводят в эту зону, или она может быть просто частично или полностью открыта по отношению к окружающей среде.
Отвержденную многоволоконную прядильную линию обводят вокруг по меньшей мере двух отстоящих один от другого приводных вытяжных валов, окруженных кожухом на участке, где многоволоконная прядильная линия огибает валы. Если требуется, одна или большее число дополнительных пар отстоящих один от другого вытяжных валов могут быть установлены последовательно, и они могут быть аналогичным образом окружены тем же самым непрерывным кожухом. Многоволоконную прядильную линию обводят вокруг вытяжных валов с углом охвата, составляющим приблизительно 90-270o, а предпочтительно с углом охвата, составляющим приблизительно 180-230o. Кожух располагают на расстоянии от вытяжных валов и создают непрерывный канал, по которому прядильная линия может свободно проходить. Вытяжные валы создают тянущее усилие, воздействующее на прядильную линию, обеспечивающее вытяжку прядильной линии вблизи экструзионных отверстий и перед полным отверждением в зоне охлаждения. На выходном краю кожуха располагают пневматическое сопло, которое способствует обеспечению контакта многоволоконной прядильной линии с отстоящими один от другого вытяжными валами и выводу многоволоконной прядильной линии в ее продольном направлении от выходного края кожуха к опоре, где ее собирают так, как описано здесь ниже.
Приводные вытяжные валы, которые используют в соответствии с настоящим изобретением, имеют длину, которая превышает ширину формируемого полученного из расплава волокнистого полотна из множества элементарных нитей. Такие вытяжные валы могут быть изготовлены из отливок или из обработанного алюминия, или из другого прочного материала. Поверхность вытяжных валов предпочтительно должна быть гладкой. Представительный диаметр вытяжных валов обычно находится в пределах приблизительно 10-60 см, а в предпочтительном варианте осуществления изобретения диаметр вытяжного вала составляет приблизительно 15-35 см. Как станет очевидным для специалистов в области технологии производства волокна, диаметр вала и угол охвата вала прядильной линией в большой степени определяют взаимное расположение вытяжных валов. Во время выполнения процесса в соответствии с настоящим изобретением вытяжные валы обычно приводят во вращение с окружной скоростью в пределах приблизительно 1000-5000 м/мин или более, а предпочтительно - с окружной скоростью в пределах приблизительно 1500-3500 м/мин.
Приводные вытяжные валы передают тянущее усилие на многоволоконную прядильную линию, осуществляя соответственную вытяжку прядильной линии, которая происходит на участке, расположенном вверх по технологическому потоку до полного отверждения элементарных нитей, находящихся там.
Наличие кожуха или ограждения, окружающего вытяжные валы, является ключевой особенностью всей технологии согласно настоящему изобретению. Такой кожух в существенной степени отстоит от поверхностей вытяжных валов для того, чтобы обеспечить беспрепятственный и непрерывный закрытый проход для прохождения многоволоконной прядильной линии, огибающей вытяжные валы, а также беспрепятственный проход непрерывного потока газа от входа к выходу. В предпочтительном варианте осуществления изобретения внутренняя поверхность кожуха расположена не дальше, чем приблизительно 2,5 см от поверхности вытяжных валов, и не ближе, чем приблизительно 0,6 см от поверхности вытяжных валов. Пневматическое сопло в связи с выходным концом кожуха понуждает газ, например воздух, к всасыванию во входное отверстие кожуха, плавному сгибанию поверхностей вытяжных валов, несущих многоволоконную прядильную линию, и к удалению его вниз из пневматического сопла. Кожух, который определяет наружную границу этого непрерывного путепровода, выполнен как лоток вокруг вытяжных валов и может быть изготовлен из любого долговечного материала, такого как полимерный или металлический материал. В предпочтительном варианте осуществления изобретения кожух сформирован по меньшей мере частично из чистого и твердого полимерного материала, такого как материал с поликарбонатными связями, который обеспечивает возможность свободно наблюдать за прядильной линией извне. Если расстояние между кожухом и вытяжными валами слишком большое, то скорость газового потока внутри кожуха имеет тенденцию к недолжному снижению так, что нарушает желаемый повышенный контакт между многоволоконной прядильной линией и приводными вытяжными валами.
Для получения наилучших результатов область ограниченного газового потока, создаваемого внутри кожуха, является гладкой и по существу свободной от препятствий или мест, где рассеяние газа могло бы происходить по всей длине кожуха, начиная от входа и до выхода. Это предотвращает сколько-нибудь существенное прерывание или утечку газового потока в промежуточной части внутри кожуха во время работы устройства, выполненного в соответствии с настоящим изобретением. Когда газовый поток в кожухе является по существу непрерывным и без возмущений, то такой поток обеспечивает налагаемую на него функцию усиления контакта между приводными вытяжными валами и многоволоконной прядильной линией нитей, огибающих вытяжные валы. Возможность проскальзывания многоволоконной прядильной линии нитей, огибающих вытяжные валы, преодолевают или доводят до минимума. В предпочтительном варианте осуществления настоящего изобретения кожух снабжают полимерными краями или насадками (т.е. аэродинамическими дефлекторами), которые могут быть расположены достаточно близко к приводным вытяжным валам по всей их длине в зонах, непосредственно следующих за точками, где многоволоконная прядильная линия отрывается от вытяжных валов, и непосредственно до точки, где многоволоконная прядильная линия входит в контакт со вторым вытяжным валом. Это позволяет обеспечить по существу полное укрытие вытяжных валов с помощью таких краев, которые предпочтительно могут быть легко разрушены путем превращения предпочтительно в тонкий порошок в случае контакта с вытяжными валами. Такие полимерные края предпочтительно должны обладать относительно высокой температурой плавления и могут быть приближены к каждому вытяжному валу, так чтобы оставался узкий зазор порядка 0,1-0,08 мм. В число представительных материалов, пригодных для использования для формирования полимерных краев, входят полиимиды, полиамиды, полиэфиры, политетрафторэтилен и т.д. Наполнители, такие как графит, могут быть необязательно использованы. Внутри кожуха поддерживают равномерный газовый поток и предотвращают нежелательные наматывания многоволоконной прядильной линии на валы. Благодаря этому необходимость в прерывании выпуска прядильной линии для удаления наматывания на валы в значительной степени снижают и увеличивают возможность непрерывного формирования равномерного полученного из расплава волокнистого полотна.
Пневматическое сопло, расположенное на выходном крае кожуха, создает непрерывный направленный вниз газовый поток, например поток воздуха, около выходного края кожуха. Такое сопло вводит газовый поток по существу параллельно направлению движения прядильной линии, в то время как прядильная линия проходит через отверстие, имеющееся в пневматическом сопле. По всему кожуху создают непрерывный поток газа путем отсоса газа, выполняемого пневматическим соплом, и подачей газа дополнительно, который засасывается во входное отверстие кожуха и протекает по всей длине кожуха. Газовый поток, входящий через входной край кожуха, соединяется с потоком, всасываемым пневматическим соплом. Направленный вниз поток газа, введенный пневматическим соплом, сталкивается с прядильной линией и оказывает дальнейшее тянущее усилие на нее, достаточное для того, чтобы способствовать поддержанию равномерного контакта с валами при по существу отсутствии проскальзывания. Скорость газового потока, создаваемого пневматическим соплом, превосходит окружную скорость приводных вытяжных валов, так что оказывается возможным создание требуемого тянущего усилия. Было установлено, что такое пневматическое сопло с помощью воздушного потока, создаваемого в кожухе, обеспечивает хороший контакт с вытяжными валами, для того чтобы сделать возможной равномерную вытяжку непрерывных элементарных нитей в конечном нетканом продукте. Пневматическое сопло создает натяжение прядильной линии, которое способствует поддержанию хорошего контакта прядильной линии с вытяжными валами. Формируют продукт с превосходной равномерностью линейной плотности элементарных нитей благодаря тому, что предотвращают проскальзывание между многоволоконной прядильной линией и вытяжными валами в контексте всего процесса. Такое пневматическое сопло не предназначено для сколько-нибудь существенной вытяжки элементарных нитей или их удлинения совместно с вытяжным усилием, создаваемым главным образом вращением приводных вытяжных валов. Пневматические сопла, выполненные с возможностью продвижения вперед прядильной линии при прохождении ее через эти сопла и в то же самое время оказывающие достаточное тянущее усилие для обеспечения хорошего прилегания прядильной линии к вытяжным валам при по существу отсутствии проскальзывания, могут быть использованы.
Если желательно, то движущейся прядильной линии из множества элементарных нитей может быть по выбору сообщен электростатический заряд от источника высокого напряжения с малой силой тока в соответствии с известной технологией, для того чтобы способствовать укладке элементарных нитей на опору (описанную ниже).
Опора расположена на некотором расстоянии под пневматическим соплом и предназначена для приема многоволоконной прядильной линии и способствования укладки ее на опору для формирования полотна. Такая опора предпочтительно представляет собой движущееся непрерывное и в высокой степени воздухопроницаемое вращающееся полотно, такое как обычно используется при формировании нетканого полученного из расплава материала, к которому прикладывают частичный вакуум с нижней стороны, который содействует укладке многоволоконной прядильной линии на опору для образования полотна. Вакуум, создаваемый снизу, предпочтительно предназначен для сбалансирования до определенной степени воздушного потока, выпускаемого пневматическим соплом. Поверхностную плотность конечного полотна можно регулировать по желанию посредством изменения скорости вращения подвижного полотна, на котором формируют волокнистое полотно. Опора расположена на расстоянии ниже пневматического сопла и это расстояние достаточно для того, чтобы позволить многоволоконной прядильной линии произвольно изгибаться и извиваться по меньшей мере до некоторой степени по мере замедления ее движения вперед перед укладкой на опору преимущественно хаотическим образом. Чрезвычайно высокая степени ориентации элементарных волоков в продольном направлении нарушается при по существу хаотической укладке во время формирования полотна.
Многоволоконную прядильную линию затем передают с собирающей опоры к скрепляющему устройству, на котором соседние элементарные нити скрепляют друг с другом для получения полученного из расплава волокнистого холста. Как правило, полотно подвергают дальнейшему уплотнению механическими средствами перед проведением скрепления в соответствии с технологией, обычно используемой в производстве нетканых материалов в соответствии с известными способами. Во время скрепления части изделия из множества элементарных нитей обычно пропускают между нагреваемых валов при высоком давлении и нагревают до температуры размягчения или плавления, где соседние элементарные нити, подверженные такому нагреванию, понуждают к постоянному соединению или спеканию вместе в точках перекрещивания. Любой рисунок (т.е. точка) скрепления, используемый на каландрах, или поверхность (т.е. площадь) скрепления в поперечном направлении всей поверхности полотна, может быть выполнен в соответствии с известной технологией. Предпочтительно такое скрепление производят путем термоскрепления при одновременном приложении тепла и давления. В особенно предпочтительном варианте осуществления изобретения конечное волокнистое полотно скрепляют в отдельных точках, используя для этого рисунок, выбранный так, чтобы он отвечал требованиям предполагаемого использования готового продукта. Типичным является давление скрепления в диапазоне приблизительно 17,9-89,4 кг/п. см, и суммарная площадь скрепления обычно составляет около 10-30% поверхности, подвергаемой такому рисунчатому скреплению. Валы можно нагревать с помощью циркулирующего масла или индуктивным теплом и т. д. Подходящий способ термоскрепления описан в патенте США N 5298097, который включен в настоящее описание в качестве ссылки.
Полученный из расплава волокнистый холст, изготовленный в соответствии с настоящим изобретением, обычно содержит элементарные нити с линейной плотностью приблизительно 1,1-2/2 дтекс. Предпочтительный диапазон линейной плотности элементарных нитей из полиэтилентерефталата составляет приблизительно 0,55-8,8 дтекс (0,5-8 денье), а еще более предпочтительный 1,6-5,5 дтекс (1,5-5,5 денье). Предпочтительный диапазон линейной плотности элементарных нитей из изотактического полипропилена составляет приблизительно 1,1-11 дтекс (1-10 денье), а еще более предпочтительный 2,2-4,4 дтекс (2-4 денье). Обычно прочность элементарных нитей из полиэтилентерефталата достигает приблизительно 2,2-3,4 дН/дтекс, а из изотактического полипропилена - 13,2-17,7 дН/дтекс в полученных из расплава волокнистых полотнах, сформированных в соответствии с настоящим изобретением. Обычно формируют относительно равномерные нетканые волокнистые полотна с поверхностной плотностью приблизительно 13,6-271,7 г/м2. В предпочтительном варианте осуществления изобретения поверхностная плотность составляет приблизительно 13,6-67,9 г/м2. По технологии согласно настоящему изобретению могут быть получены нетканые материалы с коэффициентом вариации неравномерности их поверхностной плотности, предпочтительно составляющим по меньшей мере не более 4% при размере образцов 232 см2.
Технология, раскрытая в настоящем изобретении, позволяет формировать нетканые полученные из расплава волокнистые холсты на основе ускоренного процесса при отсутствии очень обременительных капитальных и производственных затрат. Другие экономические преимущества возможны благодаря способности процесса к использованию вторичного сырья или рециркулируемого термопластичного полимерного материала в качестве исходного материала. Способность технологии к самозаправке позволяет, кроме того, использовать минимум трудозатрат для запуска процесса, увеличивая, таким образом, производительность данной установки.
Следующие примеры приведены в качестве специальных иллюстраций настоящего изобретения со ссылками на фиг. 1 и 2. Следует иметь в виду, однако, что настоящее изобретение не ограничено специфическими деталями, описанными в примерах.
В каждом случае термопластичный полимерный материал в форме гранул направляли в нагреваемый одношнековый
экструдер (МРМ) (не показан) и подавали, в то время как он находился в расплавленном состоянии, по нагреваемой передающей линии к насосу типа "Зенит" (не показан), производительность которого составляла 11,68 см3/об., а далее к фильерному комплекту 1. Контролируемое давление в экструдере поддерживали на уровне, приблизительно составляющем 3,445 кПа. Термопластичный полимер, находившийся в расплавленном состоянии, пропускали через фильерный комплект 1, который содержал фильтрующую среду для формирования расплавленной многоволоконной термопластичной прядильной линии 2. Полученную в результате этого многоволоконную прядильную линию затем охлаждали, пропуская ее через зону 4 охлаждения, длина которой составляла 0,91 м, где воздух при температуре приблизительно 13oC воздействовал на прядильную линию практически в перпендикулярном направлении и нетурбулентным потоком с одной стороны, причем воздух подавали по воздуховоду 6 и вводили со скоростью потока 35,9 см3/с.
экструдер (МРМ) (не показан) и подавали, в то время как он находился в расплавленном состоянии, по нагреваемой передающей линии к насосу типа "Зенит" (не показан), производительность которого составляла 11,68 см3/об., а далее к фильерному комплекту 1. Контролируемое давление в экструдере поддерживали на уровне, приблизительно составляющем 3,445 кПа. Термопластичный полимер, находившийся в расплавленном состоянии, пропускали через фильерный комплект 1, который содержал фильтрующую среду для формирования расплавленной многоволоконной термопластичной прядильной линии 2. Полученную в результате этого многоволоконную прядильную линию затем охлаждали, пропуская ее через зону 4 охлаждения, длина которой составляла 0,91 м, где воздух при температуре приблизительно 13oC воздействовал на прядильную линию практически в перпендикулярном направлении и нетурбулентным потоком с одной стороны, причем воздух подавали по воздуховоду 6 и вводили со скоростью потока 35,9 см3/с.
Нижнюю часть 8 прядильной линии затем заправляли во входной конец 10 кожуха 12, который окружает приводные вытяжные валы 14 и 16 в зонах, где прядильная линия огибала эти приводные валы. Приводные валы 14 и 16 имели диаметр 19,4 см. Прядильная линия охватывала каждый вытяжной вал по дуге, приблизительно составлявшей 210o. Внутренняя поверхность кожуха 12 отстояла от поверхности вытяжных валов 14 и 16 на расстоянии приблизительно 2,5 см в зонах, где прядильная линия огибала эти валы. Как показано на фиг.1, полимерные насадки или края 18, 20 и 22 были установлены для улучшения формирования по существу полного путепровода от входного края 10 к выходному краю 24 кожуха 12. Более подробно представительная насадка или край показаны на фиг. 2, где сменный полимерный край 26 установлен в держателе 28 кожуха 12. Полимерный край 26 и держатель 28 образуют часть кожуха 12, через которую проходит прядильная линия. Полимерный край или насадка 18, показанная на фиг. 1, соответствует сменному полимерному краю 26 с держателем 28 на фиг. 2. Малейший контакт полимерного края 26 с вытяжным валом 14 приводит к разрушению такого края и превращению его в мелкий порошок без сколько-нибудь заметного повреждения такого вытяжного вала. На фиг.2 прядильная линия обозначена поз. 30 в момент ее отхода от первого вытяжного вала 14. Вытяжные валы 14 и 16, как показано на фиг. 1, улучшают процесс вытяжки прядильной линии 2 до ее полного отверждения.
На выходном конце 24 кожуха 12 было расположено пневматическое сопло 32, в которое подавали воздух через патрубок 34 и которое направлено вниз по существу параллельно направлению движения прядильной линии. Давление воздуха в сопле составляло 186 кПа, расход воздуха составлял приблизительно 4,2 м3/мин. Скорость воздушного потока, подаваемого пневматическим соплом 32, превышала окружную скорость вытяжных валов 14 и 16. Пневматическое сопло 32, налагавшее последующее тянущее усилие на вуаль, вызывало подсос дополнительного объема воздуха в кожух 12 с входного края 10, создавало поток воздуха по всей длине кожуха 12 и обеспечивало равномерный охват прядильной линией вытяжных валов 14 и 16 при практическом отсутствии проскальзывания, благодаря чему обеспечивалась возможность равномерной вытяжки. Также пневматическим ускоряющим соплом 32 понуждали прядильную линию 36 выходить из выходного края 24 кожуха 12 в направлении опоры 38, которая была выполнена в виде движущегося воздухопроницаемого полотна.
После выхода прядильной линии 36 из пневматического сопла 32 отдельные непрерывные элементарные нити, присутствовавшие в ней, изгибались, преимущественно хаотически, по мере того как скорость прядильной линии уменьшалась, и ее движение вперед замедлялось, так как сильное тянущее воздействие больше не действовало на нее. Прядильную линию затем собирали на опоре 38 по существу хаотическим образом. В качестве такой опоры или полотна для осаждения 38 использовали полотно, поставляемое фирмой "Олбэни Интернэшнл", шт. Теннесси, под наименованием "Электротех 20". Опора 38 была расположена на расстоянии под выходным отверстием пневматического сопла 32.
Получаемое полотно 40, находившееся на опоре 38, направляли вокруг уплотнительного вала 42 и скрепляющего рисунчатого вала 44. Скрепляющий рисунчатый вал 44 имел на поверхности гравированный ромбический рисунок, и его нагревали до температуры размягчения термопластичного полимерного материала. Места скрепления, занимавшие приблизительно 20% поверхности волокнистого полотна, создавали при прохождении полотна между уплотнительным валом 42 и рисунчатым скрепляющим валом 44. Результирующее получаемое из расплава волокнистое полотно затем сворачивали в рулон 46. Дальнейшие детали экспериментов приведены в описаниях примеров ниже.
Пример 1. В качестве исходного термопластичного полимерного материала использовали коммерчески поставляемый полиэтилентерефталат, обладавший собственной вязкостью 0,685 г/дл. Собственную вязкость определяли по описанной ранее методике. Такой полимерный материал, находящийся в форме чешуек, сначала подвергали предварительной обработке при температуре приблизительно 174oC для достижения кристаллизации и высушивали осушенным воздухом при температуре приблизительно 149oC. Давление в прядильном комплекте составляло 13,780 кПа. Фильера содержала 384 отверстий, равномерно распределенных по ширине, составлявшей 15,2 см. Капиллярные отверстия в фильере имели треугольную форму с длиной паза 0,38 мм, глубиной паза 0,18 мм и шириной паза 0,13 мм. Расплавленный полиэтилентерефталат подавали с производительностью 1,2 г/мин на одно отверстие и экструдировали при температуре 307oC.
Приводным вытяжным валам 14 и 16 сообщали окружную скорость, составлявшую приблизительно 2743 м/мин. Элементарные нити продукта имели линейную плотность приблизительно 4,5 дтекс, и их прочность составляла приблизительно 20,3 дН/дтекс. Скорость приемного полотна 38 регулировали таким образом, чтобы получать формованные из расплава волокнистые полотна с поверхностной плотностью 13,6-135,8 г/м2. Получаемое формованное из расплава изделие с поверхностной плотностью 105,3 г/м2 обладало коэффициентом вариации по неровноте поверхностной плотности всего 4% при размере образца 232 см2.
Пример 2. В качестве исходного термопластичного полимерного материала использовали коммерчески поставляемый изотактический полипропилен, скорость потока которого в расплавленном состоянии составляла 40 г/10 мин при определении по методике в соответствии со стандартами ASTM D-1238 (ASTM - Американское общество по испытанию материалов). Этот полимерный материал подавали в форме чешуек и экструдировали в расплавленном состоянии. Давление в прядильном комплекте составляло 9,646 кПа.
Фильера содержала 240 отверстий, равномерно распределенных по ширине, составлявшей 30,5 см. Капиллярные отверстия в фильере имели круглую форму с диаметром 0,038 см, длина паза составляла 0,152 см. Расплавленный изотактический полипропилен подавали с производительностью 0,6 г/мин на одно отверстие и экструдировали при температуре 227oC.
Приводным вытяжным валам 14 и 16 сообщали окружную скорость, составлявшую приблизительно 1829 м/мин. Элементарные нити продукта имели линейную плотность приблизительно 3,3 дтекс (3,0 денье), и их прочность составляла приблизительно 15,9 дН/дтекс. Скорость приемного полотна 38 регулировали таким образом, чтобы получать полученные из расплава волокнистые холсты (полотна) с поверхностной плотностью 13,6-67,9 г/м2. Готовое изделие, полученное из расплава с поверхностной плотностью 44,1 г/м2, обладало коэффициентом вариации по неровноте поверхностной плотности всего 3,3% при размере образца 232 см2.
Хотя настоящее изобретение было описано со ссылками на предпочтительные варианты его осуществления, следует иметь в виду, что могут быть введены различные вариации и модификации, очевидные для специалистов в данной области техники. Такие вариации и модификации следует рассматривать в границах и объеме прилагаемой формулы изобретения.
Claims (20)
1. Способ формирования полученного из расплава волокнистого полотна, заключающийся в пропускании расплавленного пригодного для переработки в расплавленном состоянии термопластичного полимерного материала через множество экструзионных отверстий для формирования многоволоконной прядильной линии, вытягивании многоволоконной прядильной линии для повышения прочности составляющих ее нитей, пропускании ее через зону охлаждения с отверждением составляющих ее нитей, сборе ее на опоре с формированием волокнистого полотна и ее скреплении для формирования полученного из расплава волокнистого полотна, причем пропускают многоволоконную прядильную линию из множества элементарных нитей в их продольном направлении между зоной охлаждения и опорой с обводом нитей вокруг по меньшей мере двух отстоящих друг от друга приводных вытяжных валов с прочными гладкими поверхностями, которые окружены кожухом на участках, где многоволоконная прядильная линия из множества элементарных нитей контактирует с вытяжными валами, причем кожух имеет входной край и выходной край и расположен с возможностью приема своим входным краем многоволоконной прядильной линии из множества элементарных нитей, при этом на многоволоконную прядильную линию из множества элементарных нитей оказывают тянущее усилие преимущественно путем воздействия отстоящих друг от друга приводных вытяжных валов для вытяжки
элементарных нитей многоволоконной прядильной линии вблизи экструзионных отверстий и путем пропуска многоволоконной прядильной линии через пневматическое сопло, расположенное около выходного края кожуха, способствующее достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей с отстоящими друг от друга приводными вытяжными валами и выводящее многоволоконную прядильную линию в ее продольном направлении от выходного края кожуха в направлении опоры.
элементарных нитей многоволоконной прядильной линии вблизи экструзионных отверстий и путем пропуска многоволоконной прядильной линии через пневматическое сопло, расположенное около выходного края кожуха, способствующее достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей с отстоящими друг от друга приводными вытяжными валами и выводящее многоволоконную прядильную линию в ее продольном направлении от выходного края кожуха в направлении опоры.
2. Способ по п. 1, в котором в качестве расплавленного пригодного для переработки в расплавленном состоянии термопластичного полимерного материала используют полиэтилентерефталат.
3. Способ по п. 1, в котором в качестве расплавленного пригодного для переработки в расплавленном состоянии термопластичного полимерного материала используют полипропилен.
4. Способ по п.1, в котором пригодный для переработки в расплавленном состоянии полимерный материал пропускают через множество экструзионных отверстий, выполненных в прямоугольной фильере.
5. Способ по п.1, в котором зона охлаждения выполнена в виде поперечно направленного охлаждающего потока.
6. Способ по п. 1, в котором по меньшей мере двум отстоящими один от другого приводным вытяжным валам сообщают окружную скорость в пределах приблизительно 1000 - 5000 м/мин.
7. Способ по п.1, в котором многоволоконную прядильную линию из множества элементарных нитей после ее пропуска через пневматическое сопло собирают на поверхности бесконечного полотна, расположенного на расстоянии от пневматического сопла.
8. Способ по п.1, в котором многоволоконная прядильная линия из множества элементарных нитей при осаждении на опору содержит элементарные нити, линейная плотность каждой из которых составляет приблизительно 1,1 - 2,0 дтекс.
9. Способ по п.1, в котором многоволоконную прядильную линию из множества элементарных нитей формируют, главным образом, из полиэтилентерефталата и она при осаждении на опору содержит элементарные нити, линейная плотность каждой из которых составляет приблизительно 0,55 - 8,8 дтекс.
10. Способ по п.1, в котором многоволоконную прядильную линию из множества элементарных нитей формируют, главным образом, из изотактического полипропилена и она при осаждении на опору содержит элементарные нити, линейная плотность каждой из которых составляет приблизительно 1,1 - 11,0 дтекс.
11. Способ по п. 1, в котором волокнистое полотно после осаждения на опору скрепляют в соответствии с заданным рисунком при формировании полученного из расплава волокнистого полотна.
12. Способ по п.1, в котором волокнистое полотно после осаждения на опору скрепляют по поверхности при формировании полученного из расплава волокнистого полотна.
13. Способ по п.1, в котором полученное из расплава волокнистое полотно имеет поверхностную плотность приблизительно 13,6 - 271,7 г/м2.
14. Устройство для изготовления. полученного из расплава волокнистого полотна, содержащее множество выпускных экструзионных отверстий для формирования многоволоконной прядильной линии из множества элементарных нитей путем экструдирования расплава термопластичного полимерного материала; зону охлаждения для отверждения многоволоконной прядильной линии из множества элементарных нитей из расплавленного термопластичного полимерного материала, расположенную вслед за зоной экструдирования расплава; по меньшей мере два отстоящих друг от друга приводных вытяжных вала с прочными гладкими поверхностями, расположенных ниже по технологической линии от зоны охлаждения, окруженных кожухом на участках из контакта с многоволоконной прядильной линией из множества элементарных нитей из расплавленного термопластичного полимерного материала, причем кожух имеет входной край и выходной край и расположен с возможностью приема многоволоконной прядильной линии из множества элементарных нитей их термопластичного полимерного материала, а вытяжные валы выполнены с возможностью создания тянущего усилия на многоволоконную прядильную линию из множеств элементарных нитей из термопластичного полимерного материала для осуществления ее вытяжки рядом с выпускными экструзионными отверстиями; пневматическое вытяжное сопло, расположенное у выходного края кожуха, выполненное с возможностью способствования достижению непрерывного потока газа с входного края на выходной край и контакту многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала с отстоящими друг от друга приводными вытяжными валами и с возможностью вывода многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала в ее продольном направлении из выходного края кожуха; опору, расположенную на расстоянии под пневматическим вытяжным соплом, предназначенную для приема многоволоконной прядильной линии из множества элементарных нитей из термопластичного полимерного материала и улучшения ее укладки с образованием волокнистого полотна; средство для скрепления многоволоконной прядильной линии из
множества элементарных нитей из термопластичного полимерного материала, размещенное по технологической линии за зоной формирования волокнистого полотна для формирования полученного из расплава волокнистого полотна.
множества элементарных нитей из термопластичного полимерного материала, размещенное по технологической линии за зоной формирования волокнистого полотна для формирования полученного из расплава волокнистого полотна.
15. Устройство по п.14, в котором множество отверстий для экструдирования из расплава выполнено в виде прямоугольной фильеры.
16. Устройство по п.14, в котором зона охлаждения выполнена с возможностью обеспечения охлаждающего потока, направленного в поперечном направлении, в котором охлаждающий газ сталкивается с многоволоконной прядильной линией из множества расплавленных элементарных нитей из термопластичного полимерного материала, и расположена вслед за зоной экструдирования расплава.
17. Устройство по п. 14, в котором кожух включает полимерные насадки, выполненные с возможностью их расположения в непосредственной близости к вытяжным валам для обеспечения, по существу, полного ограждения валов на участках их охвата многоволоконной прядильной линией из множества элементарных нитей из термопластичного полимерного материала, и полимерные насадки выполнены с возможностью их легкого разрушения и превращения в мелкую пыль при контакте с вытяжными валами.
18. Устройство по п.14, в котором опора представляет собой бесконечное полотно.
19. Устройство по п.14, в котором средство скрепления выполнено с возможностью формирования скрепленного в соответствии с определенным рисунком полученного из расплава волокнистого полотна.
20. Устройство по п.14, в котором средство скрепления выполнено с возможностью формирования скрепленного на поверхности полученного из расплава волокнистого полотна.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/622,312 | 1996-03-27 | ||
US08/622,312 US5665300A (en) | 1996-03-27 | 1996-03-27 | Production of spun-bonded web |
PCT/US1997/004114 WO1997036026A1 (en) | 1996-03-27 | 1997-03-13 | Process of making spun-bonded web |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2148683C1 true RU2148683C1 (ru) | 2000-05-10 |
Family
ID=24493729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98119447A RU2148683C1 (ru) | 1996-03-27 | 1997-03-13 | Способ формирования полученного из расплава волокнистого полотна и устройство для его осуществления |
Country Status (35)
Country | Link |
---|---|
US (2) | US5665300A (ru) |
EP (1) | EP0902850B1 (ru) |
JP (1) | JP3325272B2 (ru) |
KR (1) | KR100426546B1 (ru) |
CN (1) | CN1097100C (ru) |
AR (1) | AR006432A1 (ru) |
AT (1) | ATE272135T1 (ru) |
AU (1) | AU711506B2 (ru) |
BG (1) | BG63402B1 (ru) |
BR (1) | BR9708249A (ru) |
CA (1) | CA2248258C (ru) |
CO (1) | CO4560499A1 (ru) |
CZ (1) | CZ295147B6 (ru) |
DE (1) | DE69730025T2 (ru) |
EE (1) | EE9800314A (ru) |
EG (1) | EG21397A (ru) |
ES (1) | ES2224229T3 (ru) |
GE (1) | GEP20012584B (ru) |
HK (1) | HK1018293A1 (ru) |
ID (1) | ID17209A (ru) |
IL (1) | IL126025A (ru) |
LT (1) | LT4511B (ru) |
LV (1) | LV12225B (ru) |
NO (1) | NO312107B1 (ru) |
NZ (1) | NZ331642A (ru) |
PL (1) | PL184036B1 (ru) |
RO (1) | RO116652B1 (ru) |
RU (1) | RU2148683C1 (ru) |
SK (1) | SK124098A3 (ru) |
TR (1) | TR199801914T2 (ru) |
TW (1) | TW369576B (ru) |
UA (1) | UA46838C2 (ru) |
UY (1) | UY24497A1 (ru) |
WO (1) | WO1997036026A1 (ru) |
ZA (1) | ZA971940B (ru) |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6698587B2 (en) * | 1998-07-31 | 2004-03-02 | Case Logic, Inc. | Double sided sleeve with a single sheet non-woven material for holding compact discs |
US6454989B1 (en) | 1998-11-12 | 2002-09-24 | Kimberly-Clark Worldwide, Inc. | Process of making a crimped multicomponent fiber web |
US6723669B1 (en) | 1999-12-17 | 2004-04-20 | Kimberly-Clark Worldwide, Inc. | Fine multicomponent fiber webs and laminates thereof |
JP4341095B2 (ja) * | 1999-01-22 | 2009-10-07 | チッソ株式会社 | 熱可塑性合成繊維の高速製造装置及び方法 |
US6338814B1 (en) * | 1999-02-02 | 2002-01-15 | Hills, Inc. | Spunbond web formation |
US6332994B1 (en) | 2000-02-14 | 2001-12-25 | Basf Corporation | High speed spinning of sheath/core bicomponent fibers |
WO2002012604A2 (en) * | 2000-08-03 | 2002-02-14 | Bba Nonwovens Simpsonville, Inc. | Process and system for producing multicomponent spunbonded nonwoven fabrics |
US20030013371A1 (en) * | 2001-04-20 | 2003-01-16 | Polymer Group, Inc. | Process for forming soft, drapeable nonwoven fabric |
US6887423B2 (en) * | 2001-09-26 | 2005-05-03 | E. I. Du Pont De Nemours And Company | Process for making a stretchable nonwoven web |
US7972981B2 (en) | 2002-03-15 | 2011-07-05 | Fiberweb, Inc. | Microporous composite sheet material |
US6720278B2 (en) * | 2002-03-15 | 2004-04-13 | Milliken & Company | Method for producing a spun-bonded nonwoven web with improved abrasion resistance |
MXPA05004374A (es) * | 2002-10-24 | 2005-10-18 | Advanced Design Concept Gmbh | Fibras multicomponentes elatomericas, telas no tejidas y generos no tejidos. |
US7157126B2 (en) * | 2002-11-20 | 2007-01-02 | Dupont Teijin Films U.S. Limited Partnership | Tear resistant bag for consumables |
US7303656B2 (en) * | 2003-07-02 | 2007-12-04 | Albany International Corp. | Low permeability textile substrate for a two-sided coated product |
US20050003724A1 (en) * | 2003-07-02 | 2005-01-06 | Fitzpatrick Keith | Substrate for endless belt for use in papermaking applications |
US7011731B2 (en) * | 2003-07-02 | 2006-03-14 | Albany International Corp. | Long nip press belt made from thermoplastic resin-impregnated fibers |
WO2005005701A2 (en) * | 2003-07-09 | 2005-01-20 | Advanced Design Concept Gmbh | Fibers made from block copolymer |
DE10333784A1 (de) * | 2003-07-24 | 2005-02-24 | Yao-Chang Lin | Kontinuierlicher Prozess zum Erzeugen eines Vliesstoffes aus Fäden, die durch Kalendrieren gedehnt wurden |
BRPI0413214A (pt) * | 2003-08-22 | 2006-10-03 | Advanced Design Concept Gmbh | composto de filme não tecido, totalmente elástico |
EP1730201B1 (en) * | 2004-03-03 | 2015-12-23 | Kraton Polymers U.S. LLC | Block copolymers having high flow and high elasticity |
WO2005108665A1 (de) * | 2004-04-06 | 2005-11-17 | Corovin Gmbh | Spunbond-vlies aus polymerfasern und deren verwendung |
US7381308B2 (en) * | 2004-05-12 | 2008-06-03 | Albany International Corp. | Seam for multiaxial papermaking fabrics |
US7229531B2 (en) * | 2004-05-12 | 2007-06-12 | Albany International Corp. | Method of seaming a multiaxial papermaking fabric to prevent yarn migration |
US20050269011A1 (en) * | 2004-06-02 | 2005-12-08 | Ticona Llc | Methods of making spunbonded fabrics from blends of polyarylene sulfide and a crystallinity enhancer |
US20080021160A1 (en) * | 2004-06-22 | 2008-01-24 | Toney Kenneth A | Elastomeric Monoalkenyl Arene-Conjugated Diene Block Copolymers |
WO2006017518A2 (en) * | 2004-08-03 | 2006-02-16 | Advanced Design Concept Gmbh | Breathable elastic composite |
US7682554B2 (en) * | 2005-08-30 | 2010-03-23 | Kimberly-Clark Worldwide, Inc. | Method and apparatus to mechanically shape a composite structure |
US7687012B2 (en) * | 2005-08-30 | 2010-03-30 | Kimberly-Clark Worldwide, Inc. | Method and apparatus to shape a composite structure without contact |
US20070055015A1 (en) * | 2005-09-02 | 2007-03-08 | Kraton Polymers U.S. Llc | Elastomeric fibers comprising controlled distribution block copolymers |
GB2448865B (en) | 2007-04-16 | 2011-10-26 | Psi Global Ltd | Improvements in coalescing filters |
EP2034057A1 (en) * | 2007-09-10 | 2009-03-11 | ALBIS Spa | Elastic spunbonded nonwoven and elastic nonwoven fabric comprising the same |
SG174987A1 (en) * | 2009-04-08 | 2011-11-28 | Procter & Gamble | Stretchable laminates of nonwoven web(s) and elastic film |
WO2010118211A1 (en) | 2009-04-08 | 2010-10-14 | The Procter & Gamble Company | Stretchable laminates of nonwoven web(s) and elastic film |
CN102365167B (zh) * | 2009-04-08 | 2014-09-10 | 宝洁公司 | 非织造纤维网和弹性薄膜的可拉伸层压体 |
JP5378591B2 (ja) | 2009-04-08 | 2013-12-25 | ザ プロクター アンド ギャンブル カンパニー | 不織布ウェブ(類)及び弾性フィルムの伸縮性ラミネート |
US20100279085A1 (en) * | 2009-04-30 | 2010-11-04 | Gabriel Hammam Adam | Nonwoven Composite Including Post-Consumer Recycled Material |
WO2011009497A1 (de) * | 2009-07-22 | 2011-01-27 | Oerlikon Textile Gmbh & Co. Kg | Verfahren zum abziehen und zum verstrecken eines synthetischen fadens sowie eine vorrichtung zur durchführung des verfahrens |
EP2627812A1 (en) | 2010-10-14 | 2013-08-21 | Fiberweb, Inc. | Highly uniform spunbonded nonwoven fabrics |
BR112013010313A2 (pt) | 2010-10-28 | 2016-09-20 | Lummus Novolen Technology Gmbh | não tecido e fio de polipropileno com aditivo |
CN102251409A (zh) * | 2011-01-13 | 2011-11-23 | 昆山市宝立无纺布有限公司 | 一种阻燃性无纺布及其制作工艺 |
KR101361452B1 (ko) * | 2011-03-16 | 2014-02-11 | 코오롱인더스트리 주식회사 | 혈액필터용 부직포 웹 및 그 제조방법 |
GB201116572D0 (en) | 2011-09-26 | 2011-11-09 | Fiberweb Geosynthetics Ltd | Sub-grade separation materials |
KR102450905B1 (ko) * | 2011-09-30 | 2022-10-04 | 오웬스 코닝 인텔렉츄얼 캐피탈 엘엘씨 | 섬유질 재료들로부터 웹을 형성하는 방법 |
EP2872318A1 (en) | 2012-07-13 | 2015-05-20 | The Procter & Gamble Company | Stretchable laminates for absorbent articles and methods for making the same |
MX2015003006A (es) * | 2012-09-07 | 2015-06-02 | Cerex Advanced Fabrics Inc | Telas no tejidas fuertes para uso en sistemas de control de sedimentos. |
EP2897563B1 (en) | 2012-09-21 | 2018-10-24 | The Procter and Gamble Company | Article with soft nonwoven layer |
CZ2012757A3 (cs) | 2012-11-06 | 2014-06-11 | Pegas Nonwovens S.R.O. | Netkaná textilie se zlepšeným omakem a mechanickými vlastnostmi |
US20140127461A1 (en) | 2012-11-06 | 2014-05-08 | The Procter & Gamble Company | Article(s) with soft nonwoven web |
US20140127460A1 (en) | 2012-11-06 | 2014-05-08 | The Procter & Gamble Company | Article(s) with soft nonwoven web |
US20140127459A1 (en) | 2012-11-06 | 2014-05-08 | The Procter & Gamble Company | Article(s) with soft nonwoven web |
BR112015022743B1 (pt) | 2013-03-12 | 2022-08-23 | Fitesa Nonwoven, Inc. | Tecido não tecido, tecido não tecido extensível, método de fabricação de um tecido não tecido, material compósito laminado e artigo absorvente |
CN105188628B (zh) | 2013-05-03 | 2019-08-09 | 宝洁公司 | 包括拉伸层合体的吸收制品 |
DK3097224T3 (da) | 2014-01-24 | 2019-01-02 | Fitesa Simpsonville Inc | Smelteblæst ikke-vævet bane omfattende en genvundet polypropylenkomponent og en genvundet bæredygtig polymerkomponent og fremgangsmåde til fremstilling af samme |
US9580845B2 (en) | 2014-06-09 | 2017-02-28 | The Procter & Gamble Company | Nonwoven substrate comprising fibers comprising an engineering thermoplastic polymer |
US11144891B1 (en) | 2015-04-12 | 2021-10-12 | Purlin, Llc | Closed-loop system and method for the utilization of recycled polyester fabric products |
US20170056253A1 (en) | 2015-08-28 | 2017-03-02 | Fitesa Nonwoven, Inc. | Absorbent Article Having A High Content Of Bio-Based Materials |
MX2019001220A (es) | 2016-08-02 | 2019-07-04 | Fitesa Germany Gmbh | Sistema y proceso para preparar telas no tejidas de acido polilactico. |
CN109475452A (zh) | 2016-08-12 | 2019-03-15 | 宝洁公司 | 带有耳片部分的吸收制品 |
EP3747414A1 (en) | 2016-08-12 | 2020-12-09 | The Procter & Gamble Company | Method and apparatus for assembling absorbent articles |
CN109475451A (zh) | 2016-08-12 | 2019-03-15 | 宝洁公司 | 带有耳片部分的吸收制品 |
US11441251B2 (en) | 2016-08-16 | 2022-09-13 | Fitesa Germany Gmbh | Nonwoven fabrics comprising polylactic acid having improved strength and toughness |
EP3538046B1 (en) | 2016-11-09 | 2020-12-02 | The Procter and Gamble Company | Array of absorbent articles with ear portions |
US11248323B2 (en) * | 2017-03-24 | 2022-02-15 | Purlin, Llc | Method for forming a non-woven recyclable fabric |
US11278458B2 (en) | 2017-03-27 | 2022-03-22 | The Procter & Gamble Company | Crimped fiber spunbond nonwoven webs/laminates |
CN114161783A (zh) | 2017-04-26 | 2022-03-11 | 博爱(中国)膨化芯材有限公司 | 一种热复合速渗导流材料及其应用 |
WO2019152974A1 (en) | 2018-02-05 | 2019-08-08 | Berry Global, Inc. | Lofty nonwoven fabrics |
US11136699B2 (en) | 2018-05-14 | 2021-10-05 | Fitesa Simpsonville, Inc. | Composite sheet material, system, and method of preparing same |
CN109847970B (zh) * | 2018-12-25 | 2020-12-08 | 博兴融智科技创新发展有限公司 | 一种新材料加工用柔和设备 |
US11944522B2 (en) | 2019-07-01 | 2024-04-02 | The Procter & Gamble Company | Absorbent article with ear portion |
CN110409060A (zh) * | 2019-08-27 | 2019-11-05 | 绍兴励达无纺布有限公司 | 一种高强度聚酯纺粘土工布的生产工艺 |
TWI727576B (zh) * | 2019-12-27 | 2021-05-11 | 南韓商可隆工業股份有限公司 | 聚乙烯紗線、製造該聚乙烯紗線的方法、及包含該聚乙烯紗線的皮膚冷感布 |
TWI727575B (zh) * | 2019-12-27 | 2021-05-11 | 南韓商可隆工業股份有限公司 | 聚乙烯紗線、製造該聚乙烯紗線的方法、及包含該聚乙烯紗線的皮膚冷感布 |
EP4337819A1 (en) | 2021-05-09 | 2024-03-20 | Fitesa Simpsonville, Inc. | System and process for preparing a fibrous nonwoven composite fabric |
JP2024539638A (ja) | 2021-10-15 | 2024-10-29 | フィテサ(チャイナ)エアレイド カンパニー リミテッド | エアレイド不織布 |
CN114457440B (zh) * | 2021-12-28 | 2023-02-28 | 盐城工学院 | 一种高强高韧鱼线的制备方法 |
WO2024028420A1 (en) | 2022-08-05 | 2024-02-08 | Fitesa Germany Gmbh | Nonwoven fabric and process for forming the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1975132A (en) * | 1929-01-02 | 1934-10-02 | Eastman Kodak Co | Manufacture of sheets or films of cellulose material |
US2536094A (en) * | 1949-09-17 | 1951-01-02 | American Viscose Corp | Process for spinning artificial fibers |
US2976580A (en) * | 1953-07-16 | 1961-03-28 | Riedel Johann Christoph | Device for preparing a fleece, sliver or yarn, in particular of glass |
JPS575900B2 (ru) * | 1973-08-28 | 1982-02-02 | ||
ES433988A1 (es) * | 1974-02-08 | 1976-12-01 | Barmag Barmer Maschf | Perfeccionamientos introducidos en un cilindro giratorio para enhebrar hilo. |
US3991244A (en) * | 1974-06-24 | 1976-11-09 | E. I. Du Pont De Nemours And Company | Nonwoven polypropylene fabric |
US3999909A (en) * | 1974-08-09 | 1976-12-28 | Barmag Barmer Maschinenfabrik Aktiengesellschaft | Spinning apparatus with pneumatic filament conveyor tube |
US3973068A (en) * | 1975-10-28 | 1976-08-03 | Kimberly-Clark Corporation | Soft, nonwoven web having high intensity and low intensity bonds and a lubricant on the surfaces of the synthetic filaments comprising said |
US4284395A (en) * | 1979-12-12 | 1981-08-18 | Owens-Corning Fiberglas Corporation | Apparatus for forming filaments |
FI83888C (fi) * | 1988-02-17 | 1991-09-10 | Pargro Oy Ab | Foerfarande och apparatur foer framstaellning av en fiberprodukt. |
US5009830A (en) * | 1989-03-20 | 1991-04-23 | E. I. Du Pont De Nemours And Company | On-line fiber heat treatment |
DE4032523C2 (de) * | 1990-10-11 | 1995-04-27 | Fischer Karl Ind Gmbh | Verfahren und Vorrichtung zur Herstellung von Spinnvliesen |
DE4203076C2 (de) * | 1992-02-04 | 2000-06-15 | Barmag Barmer Maschf | Spinnverfahren mit Hochgeschwindigkeitsaufwicklung |
US5298097A (en) * | 1992-03-31 | 1994-03-29 | Neuberger S.P.A. | Apparatus and method for thermally bonding a textile web |
DE4236514C2 (de) * | 1992-10-26 | 1997-03-27 | Fischer Karl Ind Gmbh | Verfahren und Vorrichtung zur Förderung und Ablage von Scharen endloser Fäden mittels Luftkräften |
US5431986A (en) * | 1994-07-18 | 1995-07-11 | Cerex Advanced Fabrics, L. P. | Spunbonded nonwoven nylon fabrics |
-
1996
- 1996-03-27 US US08/622,312 patent/US5665300A/en not_active Expired - Lifetime
-
1997
- 1997-03-06 ZA ZA9701940A patent/ZA971940B/xx unknown
- 1997-03-13 RO RO98-01413A patent/RO116652B1/ro unknown
- 1997-03-13 DE DE69730025T patent/DE69730025T2/de not_active Expired - Lifetime
- 1997-03-13 WO PCT/US1997/004114 patent/WO1997036026A1/en active IP Right Grant
- 1997-03-13 JP JP53444997A patent/JP3325272B2/ja not_active Expired - Lifetime
- 1997-03-13 TR TR1998/01914T patent/TR199801914T2/xx unknown
- 1997-03-13 CN CN97193372A patent/CN1097100C/zh not_active Expired - Fee Related
- 1997-03-13 EE EE9800314A patent/EE9800314A/xx unknown
- 1997-03-13 EP EP97915993A patent/EP0902850B1/en not_active Expired - Lifetime
- 1997-03-13 NZ NZ331642A patent/NZ331642A/en not_active IP Right Cessation
- 1997-03-13 AT AT97915993T patent/ATE272135T1/de not_active IP Right Cessation
- 1997-03-13 ES ES97915993T patent/ES2224229T3/es not_active Expired - Lifetime
- 1997-03-13 KR KR10-1998-0707666A patent/KR100426546B1/ko not_active IP Right Cessation
- 1997-03-13 IL IL12602597A patent/IL126025A/xx not_active IP Right Cessation
- 1997-03-13 AU AU23277/97A patent/AU711506B2/en not_active Ceased
- 1997-03-13 BR BR9708249A patent/BR9708249A/pt not_active IP Right Cessation
- 1997-03-13 UA UA98105629A patent/UA46838C2/uk unknown
- 1997-03-13 GE GEAP19974540A patent/GEP20012584B/en unknown
- 1997-03-13 CA CA002248258A patent/CA2248258C/en not_active Expired - Fee Related
- 1997-03-13 CZ CZ19983072A patent/CZ295147B6/cs not_active IP Right Cessation
- 1997-03-13 SK SK1240-98A patent/SK124098A3/sk unknown
- 1997-03-13 PL PL97328960A patent/PL184036B1/pl unknown
- 1997-03-13 RU RU98119447A patent/RU2148683C1/ru not_active IP Right Cessation
- 1997-03-19 TW TW086103430A patent/TW369576B/zh active
- 1997-03-20 CO CO97015079A patent/CO4560499A1/es unknown
- 1997-03-20 UY UY24497A patent/UY24497A1/es not_active IP Right Cessation
- 1997-03-26 AR ARP970101248A patent/AR006432A1/es active IP Right Grant
- 1997-03-26 EG EG24197A patent/EG21397A/xx active
- 1997-03-27 ID IDP971016A patent/ID17209A/id unknown
- 1997-05-09 US US08/853,873 patent/US5750151A/en not_active Expired - Lifetime
-
1998
- 1998-09-24 BG BG102793A patent/BG63402B1/bg unknown
- 1998-09-25 NO NO19984483A patent/NO312107B1/no not_active IP Right Cessation
- 1998-10-02 LV LVP-98-203A patent/LV12225B/en unknown
- 1998-10-23 LT LT98-151A patent/LT4511B/lt not_active IP Right Cessation
-
1999
- 1999-07-29 HK HK99103281A patent/HK1018293A1/xx not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2148683C1 (ru) | Способ формирования полученного из расплава волокнистого полотна и устройство для его осуществления | |
US5993943A (en) | Oriented melt-blown fibers, processes for making such fibers and webs made from such fibers | |
EP0527489B1 (en) | Polyethylene terephthalate-based meltblown nonwoven fabric and process for producing the same | |
JP4488980B2 (ja) | 熱可塑性合成樹脂製のフィラメントから成る不織布ウエブを連続製造する装置 | |
JP2825514B2 (ja) | 配向された溶融吹付繊維、その製造方法およびそのウェブ | |
US6471910B1 (en) | Nonwoven fabrics formed from ribbon-shaped fibers and method and apparatus for making the same | |
JPH03174008A (ja) | 熱可塑性プラスチックから紡糸フリースを製造する途中で合成糸及び/又は合成繊維を製造する方法及び紡糸ノズルユニット | |
JP2635540B2 (ja) | 熱可塑性樹脂の重合体フィラメントからフリース帯状体を製造する方法 | |
US5076773A (en) | Apparatus for producing thermoplastic yarns | |
JPH04228667A (ja) | 熱可塑性重合体からの超微細繊維不織布の製造方法 | |
JP2003055831A (ja) | 延伸装置及び延伸プラスチックフィラメントの製造方法 | |
US5609808A (en) | Method of making a fleece or mat of thermoplastic polymer filaments | |
JP3581712B2 (ja) | 延伸溶融吹込ファイバー、かかるファイバーを製造するための方法及びかかるファイバーより製造されたウェブ | |
JP3273667B2 (ja) | メルトブロー熱可塑性樹脂不織布の製造方法 | |
RU2388854C2 (ru) | Установка для получения волокнистого материала из термопластов | |
MXPA98007670A (en) | Process for the manufacture of non-woven fabric made of fused filaments between | |
JPH04135713A (ja) | 繊維複合シートの製造方法 | |
Watanabe | Spinning for nonwovens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150314 |