RU2124698C1 - Пуля, не содержащая свинца (варианты) - Google Patents

Пуля, не содержащая свинца (варианты) Download PDF

Info

Publication number
RU2124698C1
RU2124698C1 RU96108812A RU96108812A RU2124698C1 RU 2124698 C1 RU2124698 C1 RU 2124698C1 RU 96108812 A RU96108812 A RU 96108812A RU 96108812 A RU96108812 A RU 96108812A RU 2124698 C1 RU2124698 C1 RU 2124698C1
Authority
RU
Russia
Prior art keywords
bullet
lead
bullets
density
plastic
Prior art date
Application number
RU96108812A
Other languages
English (en)
Other versions
RU96108812A (ru
Inventor
Мравик Брайан
Махуликар Дипак
Ноел Виолетт Джеральд
Шапиро Юджин
Дж.Халверсон Генри
Original Assignee
Олин Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олин Корпорейшн filed Critical Олин Корпорейшн
Publication of RU96108812A publication Critical patent/RU96108812A/ru
Application granted granted Critical
Publication of RU2124698C1 publication Critical patent/RU2124698C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B7/00Shotgun ammunition
    • F42B7/02Cartridges, i.e. cases with propellant charge and missile
    • F42B7/04Cartridges, i.e. cases with propellant charge and missile of pellet type
    • F42B7/046Pellets or shot therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • F42B12/745Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Electrotherapy Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Pens And Brushes (AREA)
  • Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Изобретение относится к области вооружений и может быть использовано для получения летательных снарядов, в частности пуль, не содержащих свинца. Не содержащая свинца пуля из композиционного материала включают тяжелую составляющую, выбранную из группы, включающей вольфрам, карбид вольфрама, углеродный сплав и ферровольфрам, и вторую связующую составляющую, представленную или металлическим сплавом, или пластмассовой смесью. Экологически чистая в отношении содержания вредных веществ пуля, не содержащая свинца, обладает баллистическими свойствами, присущими стандартным пулям из свинца. 2 c. и 7 з.п. ф-лы, 5 ил., 3 табл.

Description

Настоящее изобретение относится в целом к метательным снарядам и более конкретно к метательным снарядам, не содержащим свинца.
Свинцовые метательные снаряды и свинцовая дробь, которые используются на стрельбищах в закрытых помещениях, оказывают, по мнению некоторых врачей, серьезное вредное воздействие на здоровье. Их заглатывание птицей, в особенности водоплавающей, создает, как считают, серьезные проблемы для дикой природы. В закрытых тирах озабоченность вызывают пары свинца, возникающие при испарении свинца со свинцовых пуль. Дорогостоящим является также удаление загрязненного свинцом песка, используемого в песочных ловушках в пулепоглотителе, поскольку свинец является вредным материалом. Извлечение свинца из песка для большинства дистанций стрельбы не является экономически оправданной операцией.
В связи с этим неоднократно предпринимались попытки предложить эффективные пули, не содержащие свинца.
Различия в плотности пуль одинаковых размеров обнаруживаются при использовании одинаковых зарядов в различиях длины траектории и различиях в силе отдачи огнестрельного оружия. Такие различия нежелательны, поскольку стрелку требуется траектория, соответствующая траектории свинцовой пули, так чтобы стрелок знал, куда прицеливаться, и отдача, соответствующая отдаче при стрельбе свинцовой пулей, так чтобы "ощущение" при стрельбе было таким же, как при стрельбе свинцовой пулей. Если эти различия траектории и отдачи достаточно велики, опыт, накопленный при практических стрельбах, теряет свою ценность, снижая точность при стрельбе свинцовыми пулями в полевых условиях.
Для изготовления нетоксичных пуль предлагались различные подходы. В патентах США 4027594 и 4428295, выданных заявителю, описана такая нетоксичная дробь. В обоих этих патентах описаны шарики, изготовленные из металлических порошков, причем одним из порошков является свинец. В патентах США 2995090 и 3193003 описаны пули для тира, изготовленные из железного порошка, небольшого количества свинцового порошка и термореактивной смолы. Оба эти типа пуль должны распадаться при ударе о мишень. Главным недостатком этих пуль является их плотность, которая значительно меньше плотности свинцовой пули. Хотя они не вполне свободны от свинца, состав этой дроби или пуль предусматривает снижение воздействия свинца. В патенте США 4881465 описан снаряд для стрельбы, изготовленный из свинца и ферровольфрама и также не вполне свободный от свинца. В патентах США 4850278 и 4939996 описан метательный снаряд, выполненный из керамического циркония, который также обладает плотностью, меньшей по сравнению со свинцом. В патенте США 4005660 описан другой подход, а именно: полиэтиленовая основа, которая заполняется порошком из металла, такого как висмут, тантал, никель и медь. Еще одним известным подходом является хрупкий метательный снаряд, выполненный из полимерного материала и заполненный металлом или оксидом металла. В патенте США 4949644 описана нетоксичная дробь, изготовленная из висмута или висмутового сплава. В патенте США 5088415 описана свинцовая дробь, покрытая пластмассой. Однако, как и в случае других примеров, рассмотренных выше, этот материал для стрельбы все же содержит свинец, который после удара о пулепоглотитель оказывается открытым для воздействия на окружающую среду. Применяются также плакированные свинцовые пули и свинцовые пули, покрытые пластиком, но их недостатком также является то, что при ударе о мишень свинец оказывается на поверхности, что создает проблемы с удалением использованных пуль.
Ни одна из перечисленных выше и предлагавшихся до сих пор пуль не оказалась приемлемой для широкого применения по причине издержек производства, различий в плотности, трудностей организации массового производства и тому подобного. В связи с этим требуется новый подход для получения метательных снарядов, предназначенных для стрельбы в цель или для охоты, в которых полностью отсутствует свинец и которые обладают баллистическими свойствами, аналогичными свойствам снарядов, изготовленных из свинца.
Изобретение, подробно описанное ниже, относится в основном к не содержащей свинца пуле, представляющей собой твердое тело, состоящее из спеченного композиционного материала, включающего одну или несколько обладающих высокой плотностью составляющих, выбранных из группы, в которую входят карбид вольфрама, вольфрам, ферровольфрам и углеродный сплав, и вторую составляющую с более низкой плотностью, представленную в основном или материалом металлической матрицы, выбранным из группы, включающей олово, цинк, железо и медь, или материалом пластмассовой основы, выбранным из группы, включающей фенольные соединения, эпоксиды, диаллифталаты, акрилы, полистиролы, полиэтилен или полиуретаны. Кроме того, композиционный материал любого вида может включать металлический заполнитель, такой как железный или цинковый порошок. Пуля, являющаяся предметом настоящего изобретения, представляет собой твердое тело с плотностью не менее чем приблизительно 9 г/см3 (80% от плотности чистого свинца), а предел текучести при сжатии превышает приблизительно 31 МПа (4500 фунт/кв.дюйм).
Для достижения конкретных целей, таких как улучшение разрушаемости, возможно добавление в небольших количествах других составляющих. Так, например, в случае использования в качестве одной из составляющих композиционного материала железа возможно добавление углерода с целью получения в результате соответствующей термообработки крупной или ломкой микроструктуры. Возможно также добавление к составляющим металлической основы смазок и/или растворителей для улучшения характеристик текучести порошка, показателей его прессуемости, облегчения извлечения из матрицы и т.п.
Изобретение основывается на том факте, что ферровольфрам и другие перечисленные обладающие высокой плотностью и содержащие вольфрам материалы не только экономически приемлемы для использования при изготовлении пуль, но и на том, что они допускают, при условии особо тщательного металлургического и баллистического анализа, легирование в нужных объемах и при подходящих условиях, позволяющее получить не содержащие свинца пули.
Кроме того, изобретение исходит из осознания того факта, что баллистические характеристики могут быть определены наилучшим образом на основе практических стрельб, поскольку крайние значения ускорения, давления, температуры, сил трения, центробежного ускорения и сил замедления, осевые и боковые ударные усилия и поведение при столкновении с типичными для таких пуль препятствиями предъявляют чрезвычайно сложный комплекс требований к пулям, что делает их точное теоретическое прогнозирование практически невозможным.
Сущность изобретения можно будет лучше понять, обратившись к прилагаемым чертежам, на которых:
на фиг. 1 показана гистограмма плотностей порошковых компенсационных материалов,
на фиг. 2 показана гистограмма максимальных значений условных напряжений, достигаемых с этими порошковыми композиционными материалами,
на фиг. 3 показана гистограмма суммарного поглощения энергии образцом при деформации до 20% или разрушении,
на фиг. 4 показана гистограмма, демонстрирующая максимальное напряжение при деформации на 20% (или максимальной) пяти обычных пуль, и
на фиг. 5 показана гистограмма, демонстрирующая суммарное поглощение энергии при деформации на 20% или разрушении пяти обычных пуль с фиг .4.
Для получения удовлетворительной пули, не содержащей свинца, необходимо удовлетворение по меньшей мере шести (6) требований. Во-первых, пуля должна обеспечивать близкое соответствие величине отдачи свинцовой пули при выстреле, так чтобы стрелок испытывал ощущение, будто он выстрелил стандартной свинцовой пулей. Во-вторых, пуля должна обеспечивать получение траектории, близкой к траектории, т. е. к внешним баллистическим свойствам, свинцовой пули такого же калибра и веса, так чтобы практическая стрельба прямо соответствовала стрельбе в полевых условиях настоящими свинцовыми пулями. В-третьих, пуля не должна пробивать или повреждать обычный пулеуловитель из стального листа, применяемый в тирах, и не должна значительно рикошетировать. В-четвертых пуля должна оставаться целой при своем перемещении по каналу ствола и в полете. В-пятых, пуля не должна повреждать ствол огнестрельного оружия. В-шестых, стоимость пули должна быть в достаточной степени близка к стоимости других вариантов пуль.
Для удовлетворения первых двух требований не содержащая свинца пуля должна обладать приблизительно такой же плотностью, как свинец. Это означает, что пуля должна иметь суммарную плотность около 11,3 г/см3.
Третье приведенное выше требование, не допускающее пробивания или повреждения обычных стальных пулеуловителей, применяемых в тирах, устанавливает, что пуля должна или (1) деформироваться при напряжениях, более низких, чем те, которые были бы достаточны для пробивания или серьезного повреждения пулеуловителя, или (2) разрушаться на мелкие частицы при низких напряжениях, или (3) и деформироваться, и разрушаться при низких напряжениях.
В качестве примера укажем, что типичная свинцовая специальная пуля 0,38 весом 158 гран (10,3 г или 0,0226 фунта) обладает при выстреливании из ствола длиной 10,2 см (4 дюйма) начальной кинетической энергией 272 Дж (200 фут-фунтов) и плотностью 11,35 г/см3 (0,41 фунт/куб.дюйм). Это соответствует плотности энергии 296 Дж/см3 (43600 дюйм-фунтов/куб.дюйм). Деформируемые не содержащие свинца пули, являющиеся предметом настоящего изобретения, должны поглощать достаточно этой энергии на единицу объема как энергии деформации (упругой и пластической) без создания в пулеуловителе напряжений, превышающих предел текучести рядовой стали, около 310 МПа (около 45000 фунт/кв.дюйм), так чтобы пуля останавливалась, не пробивая и не нанося серьезных повреждений пулеуловителю тира. В случае использования соответственно разрушающейся пули или деформируемой пули напряжение разрушения пули должно быть ниже напряжений, которые пуля испытывает при соударении с пулеуловителем тира и ниже предела текучести рядовой стали.
Труднее удовлетворить требования, согласно которым пуля должна оставаться неповрежденной после прохождения через канал ствола, не вызывая при этом излишнего износа канала. Обычно для определения этого показателя необходимо проведение пробных стрельб. Однако ясно, что пуля, являющаяся предметом настоящего изобретения, должна быть покрыта металлом или пластмассой или помещена в обычную рубашку для защиты канала ствола.
Стоимость ферровольфрама обычно выглядит приемлемой при сопоставлении с другими обладающими высокой плотностью альтернативными материалами, как и стоимость каждого из альтернативных материалов, перечисленных ниже в формуле изобретения.
Пули с металлической основой в соответствии с предпочтительными вариантами реализации настоящего изобретения должны изготавливаться с применением технологии порошковой металлургии.
В отношении более хрупких материалов порошки отдельных составляющих должны смешиваться, подвергаться прессованию с доведением изделия до практически конечных размеров и последующему спеканию этого изделия. Если пули помещают в рубашку, прессование может выполняться в рубашке со спеканием в ней. С другой стороны, пули могут подвергаться прессованию и спеканию до помещения в рубашку. Если на пули наносится покрытие, оно может быть нанесено после прессования и спекания. Пропорции содержания отдельных порошков должны соответствовать тем, которых требует правило аддитивности, чтобы получить конечную плотность, приблизительно равную плотности свинца. При определении состава необходимо учитывать невозможность полностью исключить пористость, которую следует компенсировать за счет соответствующего увеличения доли более плотной составляющей, вольфрама, ферровольфрама, углеродного сплава, карбида вольфрама или их смесей. Оптимальная смесь определяется исходя из взаимоотношения стоимости сырья и характеристик пули.
При более пластичных материалах основы, таких как упомянутые выше металлы, пули могут изготавливаться с помощью упомянутого процесса или, в другом варианте, спрессованы в стержни или заготовки с использованием техники обычного или изостатического прессования. После спекания стержни или заготовку можно подвергнуть волочению с получением проволоки для изготовления пуль методом штамповки с использованием пуансонов и матриц, как это делается в случае обычных свинцовых пуль. С другой стороны, если материалы слишком хрупки для такой производственной технологии, для получения пуль могут быть использованы обычные производственные процессы.
Пули на металлической основе могут быть подвергнуты различным видам охрупчивающей обработки с целью повышения их разрушаемости после придания окончательной формы. Так, например, пуля с железной основой, имеющая углеродную добавку, может быть охрупчена с помощью подходящего метода термообработки.
Пуля с оловянной основой может быть охрупчена путем охлаждения и выдерживания в диапазоне температур, при котором происходит частичное превращение в альфа-олово. Этот метод допускает точный контроль степени разрушаемости.
Третий пример охрупчивания заключается в возможности использования добавления определенных примесей, таких как висмут, к композиционному составу с медной основой. После изготовления пулю можно нагреть до диапазона температур, при котором примесь собирается предпочтительно по границам зерен меди, охрупчивая их.
Кроме того, даже без охрупчивающих добавок разрушаемость можно контролировать путем варьирования должным образом времени и/или температуры спекания.
В случае применения в качестве материалов основы термопластов или термореактивных материалов порошки следует смешивать так, как описано выше, с учетом тех же соображений относительно массы, плотности и состава, что и при непосредственной формовке конечного изделия с помощью любого из обычных процессов, применяемых в области технологии полимеров, таких как литьевое формование, литьевое прессование и т.д.
В случае пуль с пластмассовой основой в рубашке прессование с нагревом должно выполняться при помещении композиционного порошка в рубашке. С другой стороны, порошки могут быть подвергнуты прессованию с использованием давления и тепла для получения гранул для применения в таких процессах.
И, наконец, для того чтобы защитить канал ствола от повреждения в процессе стрельбы, пуля должна быть помещена в рубашку или покрыта мягким металлическим или пластмассовым покрытием. Покрытием для пуль с металлической основой могут предпочтительно служить олово, цинк, медь, латунь или пластмасса. В случае пуль с пластмассовой основой предпочтительным может быть пластмассовое покрытие и наиболее желательно, чтобы в качестве пластмассовой основы и покрытия использовался один и тот же материал. В обоих случаях пластмассовые покрытия могут наноситься методом погружения, напыления, в псевдоожиженном слое или посредством другого обычного процесса нанесения пластмасс. Металлические покрытия могут наноситься методом электролитического плакирования, горячего погружения или другим обычным способом нанесения покрытия.
Примеры
A. Пластмассовая основа
Разрушаемые композиционные пули с пластмассовой основой изготовили из вольфрамового порошка со средним размером частиц 6 мкм. К вольфрамовому порошку в количестве 0, 15 и 30 весовых процентов добавили железный порошок. После смешивания с одним из двух полимерных порошков, фенилформальдегидом (люцит) или полиметилметалкрилатом (бакелит), служащим основой, смеси подвергали горячему прессованию при температуре в диапазоне от приблизительно 149oC до приблизительно 177oC (300oF - 350oF) и давлении около 241 МПа - 276 МПа (35-40 фунт/кв. дюйм) с получением цилиндров диметром 3,18 см (1,25 дюйма), которые нарезали затем на прямоугольные параллелепипеды для испытаний на сжатие и испытаний на удар. Всего приготовили шесть (6) образцов, как показано в таблице 1 ниже.
Полученные таким образом пули оказались очень хрупкими при испытаниях на сжатие. При испытаниях на удар они также оказались очень хрупкими. Плотность этих образцов по сравнению с плотностью свинца приведена в таблице 2:
Максимальное напряжение при испытании на сжатие и энергия, поглощенная при испытании на сжатие, также приведены в таблице 2. Максимальное напряжение до разрушения была менее 34,5 МПа (5 тыс.фунт/кв.дюйм), что хорошо соответствует нужному диапазону, не допускающему повреждения пулеуловителя.
Композиционные материалы с металлической основой
На фиг. 1 показаны плотности, достижимые при использовании композиционных материалов с металлической основой, полученных из порошка вольфрама, порошка карбида вольфрама или порошка ферровольфрама, смешанного с порошком олова, висмута, цинка, железа (с 3% углерода), алюминия или меди. Пропорции должны быть подобраны таким образом, чтобы плотность полученного материала соответствовала плотности свинца без учета пористости, оставшейся после спекания. Порошки в холодном состоянии подвергли прессованию в цилиндры диаметром в 1/2 дюйма (12,7 мм) под давлением 690 МПа (100 тыс.фунт/кв.дюйм). Затем их в течение двух часов подвергали спеканию при соответствующей температуре, поместив в герметически закрытые капсулы из нержавеющей стали. Температуры спекания (в градусах Цельсия) составила соответственно 180, 251, 350, 900, 565, 900 соответственно.
На фиг. 2 показаны максимальные осевые внутренние напряжения, достигнутые при испытании на сжатие. На фиг. 3 показана энергия, поглощенная до достижения общей деформации величиной 20% (за исключением порошковой заготовки из меди и вольфрама, которая достигла таких высоких внутренних напряжений, что испытание было прекращено до достижения 20% деформации). Все указанные материалы демонстрируют определенную пластическую деформацию. Величина поглощения энергии в ходе испытания на сжатие является показателем относительной пластичности, когда наиболее пластичными оказываются материалы, поглощающие больше энергии.
Даже наиболее пластичные образцы, такие как композиционные материалы на основе олова и висмута, демонстрируют некоторое разрушение в процессе испытания на сжатие в связи с возникновением бочкообразности и вызванными этим вторичными растягивающими напряжениями. При ударном испытании с использованием или 326 Дж (240 фут-фунт) или 163 Дж (120 фут-фунт) получаются аналогичные, но несколько преувеличенные по сравнению с наблюдаемыми при испытании на сжатие результаты.
Контрольные примеры
На фиг. 4 показаны для сравнения свинцовая заготовка, две стандартных пули 38 калибра и две выпускаемые промышленностью пули из композиционных материалов с пластмассовой основой, подвергнутые испытанию на сжатие. На фиг. 4 показано, что максимальные напряжения в свинцовой заготовке и свинцовых пулях были значительно меньше напряжений в пластиковых пулях. Однако все они были примерно того же порядка, что и напряжения, достигнутые в образцах с металлической основой и в не содержащих железа образцах с пластмассовой основой. На фиг. 5 показано поглощение энергии этими материалами. Полученные значения в целом меньше, чем у образцов с металлической основой, показанных на фиг. 3, и гораздо выше, чем у ломких образцов с пластмассовой основой.
Все эти материалы подвергаются значительной деформации при ударном испытании на 326 Дж (240 фут-фунт). Свинцовые образцы не разрушаются, в то время как пули с пластмассовой основой - разрушаются.
Пули из композиционных материалов с рубашкой
В качестве другого примера производили штамповку пуль 38 калибра с металлической и пластмассовой основой и составами, указанными в таблице 3, внутри стандартных латунных рубашек (колпачков глубокой вытяжки) с толщиной стенки от 0,25 мм (0,010 дюйма) до 0,64 мм (0,025 дюйма). Образцы с пластмассовой основой ("люцит" или "бакелит", обозначенные в таблице как код 1 и код 2) подвергали прессованию при температуре, указанной в первом примере. Образцы с металлической основой (коды 3 - 11) прессовали при комнатной температуре и подвергли спеканию так, как описано выше, когда они были помещены в рубашку.
Этими пулями стреляли в ящик с опилками, используя при этом заряд пороха +P и подвергая их воздействию в канале ствола давления, превышающего 138 МПа (20000 фунт/кв. дюйм). Изучение и взвешивание образцов до и после выстреливания показало, что пули с железной, медной и цинковой основой не теряют веса и материала с конца композиционного сердечника, подвергающегося воздействию горячих газов в канале ствола. Изучение микроструктуры показало, что после выстреливания внутренние трещины обнаруживаются только в пулях из чистого висмута.
Этими пулями стреляли также в стандартный пулеуловитель из стального листа толщиной 5,1 мм (0,2, дюйма), твердостью по Бринелю 327 и под углом встречи 45 градусов при расстоянии, типичном для стрельбы из пистолета в закрытом тире. Ни одна из пуль не повредила пулеуловитель и не срикошетировала.
В то время как изобретение описано выше и ниже со ссылками на предпочтительные варианты реализации и конкретные примеры, очевидна возможность внесения многочисленных изменений, модификаций и варьирования материалов, компоновки деталей и операций без отклонения от существа изобретения, приведенного здесь. В соответствии с этим существо и широкий объем прилагаемой формулы изобретения должны охватывать все такие изменения, модификации и варианты, которые может представить себе специалист в данной области после прочтения описания.

Claims (9)

1. Пуля, не содержащая свинца, выполненная из композиционного материала, содержащего перемешанную смесь, отличающаяся тем, что перемешанная смесь содержит обладающую высокой плотностью первую порошковую составляющую, выбранную из группы, состоящей из карбида вольфрама, ферровольфрама и их смеси, и обладающую более низкой плотностью вторую порошковую составляющую, выбранную из группы, состоящей из олова, цинка, алюминия, железа, меди, висмута и их смесей, причем плотность пули превышает 9 г/см3 и пуля деформируется или разрушается при напряжении пластического течения менее 310 МПа.
2. Пуля, не содержащая свинца, выполненная из композиционного материала, содержащего перемешанную смесь, отличающаяся тем, что перемешанная смесь содержит обладающую высокой плотностью первую порошковую составляющую, выбранную из группы, состоящей из карбида вольфрама, ферровольфрама, углеродного сплава и их сплавов, и обладающую низкой плотностью вторую порошковую составляющую, выбранную из группы, состоящей из термореактивных и термопластических пластмасс, причем плотность пули превышает 9 г/см3 и пуля деформируется или разрушается при напряжении пластического течения менее 310 МПа.
3. Пуля по п.2, отличающаяся тем, что вторая порошковая составляющая выбрана из группы, состоящей из фенольных соединений эпоксидов, диаллилфталатов, акрилов, полистиролов, полиэтиленов и полиуретанов.
4. Пуля по п.1, отличающаяся тем, что она дополнительно включает в качестве третьей составляющей полимерное связующее, а композиционный материал прессуется.
5. Пуля по п.1, отличающаяся тем, что композиционный материал является спеченным.
6. Пуля по п.1, отличающаяся тем, что композиционный материал является спрессованным и спеченным.
7. Пуля по п.2, отличающаяся тем, что смесь является спрессованной.
8. Пуля по любому из пп.1, 2 или 4, отличающаяся тем, что она покрыта рубашкой из материала, выбранного из группы, включающей олово, цинк, медь, латунь и пластмассу.
9. Пуля по п. 8, отличающаяся тем, что в качестве рубашки выбрана пластмасса.
RU96108812A 1993-09-23 1993-12-06 Пуля, не содержащая свинца (варианты) RU2124698C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/125,946 US5399187A (en) 1993-09-23 1993-09-23 Lead-free bullett
US125,946 1993-09-23
PCT/US1993/011776 WO1995008653A1 (en) 1993-09-23 1993-12-06 Lead-free bullet

Publications (2)

Publication Number Publication Date
RU96108812A RU96108812A (ru) 1998-07-20
RU2124698C1 true RU2124698C1 (ru) 1999-01-10

Family

ID=22422183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96108812A RU2124698C1 (ru) 1993-09-23 1993-12-06 Пуля, не содержащая свинца (варианты)

Country Status (18)

Country Link
US (2) US5399187A (ru)
EP (1) EP0720662B1 (ru)
JP (1) JP3634367B2 (ru)
AT (1) ATE236273T1 (ru)
AU (1) AU680460B2 (ru)
BR (1) BR9307891A (ru)
CA (1) CA2169457C (ru)
CZ (1) CZ85796A3 (ru)
DE (1) DE69332834T2 (ru)
DK (1) DK0720662T3 (ru)
ES (1) ES2192193T3 (ru)
FI (1) FI961340A (ru)
IL (1) IL111040A (ru)
NO (2) NO316546B1 (ru)
RU (1) RU2124698C1 (ru)
SG (1) SG52349A1 (ru)
WO (1) WO1995008653A1 (ru)
ZA (1) ZA947460B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195135U1 (ru) * 2019-11-15 2020-01-15 Общество с ограниченной ответственностью "Сфера" (ООО "Сфера") Патрон для нарезного спортивно-охотничьего оружия с бессвинцовой пулей
RU197995U1 (ru) * 2019-11-15 2020-06-11 Общество с ограниченной ответственностью "Сфера" (ООО "Сфера") Сердечник пули из бессвинцовых сфероидов

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831188A (en) * 1992-05-05 1998-11-03 Teledyne Industries, Inc. Composite shots and methods of making
US5527376A (en) * 1994-10-18 1996-06-18 Teledyne Industries, Inc. Composite shot
US5713981A (en) * 1992-05-05 1998-02-03 Teledyne Industries, Inc. Composite shot
GB9308287D0 (en) * 1993-04-22 1993-06-09 Epron Ind Ltd Low toxicity shot pellets
US5913256A (en) 1993-07-06 1999-06-15 Lockheed Martin Energy Systems, Inc. Non-lead environmentally safe projectiles and explosive container
US6158351A (en) * 1993-09-23 2000-12-12 Olin Corporation Ferromagnetic bullet
DE4420505C1 (de) * 1994-06-13 1996-01-18 Wilhelm Brenneke Gmbh & Co Kg Verfahren zur Herstellung eines Jagdgeschosses mit Hohlspitze
WO1996001407A1 (en) * 1994-07-06 1996-01-18 Lockheed Martin Energy Systems, Inc. Non-lead, environmentally safe projectiles and method of making same
WO1996012154A1 (en) * 1994-10-17 1996-04-25 Olin Corporation Ferromagnetic bullet
US5565643A (en) * 1994-12-16 1996-10-15 Olin Corporation Composite decoppering additive for a propellant
CA2199267A1 (en) * 1995-06-07 1996-12-19 Cyrus M. Smith Projectiles having controllable density and mass distribution
CA2199396C (en) * 1995-06-07 2001-04-24 Lockheed Martin Energy Systems, Inc. Non-lead, environmentally safe projectiles and explosives containers
US5763819A (en) * 1995-09-12 1998-06-09 Huffman; James W. Obstacle piercing frangible bullet
ATE246798T1 (de) * 1995-12-15 2003-08-15 Gamebore Cartridge Company Ltd Schwachgiftiges schrot
EP0873494A4 (en) * 1996-01-25 2000-12-27 Remington Arms Co Inc LEAD-FREE DIFFERENT PROJECTILE
GB9607022D0 (en) * 1996-04-03 1996-06-05 Cesaroni Tech Inc Bullet
BR9710080A (pt) 1996-06-28 2000-01-11 Texas Research Inst Austin Composição de matéria de alta densidade.
US6536352B1 (en) * 1996-07-11 2003-03-25 Delta Frangible Ammunition, Llc Lead-free frangible bullets and process for making same
US6074454A (en) * 1996-07-11 2000-06-13 Delta Frangible Ammunition, Llc Lead-free frangible bullets and process for making same
US5950064A (en) 1997-01-17 1999-09-07 Olin Corporation Lead-free shot formed by liquid phase bonding
US5847313A (en) * 1997-01-30 1998-12-08 Cove Corporation Projectile for ammunition cartridge
US5789698A (en) 1997-01-30 1998-08-04 Cove Corporation Projectile for ammunition cartridge
US6607692B2 (en) 1997-01-30 2003-08-19 Doris Nebel Beal Intervivos Patent Trust Method of manufacture of a powder-based firearm ammunition projectile employing electrostatic charge
US6317946B1 (en) 1997-01-30 2001-11-20 Harold F. Beal Method for the manufacture of a multi-part projectile for gun ammunition and product produced thereby
US6551376B1 (en) * 1997-03-14 2003-04-22 Doris Nebel Beal Inter Vivos Patent Trust Method for developing and sustaining uniform distribution of a plurality of metal powders of different densities in a mixture of such metal powders
DE69812075T2 (de) * 1997-03-14 2003-11-13 Doris Nebel Beal Inter Vivos P Subsonische munition mit einem neuen geschoss für kleinkaliberwaffen
US6209180B1 (en) * 1997-03-25 2001-04-03 Teledyne Industries Non-toxic high density shot for shotshells
US5798478A (en) * 1997-04-16 1998-08-25 Cove Corporation Ammunition projectile having enhanced flight characteristics
FR2763675B1 (fr) * 1997-05-23 1999-06-18 Poudres & Explosifs Ste Nale Projectiles composites non toxiques a matrice polymerique biodegradable pour cartouches de chasse ou de tir
FI101249B1 (fi) * 1997-06-23 1998-05-15 Markku Paananen Luoti ja menetelmä sen valmistamiseksi
US6892647B1 (en) 1997-08-08 2005-05-17 Ra Brands, L.L.C. Lead free powdered metal projectiles
US6016754A (en) * 1997-12-18 2000-01-25 Olin Corporation Lead-free tin projectile
WO1999049274A1 (en) * 1998-03-24 1999-09-30 Teledyne Industries, Inc. Shot for shotshells and method of making
US6090178A (en) * 1998-04-22 2000-07-18 Sinterfire, Inc. Frangible metal bullets, ammunition and method of making such articles
US5894644A (en) * 1998-06-05 1999-04-20 Olin Corporation Lead-free projectiles made by liquid metal infiltration
US6112669A (en) * 1998-06-05 2000-09-05 Olin Corporation Projectiles made from tungsten and iron
US6576697B1 (en) 1998-09-02 2003-06-10 Thayer A. Brown, Jr. Malleable high density polymer material
US6270549B1 (en) 1998-09-04 2001-08-07 Darryl Dean Amick Ductile, high-density, non-toxic shot and other articles and method for producing same
US6527880B2 (en) 1998-09-04 2003-03-04 Darryl D. Amick Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same
US7267794B2 (en) * 1998-09-04 2007-09-11 Amick Darryl D Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same
WO2000062009A1 (en) * 1999-04-02 2000-10-19 Delta Frangible Ammunition, Llc Jacketed frangible bullets
US6182574B1 (en) 1999-05-17 2001-02-06 Gregory J. Giannoni Bullet
US6248150B1 (en) * 1999-07-20 2001-06-19 Darryl Dean Amick Method for manufacturing tungsten-based materials and articles by mechanical alloying
US6640724B1 (en) * 1999-08-04 2003-11-04 Olin Corporation Slug for industrial ballistic tool
US6447715B1 (en) 2000-01-14 2002-09-10 Darryl D. Amick Methods for producing medium-density articles from high-density tungsten alloys
US6371029B1 (en) * 2000-01-26 2002-04-16 Harold F. Beal Powder-based disc for gun ammunition having a projectile which includes a frangible powder-based core disposed within a metallic jacket
FR2808711B1 (fr) 2000-05-10 2002-08-09 Poudres & Explosifs Ste Nale Procede de fabrication d'elements composites etain-tungstene de faible epaisseur
EP1348103A1 (en) * 2001-01-03 2003-10-01 Harold F. Beal Method of manufacture of powder-based firearm ammunition projectile employing electrostatic charge
US7217389B2 (en) * 2001-01-09 2007-05-15 Amick Darryl D Tungsten-containing articles and methods for forming the same
JP2002257499A (ja) * 2001-03-01 2002-09-11 Asahi Skb Kk 弾丸及び装弾
US6551375B2 (en) 2001-03-06 2003-04-22 Kennametal Inc. Ammunition using non-toxic metals and binders
JP2002277198A (ja) * 2001-03-22 2002-09-25 Asahi Kasei Corp ライフル用弾丸
US20020174794A1 (en) * 2001-04-23 2002-11-28 Lowden Richard A. Tagging of bullets with luminescent materials
US7607394B2 (en) * 2001-04-24 2009-10-27 Anthony Joseph Cesaroni Lead-free projectiles
WO2002087808A2 (en) * 2001-04-26 2002-11-07 International Non-Toxic Composites Corp. Composite material containing tungsten, tin and organic additive
US7243588B2 (en) * 2001-05-15 2007-07-17 Doris Nebel Beal Inter Vivos Patent Trust Power-based core for ammunition projective
US6840149B2 (en) * 2001-05-15 2005-01-11 Doris Nebel Beal Inter Vivos Patent Trust In-situ formation of cap for ammunition projectile
US20020178963A1 (en) 2001-05-29 2002-12-05 Olin Corporation, A Corporation Of The State Of Virginia Dual core ammunition
WO2003033753A2 (en) * 2001-10-16 2003-04-24 International Non-Toxic Composites Corp. High density non-toxic composites comprising tungsten, another metal and polymer powder
EP1436436B1 (en) * 2001-10-16 2005-04-20 International Non-Toxic Composites Corp. Composite material containing tungsten and bronze
GB0200267D0 (en) * 2002-01-08 2002-02-20 Alford Sidney C Device for the disruption of explosive ordnance
US6749802B2 (en) 2002-01-30 2004-06-15 Darryl D. Amick Pressing process for tungsten articles
WO2003064961A1 (en) * 2002-01-30 2003-08-07 Amick Darryl D Tungsten-containing articles and methods for forming the same
US7353756B2 (en) * 2002-04-10 2008-04-08 Accutec Usa Lead free reduced ricochet limited penetration projectile
WO2004014994A2 (en) * 2002-08-07 2004-02-19 E. I. Du Pont De Nemours And Company High density composition of matter, articles made therefrom, and processes for the preparation thereof
US7000547B2 (en) 2002-10-31 2006-02-21 Amick Darryl D Tungsten-containing firearm slug
US7059233B2 (en) * 2002-10-31 2006-06-13 Amick Darryl D Tungsten-containing articles and methods for forming the same
EP1633897A2 (en) * 2003-04-11 2006-03-15 Darryl Dean Amick System and method for processing ferrotungsten and other tungsten alloys articles formed therefrom and methods for detecting the same
CA2432820A1 (en) * 2003-06-19 2004-12-19 Green-Kore Inc. Composition for production of non-toxic projectiles and method of manufacturing thereof
US20110236699A1 (en) * 2003-11-14 2011-09-29 Tundra Composites, LLC Work piece comprising metal polymer composite with metal insert
US8841358B2 (en) 2009-04-29 2014-09-23 Tundra Composites, LLC Ceramic composite
US9105382B2 (en) 2003-11-14 2015-08-11 Tundra Composites, LLC Magnetic composite
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
ES2716941T3 (es) * 2003-11-14 2019-06-18 Wild River Consulting Group Llc Composite de metal y polímero que posee propiedades mejoradas
US20090127801A1 (en) * 2003-11-14 2009-05-21 Wild River Consulting Group, Llc Enhanced property metal polymer composite
US7803314B1 (en) * 2003-12-18 2010-09-28 Daniel George Tercho Non-toxic shot formulation and method of making
US7150233B1 (en) * 2004-04-26 2006-12-19 Olin Corporation Jacketed boat-tail bullet
US7422720B1 (en) 2004-05-10 2008-09-09 Spherical Precision, Inc. High density nontoxic projectiles and other articles, and methods for making the same
US7690312B2 (en) * 2004-06-02 2010-04-06 Smith Timothy G Tungsten-iron projectile
US20060027129A1 (en) * 2004-07-19 2006-02-09 Kolb Christopher W Particulate compositions of particulate metal and polymer binder
ES2223305B1 (es) * 2004-08-10 2006-03-01 Real Federacion Española De Caza Municion ecologica.
US7555987B2 (en) * 2004-11-23 2009-07-07 Precision Ammunition, Llc Frangible powered iron projectiles
US20100034686A1 (en) * 2005-01-28 2010-02-11 Caldera Engineering, Llc Method for making a non-toxic dense material
CA2535164A1 (en) * 2005-02-02 2006-08-02 Anthony Joseph Cesaroni Bismuth projectile
US7740682B2 (en) * 2005-07-22 2010-06-22 Ragan Randall C High-density composite material containing tungsten powder
US20070084375A1 (en) * 2005-08-10 2007-04-19 Smith Kyle S High density cartridge and method for reloading
EP1989047A4 (en) * 2006-02-09 2011-11-09 Wild River Consulting Group Llc METAL-POLYMER COMPOSITE HAVING ENHANCED VISCOELASTIC AND THERMAL PROPERTIES
US8122832B1 (en) 2006-05-11 2012-02-28 Spherical Precision, Inc. Projectiles for shotgun shells and the like, and methods of manufacturing the same
US7392746B2 (en) * 2006-06-29 2008-07-01 Hansen Richard D Bullet composition
US7493862B2 (en) * 2006-08-02 2009-02-24 Farrel Orlanov Jacket bullets
US7909279B2 (en) * 2006-12-12 2011-03-22 Kennametal Inc. Impact crusher wear components including wear resistant inserts bonded therein
EP2111317A4 (en) * 2007-01-26 2013-08-07 Ferrolegeringar Ab DIFFUSION ALLIED IRON POWDER
US8186277B1 (en) 2007-04-11 2012-05-29 Nosler, Inc. Lead-free bullet for use in a wide range of impact velocities
KR100908112B1 (ko) * 2007-06-07 2009-07-16 주식회사 쎄타텍 탄체 파쇄충전물의 제조방법 및 그 탄체 파쇄충전물이내장된 연습용 탄
WO2009029168A2 (en) * 2007-08-10 2009-03-05 Springfield Munitions Company, Llc Metal composite article and method of manufacturing
WO2009091987A2 (en) 2008-01-18 2009-07-23 Wild River Consulting Group, Llc Melt molding polymer composite and method of making and using the same
WO2010083345A1 (en) * 2009-01-14 2010-07-22 Nosler, Inc. Bullets, including lead-free bullets, and associated methods
US8365672B2 (en) * 2009-03-25 2013-02-05 Aleaciones De Metales Sinterizados, S.A. Frangible bullet and its manufacturing method
EP2521628B1 (en) * 2010-01-06 2018-02-28 Ervin Industries, Inc. Frangible, ceramic-metal composite projectiles and methods of making the same
US8028626B2 (en) 2010-01-06 2011-10-04 Ervin Industries, Inc. Frangible, ceramic-metal composite objects and methods of making the same
WO2011123398A1 (en) * 2010-03-30 2011-10-06 Lockheed Martin Corporation Methods for rework of a solder
US20120180690A1 (en) * 2010-04-19 2012-07-19 Masinelli Kyle A Full metal jacket bullets with improved lethality
US8726778B2 (en) 2011-02-16 2014-05-20 Ervin Industries, Inc. Cost-effective high-volume method to produce metal cubes with rounded edges
ES2398575B1 (es) * 2011-06-08 2014-04-15 Real Federacion Española De Caza Adición a la patente es2223305 "munición ecológica".
US9046328B2 (en) 2011-12-08 2015-06-02 Environ-Metal, Inc. Shot shells with performance-enhancing absorbers
SE536525C2 (sv) * 2012-05-18 2014-01-28 Nammo Vanaesverken Ab Blyfri ammunition för finkalibriga vapen
US9702679B2 (en) 2012-07-27 2017-07-11 Olin Corporation Frangible projectile
US9134102B2 (en) 2012-08-06 2015-09-15 William Franklin Flowers Light weight projectiles
US8689696B1 (en) * 2013-02-21 2014-04-08 Caneel Associates, Inc. Composite projectile and cartridge with composite projectile
US9157713B1 (en) 2013-03-15 2015-10-13 Vista Outdoor Operations Llc Limited range rifle projectile
WO2014150007A1 (en) 2013-03-15 2014-09-25 Alliant Techsystems Inc. Reloading kit with lead free bullet composition
CN103157791A (zh) * 2013-04-01 2013-06-19 青岛宝泰物资有限公司 一种利用钨和高分子材料制成的复合球及其制造方法
CN103627941A (zh) * 2013-12-06 2014-03-12 株洲乐泰金属粉末制品有限公司 一种用于猎枪子弹弹芯的钨锡合金球的配方及其制备工艺
WO2015199786A2 (en) 2014-04-07 2015-12-30 Einstein Noodles, Llc Providing spin to composite projectile
US10690465B2 (en) 2016-03-18 2020-06-23 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
US10260850B2 (en) 2016-03-18 2019-04-16 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
US20180156588A1 (en) * 2016-12-07 2018-06-07 Russell LeBlanc Frangible Projectile and Method of Manufacture
US10690464B2 (en) 2017-04-28 2020-06-23 Vista Outdoor Operations Llc Cartridge with combined effects projectile
US11821714B2 (en) 2017-10-17 2023-11-21 Smart Nanos, Llc Multifunctional composite projectiles and methods of manufacturing the same
EP3697939A4 (en) 2017-10-17 2021-09-29 Smart Nanos, LLC MULTIFUNCTIONAL COMPOSITE PROJECTILES AND THEIR OPERATING PROCEDURES
RU196404U1 (ru) * 2019-11-15 2020-02-28 Общество с ограниченной ответственностью "Сфера" (ООО "Сфера") Бессвинцовая пуля

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2105526A (en) * 1925-03-23 1938-01-18 Universal Oil Prod Co Process of hydrocarbon oil conversion
US2105528A (en) * 1932-04-08 1938-01-18 Winchester Repeating Arms Co Disintegrating bullet
US2409307A (en) * 1942-07-01 1946-10-15 Gen Motors Corp Projectile
US2442155A (en) * 1944-07-25 1948-05-25 Wilfred W Weese Bore cleaning bullet
US2995090A (en) * 1954-07-02 1961-08-08 Remington Arms Co Inc Gallery bullet
US3123003A (en) * 1962-01-03 1964-03-03 lange
US3363561A (en) * 1966-01-28 1968-01-16 Dow Chemical Co Plastic coated shotgun pellets
US3898933A (en) * 1973-03-21 1975-08-12 Haut Rhin Manufacture Machines Training bullet for fire arms
CA985954A (en) * 1974-03-07 1976-03-23 Joseph F.L.J. Pichard Projectiles for air arms
US3946673A (en) * 1974-04-05 1976-03-30 The United States Of America As Represented By The Secretary Of The Navy Pyrophoris penetrator
US4027594A (en) * 1976-06-21 1977-06-07 Olin Corporation Disintegrating lead shot
DE3037560A1 (de) * 1980-10-04 1984-11-29 Rheinmetall GmbH, 4000 Düsseldorf Panzerbrechendes geschoss
US4428295A (en) * 1982-05-03 1984-01-31 Olin Corporation High density shot
US4949645A (en) * 1982-09-27 1990-08-21 Royal Ordnance Speciality Metals Ltd. High density materials and products
US4603637A (en) * 1984-10-31 1986-08-05 The United States Of America As Represented By The Secretary Of The Air Force Variable density frangible projectile
USH1235H (en) * 1986-06-18 1993-10-05 The United States Of America As Represented By The Secretary Of The Navy Armor-piercing projectile
US4850278A (en) * 1986-09-03 1989-07-25 Coors Porcelain Company Ceramic munitions projectile
US4939996A (en) * 1986-09-03 1990-07-10 Coors Porcelain Company Ceramic munitions projectile
FR2633205B1 (fr) * 1988-06-22 1992-04-30 Cime Bocuze Procede de mise en forme directe et d'optimisation des caracteristiques mecaniques de projectiles perforants en alliage de tungstene a haute densite
US4881465A (en) * 1988-09-01 1989-11-21 Hooper Robert C Non-toxic shot pellets for shotguns and method
CA1327913C (en) * 1989-02-24 1994-03-22 Yvan Martel Non-ricocheting projectile and method of making same
US4949644A (en) * 1989-06-23 1990-08-21 Brown John E Non-toxic shot and shot shell containing same
US5088415A (en) * 1990-10-31 1992-02-18 Safety Shot Limited Partnership Environmentally improved shot
US5264022A (en) * 1992-05-05 1993-11-23 Teledyne Industries, Inc. Composite shot
US5527376A (en) * 1994-10-18 1996-06-18 Teledyne Industries, Inc. Composite shot
US5713981A (en) * 1992-05-05 1998-02-03 Teledyne Industries, Inc. Composite shot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195135U1 (ru) * 2019-11-15 2020-01-15 Общество с ограниченной ответственностью "Сфера" (ООО "Сфера") Патрон для нарезного спортивно-охотничьего оружия с бессвинцовой пулей
RU197995U1 (ru) * 2019-11-15 2020-06-11 Общество с ограниченной ответственностью "Сфера" (ООО "Сфера") Сердечник пули из бессвинцовых сфероидов

Also Published As

Publication number Publication date
CZ85796A3 (en) 1996-07-17
SG52349A1 (en) 1998-09-28
EP0720662A4 (en) 1997-04-02
EP0720662B1 (en) 2003-04-02
CA2169457C (en) 2005-04-05
ATE236273T1 (de) 2003-04-15
DE69332834T2 (de) 2004-01-22
JPH09504358A (ja) 1997-04-28
US5814759A (en) 1998-09-29
US5399187A (en) 1995-03-21
NO316546B1 (no) 2004-02-02
AU5739794A (en) 1995-04-10
FI961340A0 (fi) 1996-03-22
DE69332834D1 (de) 2003-05-08
CA2169457A1 (en) 1995-03-30
ES2192193T3 (es) 2003-10-01
EP0720662A1 (en) 1996-07-10
IL111040A (en) 1999-03-12
NO961186D0 (no) 1996-03-22
NO961186L (no) 1996-03-22
NO322647B1 (no) 2006-11-13
ZA947460B (en) 1995-05-15
NO20020607L (no) 1996-03-22
FI961340A (fi) 1996-03-22
IL111040A0 (en) 1994-11-28
WO1995008653A1 (en) 1995-03-30
BR9307891A (pt) 1996-09-10
AU680460B2 (en) 1997-07-31
NO20020607D0 (no) 2002-02-07
JP3634367B2 (ja) 2005-03-30
DK0720662T3 (da) 2003-05-26

Similar Documents

Publication Publication Date Title
RU2124698C1 (ru) Пуля, не содержащая свинца (варианты)
US7217389B2 (en) Tungsten-containing articles and methods for forming the same
US20030101891A1 (en) Jacketed bullet and methods of making the same
US5913256A (en) Non-lead environmentally safe projectiles and explosive container
CN1112453C (zh) 易碎金属弹头及其制造方法
US6158351A (en) Ferromagnetic bullet
US6149705A (en) Non-lead, environmentally safe projectiles and method of making same
CA2314990C (en) Lead-free tin projectile
US6551375B2 (en) Ammunition using non-toxic metals and binders
US20020005137A1 (en) Lead-free frangible projectile
WO1999008063A1 (en) Frangible powdered iron projectiles
CA2489770C (en) Lead-free bullet
CA2199396C (en) Non-lead, environmentally safe projectiles and explosives containers
CA2202632A1 (en) Ferromagnetic bullet
AU693271C (en) Ferromagnetic bullet