US3123003A - lange - Google Patents
lange Download PDFInfo
- Publication number
- US3123003A US3123003A US3123003DA US3123003A US 3123003 A US3123003 A US 3123003A US 3123003D A US3123003D A US 3123003DA US 3123003 A US3123003 A US 3123003A
- Authority
- US
- United States
- Prior art keywords
- powder
- bullets
- weight
- resin
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 claims description 57
- 238000009472 formulation Methods 0.000 claims description 24
- 229920005989 resin Polymers 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 14
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 238000004663 powder metallurgy Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 239000012255 powdered metal Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 240000003550 Eusideroxylon zwageri Species 0.000 description 1
- 229920003260 Plaskon Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0094—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/72—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
- F42B12/74—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
- F42B12/745—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers
Definitions
- US. Patents 2,105,528, 2,168,381 and 2,315,853 disclose the preparation of bullets which have been formulated by mixing lead with other metals such as zinc or copper or another compound such as iron oxide. These bullets, While much superior to plain lead bullets for use in shooting galleries, still do not disintegrate satisfactorily upon the target and a great deal of litigation has resulted from injuries caused by splashback of particles.
- the primary object of this invention is to prepare novel formulations which can be used in the production of a unique gallery bullet. A more specific being subject to the dangerous spattering of lead particles inherent in many of the prior art gallery bullets.
- Still another object of this invention is to prepare an improved gallery bullet which will not be characterized by an undesirably high noise level when fired.
- Novel formulations have been prepared which can be used to make gallery bullets possessing new and improved qualities. From these forthe strength to withstand shooting, have a relatively high density and furnish important safety features to the user. The resultant gallery bullets are also characterized by excellent disintegration properties, and there is no objectionable noise level when the bullets are fired.
- FIGURE 1 is a side view of a bullet prepared from the formulations described herein.
- FIGURE 2 is a sectional View of the bullet shown in FIGURE 1.
- the preferred formulations include the following proportions of ingredients: iron-30 to 17 parts by weight, lead70 to 83 parts by weight and thermosetting resin-0.1 to 1.0 part by Weight.
- the iron powder which can be used in these novel formulations is produced by the reduction process.
- the iron powder should be so sized that 98% will pass through an mesh screen and 2535% will pass through a 325 mesh screen.
- thermosetting resins which can be used in the practice of this invention. It has been found that the use of For example, bisphenol A may be replaced by other diphenols, glycols or even glycerinc.
- the desirable epoxy resins suitable for use in these formulations are viscous liquids or clear brittle solids having molecular weights from about 600 to 8000. 7
- thermosetting resins usually the curing of such thermosetting resins is achieved by using a catalyst or hardener but satisfactory results have been obtained in the absence of these compounds.
- the preferred proportion of thermosetting resin is 0.75 part per 100 parts of metal powders. It has been found that a proportion as small as 0.10 part will yield bullets; the performance of these bullets however, is inferior to those of the preferred composition. It has also been found that a proportion as high as 1.0 part will yield bullets, but these bullets do not possess the desirable ballistic characteristics exhibited by those containing the preferred proportion.
- a lubricant such as a metallic stearate to cause the powdered metal to flow and compact satisfactorily.
- a metallic stearate such as lithium stearate may be used as a lubricant in the proportion of 0.01 to 0.5 part per 100 parts of powdered metal.
- Example 1 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co 83 Iron powder, Ancor 80 1 17 Epon 1004 0.75
- the iron powder and solid epoxy resin were blended in a double arm type blender for 15 minutes above the melting point of the resin (95100 C.). The resulting mix was cooled and crushed in the same blender and then ground to pass through a 30 mesh screen.
- the oil-treated lead was added to the iron-resin mix, and the entire mixture was blended and ground to pass through a 30 mesh screen.
- the powder mix was then compacted into bullets in a rotary tabletting press. The bullets were cured for 3 hours at 300 F., tumbled to remove flash and then loaded in the usual manner.
- Example 2 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co 83 Iron powder, .Ancor 80 17 Epon 828, Shell Chemical Corporation 0.75
- the liquid epoxy resin was mixed with metaphenylenediamine (13% by wt. of resin) and the mixture was warmed and stirred above the melting point of the diamine (ca. 63 C.).
- Example 3 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Iron powder, Ancor 17 Estane 5740242 1 0.75
- lhis is a polyurethane obtained from the B. F. Goodrich Chemical Company. It is made with diphenylmethane-p,pdiisocyanate, adipic acid and butanediol-lA.
- the Estane was dissolved in 10 cc. of methyl ethyl ketone by refluxing on a steam bath. Then 0.024 part of dicumyl peroxide and the iron powder were added to the solution, and the ketone was driven off on a steam bath. The resulting m'nr was ground to pas through a 30 mesh screen.
- Example 4 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co. 83 Iron powder, Ancor 8O 17 Atlac 382 1 styrene monomer 0.75
- Atlae is a trademark for polyester resins prepared by reaction of a bisphenol with unsaturated compounds such as funiaric .or maleic anhydride. Product obtained from Atlas Powder Company.
- a polyester resin prepared by reaction of a diol and a dibasic acid and containing styrene monomer Obtained from Allied Chemical Corporation.
- the bullets prepared in these experiments possess the good ballistic characteristics of lead bullets and are safe to use in shooting galleries since the dangerous back spattering of particles has been eliminated. Furthermore the use of these bullets is not accompanied by an objectionable noise level.
- a formulation suitable for preparing a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of 7083 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, 30-17 parts by weight of iron powder and 0.1-1.0 part by weight of a thermosetting resin.
- a formulation suitable for preparing a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of (a) 70-83 parts by weight of oil-treated lead powder,
- said lead powder particles being so sized that a 2% maximum of said powder would be retained on a 40 mesh screen and a 65% minimum of said powder would be retained on a 100 mesh screen, and
- thermosetting resin 0.1-1.0 part by weight of a thermosetting resin.
- a formulation suitable for preparing -a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of 83 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, 17 parts by weight of iron powder and 0.75 part by weight of an epoxy resin having a molecular weight of from about 600 to 8,000.
- a disintegrating gallery bullet comprising a compacted mixture of 70-83 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, -17 parts by weight of iron powder, and 0.1 to 1.0 part by weight of a thermosetting resin selected from the group consisting of an epoxy resin having a molecular weight of from about 600 to 8,000, a polyester resin and a polyurethane resin.
- a disintegrating gallery bullet comprising a compacted mixture of 83 parts by weight of oil-treated lead powder, 17 parts by weight of iron powder and 0.75 part by weight of an expoxy resin having a molecular weight of from about 600 to 8,000.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Powder Metallurgy (AREA)
Description
March: 3, 1964 P. H. LANGE, JR., ETAL GALLERY BULLET Filed Jan. 3, 1962 INVENT PAUL H. LANGE, J/P.
ORS.
OMER N. DEJAR/VETT ATTORNEY United States Patent Ofilice 3,123,003 GALLERY BULLET Paul H. Lange, In, New Haven, Conn, and Omer W. De Jarnett, Alton, 111., assignors to Ulin Mathieson Chemical Corporation, a corporation of Virginia Filed Jan. 3, 1962, Ser. No. 164,157 9 Claims. (Cl. 10 2-31) This invention relates to novel formulations for use in the manufacture of bullets, and more particularly it is concerned with formulations which can be used in the preparation of a unique disintegrating gallery bullet.
In the production of bullets for use in shooting galleries, a primary consideration should be to prepare a bullet which disintegrates on the target without excessive splashback of bullet particles. Conventional lead bullets, While possessed of good ballistic properties, are not safe to use in such galleries because of the splashback of large lead particles from the target. Various other types of bullets have been designed in an effort to overcome these difiiculties.
For example, US. Patents 2,105,528, 2,168,381 and 2,315,853 disclose the preparation of bullets which have been formulated by mixing lead with other metals such as zinc or copper or another compound such as iron oxide. These bullets, While much superior to plain lead bullets for use in shooting galleries, still do not disintegrate satisfactorily upon the target and a great deal of litigation has resulted from injuries caused by splashback of particles.
have been molded into a homogeneous body with the aid of a thermoplastic binder. These bullets are characterized by improved safety features since the tendency for large particles to spatter about upon disintegration has been reduced. However, since these bullets are much lighter than lead bullets, they must be fired at a much greater velocity in order level of the lead bullets. As a loud noise level is and this is an especially undesirable characteristic in enclosed shooting galleries.
Therefore the primary object of this invention is to prepare novel formulations which can be used in the production of a unique gallery bullet. A more specific being subject to the dangerous spattering of lead particles inherent in many of the prior art gallery bullets.
Still another object of this invention is to prepare an improved gallery bullet which will not be characterized by an undesirably high noise level when fired. Other objects will be noted in or will be obvious from the following discussion.
These objects have been accomplished in accordance with the present invention. Novel formulations have been prepared which can be used to make gallery bullets possessing new and improved qualities. From these forthe strength to withstand shooting, have a relatively high density and furnish important safety features to the user. The resultant gallery bullets are also characterized by excellent disintegration properties, and there is no objectionable noise level when the bullets are fired.
der metallurgy techniques.
3,123,903 Patented Mar. 3, 1964 FIGURE 1 is a side view of a bullet prepared from the formulations described herein.
FIGURE 2 is a sectional View of the bullet shown in FIGURE 1.
It has been found that for best results, a relatively coarse lead powder should be utilized in these novel formulations. It is preferred to use lead powder of such a size that a 2% maximum of such powder would There are several reasons for the preferential use of the aforementioned particle size. The use of such coarse particles is necessary to provide good feeding in tabletting presses. In addition, finer powders having much greater surface area are more affected by corrosion products on their surfaces. On the other hand if too coarse particles are used, the highly undesirable splashback problems may be again encountered.
It is known that to surface corrosion,
full strength upon compaction by pow- The corroded particles will not adhere satisfactorily to each other because the corrosion products are refractory in nature. Therefore in order to prepare bullets of adequate strength, it is nections containing equal amounts by weight of lead and iron powders. However, in general, the preferred formulations include the following proportions of ingredients: iron-30 to 17 parts by weight, lead70 to 83 parts by weight and thermosetting resin-0.1 to 1.0 part by Weight.
The iron powder which can be used in these novel formulations is produced by the reduction process. For best results, the iron powder should be so sized that 98% will pass through an mesh screen and 2535% will pass through a 325 mesh screen.
Superior adhesion to the surfaces of the metal powders involved in the formulations is an important requisite of the thermosetting resins which can be used in the practice of this invention. It has been found that the use of For example, bisphenol A may be replaced by other diphenols, glycols or even glycerinc. Before curing, the desirable epoxy resins suitable for use in these formulations are viscous liquids or clear brittle solids having molecular weights from about 600 to 8000. 7
It has also been found that various polyesters and polyurethanes can be used as the required resins. Gallery bullets possessing the desired characteristics have been prepared when these compounds have been utilized instead of epoxy resins in the metal powder formulations.
It is necessary that the resin in the final powder mix be in a solid non-tacky form before this mix is introduced into the tabletting machine or caking and sticking of the powder mix will occur during this operation. Liquid resins can however be satisfactorily utilized if they are partially polymerized to a solid non-tacky state before this operation.
Usually the curing of such thermosetting resins is achieved by using a catalyst or hardener but satisfactory results have been obtained in the absence of these compounds. The preferred proportion of thermosetting resin is 0.75 part per 100 parts of metal powders. It has been found that a proportion as small as 0.10 part will yield bullets; the performance of these bullets however, is inferior to those of the preferred composition. It has also been found that a proportion as high as 1.0 part will yield bullets, but these bullets do not possess the desirable ballistic characteristics exhibited by those containing the preferred proportion.
In powder metallurgy, it is conventional to use a lubricant such as a metallic stearate to cause the powdered metal to flow and compact satisfactorily. However it has been found that with the use of oil-treated lead powder, no other lubricant is required to obtain satisfactory flow of the powdered metals. If desired a metallic stearate such as lithium stearate may be used as a lubricant in the proportion of 0.01 to 0.5 part per 100 parts of powdered metal.
Some typical preparations of gallery bullets involving the use of these novel formulations are herein described.
Example 1 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co 83 Iron powder, Ancor 80 1 17 Epon 1004 0.75
Obtained from Hoeganes Sponge Iron Corporation,
"Epon is a trademark for condensation products of epichlorohydrin and bisphenol-A. Obtained from Shell Chemical Corporation.
The iron powder and solid epoxy resin were blended in a double arm type blender for 15 minutes above the melting point of the resin (95100 C.). The resulting mix was cooled and crushed in the same blender and then ground to pass through a 30 mesh screen.
Then the oil-treated lead was added to the iron-resin mix, and the entire mixture was blended and ground to pass through a 30 mesh screen. The powder mix was then compacted into bullets in a rotary tabletting press. The bullets were cured for 3 hours at 300 F., tumbled to remove flash and then loaded in the usual manner.
Example 2 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co 83 Iron powder, .Ancor 80 17 Epon 828, Shell Chemical Corporation 0.75
The liquid epoxy resin was mixed with metaphenylenediamine (13% by wt. of resin) and the mixture was warmed and stirred above the melting point of the diamine (ca. 63 C.).
This mixture, while in a liquid form, was stirred with the iron powder and left at room temperature for a period of about twenty-four hours at which point the solid mixture was no longer tacky. The mix was then ground to pass through a 30' mesh screen.
Then the oil-treated lead was added to the iron-resin mix, and the entire mixture was blended and ground to pass through a 30 mesh screen. Bullets were prepared from this mixture in the same manner as in Example 1.
Example 3 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Iron powder, Ancor 17 Estane 5740242 1 0.75
lhis is a polyurethane obtained from the B. F. Goodrich Chemical Company. It is made with diphenylmethane-p,pdiisocyanate, adipic acid and butanediol-lA.
The Estane was dissolved in 10 cc. of methyl ethyl ketone by refluxing on a steam bath. Then 0.024 part of dicumyl peroxide and the iron powder were added to the solution, and the ketone was driven off on a steam bath. The resulting m'nr was ground to pas through a 30 mesh screen.
Then the oil-treated lead was added to the iron-resin mix, and the entire mixture was blended and ground to pass through a 30 mesh screen. Bullets were prepared from the mixture in the same manner as in Example 1.
Example 4 Formulation: Percent by wt., parts Lead powder, Type 40 B, oil-treated, Glidden Co. 83 Iron powder, Ancor 8O 17 Atlac 382 1 styrene monomer 0.75
Atlae is a trademark for polyester resins prepared by reaction of a bisphenol with unsaturated compounds such as funiaric .or maleic anhydride. Product obtained from Atlas Powder Company.
Equal amounts (0.375 part by weight) of Atlac 382 and styrene monomer were stirred together until a clear solution was obtained, and then 2% of benzoyl peroxide (based on total weight of resin and styrene) was added and stirred. The iron powder was added and blended, and the resulting mix was allowed to stand at F. for two hours. At the end of this period, the solid mix was non-tacky, and it was ground to pass through a 30 mesh screen.
Then the oil-treated lead was added to the iron-resin mix and the entire mixture was blended and ground to pass through a 30 mesh screen. Bullets were prepared from this mixture in the same manner as in Example 1.
A polyester resin prepared by reaction of a diol and a dibasic acid and containing styrene monomer. Obtained from Allied Chemical Corporation.
To the Plaskon 941 was added 2% by weight of benzoyl peroxide with stirring. The iron powder was then added with stirring; and the mixture was allowed to stand at 160 F. for two hours. At the end of this period, the solid mix was non tacky, and it was ground to pass through a 30 mesh screen.
Then the oil-treated lead was added to the iron-resin mix and the entire mix was blended and ground to pass through a 30 mesh screen. Bullets were prepared from this mixture in the same manner as in Example 1.
The bullets prepared in these experiments possess the good ballistic characteristics of lead bullets and are safe to use in shooting galleries since the dangerous back spattering of particles has been eliminated. Furthermore the use of these bullets is not accompanied by an objectionable noise level.
What is claimed is:
1. A formulation suitable for preparing a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of 7083 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, 30-17 parts by weight of iron powder and 0.1-1.0 part by weight of a thermosetting resin.
2. The formulation of claim epoxy resin having 8,000.
3. The formulation of claim 1 wherein said resin is selected from the group consisting of a polyester resin and a polyurethane resin.
4. A formulation suitable for preparing a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of (a) 70-83 parts by weight of oil-treated lead powder,
said lead powder particles being so sized that a 2% maximum of said powder would be retained on a 40 mesh screen and a 65% minimum of said powder would be retained on a 100 mesh screen, and
(b) 30-17 parts by weight of iron powder, said iron powder particles being so sized that 98% of said powder would pass through an 80 mesh screen and 25-35% of said powder would pass through a 325 mesh screen, and
(c) 0.1-1.0 part by weight of a thermosetting resin.
5. The formulation of claim 4 wherein said resin is an epoxy resin having a molecular weight from about 600 to 8,000.
6; The formulation of claim 4 wherein said resin is selected from the group consisting of a polyester resin and a polyurethane resin.
1 wherein said resin is an a molecular weight from about 600 to 7. A formulation suitable for preparing -a disintegrating gallery bullet by powder metallurgy techniques comprising a mixture of 83 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, 17 parts by weight of iron powder and 0.75 part by weight of an epoxy resin having a molecular weight of from about 600 to 8,000.
8. A disintegrating gallery bullet comprising a compacted mixture of 70-83 parts by weight of lead powder the surface of which is substantially free of corrosion and oxidation products, -17 parts by weight of iron powder, and 0.1 to 1.0 part by weight of a thermosetting resin selected from the group consisting of an epoxy resin having a molecular weight of from about 600 to 8,000, a polyester resin and a polyurethane resin.
9. A disintegrating gallery bullet comprising a compacted mixture of 83 parts by weight of oil-treated lead powder, 17 parts by weight of iron powder and 0.75 part by weight of an expoxy resin having a molecular weight of from about 600 to 8,000.
References Cited in the file of this patent UNITED STATES PATENTS
Claims (1)
1. A FORMULATION SUITABLE FOR PREPARING A DISINTEGRATING GALLERY BULLET BY POWDER METALLURGY TECHNIQUES COMPRISING A MIXTURE OF 70-83 PARTS BY WEIGHT OF LEAD POWDER THE SURFACE OF WHICH IS SUBSTANTIALLY FREE OF CORROSION AND OXIDATION PRODUCTS, 30-17 PARTS BY WEIGHT OF IRON POWDER AND 0.1-1.0 PART BY WEIGHT OF A THERMOSETTING RESIN.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16415762A | 1962-01-03 | 1962-01-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3123003A true US3123003A (en) | 1964-03-03 |
Family
ID=22593232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3123003D Expired - Lifetime US3123003A (en) | 1962-01-03 | lange |
Country Status (2)
Country | Link |
---|---|
US (1) | US3123003A (en) |
GB (1) | GB974318A (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3570406A (en) * | 1967-05-31 | 1971-03-16 | Dynamit Nobel Ag | Practice cartridge for automatic firearms |
US3656433A (en) * | 1969-10-13 | 1972-04-18 | Us Army | Method for reducing shot dispersion |
EP0071722A1 (en) * | 1981-08-01 | 1983-02-16 | Hüls Aktiengesellschaft | Highly filled polyamide moulding mass able to disintegrate into fine particles |
WO1988001723A1 (en) * | 1986-09-03 | 1988-03-10 | Coors Porcelain Company | Ceramic munitions projectile |
WO1988009476A1 (en) * | 1987-05-21 | 1988-12-01 | Sprintvale Limited | Training projectile of plastics material |
US4939996A (en) * | 1986-09-03 | 1990-07-10 | Coors Porcelain Company | Ceramic munitions projectile |
US4958572A (en) * | 1989-02-24 | 1990-09-25 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Non-ricocheting projectile and method of making same |
DE9204695U1 (en) * | 1992-04-04 | 1992-07-02 | Hetzel, Stefan, 5480 Remagen | Projectile, especially for small caliber to medium caliber handguns |
US5237930A (en) * | 1992-02-07 | 1993-08-24 | Snc Industrial Technologies, Inc. | Frangible practice ammunition |
US5399187A (en) * | 1993-09-23 | 1995-03-21 | Olin Corporation | Lead-free bullett |
US5616642A (en) * | 1995-04-14 | 1997-04-01 | West; Harley L. | Lead-free frangible ammunition |
US5665808A (en) * | 1995-01-10 | 1997-09-09 | Bilsbury; Stephen J. | Low toxicity composite bullet and material therefor |
WO1998002266A1 (en) * | 1996-07-11 | 1998-01-22 | Scm Metal Products, Inc. | Lead free-franglible bullets and process for making same________ |
US6090178A (en) * | 1998-04-22 | 2000-07-18 | Sinterfire, Inc. | Frangible metal bullets, ammunition and method of making such articles |
WO2000062009A1 (en) * | 1999-04-02 | 2000-10-19 | Delta Frangible Ammunition, Llc | Jacketed frangible bullets |
US6158351A (en) * | 1993-09-23 | 2000-12-12 | Olin Corporation | Ferromagnetic bullet |
US6248150B1 (en) | 1999-07-20 | 2001-06-19 | Darryl Dean Amick | Method for manufacturing tungsten-based materials and articles by mechanical alloying |
US6270549B1 (en) | 1998-09-04 | 2001-08-07 | Darryl Dean Amick | Ductile, high-density, non-toxic shot and other articles and method for producing same |
US6447715B1 (en) | 2000-01-14 | 2002-09-10 | Darryl D. Amick | Methods for producing medium-density articles from high-density tungsten alloys |
US6527880B2 (en) | 1998-09-04 | 2003-03-04 | Darryl D. Amick | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US6536352B1 (en) | 1996-07-11 | 2003-03-25 | Delta Frangible Ammunition, Llc | Lead-free frangible bullets and process for making same |
US6640724B1 (en) | 1999-08-04 | 2003-11-04 | Olin Corporation | Slug for industrial ballistic tool |
US6749802B2 (en) | 2002-01-30 | 2004-06-15 | Darryl D. Amick | Pressing process for tungsten articles |
US20040112243A1 (en) * | 2002-01-30 | 2004-06-17 | Amick Darryl D. | Tungsten-containing articles and methods for forming the same |
US20040216589A1 (en) * | 2002-10-31 | 2004-11-04 | Amick Darryl D. | Tungsten-containing articles and methods for forming the same |
US20050034558A1 (en) * | 2003-04-11 | 2005-02-17 | Amick Darryl D. | System and method for processing ferrotungsten and other tungsten alloys, articles formed therefrom and methods for detecting the same |
US7000547B2 (en) | 2002-10-31 | 2006-02-21 | Amick Darryl D | Tungsten-containing firearm slug |
US20060102041A1 (en) * | 2002-10-29 | 2006-05-18 | Polytech Ammunition Company | Lead free, composite polymer based bullet and method of manufacturing |
US7217389B2 (en) | 2001-01-09 | 2007-05-15 | Amick Darryl D | Tungsten-containing articles and methods for forming the same |
US20070119523A1 (en) * | 1998-09-04 | 2007-05-31 | Amick Darryl D | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US7399334B1 (en) | 2004-05-10 | 2008-07-15 | Spherical Precision, Inc. | High density nontoxic projectiles and other articles, and methods for making the same |
US20100288255A1 (en) * | 2006-03-10 | 2010-11-18 | Jenson Martin W | Apparatus, system, and method for launching a granular substance |
US8122832B1 (en) | 2006-05-11 | 2012-02-28 | Spherical Precision, Inc. | Projectiles for shotgun shells and the like, and methods of manufacturing the same |
US8443730B2 (en) | 2011-01-14 | 2013-05-21 | Pcp Tactical, Llc | High strength polymer-based cartridge casing and manufacturing method |
WO2013022506A3 (en) * | 2011-05-08 | 2013-05-23 | Global Tungsten & Powders Corp. | Frangible projectile and method for making same |
US8573126B2 (en) | 2010-07-30 | 2013-11-05 | Pcp Tactical, Llc | Cartridge base and plastic cartridge case assembly for ammunition cartridge |
US8763535B2 (en) | 2011-01-14 | 2014-07-01 | Pcp Tactical, Llc | Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition |
US8807008B2 (en) | 2011-01-14 | 2014-08-19 | Pcp Tactical, Llc | Polymer-based machine gun belt links and cartridge casings and manufacturing method |
USD715888S1 (en) | 2012-01-13 | 2014-10-21 | Pcp Tactical, Llc | Radiused insert |
US8869702B2 (en) | 2011-01-14 | 2014-10-28 | Pcp Tactical, Llc | Variable inside shoulder polymer cartridge |
US9470485B1 (en) | 2004-03-29 | 2016-10-18 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
US9677860B2 (en) | 2011-12-08 | 2017-06-13 | Environ-Metal, Inc. | Shot shells with performance-enhancing absorbers |
US9921017B1 (en) | 2013-03-15 | 2018-03-20 | Victor B. Kley | User identification for weapons and site sensing fire control |
US9958244B2 (en) * | 2013-02-21 | 2018-05-01 | Einstein Noodles, Llc | Composite projectile and cartridge with composite projectile |
US10260850B2 (en) | 2016-03-18 | 2019-04-16 | Environ-Metal, Inc. | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US10690465B2 (en) | 2016-03-18 | 2020-06-23 | Environ-Metal, Inc. | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US10794671B2 (en) | 2011-01-14 | 2020-10-06 | Pcp Tactical, Llc | Polymer-based cartridge casing for subsonic ammunition |
US11448491B2 (en) | 2018-07-30 | 2022-09-20 | Pcp Tactical, Llc | Polymer cartridge with enhanced snapfit metal insert and thickness ratios |
US11519703B2 (en) | 2021-01-29 | 2022-12-06 | Vista Outdoor Operations, LLC | Multi-faceted shot |
US12247818B2 (en) | 2018-07-30 | 2025-03-11 | Pcp Tactical, Llc | Polymer ammunition article designed for use across a wide temperature range |
US12247819B2 (en) | 2010-07-30 | 2025-03-11 | Pcp Tactical, Llc | Two-piece insert and/or flash tube for polymer ammunition cartridges |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2105528A (en) * | 1932-04-08 | 1938-01-18 | Winchester Repeating Arms Co | Disintegrating bullet |
US2133761A (en) * | 1937-08-30 | 1938-10-18 | Tietig Chester | Method of making porous metal objects |
US2315853A (en) * | 1940-07-11 | 1943-04-06 | Remington Arms Co Inc | Ammunition |
US2995090A (en) * | 1954-07-02 | 1961-08-08 | Remington Arms Co Inc | Gallery bullet |
-
0
- US US3123003D patent/US3123003A/en not_active Expired - Lifetime
-
1962
- 1962-12-28 GB GB48893/62A patent/GB974318A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2105528A (en) * | 1932-04-08 | 1938-01-18 | Winchester Repeating Arms Co | Disintegrating bullet |
US2133761A (en) * | 1937-08-30 | 1938-10-18 | Tietig Chester | Method of making porous metal objects |
US2315853A (en) * | 1940-07-11 | 1943-04-06 | Remington Arms Co Inc | Ammunition |
US2995090A (en) * | 1954-07-02 | 1961-08-08 | Remington Arms Co Inc | Gallery bullet |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3570406A (en) * | 1967-05-31 | 1971-03-16 | Dynamit Nobel Ag | Practice cartridge for automatic firearms |
US3656433A (en) * | 1969-10-13 | 1972-04-18 | Us Army | Method for reducing shot dispersion |
EP0071722A1 (en) * | 1981-08-01 | 1983-02-16 | Hüls Aktiengesellschaft | Highly filled polyamide moulding mass able to disintegrate into fine particles |
WO1988001723A1 (en) * | 1986-09-03 | 1988-03-10 | Coors Porcelain Company | Ceramic munitions projectile |
US4850278A (en) * | 1986-09-03 | 1989-07-25 | Coors Porcelain Company | Ceramic munitions projectile |
GB2213917A (en) * | 1986-09-03 | 1989-08-23 | Coors Porcelain Co | Ceramic munitions projectile |
US4939996A (en) * | 1986-09-03 | 1990-07-10 | Coors Porcelain Company | Ceramic munitions projectile |
GB2213917B (en) * | 1986-09-03 | 1990-08-01 | Coors Porcelain Co | Ceramic munitions projectile |
WO1988009476A1 (en) * | 1987-05-21 | 1988-12-01 | Sprintvale Limited | Training projectile of plastics material |
US4958572A (en) * | 1989-02-24 | 1990-09-25 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Non-ricocheting projectile and method of making same |
US5237930A (en) * | 1992-02-07 | 1993-08-24 | Snc Industrial Technologies, Inc. | Frangible practice ammunition |
DE9204695U1 (en) * | 1992-04-04 | 1992-07-02 | Hetzel, Stefan, 5480 Remagen | Projectile, especially for small caliber to medium caliber handguns |
US5399187A (en) * | 1993-09-23 | 1995-03-21 | Olin Corporation | Lead-free bullett |
WO1995008653A1 (en) * | 1993-09-23 | 1995-03-30 | Olin Corporation | Lead-free bullet |
US5814759A (en) * | 1993-09-23 | 1998-09-29 | Olin Corporation | Lead-free shot |
US6158351A (en) * | 1993-09-23 | 2000-12-12 | Olin Corporation | Ferromagnetic bullet |
US5665808A (en) * | 1995-01-10 | 1997-09-09 | Bilsbury; Stephen J. | Low toxicity composite bullet and material therefor |
US5616642A (en) * | 1995-04-14 | 1997-04-01 | West; Harley L. | Lead-free frangible ammunition |
WO1998002266A1 (en) * | 1996-07-11 | 1998-01-22 | Scm Metal Products, Inc. | Lead free-franglible bullets and process for making same________ |
US6074454A (en) * | 1996-07-11 | 2000-06-13 | Delta Frangible Ammunition, Llc | Lead-free frangible bullets and process for making same |
US6536352B1 (en) | 1996-07-11 | 2003-03-25 | Delta Frangible Ammunition, Llc | Lead-free frangible bullets and process for making same |
US6090178A (en) * | 1998-04-22 | 2000-07-18 | Sinterfire, Inc. | Frangible metal bullets, ammunition and method of making such articles |
US6263798B1 (en) | 1998-04-22 | 2001-07-24 | Sinterfire Inc. | Frangible metal bullets, ammunition and method of making such articles |
US7267794B2 (en) | 1998-09-04 | 2007-09-11 | Amick Darryl D | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US6890480B2 (en) | 1998-09-04 | 2005-05-10 | Darryl D. Amick | Ductile medium- and high-density, non-toxic shot and other articles and method for producing the same |
US6270549B1 (en) | 1998-09-04 | 2001-08-07 | Darryl Dean Amick | Ductile, high-density, non-toxic shot and other articles and method for producing same |
US6527880B2 (en) | 1998-09-04 | 2003-03-04 | Darryl D. Amick | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US20030172775A1 (en) * | 1998-09-04 | 2003-09-18 | Amick Darryl D. | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US7640861B2 (en) | 1998-09-04 | 2010-01-05 | Amick Darryl D | Ductile medium- and high-density, non-toxic shot and other articles and method for producing the same |
US20070119523A1 (en) * | 1998-09-04 | 2007-05-31 | Amick Darryl D | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
US20050211125A1 (en) * | 1998-09-04 | 2005-09-29 | Amick Darryl D | Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same |
WO2000062009A1 (en) * | 1999-04-02 | 2000-10-19 | Delta Frangible Ammunition, Llc | Jacketed frangible bullets |
US6527824B2 (en) | 1999-07-20 | 2003-03-04 | Darryl D. Amick | Method for manufacturing tungsten-based materials and articles by mechanical alloying |
US6248150B1 (en) | 1999-07-20 | 2001-06-19 | Darryl Dean Amick | Method for manufacturing tungsten-based materials and articles by mechanical alloying |
US7159519B2 (en) | 1999-08-04 | 2007-01-09 | Olin Corporation | Slug for industrial ballistic tool |
US20110017050A1 (en) * | 1999-08-04 | 2011-01-27 | Robinson Peter W | Slug for industrial ballistic tool |
US7891299B2 (en) | 1999-08-04 | 2011-02-22 | Olin Corporation | Slug for industrial ballistic tool |
US6640724B1 (en) | 1999-08-04 | 2003-11-04 | Olin Corporation | Slug for industrial ballistic tool |
US7328658B2 (en) | 1999-08-04 | 2008-02-12 | Olin Corporation | Slug for industrial ballistic tool |
US20040200340A1 (en) * | 1999-08-04 | 2004-10-14 | Robinson Peter W. | Slug for industrial ballistic tool |
US6447715B1 (en) | 2000-01-14 | 2002-09-10 | Darryl D. Amick | Methods for producing medium-density articles from high-density tungsten alloys |
US6884276B2 (en) | 2000-01-14 | 2005-04-26 | Darryl D. Amick | Methods for producing medium-density articles from high-density tungsten alloys |
US20050188790A1 (en) * | 2000-01-14 | 2005-09-01 | Amick Darryl D. | Methods for producing medium-density articles from high-density tungsten alloys |
US7329382B2 (en) | 2000-01-14 | 2008-02-12 | Amick Darryl D | Methods for producing medium-density articles from high-density tungsten alloys |
US7217389B2 (en) | 2001-01-09 | 2007-05-15 | Amick Darryl D | Tungsten-containing articles and methods for forming the same |
US6749802B2 (en) | 2002-01-30 | 2004-06-15 | Darryl D. Amick | Pressing process for tungsten articles |
US20040112243A1 (en) * | 2002-01-30 | 2004-06-17 | Amick Darryl D. | Tungsten-containing articles and methods for forming the same |
US6823798B2 (en) | 2002-01-30 | 2004-11-30 | Darryl D. Amick | Tungsten-containing articles and methods for forming the same |
US7204191B2 (en) * | 2002-10-29 | 2007-04-17 | Polytech Ammunition Company | Lead free, composite polymer based bullet and method of manufacturing |
US20060102041A1 (en) * | 2002-10-29 | 2006-05-18 | Polytech Ammunition Company | Lead free, composite polymer based bullet and method of manufacturing |
US20040216589A1 (en) * | 2002-10-31 | 2004-11-04 | Amick Darryl D. | Tungsten-containing articles and methods for forming the same |
US7059233B2 (en) | 2002-10-31 | 2006-06-13 | Amick Darryl D | Tungsten-containing articles and methods for forming the same |
US7000547B2 (en) | 2002-10-31 | 2006-02-21 | Amick Darryl D | Tungsten-containing firearm slug |
US20050034558A1 (en) * | 2003-04-11 | 2005-02-17 | Amick Darryl D. | System and method for processing ferrotungsten and other tungsten alloys, articles formed therefrom and methods for detecting the same |
US7383776B2 (en) | 2003-04-11 | 2008-06-10 | Amick Darryl D | System and method for processing ferrotungsten and other tungsten alloys, articles formed therefrom and methods for detecting the same |
US9470485B1 (en) | 2004-03-29 | 2016-10-18 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
US9891030B1 (en) | 2004-03-29 | 2018-02-13 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
US7399334B1 (en) | 2004-05-10 | 2008-07-15 | Spherical Precision, Inc. | High density nontoxic projectiles and other articles, and methods for making the same |
US7422720B1 (en) | 2004-05-10 | 2008-09-09 | Spherical Precision, Inc. | High density nontoxic projectiles and other articles, and methods for making the same |
US8196571B2 (en) | 2006-03-10 | 2012-06-12 | Jenson Martin W | Apparatus, system, and method for launching a granular substance |
US20100288255A1 (en) * | 2006-03-10 | 2010-11-18 | Jenson Martin W | Apparatus, system, and method for launching a granular substance |
US8122832B1 (en) | 2006-05-11 | 2012-02-28 | Spherical Precision, Inc. | Projectiles for shotgun shells and the like, and methods of manufacturing the same |
US12247819B2 (en) | 2010-07-30 | 2025-03-11 | Pcp Tactical, Llc | Two-piece insert and/or flash tube for polymer ammunition cartridges |
US8573126B2 (en) | 2010-07-30 | 2013-11-05 | Pcp Tactical, Llc | Cartridge base and plastic cartridge case assembly for ammunition cartridge |
US9989343B2 (en) | 2010-07-30 | 2018-06-05 | Pcp Tactical, Llc | Base insert for polymer ammunition cartridges |
US9599443B2 (en) | 2010-07-30 | 2017-03-21 | Pcp Tactical, Llc | Base insert for polymer ammunition cartridges |
US8443730B2 (en) | 2011-01-14 | 2013-05-21 | Pcp Tactical, Llc | High strength polymer-based cartridge casing and manufacturing method |
US8869702B2 (en) | 2011-01-14 | 2014-10-28 | Pcp Tactical, Llc | Variable inside shoulder polymer cartridge |
US9003973B1 (en) | 2011-01-14 | 2015-04-14 | Pcp Tactical, Llc | Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition |
US9194680B2 (en) | 2011-01-14 | 2015-11-24 | Pcp Tactical, Llc | Polymer-based machine gun belt links and cartridge casings and manufacturing method |
US9261335B2 (en) | 2011-01-14 | 2016-02-16 | Pcp Tactical, Llc | Frangible portion for a high strength polymer-based cartridge casing and manufacturing method |
US9372054B2 (en) | 2011-01-14 | 2016-06-21 | Pcp Tactical, Llc | Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition |
US12410994B2 (en) | 2011-01-14 | 2025-09-09 | Pcp Tactical, Llc | Polymer-based cartridge casing for subsonic ammunition |
US8875633B2 (en) | 2011-01-14 | 2014-11-04 | Pcp Tactical, Llc | Adhesive lip for a high strength polymer-based cartridge casing and manufacturing method |
US9995561B2 (en) | 2011-01-14 | 2018-06-12 | Pcp Tactical, Llc | Narrowing high strength polymer-based cartridge for blank and subsonic ammunition |
US11976911B2 (en) | 2011-01-14 | 2024-05-07 | Pcp Tactical, Llc | Polymer-based cartridge casing for subsonic ammunition |
US8807008B2 (en) | 2011-01-14 | 2014-08-19 | Pcp Tactical, Llc | Polymer-based machine gun belt links and cartridge casings and manufacturing method |
US11353299B2 (en) | 2011-01-14 | 2022-06-07 | Pcp Tactical, Llc | Polymer-based cartridge casing for subsonic ammunition |
US10794671B2 (en) | 2011-01-14 | 2020-10-06 | Pcp Tactical, Llc | Polymer-based cartridge casing for subsonic ammunition |
US8763535B2 (en) | 2011-01-14 | 2014-07-01 | Pcp Tactical, Llc | Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition |
US10287213B2 (en) | 2011-05-08 | 2019-05-14 | Global Tungsten And Powders Corp. | Frangible projectile and method for making same |
WO2013022506A3 (en) * | 2011-05-08 | 2013-05-23 | Global Tungsten & Powders Corp. | Frangible projectile and method for making same |
US10209044B2 (en) | 2011-12-08 | 2019-02-19 | Environ-Metal, Inc. | Shot shells with performance-enhancing absorbers |
US9677860B2 (en) | 2011-12-08 | 2017-06-13 | Environ-Metal, Inc. | Shot shells with performance-enhancing absorbers |
US9897424B2 (en) | 2011-12-08 | 2018-02-20 | Environ-Metal, Inc. | Shot shells with performance-enhancing absorbers |
USD765214S1 (en) | 2012-01-13 | 2016-08-30 | Pcp Tactical, Llc | Radiused insert |
USD715888S1 (en) | 2012-01-13 | 2014-10-21 | Pcp Tactical, Llc | Radiused insert |
US9958244B2 (en) * | 2013-02-21 | 2018-05-01 | Einstein Noodles, Llc | Composite projectile and cartridge with composite projectile |
US10190856B2 (en) | 2013-02-21 | 2019-01-29 | Einstein Noodles, Llc | Composite projectile and cartridge with composite projectile |
US9921017B1 (en) | 2013-03-15 | 2018-03-20 | Victor B. Kley | User identification for weapons and site sensing fire control |
US10260850B2 (en) | 2016-03-18 | 2019-04-16 | Environ-Metal, Inc. | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US10690465B2 (en) | 2016-03-18 | 2020-06-23 | Environ-Metal, Inc. | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US11280597B2 (en) | 2016-03-18 | 2022-03-22 | Federal Cartridge Company | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US11359896B2 (en) | 2016-03-18 | 2022-06-14 | Federal Cartridge Company | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
US11448491B2 (en) | 2018-07-30 | 2022-09-20 | Pcp Tactical, Llc | Polymer cartridge with enhanced snapfit metal insert and thickness ratios |
US12163770B2 (en) | 2018-07-30 | 2024-12-10 | Pcp Tactical, Llc | Polymer cartridge with enhanced snapfit metal insert and thickness ratios |
US12247818B2 (en) | 2018-07-30 | 2025-03-11 | Pcp Tactical, Llc | Polymer ammunition article designed for use across a wide temperature range |
US11940259B2 (en) | 2021-01-29 | 2024-03-26 | Federal Cartridge Company | Multi-faceted shot |
US11519703B2 (en) | 2021-01-29 | 2022-12-06 | Vista Outdoor Operations, LLC | Multi-faceted shot |
Also Published As
Publication number | Publication date |
---|---|
GB974318A (en) | 1964-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3123003A (en) | lange | |
US4428295A (en) | High density shot | |
US5719352A (en) | Low toxicity shot pellets | |
JP2001524605A (en) | Lubricants for metallurgical powder compositions | |
US3639345A (en) | Shelf-stable epoxy resin composition of epoxy resin and adduct of trimellitic anhydride and polyalkylene glycol | |
GB2149067A (en) | Pellets and shot and their manufacture | |
US3834957A (en) | Solvent process for production of composite propellants using hexane and hmx | |
US5949016A (en) | Energetic melt cast explosives | |
US5206313A (en) | Process for preparing powder coating composition | |
US3411963A (en) | Illuminating flare composition composed of magnesium, sodium nitrate, and an epoxy resin-polyglycol resin binder | |
US4655858A (en) | Burning rate enhancement of solid propellants by means of metal/oxidant agglomerates | |
US2856381A (en) | Foundry sand binder composition containing at least three phenol-formaldehyde resins | |
US3737290A (en) | Sintered titanium alloy | |
US3677840A (en) | Pyrotechnics comprising oxide of silver for weather modification use | |
US3305413A (en) | Solid propellant formulation based on hydroxylamine perchlorates | |
EP0077390B1 (en) | Compositions, processes, and writing elements employing resins of the thermosetting type | |
US3432370A (en) | Flare composition containing alkali metal nitrate,magnesium,and a copolymer reaction product binder | |
JPH06505529A (en) | Resin compositions, especially casting resins | |
US5320692A (en) | Solid fuel ramjet composition | |
CH656606A5 (en) | FUEL MIXTURE. | |
US4115167A (en) | Castable binder for cast plastic-bonded explosives | |
US3079338A (en) | Anti-friction material | |
US3301187A (en) | Consumable materials | |
US4145328A (en) | Bimetallic adhesive mixture for bonding and release applications | |
US3673014A (en) | Flare composition |