RU2122565C1 - Способ газификации под давлением высокодисперсных горючих - Google Patents

Способ газификации под давлением высокодисперсных горючих Download PDF

Info

Publication number
RU2122565C1
RU2122565C1 RU94008855A RU94008855A RU2122565C1 RU 2122565 C1 RU2122565 C1 RU 2122565C1 RU 94008855 A RU94008855 A RU 94008855A RU 94008855 A RU94008855 A RU 94008855A RU 2122565 C1 RU2122565 C1 RU 2122565C1
Authority
RU
Russia
Prior art keywords
gas
gas stream
crude gas
convection
gasification reactor
Prior art date
Application number
RU94008855A
Other languages
English (en)
Other versions
RU94008855A (ru
Inventor
Дюррфельд Райнер
Коволь Йоханнес
КУСКЕ Эберхард
Нирманн Ханс
Вильмер Герхард
Вольфф Йоахим
Original Assignee
Крупп-Копперс ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8212704&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2122565(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Крупп-Копперс ГмбХ filed Critical Крупп-Копперс ГмбХ
Publication of RU94008855A publication Critical patent/RU94008855A/ru
Application granted granted Critical
Publication of RU2122565C1 publication Critical patent/RU2122565C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Industrial Gases (AREA)

Abstract

В сосуде под давлением, который рассчитан на давление процесса газификации под давлением, концентрически располагаются реактор газификации, труба для (быстрого) охлаждения и конвекционный котел. Выходящий из реактора газификации аксиально вверх неочищенный газ вводится в прикрепленную вверху трубу для охлаждения. Вводится холодный газ. Смешанный газовый поток из неочищенного газа и холодного газа с помощью ротационно-симметричного в отношении оси трубы для охлаждения поворотного заслона изменяет направление на 180o и преобразуется в имеющий форму идущего по полому цилиндру газовый поток. Такой газовый поток вводится в выполненный в виде полого цилиндра конвекционный котел, который концентрически окружает трубу для охлаждения. Поток неочищенного газа при выходе из конвекционного котла отводится из него с помощью устройства для отвода неочищенного газа. Скорость потока неочищенного газа устанавливается так, чтобы увлеченные с неочищенным газом частицы шлаков и золы за счет изменения направления на 180o вносились в выполненный в виде пологого цилиндра конвекционный котел. Скорость потока в устройстве для отвода неочищенного газа устанавливается так, что увлеченные частицы шлаков и золы выносятся. Предлагаемый способ позволяет отказаться от огнеупорных облицовок в аппарате для газификации для осуществления способа. Достаточно регулярно проводимой механической очистки котла от накипи с помощью молотка. 4 з.п. ф-лы, 7 ил.

Description

Изобретение относится к способу газификации под давлением высокодисперсных горючих в процессе производства технического газа. При этом работают с реактором газификации, котлом, в особенности конвекционным котлом, и устройством для быстрого охлаждения. Под высокодисперсными горючими подразумевают от мелкозернистых до пылеобразных горючие. В особенности речь может идти об угле. Энергия в реактор газификации подводится через горелки, через которые чаще всего вносят также высокодисперсное горючее. В термодинамическом отношении реакцией газификации управляют или регулируют так, как это необходимо для производства технического газа заданного состава. Благодаря быстрому или резкому охлаждению неочищенного газа как бы "замораживаются" мешающие реакции. Для этой цели вводится холодный газ. Под выражением "газ" здесь также подразумевают пары. В рамках изобретения также работают согласно известному техническому решению. В случае соответствующих аппаратов для газификации стенки реактора газификации и конвекционного котла и других элементов конструкции с целью охлаждения высококипящей жидкостью, например в форме "охлаждения кипящей водой", выполнены в виде трубных решеток из различных параллельных труб или снабжены такими трубными решетками. Конвекционный котел снабжен конвективными поверхностями нагрева. Само собой понятно, что воспринимаемая через трубные решетки и в конвекционном котле теплота используется.
В известных способах, из которых исходит изобретение (см., например, европейский патент 0115094), работают с башнеобразными (колоннообразными) аппаратами газификации с двумя башнями (колоннами), которые расположены друг около друга. Это дорогостояще, в частности, в отношении осуществления и в конструкционном отношении. Это, с другой стороны, зачастую считается необходимым для обеспечения того, чтобы при газификационном производстве не наступали никакие нарушения за счет отложившихся частиц шлаков и/или золы. Тем не менее зачастую приходится мириться с нарушающим безопасность производства образованием "прядей" ("пасм").
В противоположность этому, в основу изобретения положена задача разработки способа газификации под давлением, который отличается простотой осуществления и высокой безопасностью производства, а также может осуществляться в простом и компактном аппарате для газификации.
Для решения этой задачи предметом изобретения является способ газификации под давлением высокодисперсных горючих со следующими стадиями:
а) в сосуде под давлением, который рассчитан на давление газификации под давлением, концентрически располагаются реактор газификации, труба для охлаждения (быстрого охлаждения) и конвекционный котел;
б) выходящий аксиально вверх из реактора газификации неочищенный газ вводится в прикрепленную вверху трубу для охлаждения, которая окружена конвекционным котлом;
в) подводится холодный газ;
г) смешанный газовый поток из неочищенного газа и холодного газа (в дальнейшем называется опять "неочищенный газ") выше трубы для охлаждения с помощью поворотного заслона, ротационно-симметричного в отношении оси трубы для охлаждения, изменяет направление на 180o и преобразуется в имеющий форму идущего по полому цилиндру газовый поток;
д) газовый поток, имеющий форму идущего по полому цилиндру, направляется в выполненный в виде полого цилиндра конвекционный котел, который концентрически окружает трубу для охлаждения:
е) поток неочищенного газа при выходе из конвекционного котла отводится с помощью устройства для отвода неочищенного газа,
причем скорость потока неочищенного газа устанавливается так, чтобы увлеченные с неочищенным газом частицы шлаков и золы за счет изменения направления на 180o переносились в выполненный в виде полого цилиндра конвекционный котел, в котором они претерпевают охлаждение вплоть до потери клейкости, и причем скорость потока в устройстве для отвода неочищенного газа устанавливается так, чтобы увлеченные частицы шлаков и золы выносились.
Изобретение исходит из того, что при газификации под давлением высокодисперсных горючих за счет как бы грибообразного изменения направления смешанного газового потока или потока неочищенного газа на 180o, с помощью аксиально-симметричной заслонки для изменения направления, регенерируется феномен обтекания с помощью имеющего форму идущего по полому цилиндру неочищенного газа, который реализуется из полученных в результате изменения направления на 180o взвихренных компонентов. Таким образом неожиданно избегают любого нарушающего термодинамику образования "прядей". Неожиданно взвихренные компоненты в потоке неочищенного газа на своем пути через конвекционный котел индуцируют турбулентный спектр в значительной степени с гомогенной изотропной турбулентностью, которая улучшает теплопередачу. Без трудностей можно устанавливать скорость потока неочищенного газа так, чтобы увлеченные с неочищенным газом частицы шлаков и золы переносились за счет изменения направления на 180o в выполненный в виде полого цилиндра конвекционный котел, а именно при равномерном распределении. Таким образом установленная скорость потока неочищенного газа в трубе для охлаждения одновременно приводит к тому, что особенно ярко выражены и равномерны вышеописанные явления взвихренности и турбулентности. В результате в конвекционном котле можно достигать относительно незначительной высоты этажа, чтобы частицы шлаков и золы на своем пути через трубу для охлаждения и через конвекционный котел претерпевали охлаждение вплоть до потери своей клейкости. Сразу также можно установить скорости потока в устройстве для отвода неочищенного газа так, чтобы вносились увлеченные частицы шлаков и золы туда, где они могут осаждаться. Предлагаемый в изобретении способ позволяет отказаться от огнеупорных облицовок в аппарате для газификации для осуществления способа. Достаточно регулярно проводимой механической очистки котла от накипи (с помощью молотка).
Описанные преимущества и эффекты особенно ярко выражены тогда, когда в конвекционном котле изменивший направление поток неочищенного газа проходит концентрические конвективные поверхности нагрева и охлаждается до температуры 400-200oC при входе в устройство для отвода неочищенного газа. Также благодаря подводу холодного газа в случае предлагаемого в изобретении способа можно воздействовать на гомогенизацию, и уравнивание, и вместе с этим на подавление образования "прядей", и отрицательное влияние на термодинамику, а именно благодаря тому, что холодный газ вводится с помощью огибающего (вращающегося) зазора для подвода холодного газа между реактором газификации и трубой для охлаждения при равномерном распределении во всем объеме и в виде перекрещивающегося потока по отношению к неочищенному газу в трубу для охлаждения. При этом предпочтительно холодный газ вводится через свободно установленный зазор для подачи холодного газа в трубу для охлаждения.
Если работают по предлагаемому в изобретении способу, то трубу для охлаждения окружают концентрическими конвективными поверхностями нагрева. Для конвективных поверхностей нагрева таким образом доступно кольцевое пространство с кольцеобразной горизонтальной проекцией, в котором без труда может размещаться большая конвективная поверхность нагрева. В то время как башнеобразные котлы с концентрическими конвективными поверхностями нагрева в центре имеют термодинамически малоэффективную область, в случае предлагаемого в изобретении способа эта область используется для трубы для охлаждения. Установки или аппараты, которые следуют из технического решения предлагаемого согласно изобретению способа, при его осуществлении на практике, при высокой мощности и большой производительности удивительно компактны. Теплопередача и вместе с этим быстрое охлаждение неочищенного газа происходят согласно изобретению очень интенсивно, т.к. стенки трубы для охлаждения, так и также конвективные поверхности нагрева обтекаются и заполняются с двух сторон охлаждаемым газом. Для осуществления выпуска охлажденного неочищенного газа так, чтобы частицы шлаков и золы не отлагались в устройстве для вывода неочищенного газа, согласно изобретению предлагается из потока неочищенного газа при выпуске из конвекционного котла в устройстве для отвода дымового газа выделять взвихренный поток, и скорость потока, а также завихрение в устройстве для отвода неочищенного газа устанавливать так, чтобы выносились увлеченные с ним частицы шлаков и золы.
Сущность изобретения поясняется ниже чертежами, на которых показано:
фиг. 1 - внешний вид аппарата для газификации,
фиг. 2 - в значительно увеличенном по сравнению с фиг. 1 масштабе сектор A из объекта фиг. 1,
фиг. 3 - в масштабе фиг. 2 сектор B из объекта согласно фиг. 1,
фиг. 4 - в масштабе фиг. 2 сектор C из объекта фиг. 1,
фиг. 5 - в еще раз увеличенном по сравнению с фиг. 1-4 масштабе сектор D из объекта фиг. 3,
фиг. 6 - разрез в направлении E-E объекта фиг. 5,
фиг. 7 - в увеличенном по сравнению с фиг. 1-4 масштабе сектор F из объекта фиг. 1.
Представленный на чертежах аппарат для газификации предназначен для газификации под давлением высокодисперсных горючих в процессе производства технического газа и выполнен так, как следует из предлагаемого в изобретении способа.
На фиг. 1 средняя часть не представлена, ее длина соответствует примерно длине нижней части.
К принципиальной конструкции аппарата для газификации относятся реактор для газификации 1, труба для охлаждения 2 для выходящего из реактора газификации 1 неочищенного газа и конвекционный котел 3 с конвективными поверхностями нагрева 4 для поглощения отводимого тепла неочищенного газа. Само собой понятно, что конвективные поверхности нагрева 4 целесообразнее размещены в форме концентрических цилиндров. Как уже упоминалось вначале, описанные аппарата выполняются из трубных решеток, которые со своей стороны состоят из параллельно идущих, сваренных друг с другом труб.
Из фиг. 1 можно сделать вывод, что реактор газификации 1, труба для охлаждения 2 и конвекционный котел 3 с камерой котла 5 расположены в резервуаре под давлением 6. Конвекционный котел 3 концентрически окружает трубу для охлаждения 2. Реактор газификации 1 расположен коаксиально ниже трубы для охлаждения 2. Также камера котла 5 состоит целесообразно из трубных решеток. В верхней части фиг. 1, 2 видна подвеска пучка конвективных поверхностей нагрева 4 на трубе для охлаждения 2, а также в камере котла 5. Таким же образом по высоте аппарата для газификации могут быть расположены распределенным образом другие пучки конвективных поверхностей нагрева.
Выше трубы для охлаждения 2 в камере котла 5 расположено или выполнено устройство для изменения направления 7 выходящего из трубы для охлаждения 2 и вводимого в конвекционный котел 3 неочищенного газа. Для этого в особенности нужно сослаться также на фиг. 2. В особенности на фиг. 3 видно, что в области между реактором газификации 1 и конвекционным котлом 3 расположено устройство для выхода неочищенного газа 8, с помощью которого неочищенный газ выводится из камеры котла 5 и резервуара под давлением 6. Осуществляют производящее завихрение изменение направления выходящего из конвекционного котла неочищенного газа с помощью представленных на фиг. 3 направляющих лопаток 8a. Параметры соотносятся так, чтобы выходящий неочищенный газ увлекал с собой частицы шлаков и золы, так что в этой области не происходит вносящих помехи отложений. Охлаждение неочищенного газа и таким образом частиц шлаков в известной мере приводит к тому, что невозможно прилипание. Из фиг. 4 можно видеть, что реактор газификации 1 в нижней части резервуара под давлением 6 имеет опорные точки с этим резервуаром. Опорные точки 9 выделены на чертеже.
Конвективные поверхности нагрева 4 идут от трубы для охлаждения 2 и камеры котла 5. Труба для охлаждения 2 и камера котла 5 в своей нижней области, выше устройства для вывода неочищенного газа 8, установлены на разгрузочных элементах 10, которые имеют пропуски 11 для неочищенного газа и укреплены на резервуаре под давлением 6. В этом отношении нужно сослаться на фиг. 3, 5 и 6, где указаны опорные точки 12.
В особенности из фиг. 4 видно, что между реактором газификации 1 и трубой для охлаждения 2 расположен направляющий зазор для ввода холодного газа 13. Он разделяет трубу охлаждения 2 и реактор газификации 1. Расположение выполнено так, что между областью трубы для охлаждения ниже разгрузочных элементов 10, с одной стороны, и реактором газификации 1, выше места его опорных точек 9, с другой стороны, допускаются различные, также обусловленные резервуаром под давлением, тепловые расширения. Для этого зазор для ввода холодного газа 13 дополнительно выполнен в виде зазора для выравнивания теплового расширения.
В примере осуществления и согласно предпочтительному варианту осуществления изобретения резервуар под давлением 6 выполняет роль несущей конструкции для реактора газификации 1, трубы для охлаждения 2 и конвекционного котла 3 с камерой котла 5 и устроен соответственно статически, а также устойчиво. Уже упомянутое устройство для изменения направления 7 в примере осуществления выполнено в виде колпакообразного отражательного устройства для изменения направления. Устройство для вывода неочищенного газа 8 содержит приспособление 14 для вывода частиц шлаков и/или золы, которое, в частности, описывается ниже.
В особенности на фиг. 4 видно, что реактор газификации 1 в своей нижней части опирается на консоли 15 резервуара под давлением 6.
Конвективные поверхности нагрева 4 односторонне укреплены на несущих траверсах 16. Траверсы 16 соединены без напряжения с камерой котла 5 и трубой для охлаждения 2, чтобы избежать появления принудительных усилий из-за различных тепловых расширений в котле, соответственно в трубе для охлаждения. В простейшем случае траверсы 16 расположены свободно в виде балок на двух опорах.
В особенности из фиг. 5 и 6 можно видеть детально разгрузочные элементы 10. Они выполнены в виде жестких металлических элементов конструкции с внутренним кольцом 17, наружным кольцом 18 и спицами 19. Пространство между спицами образует пропуски для неочищенного газа 11. Описанные элементы конструкции 17, 18 и 19 выполнены монолитно, например, в виде целиком созданной части. Разгрузочные элементы 10 присоединяются к воспринимающим нагрузку элементам в резервуаре под давлением 6 через обогреваемые опоры или обогреваемую царгу 20 камеры котла 5. Из фиг. 5 видно, что разгрузочные элементы 10 выполнены одновременно в виде устройства для подвода кипящей воды для охлаждения кипящей водой образующих трубу для охлаждения трубопроводов трубных решеток этой трубы для охлаждения 2. Для этого служат трубопроводы или каналы 21. Отвод кипящей воды осуществляют через верх трубы для охлаждения 2, соответственно, ее, выполненные в виде трубопроводов, формирующие тепловое расширение отводные трубопроводы 22. В известной мере, помимо трубопроводов, идущих к и в разгрузочные элементы 10, все соединения трубопроводов между трубой для охлаждения 2 и камерой котла 5 расположены и проложены как гибко деформирующиеся от теплового расширения.
Реактор газификации 1 по отношению к стенке резервуара под давлением 6 образует кольцевое пространство 23. Подводимые холодные газы идут через это кольцевое пространство 23 к зазору для ввода холодного газа 13. Кольцевое пространство 23, кроме того, связано с пространством для выравнивания давления 24, которое необязательно находится между камерой котла 5 и резервуаром под давлением 6.
Зазор для ввода холодного газа 13 особенно предпочтительно выполнен в примере осуществления. Он образован между конусообразно вытянутым конструкционным элементом выхода 25 из реактора газификации 1 и дополнительным к нему раструбом 26 трубы для охлаждения 2. Конструкционный элемент выхода 25 выполнен чисто металлическим со стороны реактора газификации, без огнеупорной облицовки. Угол конуса составляет примерно 60o. Все расположенные как идущие вниз от конструкционного элемента выхода 25 поверхности также лишены огнеупорной облицовки. Из фиг. 7 видно, что конструкционный элемент выхода 25 из реактора газификации 1 снабжен кольцом для очистки 27 и оно периодически, например со скребковым устройством, передвигается.
Для того, чтобы обеспечить определенное направление потока холодного газа через зазор 13, кольцевое пространство между окружающей реактор газификации 1 стенкой и резервуаром под давлением 6 закрыто мембраной 28. Выравнивание давления в области ниже мембраны осуществляется через отверстие для отвода шлака в днище реактора газификации 1.
Из сравнительного рассмотрения фиг. 1-7 видно, что способ осуществляется следующим образом.
В резервуаре под давлением 6, который рассчитан на давление процесса газификации под давлением, концентрически располагаются реактор газификации 1, труба для охлаждения 2 и конвекционный котел 3. Выходящий аксиально вверх из реактора газификации 1 неочищенный газ вводится в присоединенную вверху трубу для охлаждения 2. Подается холодный газ. Смешанный поток из неочищенного газа и холодного газа, который в дальнейшем обозначается как неочищенный газ, выше трубы для охлаждения 2, с помощью ротационно-симметричного в отношении оси трубы для охлаждения 2 устройства для изменения направления 7 в виде поворотного заслона изменяет направление на 180o и преобразуется в имеющий форму идущего по полому цилиндру поток неочищенного газа. Такой поток вводится в выполненный в виде полого цилиндра конвекционный котел 3, который концентрически окружает трубу для охлаждения 2. Поток неочищенного газа при выходе из конвекционного котла 3 отводится с помощью устройства для вывода неочищенного газа 8 из конвекционного котла 3. Скорость потока неочищенного газа прежде всего регулируется так, чтобы увлеченные с неочищенным газом частицы шлака и золы за счет изменения направления на 180o вносились в выполненный в виде полого цилиндра конвекционный котел 3, в котором они охлаждаются вплоть до потери своей клейкости. Поток в устройстве для вывода неочищенного газа 8 образуется так, чтобы выносились увлеченные частицы шлака и золы. Пример осуществления показывает, что в конвекционном котле 3 изменивший направление поток неочищенного газа проходит через концентрические конвективные поверхности нагрева 4 и охлаждается до температуры 400-200oC при входе в устройство для вывода неочищенного газа 8. Холодный газ с помощью отклоняющего направление зазора для ввода холодного газа 13 между реактором газификации 1 и трубой для охлаждения 2 при равномерном распределении по всему объему и в перекрещивающемся с неочищенным газом потоке вводится в трубу для охлаждения 2. Из потока неочищенного газа при выходе из конвекционного котла 3 в устройстве для вывода неочищенного газа выделяется взвихренный поток. Скорость потока и взвихривание в устройстве для вывода неочищенного газа устанавливается так, чтобы выносились увлеченные частицы шлака и золы.

Claims (5)

1. Способ газификации под давлением высокодисперсных горючих, осуществляемый в реакторе газификации, трубе для охлаждения и конвекционном котле, при этом выходящий аксиально вверх из реактора газификации неочищенный газ вводят в прикрепленную вверху трубу для охлаждения, отличающийся тем, что реактор газификации, трубу для охлаждения и конвекционный котел располагают концентрически в сосуде под давлением, который рассчитан на давление процесса газификации под давлением, причем труба для охлаждения окружена конвекционным котлом, при этом в выходящий аксиально вверх из реактора газификации неочищенный газ, подаваемый в прикрепленную вверху реактора газификации трубу для охлаждения, подводят холодный газ с образованием смешанного неочищенного газового потока, выше трубы для охлаждения с помощью поворотного заслона, ротационно-симметричного по отношению к оси трубы для охлаждения, изменяют направление на 180o смешанного неочищенного газового потока и преобразуют его в имеющий форму идущего по полому цилиндру газовый поток, причем смешанный неочищенный газовый поток, имеющий форму идущего по полому цилиндру газового потока, направляют в выполненный в виде полого цилиндра конвекционный котел, который концентрически окружает трубу для охлаждения, причем скорость смешанного неочищенного газового потока устанавливают так, чтобы увлеченные смешанным неочищенным газовым потоком частицы шлаков и золы за счет изменения направления потока на 180o переносились в выполненный в виде полого цилиндра конвекционный котел, в котором их охлаждают вплоть до потери клейкости, смешанный неочищенный газовый поток при выходе из конвекционного котла отводят с помощью устройства для отвода газа, при этом скорость смешанного неочищенного газового потока в устройстве для отвода газа устанавливают так, чтобы увлеченные частицы шлаков и золы выносились.
2. Способ по п.1, отличающийся тем, что в конвекционном котле изменивший направление смешанный неочищенный газовый поток пропускают через концентрические конвективные поверхности нагрева и при входе в устройство для отвода газа охлаждают до температуры 200 - 400oС.
3. Способ по п. 1 или 2, отличающийся тем, что холодный газ вводят в трубу для охлаждения через огибающий зазор для подвода холодного газа между реактором газификации и трубой для охлаждения при равномерном распределении потока во всем объеме и перекрещивании его с потоком неочищенного газа.
4. Способ по п.3, отличающийся тем, что холодный газ вводят в трубу охлаждения через свободно устанавливаемый зазор для ввода холодного газа.
5. Способ по любому из пп.1 - 4, отличающийся тем, что из смешанного неочищенного газового потока при выходе из конвекционного котла в устройстве для отвода газа выделяют взвихренный поток и скорость потока, а также завихрение в устройстве для отвода газа устанавливают так, чтобы выносились увлеченные частицы шлаков и золы.
RU94008855A 1993-03-16 1994-03-15 Способ газификации под давлением высокодисперсных горючих RU2122565C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93104291A EP0616022B1 (de) 1993-03-16 1993-03-16 Verfahren für die Druckvergasung von feinteiligen Brennstoffen
EP93104291.5 1993-03-16

Publications (2)

Publication Number Publication Date
RU94008855A RU94008855A (ru) 1995-11-10
RU2122565C1 true RU2122565C1 (ru) 1998-11-27

Family

ID=8212704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94008855A RU2122565C1 (ru) 1993-03-16 1994-03-15 Способ газификации под давлением высокодисперсных горючих

Country Status (10)

Country Link
US (1) US5441547A (ru)
EP (1) EP0616022B1 (ru)
CN (1) CN1041107C (ru)
DE (1) DE59300598D1 (ru)
DK (1) DK0616022T3 (ru)
ES (1) ES2078078T3 (ru)
GR (1) GR3018065T3 (ru)
PL (1) PL173329B1 (ru)
RU (1) RU2122565C1 (ru)
ZA (1) ZA939354B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2536140C2 (ru) * 2009-06-30 2014-12-20 Дженерал Электрик Компани Газификатор (варианты)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803937A (en) * 1993-01-14 1998-09-08 L. & C. Steinmuller Gmbh Method of cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
DE102007027601A1 (de) 2007-06-12 2008-12-18 Uhde Gmbh Herstellung und Kühlung von gasförmigen Kohlevergasungsprodukten
DE102008012734A1 (de) 2008-03-05 2009-09-10 Uhde Gmbh Vergasungsreaktor und Verfahren zur Flugstromvergasung
EP2190954A1 (de) 2007-09-18 2010-06-02 Uhde GmbH Vergasungsreaktor und verfahren zur flugstromvergasung
DE102007044726A1 (de) 2007-09-18 2009-03-19 Uhde Gmbh Vergasungsreaktor und Verfahren zur Flugstromvergasung
DE102008012732A1 (de) 2008-03-05 2009-09-10 Uhde Gmbh Vergasungsvorrichtung mit Schlackeabzug
BRPI0910041B1 (pt) 2008-03-27 2018-02-06 Uhde Gmbh "dispositivo para produção de gás bruto, com teor de co ou de h2, pela gaseificação de combustível com tear de cinzas"
DE102008057410B4 (de) 2008-11-14 2019-07-04 Thyssenkrupp Industrial Solutions Ag Vorrichtung zur Herstelllung von Synthesegas mit einem Vergasungsreaktor mit anschließendem Quenchraum
DE102008015801B4 (de) 2008-03-27 2019-02-28 Thyssenkrupp Industrial Solutions Ag Vorrichtung zur Herstellung von Synthesegas mit einem Vergasungsreaktor mit anschließendem Quenchraum
DE102009005464A1 (de) 2009-01-21 2010-08-05 Uhde Gmbh Vorrichtung zur Herstellung von Synthesegas mit einem Vergasungreaktor mit anschließendem Quenchraum
US8357215B2 (en) * 2009-03-04 2013-01-22 General Electric Company Method and apparatus of particulate removal from gasifier components
DE102009034867A1 (de) * 2009-07-27 2011-02-03 Uhde Gmbh Vergasungsreaktor
DE102011107726B4 (de) 2011-07-14 2016-06-30 Thyssenkrupp Industrial Solutions Ag Vorrichtung und Verfahren zum Einleiten von nachwachsenden Brennstoffen in den Bereich der Strahlungskesselwand von Vergasungsreaktoren
DE102011110213A1 (de) 2011-08-16 2013-02-21 Thyssenkrupp Uhde Gmbh Verfahren und Vorrichtung zur Rückführung von Abgas aus einer Gasturbine mit nachfolgendem Abhitzekessel
JP5518161B2 (ja) * 2012-10-16 2014-06-11 三菱重工業株式会社 ガス化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1070615A (fr) * 1951-12-12 1954-08-03 Babcock & Wilcox France Générateur de vapeur combiné à un appareil de production de gaz de synthèse
DE1596323A1 (de) * 1967-06-06 1970-04-02 Walther & Cie Ag Synthesegaserzeuger mit Gaskuehler,die in einem Druckzylinder angeordnet sind
DE3107156A1 (de) * 1981-02-26 1982-09-16 L. & C. Steinmüller GmbH, 5270 Gummersbach Anlage zur erzeugung von gasfoermigen produkten
CH656637A5 (de) * 1981-10-26 1986-07-15 Sulzer Ag Gaskuehler-anordnung zu kohlevergasungsanlage.
FR2530796A1 (fr) * 1982-07-21 1984-01-27 Creusot Loire Dispositif de conversion et de recuperation thermique
EP0115094A3 (en) 1982-12-29 1985-05-22 Shell Internationale Researchmaatschappij B.V. Process and apparatus for the production of synthesis gas
GB2164951A (en) * 1984-09-26 1986-04-03 Shell Int Research Method and apparatus for producing synthesis gas
DE3711314A1 (de) * 1987-04-03 1988-10-13 Babcock Werke Ag Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
DE3809313A1 (de) * 1988-03-19 1989-10-05 Krupp Koppers Gmbh Verfahren und vorrichtung zum kuehlen von partialoxidationsgas
DE3816340A1 (de) * 1988-05-13 1989-11-23 Krupp Koppers Gmbh Verfahren und vorrichtung zum kuehlen eines heissen produktgases, das klebrige bzw. schmelzfluessige partikel enthaelt
US4859213A (en) * 1988-06-20 1989-08-22 Shell Oil Company Interchangeable quench gas injection ring
US4859214A (en) * 1988-06-30 1989-08-22 Shell Oil Company Process for treating syngas using a gas reversing chamber
DE3824233A1 (de) * 1988-07-16 1990-01-18 Krupp Koppers Gmbh Anlage fuer die erzeugung eines produktgases aus einem feinteiligen kohlenstofftraeger
DD280975B3 (de) * 1989-03-31 1993-03-04 Noell Dbi Energie Entsorgung Verfahren und vorrichtung zur kuehlung und reinigung von mit schlacke bzw.staub beladenen druckvergasungsgasen
JP2659849B2 (ja) * 1990-05-30 1997-09-30 三菱重工業株式会社 加圧型ガス化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2536140C2 (ru) * 2009-06-30 2014-12-20 Дженерал Электрик Компани Газификатор (варианты)

Also Published As

Publication number Publication date
CN1093738A (zh) 1994-10-19
GR3018065T3 (en) 1996-02-29
DK0616022T3 (da) 1996-01-15
PL173329B1 (pl) 1998-02-27
EP0616022B1 (de) 1995-09-13
US5441547A (en) 1995-08-15
CN1041107C (zh) 1998-12-09
ZA939354B (en) 1994-06-21
ES2078078T3 (es) 1995-12-01
DE59300598D1 (de) 1995-10-19
EP0616022A1 (de) 1994-09-21

Similar Documents

Publication Publication Date Title
RU2122565C1 (ru) Способ газификации под давлением высокодисперсных горючих
RU2122566C1 (ru) Аппарат для газификации под давлением высокодисперсных горючих
SU1551240A3 (ru) Устройство дл ввода в контакт твердых измельченных частиц с жидкостью
JPH10316976A (ja) 燃焼室及び急冷室を持つ合成ガス発生炉
US3194215A (en) Carbon monoxide burner apparatus
JPS5950001B2 (ja) 放射形ボイラ
JPH0238492A (ja) 交換自在な急冷ガス注入リング
JPH03181323A (ja) 熱ガス流と液体の間の物質移動のための装置
US4166834A (en) Air injector nozzle for secondary reformer
US2758061A (en) Vaporization and cracking of liquids or mixtures of liquids, more particularly of hydrocarbons
JP2755647B2 (ja) 炭化水素装入物の流動床クラッキングプラント
US3627497A (en) Apparatus for catalytic ammonia oxidation
RU2534081C2 (ru) Реактор газификации
US2271880A (en) Steam generator
US3156544A (en) Apparatus for making combustible gas
US2945459A (en) Pulsating combustion method and apparatus
JP2803009B2 (ja) 塵埃を含有するガスを冷却するためのガス冷却器
US1922013A (en) Dust collector
US2046500A (en) Method for treating gases
SU757822A1 (ru) Вертикальная печь для вспучивания перлита 1
RU2087525C1 (ru) Способ газификации углей и электродуговой плазменный реактор для газификации углей
GB1017910A (en) A new or improved combustion device
SU1789548A1 (en) Jet reactor for high-speed pyrolysis of dust-like solid fuel
KR820000298B1 (ko) 증기발생장치의 블로우다운(bolw down) 장치
US2856271A (en) Apparatus for the thermal conversion of liquid and gaseous hydrocarbons