RU2104951C1 - Удаление азота из азотных соединений в водной фазе - Google Patents

Удаление азота из азотных соединений в водной фазе Download PDF

Info

Publication number
RU2104951C1
RU2104951C1 RU93058298/25A RU93058298A RU2104951C1 RU 2104951 C1 RU2104951 C1 RU 2104951C1 RU 93058298/25 A RU93058298/25 A RU 93058298/25A RU 93058298 A RU93058298 A RU 93058298A RU 2104951 C1 RU2104951 C1 RU 2104951C1
Authority
RU
Russia
Prior art keywords
nitrogen
stream
compound
containing compound
compounds
Prior art date
Application number
RU93058298/25A
Other languages
English (en)
Other versions
RU93058298A (ru
Inventor
Г.Фассбендер Александр
Us]
Original Assignee
Баттелл Мемориал инститьют
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Баттелл Мемориал инститьют filed Critical Баттелл Мемориал инститьют
Publication of RU93058298A publication Critical patent/RU93058298A/ru
Application granted granted Critical
Publication of RU2104951C1 publication Critical patent/RU2104951C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/908Organic

Landscapes

  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Изобретение относится к удалению различных азотсодержащих соединений из водной фазы. Для осуществления способа проводят идентификацию типа азотсодержащих соединений, присутствующих в водных отходах, определение их концентраций, приведение в равновесие окисленной и восстановленной форм азота добавлением соответствующего реагента и нагревание смеси до заданной температуры реакции примерно от 300oC до 600oC, с выделением менее вредных газообразных азота, кислорода, гидроксидов, спиртов и углеводородов. Нагревание осуществляют под давлением, достаточным для поддержания потока в жидкой или надкритической фазе. При уравновешивании окисленной и восстановленной форм азота добавляют соединение из группы, включающей водород, сульфид водорода, пероксид водорода и перманганат калия в количестве, эквивалентном половине мольной доли азотсодержащего соединения. Способ предлагает извлечение азотсодержащего соединения, выбранного из группы, включающей ионы аммония, амид-ионы, амиды, амины, аминокислоты, аммиак, нитропроизводные, азосоединения, глицин, пиридин, азотную кислоту, нитриты и нитраты. 27 з.п. ф-лы.

Description

Изобретение относится к способу денитрификации азотсодержащих соединений, таких как нитраты, аммиак, азотно-органические соединения, амиды и амины. Такие соединения обнаружены в отходящих водных потоках обработки сточных вод и металлоперерабатывающих заводов, а переработка данным способом дает снижение вредности газообразных азота, кислорода, гидроксидов, спиртов и углеводородов. Термин "водный" использован здесь в значении "имеющий отношение" или "сходный" с водой, то есть находящийся в жидкой или надкритической фазе.
Азотсодержащие соединения, включая нитраты, нитриты, азотно-органические соединения, аммиак, амины и амиды и др., часто присутствуют вместе в различных комбинациях в нерадиоактивных смешанных отходящих водных потоках, таких как сточные воды, сточные грязи, отходы нитратов и нитритов на металлоперерабатывающих, химических и военных заводах. Производство радиоактивных веществ также приводит к образованию стоков, содержащих как соединения азота, так и радиоактивные вещества.
Во многих сточных и промышленных потоках концентрация азотсодержащих соединений ниже 1%, что является недостаточным для эффективного удаления их традиционными методами. Удалению азота из азотсодержащих потоков с более высокой концентрацией может препятствовать присутствие вредных химических продуктов и/или радиоактивности. Кроме того, присутствие в сточных водах азотсодержащих соединений в любой концентрации порождает такие проблемы, как выделение оксида азота (NOx) при уничтожении отходов сжиганием и цветение морских водорослей, вызываемое эвтрофикацией при сливе отходов в водные массивы.
Из многих методов денитрификации лишь несколько эффективны в отношении не только соединений, содержащих одиночный азот, но и некоторых других. Например, в [1] (с. 6-11) указано, что "единственный химический процесс, который удаляет нитраты - это анионный обмен". Однако процессу анионного обмена присущ ряд недостатков: 1) анионный обмен неэффективен для других соединений азота; 2) требуются дополнительные химикаты для регенерации анионнообменной смолы; и 3) требуются дополнительные химикаты для регенерации анионнообменной смолы и при регенерации образуются отходы.
Далее, примеры выделения соединений с одиночным азотом включают способы выделения аммиака. В [1] (с.6-10) также сообщают, что "аммиак может быть выделен дегазацией, катионным обменом в водородном цикле и адсорбцией на некоторых глинах, таких как клиноптилолит". Недостатком этих процессов является то, что они в первую очередь направлены на выделение аммиака, а другие азотсодержащие соединения, в основном, не затрагиваются. Другой недостаток этих процессов заключается в необходимости повышения pH стоков для увеличения давления паров водного аммиака.
Другой способ выделения аммиака состоит в добавлении хлора с целью образования газообразного азота и соляной кислоты. С целью деактивации токсичных стоков нежелательно употребление хлора и образование соляной кислоты, кроме того, не все азотные соединения выделяют газообразный азот при добавлении хлора.
Гидразин (N2H4) может быть удален реакцией с растворенным кислородом, в результате которой образуются газообразный азот и вода. Однако любое другое азотное соединение эта реакция не затрагивает.
Каждый из описанных ранее процессов денитрификации эффективен только для одного типа азотсодержащих соединений. Удаление же нескольких соединений азота требует применения комбинации этих методов.
Распространены два метода, пригодные для удаления нескольких азотсодержащих соединений. Это бактериальная обработка и сжигание. В стандартных бактериальных системах обычно требуются осадительные резервуары (водоемы) или биологические реакторы, температура в которых поддерживается на уровне ниже 30oC, оборудование для циркуляции значительных объемов воздуха и время порядка нескольких дней для снижения концентраций азотсодержащих соединений до приемлемого уровня.
В случае сжигания азотсодержащих отходов недостатком является выделение оксидов азота (NOx), являющихся компонентами смога. NO можно смешать с аммиаком и подвергнуть либо реакции разложения в газовой фазе при температурах 1000-1100oC (что известно как термическое удаление NOx), либо подвергнуть выборочному каталитическому восстановлению при температуре 650-750oC в присутствии катализатора, приводящего к превращению NOx в азот, кислород и воду. Недостатки обработки оксидов азота в газовой фазе состоят в следующем:
1) большой объем оборудования, требующегося для обработки газов:
2) высокая температура процесса;
3) воздействие потенциально коррозийного конденсата при охлаждении газового потока;
4) издержки на уничтожение отработанного катализатора после обработки радиоактивных отходов, и др.
Азотсодержащие соединения могут быть превращены во вторичные соединения азота, но это не дает их полного удаления. Так например, в случае, когда к отходам предъявляют высокие требования по химическому показателю кислорода (ХПК) из-за присутствия углерод- и азотсодержащих соединений, обработку влажным воздухом можно использовать для окисления большей части или всей доли углерода в отходах. Как указано в [2] (с. 192): "Значительное преимущество окисления влажным воздухом состоит в том, что проблемы с загрязнением воздуха сводятся к минимуму. Загрязнения остаются в водной фазе. Небольшое количество отходящего газа содержит в основном отработанный воздух и диоксид углерода CO Выделение оксидов азота NO не обнаружено, так как соединения азота превращаются в аммиак". Таким образом, несмотря на то, что окисление влажным воздухом эффективно при разложении углеродной фракции отходов и превращения азотной составляющей в аммиак, эта обработка, в том виде как ее широко применяют, не удаляет из водных потоков азот аммиака.
В случае присутствия в отходах большого количества соединений азота, удаление азота является трудной и дорогостоящей задачей. До настоящего изобретения только бактериальная обработка и сжигание были пригодны для удаления большого количества соединений азота из водных отходов. Однако ни один из указанных подходов не дает газообразный азот в качестве преобладающего конечного продукта, и кроме того, им присущи вышеупомянутые недостатки, в особенности когда речь идет о радиоактивных отходах.
Поэтому предлагаемое изобретение направлено на разработку способа удаления большого количества азотсодержащих соединений из водных отходов, результатом которого является выделение азота в газообразном виде без образования оксидов азота, таких как NO, NO2, и N2O4. Изложенный в представленном изобретении способ основывается на реакциях в водной фазе, происходящих при средних температуре и давлении, без использования катализатора и без последующих регенерации и/или удаления катализатора, как в случае обработки нерадиоактивных, так и радиоактивных отходов.
Изобретение включает способ удаления азота по реакциям в водной фазе из множества азотсодержащих соединений, включая нитраты, нитриты, аммиак, амиды, амины, органические соединения азота и др. Такие соединения могут присутствовать в нерадиоактивных и радиоактивных стоках и могут быть обработаны по способу настоящего изобретения, который приводит к получению менее вредных продуктов, включая газообразные азот и кислород, гидроксиды, спирты и углеводороды. Гидроксиды могут впоследствии взаимодействовать с диоксидом углерода с образованием твердых безводных карбонатов. Спирты и углеводороды могут быть выделены из отходов для последующего использования.
Способ, предлагаемый в данном изобретении, может быть использован как сам по себе, так и в сочетании с уже существующими процессами, такими, например, как окисление влажным воздухом. Сочетание процессов может быть выполнено как в отдельных, так и в едином совмещенном реакторе. В последнем случае предварительно можно провести окисление влажным воздухом, а затем применить способ настоящего изобретения.
Способ, предлагаемый в данном изобретении, включает операции идентификации типа и концентрации азотсодержащих соединений в отходах, приведение в равновесие окисленных и восстановленных форм азота добавлением соответствующего азотсодержащего реагента, такого как аммиак или нитритное или нитратное соединение, и нагревание смеси под давлением для проведения желаемой реакции.
Приведение в равновесие, достигаемое добавлением азотсодержащего соединения, такого как азотная кислота, к отходам, содержащим аммиак и амины, будет способствовать образованию воды и газообразных азота и кислорода.
Нагревание требуется для преодоления энергии активации реакций между приведенными в равновесие азотсодержащими соединениями. Нагревание может быть выполнено до или после операции уравновешивания.
Приведенную в равновесие и нагретую смесь помещают под давление и выдерживают при этих условиях до полного завершения реакций. Этот способ может быть распространен на последующую обработку остающихся водных продуктов.
Преимущества процесса, предлагаемого в данном изобретении, состоят в том, что:
1) удаление азота из множества азотсодержащих соединений происходит в водной фазе;
2) продукты реакции являются относительно безвредными и стабильными, что дает возможность рецикла, или дальнейшей обработки, или удаления обычными способами;
3) меньший объем реактора по сравнению с бактериальной или газофазной обработкой оксидов азота;
4) более низкая температура процесса по сравнению с газофазной обработкой;
5) процесс занимает меньше времени, чем в случае бактериальной обработки; и
6) не требуется катализатор.
Предмет данного изобретения конкретно указан и четко сформулирован в заключительной части данного описания. Тем не менее как организация процесса, так и способ его осуществления вместе с другими преимуществами и решаемыми задачами могут стать более понятными из дальнейшего подробного описания изобретения.
В предпочтительном варианте процесса азотсодержащие соединения, присутствующие в таких отходах, как сточные воды, нитратные отходы окончательной обработки металлов, радиоактивные нитратные отходы, подвергают идентификации и определяют их концентрации. Идентификация и определение концентраций азотсодержащих соединений могут включать в себя одну или несколько операций:
1) оценка первичных потоков и расчет состава композиции;
2) выпаривание с последующим рентгеновским анализом;
3) прямое электродное измерение:
4) метод Кьелдала и его варианты;
5) ИК-, видимая и УФ-спектрометрия;
6) газовая хроматография;
7) масс-спектрометрия;
8) определение химической потребности в кислороде (ХПК);
9) другие стандартные лабораторные методики, которые могут потребоваться и являются общепринятыми.
Если реагенты, входящие в группу, содержащую нитраты, нитриты, азотную кислоту, соли аммония, аммиак и др. добавляют к азотсодержащим отходам, и смесь нагревают до заданной самой низкой температуры реакции под давлением, достаточным для сохранения жидкой фазы и выдерживают при этих условиях в течение заданного времени, происходит выделение газообразного азота. Очередность операций приведения в равновесие и нагревания может быть изменена таким образом, чтобы нагревание предшествовало уравновешиванию. В качестве добавки к реагентам можно использовать pH-модификаторы, такие как минеральные кислоты, диоксид углерода или органические кислоты, для снижения pH и увеличения тем самым выхода газообразного азота.
Реакции, используемые при денитрификации, включают, но не ограничиваются, нижеприведенными уравнениями. В этих уравнениях символ M соответствуют водорастворимому катиону, X - водорастворимому аниону, а R - ковалентно связанному органическому радикалу (в виде цепи или кольца).
Figure 00000001

Figure 00000002

Так, например, отходы, содержащие аммиак, ионы аммония, амины, глицин и пиридин, могут быть обработаны добавлением азотной кислоты, в результате чего образуется вода и газообразные азот и кислород (ур. 1-4, 6 и 8). Добавление нитрита натрия дает те же самые продукты, но с меньшим содержанием кислорода (ур. 5, 7 и 9). Добавление R-NO и R-NO2 к NH4X дает газообразный азот и остаточные углеводороды, которые могут быть обработаны отдельно (ур. 10-13). Не представленные в уравнениях амид-ионы, азосоединения, нитропроизводные и аминокислоты могут быть обработаны добавлением азотной кислоты, нитратов или нитритов. В предпочтительном способе первое заранее выбранное соединение азота добавляют к водному потоку, содержащему несколько азотных соединений. Количество первого заранее выбранного азотсодержащего соединения эквивалентно мольной доле второго, содержащего несколько соединений азота, которые могут варьироваться в пределах от TKN-обнаружения (общий азот Кьелдала) до насыщенного раствора.
Варианты основного процесса включают альтернативные способы уравновешивания окисленной и восстановленной форм азота. Второй пример конкретной реализации представленного изобретения включает приведение в равновесие окисленной и восстановленной форм азота путем добавления соответствующего реагента, не содержащего азота (такого как водород, сульфид водорода, пероксид водорода или перманганат калия, ур. 14-16) в количестве по существу эквивалентном половине мольной доли присутствующих в отходах азотных соединений. Добавление достаточного количества окислительного или восстановительного агента к отходам приводит к установлению равновесия между окисленной и восстановленной формами соединений азота, а затем протекают требуемые реакции между азотными соединениями и выделяется газообразный азот, а возможно и другие компоненты, такие как газообразный кислород и/или вода.
В случае, если сток содержит избыток восстановленных соединений азота, таких как амины или аммиак, могут быть использованы такие окислители как воздух, кислород, пероксид водорода или перманганат калия. Реакция 14 иллюстрирует пример, в котором водный сток, содержащий соединение аммония частично подвергается воздействию окислителя, превращающего некоторое количество аммоний-ионов в азотную или азотистую кислоту. Далее взаимодействие между оставшимися ионами аммония и вновь образовавшейся азотной кислотой приводит к образованию газообразного азота, воды, кислорода и водородного соединения.
Там, где сточные воды содержат избыток окисленных соединений азота, таких как нитраты или нитриты, в качестве восстановителя может быть использован сульфид водорода. Реакции 15a, 15b и 16 иллюстрируют пример, в котором водные стоки, содержащие нитратное соединение, частично подвергаются воздействию восстановителя, который превращает некоторые нитраты либо в нитраты аммония, либо в серу и газообразный азот. После образования нитрата аммония возможно дальнейшее взаимодействие по реакции 1 с образованием газообразных азота и кислорода. То, по какому из предложенных в ур. 15a, 15b и 16 путей будет протекать реакция, зависит от того, какое количество сульфида водорода добавлено к обработанным стокам.
Один из вариантов второго примера реализации включает разделение водного стока на равноценные первый и второй потоки. Восстановленные соединения первого потока окисляются до окисленных азотных соединений, таких как азотная кислота или нитраты и нитриты. Такое окисление может быть выполнено при помощи различных сильных окислителей, таких как перекись водорода, гидроксильный радикал, перманганат калия и др. Например, окислить аммиак до азотной кислоты можно пероксидом водорода при температуре от 90 до 150oC. Наконец, подвергшийся окислению первый поток и необработанный второй поток соединяют, что и приводит к установлению равновесия между окисленными и восстановленными формами азотных соединений. Установлено, что многие варианты могут быть использованы без отступления от области изобретения, в зависимости от очередности операций: нагревания до 350oC, разделения стока, нагревания или охлаждения первого потока от 90 до 150oC.
Третий пример реализации представленного изобретения касается обработки потоков, содержащих соединения азота и углерода. В этом случае, углеродную составляющую превращают в диоксид углерода посредством окисления влажным воздухом. Затем окисленные и восстановленные формы азота приводят в равновесие добавлением соответствующего азотсодержащего реагента. Такой реагент может быть, например, азотной кислотой, аммиаком или другим соединением.
Простое уравновешивание окисленной и восстановленной форм соединений азота в водных отходах в естественных условиях неэффективно из-за энергии активации реакций. Поэтому такая смесь должна быть нагрета до заданной температуры реакции, составляющей примерно от 300 до 600oC для преодоления энергии активации реакций при давлении, достаточном для поддержания водного потока в жидкой или надкритической фазе. Предпочтительно использование температур около 300-350oC для восстановления количества энергии, потребляемой в ходе процесса, и давления, соответствующего или превышающего давление насыщенного пара при данной температуре. Нагревание производится электричеством, паром, излучающим и/или конвективным пламенем или же в теплообменнике горячим маслом. Водный поток нагревают при давлении, достаточном для предотвращения кипения, или при давлении, равном или превышающем критическое для воды. Для денитрификации NH4NO3, который является одним из самых сложных с химической точки зрения в ряду реакций 1-16, минимальная температура реакции составляет 350oC. Предполагается, что другие соединения имеют такую же или более низкую температуру реакции. Более высокие температуры (порядка 600oC) могут быть использованы для уменьшения времени, требующегося для завершения реакций. Нагрев до температуры, меньшей, чем самая низкая реакционная температура, был бы неэффек- тивен, так как либо реакция вообще не пройдет, либо скорость реакции будет слишком мала для практического использования.
Способ настоящего изобретения, проиллюстрированный тремя примерами его конкретной реализации, требует поддержания в течение заданного времени повышенной температуры и давления. Это время может составлять от 1 минуты до 2 часов, что достаточно для завершения реакций. Так как реакции являются экзотермическими, реакционный поток можно направить через теплообменник для утилизации тепла. Образующиеся азот, диоксид углерода и кислород выделяют путем охлаждения и/или мгновенного испарения, используя стандартные нагнетально-расширительные клапаны давления.
Полученный в результате поток может быть смешан с газообразным диоксидом углерода при нормальных или повышенных температуре и давлении для проведения реакции с присутствующими гидроксидами с образованием карбонатов в соответствии с одним из нижеприведенных уравнений 17 или 18:
Figure 00000003

Пример 1. Для подтверждения того, что реакция 1 происходит при 350oC и ниже в водных условиях, был проведен эксперимент, заключающийся в том, что 3,34 г нитрата аммония растворили в 300 мл воды, а полученный раствор поместили в перемешиваемый автоклав емкостью 1 л. Затем автоклав постепенно нагревали до 350oC, отбирая пробы газа при повышении температуры на каждые 50oC. Давление в автоклаве поддерживали на уровне 2400 фунтов на кв.дюйм, что является достаточным для удержания раствора в водной фазе. По данным газовой хроматографии взаимодействие аммиака с нитратом происходит в температурных пределах от 300 до 350oC.
Процентную долю азота в водном растворе, переходящую в газообразный азот, рассчитывали в два этапа. На первом этапе вычисляется количество азота в отходящем газе, то есть того, который действительно выделяется из водного раствора. Вторым этапом является определение соотношения выделившегося газообразного азота к количеству азота, первоначально присутствовавшего в водном растворе, которое затем умножается на 100, в результате чего определяют процент превращенного азота, то есть степень денитрификации.
В данном примере 3,34 г водного нитрата аммония содержат 1,169 г азота. Объем газа, выделившегося из автоклава в сочетании с газом внутри автоклава, соответствует 6,1 л, причем объемная концентрация азота составляет в нем 15,7%, то есть 1,197 г газообразного азота. Степень денитрификации составила таким образом 102%, что можно считать несомненно полной в пределах ошибки эксперимента. Объем газа был измерен пропусканием его из автоклава через психрометр и затем добавлением к известному объему автоклава. В то время как газ, проходящий через психрометр, имел комнатную температуру (приблизительно 20oC), газ, оставшийся в автоклаве, мог быть теплее. Именно это и могло внести незначительную ошибку при расчете объема газа.
Пример 2. Эксперимент по подтверждению того, что денитрификация глицина (реакция 2) происходит в водных условиях при температуре 350oC или ниже, был проведен в соответствии с процедурой, описанной в примере 1. Глицин (NH2CH2CO2H) в количестве 15,8 г (0,21 г/моль) вместе с азотной кислотой NHO в количестве 49,3 мл 70%-ной кислоты (0,773 г/моль) добавили к 285 г воды. Так как азотную кислоту берут в избытке, выход газообразного азота в реакции 2 определяется количеством азота в 0,21 г/моле глицина и 0,21 г/моле азотной кислоты, что составляет 5,90 г азота.
Объем отходящего из реактора газа составил 17,7 литра, а доля газообразного азота в нем - 19,8%, то есть 4,38 г газообразного азота. Степень денитрификации, таким образом, 74,2%.
Пример 3. Эксперимент, демонстрирующий, что простое нагревание раствора глицина не дает существенной денитрификации, был проведен в соответствии с процедурой, описанной в примере 1, добавлением 15,8 г глицина к 300 г воды. 15,8 г (0,21 г/моль) глицина содержат 2,95 г азота. Объем отходящего из реактора газа составил 4,1 л, а доля азота в нем - 1,5%, то есть 0,077 г газообразного азота. Степень денитрификации, следовательно, 2,6%.
Эта степень денитрифакации (2,6%) глицина, достигаемая нагреванием в отсутствии окислителя (азотной кислоты) намного меньше степени денитрификации (74,2%), достигаемой в присутствии азотной кислоты в качестве окислителя.
Пример 4. Эксперимент по подтверждению того, что денитрификация пиридина (C5H5N) проходит в водных условиях при температуре 350oC или ниже, был проведен в соответствии с процедурой, описанной в примере 1. Пиридин в количестве 15,8 г (0,20 г/моль) вместе с азотной кислотой (HNO3) в количестве 56,0 мл 70%-ной кислоты (0,878 г/моль) добавлении к 285 г воды. Так как реакция происходила в избытке пиридина, выход газообразного азота в реакции 3 определялся количеством азота в 0,878 г/моль азотной кислоты и 0,878/5 г (0,176 г/моль) пиридина, то есть в общем 14,76 г азота.
Объем отходящего из реактора газа составил 34,0 л, а для газообразного азота в нем - 21,1%, то есть 11,5 г газообразного азота. Степень денитрификации, следовательно, 77,9%.
Пример 5. Эксперимент, демонстрирующий, что процесс нагревания раствора пиридина не дает существенной денитрификации, был проведен в соответствии с процедурой, описанной в примере 1. Пиридин в количестве 15,8 г добавили к 285 г воды. 15,8 г (0,20 г/моль) пиридина содержат 2,80 г азота. Объем отходящего из реактора газа составил 7,5 л, а доля азота в нем - 1,4% объема, то есть 0,13 г газообразного азота. Степень денитрификации, таким образом, 4,6%.
Степень денитрификации пиридина (4,6%), достигаемая нагреванием в отсутствии окислителя (азотной кислоты), намного меньше достигаемой в присутствии азотной кислоты в качестве окислителя (77,9%).
Эти примеры иллюстрируют значительную денитрификацию соединений азота, которая может быть достигнута уравновешиванием восстановленных форм азота с такими окисленными формами, как азотная кислота, и нагреванием до температуры реакции. Однако 100% денитрификация достигается только в примере 1. Ограничение денитрификации в других примерах обусловлено присутствием углерода. Таким образом, в предпочтительном варианте углерод может быть удален до того, как будет выполнено приведение в равновесие и нагревание, что позволит достигнуть 100% денитрификации.
Несмотря на то что существует множество методов денитрификации соединений, содержащих азот, только сжигание и бактериальная обработка были пригодны для удаления азота из различных азотных соединений. Представленное изобретение предлагает третий способ денитрификации разнообразных соединений азота. Этот способ обладает такими неоспоримыми преимуществами, как быстрота процесса, средняя температура операции, меньшее количество оборудования и отсутствие потребности в катализаторе. Процесс может проводится как в емкости, отдельной от других промышленных процессов, так и вместе с ними ( например, вместе с окислением влажным воздухом). В результате предлагаемого процесса образуется азот, диоксид углерода, метан и кислород, которые могут быть сброшены в атмосферу, гидроксиды, которые могут подвергаться дальнейшей переработке, и спирты и углеводы, которые можно отделить. В то время как ряд аспектов данного изобретения здесь не представлен, очевидно, что они не ограничивают область изобретения, изложенную в приведенной формуле изобретения.

Claims (29)

1. Способ денитрификации по меньшей мере одного азотсодержащего соединения в водном потоке путем его нагревания, отличающийся тем, что нагревание водного потока осуществляют до заданной температуры реакции, составляющей приблизительно 300 600oС, под давлением, достаточным для поддержания потока в жидкой или надкритической фазе, при этом азот выделяют в виде газа.
2. Способ по п.1, отличающийся тем, что указанное азотсодержащее соединение представляет собой соединение из группы, включающей ионы аммония, амид-ионы, амиды, амины, аминокислоты, аммиак, нитропроизводные, азосоединения, глицин, пиридин, азотную кислоту, нитриты и нитраты.
3. Способ по пп.1 и 2, отличающийся тем, что указанное азотсодержащее соединение представляет собой нитрат аммония.
4. Способ по п.1, отличающийся тем, что перед указанным нагреванием водного потока идентифицируют в нем по меньшей мере одно азотсодержащее соединение и определяют концентрацию указанного соединения или соединений, при этом до или после указанного нагревания уравновешивают в потоке окисленную и восстановленную формы азота.
5. Способ по п. 4, отличающийся тем, что уравновешивание осуществляют перед указанным нагреванием водного потока.
6. Способ по п. 4, отличающийся тем, что уравновешивание осуществляют после указанного нагревания водного потока.
7. Способ по п.5, отличающийся тем, что при уравновешивании окисленной и восстановленной формы азота добавляют соединение из группы, включающей водород, сульфид водорода, пероксид водорода и перманганат калия, в количестве, эквивалентном половине молярной доли азотсодержащего соединения, и нагревают водный поток до заданной температуры реакции, составляющей примерно от 90 до 150oС, под давлением, достаточным для сохранения водной фазы в жидком или надкритическом состоянии.
8. Способ по п.5 или 6, отличающийся тем, что при уравновешивании окисленной и восстановленной форм азота нагревают водный поток до заданной температуры реакции, составляющей примерно 90 150oС, под давлением, достаточным для сохранения водной фазы в жидком или надкритическом состоянии, и добавляют соединение, выбранное из группы, включающей водород, сульфид водорода, пероксид водорода и перманганат калия, в количестве, эквивалентном половине молярной доли азотсодержащего соединения.
9. Способ по п.5 или 6, отличающийся тем, что при уравновешивании окисленной и восстановленной форм азота добавляют соединение, выбранное из группы, состоящей из нитратов, нитритов, азотной кислоты, амидов, аминов, нитропроизводных, азосоединений, глицина, пиридина, ионов аммония, амид-ионов и аминокислот.
10. Способ по пп.5 9, отличающийся тем, что при указанном нагревании водного потока до заданной температуры реакции, составляющей примерно 300 - 600oС с водным потоком смешивают диоксид углерода с образованием карбоната.
11. Способ по пп.6 9, отличающийся тем, что при уравновешивании окисленной и восстановленной форм азота с водным потоком смешивают диоксид углерода с образованием карбоната.
12. Способ по п. 1, отличающийся тем, что с указанным водным потоком смешивают по меньшей мере одно другое соединение в количестве, эквивалентном молярной доле находящихся в водном потоке азотсодержащего соединения или соединений, молярная доля которых находится в интервале от значения, соответствующего пределу TKN-обнаружения до значения, соответствующего насыщенному раствору, а указанное нагревание водного потока осуществляют в течение от 1 мин до 2 ч до температуры, не превышающей 350oС.
13. Способ по п.12, отличающийся тем, что указанное смешивание осуществляют после указанного нагревания водного потока.
14. Способ по п.12, отличающийся тем, что указанное смешивание осуществляют перед указанным нагреванием водного потока.
15. Способ по пп.12 14, отличающийся тем, что находящееся в потоке азотсодержащее соединение представляет собой соединение из группы, включающей ионы аммония, амид-ионы, амины, аминокислоты, аммиак, азосоединения, глицин и пиридин, а указанное другое соединение выбирают из группы, включающей нитраты, нитриты и азотную кислоту.
16. Способ по п. 15, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой глицин, а в качестве указанного другого соединения используют азотную кислоту.
17. Способ по п. 15, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой пиридин, а в качестве указанного другого соединения используют азотную кислоту.
18. Способ по пп.12 14, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой соединение из группы, включающей нитраты, нитриты и азотную кислоту, а указанное другое соединение выбирают из группы, содержащей ионы аммония, амид-ионы, амины, амиды, аминокислоты, аммиак, азосоединения, глицин и пиридин.
19. Способ по п. 18, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой азотную кислоту, а в качестве указанного другого соединения используют глицин.
20. Способ по п. 18, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой азотную кислоту, а в качестве указанного другого соединения используют пиридин.
21. Способ по пп.12 14, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой соединение из группы, включающей R-NО и нитропроизводные, а другое соединение выбирают из группы, состоящей из ионов аммония, амид-ионов, аммиака, аминов и амидов.
22. Способ по пп.12 14, отличающийся тем, что азотсодержащее соединение, находящееся в потоке, представляет собой соединение из группы, включающей аммиак, амид-ионы, амины, амиды и ионы аммония, а другое соединение выбирают из группы, содержащей R-NO и нитропроизводные.
23. Способ по п. 1, отличающийся тем, что перед указанным нагреванием водного потока его разделяют на две части, осуществляют добавление к первой части потока окислителя в количестве, по существу эквивалентном молярной доле находящегося в первой части потока указанного азотсодержащего соединения, молярная доля которого находится в интервале от значения, соответствующего пределу TKN-обнаружения, до значения, соответствующего насыщенному раствору, и нагревание первой части потока до заданной температуры реакции, составляющей приблизительно 90 150oС, под давлением, достаточным для поддержания указанной смеси в водной жидкой фазе, с окислением указанного азотсодержащего соединения или соединений до других соединений азота, и соединяют затем первую и вторую части потока, а указанное нагревание водного потока после соединения его частей осуществляют до температуры, не превышающей примерно 350oС, в течение от 1 мин до 2 ч с осуществлением взаимодействия азотсодержащих соединения или соединений второй части потока с окисленными азотсодержащими соединениями или соединениями первой части потока с выделением помимо газообразного азота водного продукта.
24. Способ по п.23, отличающийся тем, что окислитель добавляют к первой части потока до ее нагревания.
25. Способ по п.23, отличающийся тем, что окислитель добавляют к первой части потока после ее нагревания.
26. Способ по пп.23 25, отличающийся тем, что указанное азотсодержащее соединение выбирают из группы, включающей аммиак, амид-ионы, амины, амиды и ионы аммония.
27. Способ по пп. 23 25, отличающийся тем, что окислитель выбирают из группы, включающей пероксид водорода, сульфид водорода и перманганат калия.
28. Способ по пп.4 27, отличающийся тем, что осуществляют снижение величины рН водного потока.
29. Способ по п.28, отличающийся тем, что снижение рН осуществляют путем добавления соединения из группы, состоящей из минеральных кислот, диоксида углерода и органических кислот.
RU93058298/25A 1991-04-12 1992-01-16 Удаление азота из азотных соединений в водной фазе RU2104951C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US685259 1991-04-12
US07/685,259 US5221486A (en) 1991-04-12 1991-04-12 Aqueous phase removal of nitrogen from nitrogen compounds
PCT/US1992/000373 WO1992018426A1 (en) 1991-04-12 1992-01-16 Aqueous phase removal of nitrogen from nitrogen compounds

Publications (2)

Publication Number Publication Date
RU93058298A RU93058298A (ru) 1996-10-27
RU2104951C1 true RU2104951C1 (ru) 1998-02-20

Family

ID=24751415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93058298/25A RU2104951C1 (ru) 1991-04-12 1992-01-16 Удаление азота из азотных соединений в водной фазе

Country Status (14)

Country Link
US (1) US5221486A (ru)
EP (1) EP0580595B1 (ru)
JP (1) JPH06506391A (ru)
KR (1) KR100196084B1 (ru)
AT (1) ATE156459T1 (ru)
AU (1) AU658613B2 (ru)
BR (1) BR9205866A (ru)
CA (1) CA2108118C (ru)
DE (1) DE69221477T2 (ru)
HU (1) HUT71429A (ru)
RO (1) RO114320B1 (ru)
RU (1) RU2104951C1 (ru)
UA (1) UA26266C2 (ru)
WO (1) WO1992018426A1 (ru)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696151B2 (ja) * 1985-05-08 1994-11-30 大阪瓦斯株式会社 高濃度硝酸アンモニウム含有廃水の処理方法
AU2436192A (en) * 1991-08-09 1993-03-02 Board Of Regents, The University Of Texas System High temperature wet oxidation using sintered separators
US5770174A (en) * 1992-04-16 1998-06-23 Rpc Waste Management Services, Inc. Method for controlling reaction temperature
US5582715A (en) * 1992-04-16 1996-12-10 Rpc Waste Management Services, Inc. Supercritical oxidation apparatus for treating water with side injection ports
US5370528A (en) * 1992-08-03 1994-12-06 Martin Marietta Energy Systems, Inc. Submergible torch for treating waste solutions and method thereof
DE4239487A1 (de) * 1992-11-25 1994-05-26 Basf Ag Verfahren zum Abbau von Ammoniumionen und organischem Kohlenstoff in Abwässern
US5358646A (en) * 1993-01-11 1994-10-25 Board Of Regents, The University Of Texas System Method and apparatus for multiple-stage and recycle wet oxidation
US5433868A (en) * 1993-09-09 1995-07-18 Battelle Memorial Institute Sewage treatment method
US5591415A (en) * 1994-01-27 1997-01-07 Rpc Waste Management Services, Inc. Reactor for supercritical water oxidation of waste
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
US5755974A (en) 1994-08-01 1998-05-26 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with a salt
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method
US5620606A (en) 1994-08-01 1997-04-15 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with particles
WO1996008447A1 (de) * 1994-09-15 1996-03-21 Dynamit Nobel Aktiengesellschaft Nitratrückgewinnungsanlage
FR2727634A1 (fr) * 1994-12-06 1996-06-07 Electrolyse L Procede en milieu reducteur de transformation chimique de structures chimiques complexes dans un fluide supercritique
US5785868A (en) * 1995-09-11 1998-07-28 Board Of Regents, Univ. Of Texas System Method for selective separation of products at hydrothermal conditions
US5641413A (en) * 1995-10-27 1997-06-24 Zimpro Environmental, Inc. Removal of nitrogen from wastewaters
US6017460A (en) 1996-06-07 2000-01-25 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
US5888389A (en) * 1997-04-24 1999-03-30 Hydroprocessing, L.L.C. Apparatus for oxidizing undigested wastewater sludges
US6294097B1 (en) * 1997-06-18 2001-09-25 Anan Kasei Co., Ltd. Method for treating waste water containing nitrate ions
US6121179A (en) * 1998-01-08 2000-09-19 Chematur Engineering Ab Supercritical treatment of adsorbent materials
US6171509B1 (en) 1998-06-12 2001-01-09 Chematur Engineering Ab Method and apparatus for treating salt streams
US6414143B1 (en) 1999-02-24 2002-07-02 Alliant Techsystems Inc. Extraction and recovery of nitramines from propellants, explosives, and pyrotechnics
US6342163B1 (en) 1999-11-12 2002-01-29 United States Filter Corporation Apparatus and method for sanitizing and cleaning a filter system
US6416601B1 (en) 2000-03-10 2002-07-09 Alliant Techsystems Inc. Method of recovery for nitramines from aluminized energetic materials
US6610156B2 (en) * 2000-03-10 2003-08-26 Alliant Techsystems Inc. Method for recovery of nitramines from aluminized energetic materials
US6332986B1 (en) 2000-07-10 2001-12-25 Air Products And Chemicals, Inc. Treatment of water containing organic wastes with ammonium nitrate
US6391203B1 (en) * 2000-11-22 2002-05-21 Alexander G. Fassbender Enhanced biogas production from nitrogen bearing feed stocks
US6379562B1 (en) 2001-03-21 2002-04-30 Atr Products And Chemicals, Inc. Treatment of water containing organic wastes with aromatic amine nitrate salts
EP1243562A3 (en) * 2001-03-21 2003-10-22 Air Products And Chemicals, Inc. Treatment of water containing organic wastes with aromatic amine nitrate salts
JP4645157B2 (ja) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー アンモニア含有液の処理方法及び装置
SE529006C2 (sv) * 2004-11-15 2007-04-03 Chematur Eng Ab Förfarande och system för överkritisk vattenoxidation av en ström som innehåller oxiderbart material
SE528840C2 (sv) * 2004-11-15 2007-02-27 Chematur Eng Ab Reaktor och förfarande för överkritisk vattenoxidation
US20080053909A1 (en) * 2006-09-06 2008-03-06 Fassbender Alexander G Ammonia recovery process
US20080053913A1 (en) * 2006-09-06 2008-03-06 Fassbender Alexander G Nutrient recovery process
US20080156726A1 (en) * 2006-09-06 2008-07-03 Fassbender Alexander G Integrating recycle stream ammonia treatment with biological nutrient removal
DE102007004164A1 (de) * 2007-01-22 2008-07-24 Lanxess Deutschland Gmbh Verfahren zur Eliminierung von stickstoffhaltigen organischen Verbindungen aus salzhaltigem Wasser
CA2804047C (en) 2010-07-01 2018-07-31 Alexander Fassbender Wastewater treatment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818680A1 (de) * 1978-04-27 1979-10-31 Bayer Ag Verfahren zur aufarbeitung von nitro-hydroxy-aromaten enthaltenden abwaessern
DE2930442A1 (de) * 1978-07-29 1980-02-07 Furukawa Electric Co Ltd Abwasserbehandlungsverfahren
DE2852475C2 (de) * 1978-12-05 1980-05-22 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zur automatisch steuerbaren Entgiftung von Nitritionen enthaltenden Abwässern
JPS5929317B2 (ja) * 1979-05-16 1984-07-19 大阪瓦斯株式会社 廃水処理方法
DE3048002C2 (de) * 1980-12-19 1985-09-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Entfernung von Ammoniumnitrat aus wäßrigen Lösungen
DE3685674T2 (de) * 1985-03-28 1993-01-28 Osaka Gas Co Ltd Verfahren fuer die behandlung von ammoniumnitrat-haltigem abwasser.
US4680169A (en) * 1985-12-30 1987-07-14 Allied Corporation Removal of ammonium ion from acidic liquors
US4861497A (en) * 1988-03-18 1989-08-29 Welch James F Method for the processing of organic compounds
DE3813184A1 (de) * 1988-04-20 1989-11-02 Dynamit Nobel Ag Verfahren zur zersetzung von in abwaessern geloesten explosionsfaehigen salpetersaeureestern
DE3830850A1 (de) * 1988-09-10 1990-03-22 Gutec Gmbh Verfahren zur entfernung des nitrit- und/oder nitratgehaltes in wasser
IT1232670B (it) * 1989-09-15 1992-03-02 Snam Progetti Procedimento per la purificazione delle acque reflue prodotte dagli impianti di produzione dell'urea.
DE4016715A1 (de) * 1990-05-24 1991-11-28 Bayer Ag Verfahren zur reinigung von ammoniumsulfat-loesungen
US5082573A (en) * 1990-07-24 1992-01-21 Aquarium Pharmaceuticals, Inc. Method for detoxifying ammonia and chloramine in aquatic environments
US5118447A (en) * 1991-04-12 1992-06-02 Battelle Memorial Institute Thermochemical nitrate destruction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Nalco Water Handbook, 1979. 2. I.R.Hiemuch, A.R.Wilhelmi Wet Air Oxidation - A Treatment Means for Ageous Waste Streams. December, 1985, Iournal of Hazardous Materials. *

Also Published As

Publication number Publication date
BR9205866A (pt) 1994-08-02
UA26266C2 (uk) 1999-07-19
KR100196084B1 (ko) 1999-06-15
EP0580595A1 (en) 1994-02-02
AU1328392A (en) 1992-11-17
JPH06506391A (ja) 1994-07-21
WO1992018426A1 (en) 1992-10-29
HUT71429A (en) 1995-11-28
HU9302864D0 (en) 1994-03-28
RO114320B1 (ro) 1999-03-30
CA2108118C (en) 2001-09-18
EP0580595B1 (en) 1997-08-06
US5221486A (en) 1993-06-22
KR940700288A (en) 1994-02-21
ATE156459T1 (de) 1997-08-15
AU658613B2 (en) 1995-04-27
CA2108118A1 (en) 1992-10-13
DE69221477D1 (de) 1997-09-11
DE69221477T2 (de) 1998-03-19

Similar Documents

Publication Publication Date Title
RU2104951C1 (ru) Удаление азота из азотных соединений в водной фазе
EP1132347B2 (en) Integrated effluent treatment process for nitroaromatic manufacture
US5118447A (en) Thermochemical nitrate destruction
Lu et al. Mercury removal from coal combustion by Fenton reactions–Part A: Bench-scale tests
US4000068A (en) Polluted water purification
JPH0283081A (ja) 揮発性の化学的に酸化可能な汚染物質及び非揮発性汚染物質を含有する廃水の処理法
RU2537018C2 (ru) Способ переработки сточных вод
US4188292A (en) Inexpensive purification of urea waste streams
Mhlongo et al. Nitrosamines: A review on their prevalence as emerging pollutants and potential remediation options
US4415461A (en) Process for treating residual waters containing aromatic amines
US5837148A (en) Nitrate recovery plant
Jorgensen Recovery of ammonia from industrial waste water
JPWO2004020347A1 (ja) 高濃度硝酸性窒素含有排水の処理方法
RU2107040C1 (ru) Способ очистки сточных вод от аммониевых ионов и органического углерода
JP3401844B2 (ja) アンモニア含有水の処理方法
US5607653A (en) Process and apparatus for oxidizing and neutralizing caustic waste to liquid fertilizer
US20060163171A1 (en) Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
WO2022080399A1 (ja) 廃水処理方法
RU2169403C1 (ru) Способ переработки аммиаксодержащих жидких радиоактивных отходов
Bhindi et al. Method based on Chelex-100 ion-exchange resin for the removal of chlorine interference in the determination of chlorite ion
WO2023228169A1 (en) Selective treatment of nitrate for brine regeneration
Seiler Wet oxidation as a complementary variant to conventional processes for wastewater and sewage sludge disposal
SU1756274A1 (ru) Способ извлечени талли из кислых растворов
MOMONT et al. Wet Air Oxidation of Phenolic Compounds
Buchi et al. Advances in Water Treatment of Effluents fromMononitrobenzene (MNB) Production Facilities

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040117