RU2099808C1 - Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты) - Google Patents

Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты) Download PDF

Info

Publication number
RU2099808C1
RU2099808C1 RU9696106224A RU96106224A RU2099808C1 RU 2099808 C1 RU2099808 C1 RU 2099808C1 RU 9696106224 A RU9696106224 A RU 9696106224A RU 96106224 A RU96106224 A RU 96106224A RU 2099808 C1 RU2099808 C1 RU 2099808C1
Authority
RU
Russia
Prior art keywords
substrate
source
heat
cone
inductor
Prior art date
Application number
RU9696106224A
Other languages
English (en)
Other versions
RU96106224A (ru
Inventor
Евгений Инвиевич Гиваргизов
Original Assignee
Евгений Инвиевич Гиваргизов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU9696106224A priority Critical patent/RU2099808C1/ru
Application filed by Евгений Инвиевич Гиваргизов filed Critical Евгений Инвиевич Гиваргизов
Priority to EP97916682A priority patent/EP0896643B1/en
Priority to AT97916682T priority patent/ATE312960T1/de
Priority to DE69734876T priority patent/DE69734876T2/de
Priority to US09/155,815 priority patent/US6306734B1/en
Priority to KR1019980707847A priority patent/KR20000005176A/ko
Priority to JP9535176A priority patent/JP2000507541A/ja
Priority to PCT/RU1997/000078 priority patent/WO1997037064A1/en
Priority to CN97194954A priority patent/CN1124370C/zh
Application granted granted Critical
Publication of RU2099808C1 publication Critical patent/RU2099808C1/ru
Publication of RU96106224A publication Critical patent/RU96106224A/ru
Priority to US09/569,147 priority patent/US6451113B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/102Apparatus for forming a platelet shape or a small diameter, elongate, generally cylindrical shape [e.g., whisker, fiber, needle, filament]

Abstract

Использование: в электронном материаловедении, и микроэлектронике, в частности, вакуумной для выращивания систем нитевидных кристаллов для автоэмиссионных катодов. Сущность изобретения: способ относится к категории кристаллизации веществ из паровой фазы и состоит в том, что вещество для кристаллизации нитевидных кристаллов переносится от твердого тела к подложке. Источник материала и монокристаллическая, специальным образом ориентированная подложка имеют плоские поверхности, причем эти поверхности обращены друг к другу, параллельны и находятся на близком расстоянии друг от друга. Между указанными поверхностями создается температурный градиент и обеспечивается векторно-однородное температурное поле. Перенос вещества обеспечивается химической реакцией или посредством процесса испарения и конденсации. Локальный рост кристаллов обеспечивается использованием агента-растворителя, который наносится на подложку в виде частиц путем испарения через маску-трафарет или посредством фотолитографического процесса, причем в последнем случае предусматривается процедура, исключающая контакт растворителя с границей раздела подложка-защитная маска, используемая в фотолитографии. Устройство, обеспечивающее необходимое температурное поле, включает, например, высокочастотный источник нагрева и специальное конусно-цилиндрическое нагреваемое тело. Другой вариант устройства предполагает односторонний нагрев источника или подложки, например, лазерами или лампами. Предусматривается комбинация всех видов нагрева, упомянутых выше. 3 с. и 23 з.п. ф - лы., 6 ил.

Description

Настоящее изобретение относится к электронному материаловедению и к микроэлектронике, в том числе к вакуумной, в частности, к изготовлению и производству устройств на основе автоэлектронной эмиссии, таким как матричные автокатоды, автоэмиссионные дисплеи, изделия СВЧ электроники, электронные пушки разного назначения и др.
Предшествующий уровень техники.
Автоэлектронную эмиссию обычно осуществляют с острийных элементов, имеющих радиусы закруглений на уровне микрометров и манометров. Для их изготовления существует несколько способов.
Один из них заключается в том, что сначала создают, путем выращивания, ориентированные, взаимно параллельные нитевидные кристаллы на подложке, а затем, путем различных обработок, из них изготовляют острия.
Наиболее подходящим для этой цели является способ выращивания кристаллов из паровой фазы, в том числе посредством химического переноса вещества. Известен способ кристаллизации вещества в малом зазоре [1] Однако, этот способ неэффективен для выращивания ориентированных систем нитевидных кристаллов, поскольку не обеспечивает их зарождение и рост в определенных точках подложки.
Известен способ выращивания ориентированных систем нитевидных кристаллов на монокристаллической подложке, ориентированной по наиболее упакованной для данного материала кристаллографической грани, путем осаждения этого материала из паровой фазы при нагреве, через частицы растворителя, нанесенные на подложку в определенном порядке [2] При этом реализуется механизм роста пар-жидкость-кристалл, предложенный тем же автором [3] Однако описанные и запатентованные приемы и аппаратура для реализации такого способа страдают тем недостатком, что растущие нитевидные кристаллы часто ветвятся, изменяют направления своего роста и т.д.
В рамках указанного способа выращивания нитевидных кристаллов важное значение имеет операция создания локализованных (например, имеющих микронные размеры) частиц растворителя. Для выращивания нитевидных кристаллов, например, кремния, растворителями служат различные металлы, такие как золото, медь, никель и др.
Один из приемов создания локализованных частиц состоит в напылении металла через трафаретную маску. Однако, такой прием непригоден для локализации частиц на больших участках подложек (например, см2 и более), поскольку в таком случае не удается обеспечить плотный, равномерный прижим трафарета к подложке на всей площади, из-за чего частицы металла оказываются размытыми, имеют разные размеры и т.д.
Более подходящим для этой цели является фотолитографический способ. Этот способ, однако, дает плохо воспроизводимые результаты из-за того, что на стадии подготовки подложки к процессу выращивания нитевидных кристаллов металл (например, золото) контактирует с фоторезистом, вызывая неконтролируемый, неориентированный рост нитевидных кристаллов.
Известен иной способ локализации растворителя с использованием фотолитографического процесса. Здесь золото наносят в отверстия в окисной маске. Однако этот способ нанесения частиц растворителя страдает тем недостатком, что образующийся в отверстиях окисла жидкий сплав (в данном случае сплав кремния с золотом) растекается при высокой температуре кристаллизации вдоль границы окисла с подложкой, "подрывает" его и, таким образом, упорядоченный рост нитевидных кристаллов не достигается.
Известно устройство для выращивания ориентированных систем нитевидных кристаллов, содержащее трубчатый реактор с протекающими через него газовыми смесями, выделяющими кристаллизуемый материал, подложку, осесимметричный держатель подложки и источник нагрева. Однако это устройство имеет фигурную форму с выемками в нагревателе для размещения подложек, что не позволяет обеспечить упорядоченный, однородный, совершенный рост нитевидных кристаллов на большой площади вследствие флуктуаций газовых потоков, неоднородных температурных градиентов и др.
Задачами настоящего изобретения являются:
(1). Способ управляемого выращивания нитевидных кристаллов на подложке, который обеспечивает создание регулярных систем хорошо ориентированных нитевидных кристаллов на большой площади. Этот способ должен также содержать приемы нанесения на подложку системы локализованных частиц растворителя.
(2). Устройство для реализации способа управляемого выращивания систем нитевидных кристаллов на подложке, которое обеспечивает приготовление таких систем, однородных на большой площади.
Сущность изобретения.
Эти задачи достигаются в предлагаемом способе тем, что выращивание ориентированных систем нитевидных кристаллов, преимущественно для автоэлектронных эмиттеров, на монокристаллической подножке, ориентированной по наиболее плотно упакованной для данного материала кристаллографической грани, путем осаждения этого материала из паровой фазы при нагреве, через частицы растворителя, нанесенные на подножку в определенном порядке, проводят таким образом, что параллельно подложке размещают источник материала для роста нитевидных кристаллов в виде твердого тела с плоской поверхностью, обращенной к подложке, того же состава, что и выращиваемые кристаллы, так что между подложкой и источником создается векторно-однородное температурное поле, градиент которого перпендикулярен подложке и источнику. Частицы растворителя наносят на подложку либо напылением через трафаретную маску, либо с участием фотолитографического процесса.
Температура источника материала может быть выше, чем температура подложки. В таком случае в пространстве между источником и подложкой создают вакуум или вводят инертный газ, и материал переносят от источника к подложке посредством испарения и конденсации. Иной способ переноса вещества в том же случае обеспечивается введением в пространство между источником материала и подложкой вещества, которое вступает с ними в химическую реакцию.
Температура источника материала может быть ниже, чем температура подложки. В таком случае в пространство между источником и подложкой вводят вещество, которое переносит материал от источника к подложке посредством химической реакции.
При нанесении частиц растворителя посредством фотолитографического процесса, после создания отверстий в защитной маске, напротив них в подложке создают углубления, диаметр которых превосходит диаметр отверстий в этой маске, их глубина составляет не менее 0,1 от диаметра указанных отверстий, растворитель наносят на всю подложку, а затем удаляют со всех участков, кроме дна углублений.
Растворитель, нанесенный в фотолитографическом процессе, удаляют с поверхности защитной маски либо механически (стиранием), либо химически (путем растворения маски вместе с растворителем).
Источником материала и подложкой может быть кремний, причем в качестве подложки используется пластинка кремния с кристаллографической ориентацией (111). В качестве растворителя служит, например, золото. Выращивание нитевидных кристаллов проводят при температурах выше 800oC. В качестве вещества, переносящего материал источника, используют смесь водорода и тетрахлорида кремния.
Задача данного изобретения решается также в устройстве для выращивания ориентированных систем нитевидных кристаллов, преимущественно для автоэлектронных эмиттеров, содержащее трубчатый реактор с протекающими через него газовыми смесями, выделяющими кристаллизуемый материал, подложку, осесимметричный держатель подложки. И источник нагрева, причем в трубчатом реакторе напротив подложки расположен источник материала, который воспринимает тепло от источника нагрева, а подложка нагревается от источника материала.
В другом варианте устройства для выращивания ориентированных систем нитевидных кристаллов в трубчатом реакторе напротив подложки расположен источник материала, подложка воспринимает тепло от источника нагрева, а источник материала нагревается от подложки.
Источник нагрева может быть выполнен в виде высокочастотного индуктора. Этот индуктор может иметь цилиндрическую или коническую форму, причем источник материала размещен на держателе, выполненном в форме усеченного кругового конуса с основаниями, перпендикулярными его оси, причем большее основание конуса имеет цилиндрическое продолжение и на этом основании лежит источник материала, а меньшее основание конического держателя источника материала имеет выступ. Противолежащая источнику материала подложка размещена на держателе, который выполнен в форме радиатора тепла с плоской поверхностью, прилежащей к подложке, и с теплоотводящими выступами с противоположной стороны, расположенными по краям указанного радиатора тепла.
В другом варианте аналогичного устройства держатель подложки выполнен в форме усеченного кругового конуса с основаниями, перпендикулярными его оси, причем большее основание конуса имеет цилиндрическое продолжение и на этом основании лежит подложка, меньшее основание держателя подложки имеет выступ. Противолежащий подложке источник материала размещен на держателе, который выполнен в форме радиатора тепла с плоской поверхностью, прилежащей к источнику материала, и с теплоотводящими выступами с противоположной стороны, расположенными по краям указанного радиатора тепла.
В указанных выше устройствах конус располагается концентрично внутри индуктора, причем часть конуса находится вне индуктора большим основанием наружу. При этом расстояние от большего основания конуса до наружной плоскости крайнего витка индуктора составляет от 0,2 до 0,8 наружного диаметра индуктора.
Указанный конус имеет угол от 15o до 120o, а выступ имеет форму цилиндра с отношением диаметра и высоты к диаметру большего основания конуса в пределах от 0,1 до 0,5.
В ином варианте устройства для выращивания ориентированных систем нитевидных кристаллов источник нагрева находится внутри осесимметричного полого держателя источника материала с наружной поверхностью в форме призмы или усеченной пирамиды, от грани которой получает тепло источник материала, от него подложка, причем к подложке прилежит плоскостью выравниватель температуры.
Еще в одном варианте устройства источник нагрева находится внутри осесимметричного полого держателя подложек с наружной поверхностью в форме призмы или усеченной пирамиды, от грани которой получает тепло подложка, а от нее источник материала, причем к источнику материала прилежит плоскостью выравниватель температуры.
В обоих этих вариантах устройств с нагревом толщина стенок держателя подложек или источника материала составляет от 0,05 до 0,2 наибольшего диаметра (поперечника) призмы или усеченной пирамиды.
В других вариантах устройства для выращивания систем нитевидных кристаллов источник нагрева выполнен в виде лазеров или ламп, или их комбинаций, в том числе с высокочастотными индукторами.
Фиг. 1. Ориентированная система нитевидных кристаллов кремния, выращенная по механизму пар-жидкость-кристалл. Снимок получен в сканирующем электронном микроскопе.
Фиг. 2. Конфигурация нагреваемого тела и высокочастотного индуктора в варианте переноса вещества от более нагретого тела к менее нагретому, где
1 катушка высокочастотного индуктора (источник нагрева);
2 нагреваемое тело (держатель источника материала);
3 источник материала;
4 подложка;
5 радиатор (держатель подложки);
6 силовые линии электромагнитного высокочастотного поля.
d1 расстояние от большего основания конуса до наружной плоскости наружного витка индуктора;
d2 диаметр выступа на нагревателе;
h1 высота выступа на нагревателе;
h2 высота цилиндрического продолжения конуса;
α угол конуса.
Фиг. 3. Конфигурация нагреваемого тела и высокочастотного индуктора в варианте переноса от менее нагретого тела к более нагретому. Все обозначения
как на фиг. 2 (здесь нагреваемое тело держатель подложки; радиатор - держатель источника материала).
Фиг. 4. Конфигурация внутреннего цилиндрического или конического индукторов в полом призматическом или пирамидальном нагревателе в варианте переноса от более нагретого тела к менее нагретому. Все обозначения как на фиг. 2; 5 выравниватель.
Фиг. 5. Аналогичная конфигурация в варианте переноса от менее нагретого тела к более нагретому. Все обозначения как на фиг. 3; 5 выравниватель.
Фиг. 6. Схема последовательных операций по подготовке подложки к выращиванию нитевидных кристаллов, и выращивание нитевидных кристаллов.
Лучший вариант осуществления изобретения.
На фиг. 1 приведена ориентированная система нитевидных кристаллов кремния, выращенная на подложке кремния (111) посредством патентуемого здесь способа при температуре подложки 950oC с помощью реакции
SiCl4 + Si 2 SiCl2 (1),
в которой кремний взаимодействует с собственным тетрахлоридом.
В качестве металла-растворителя здесь используется золото. На вершинах нитевидных кристаллов видны глобулы это закристаллизовавшаяся смесь кристаллитов кремния и золота. Достоинство золота в данном процессе состоит в том, что оно химически малоактивно, а потому не образует стойких соединений с кристаллизуемым веществом. Еще одно преимущество этого растворителя состоит в том, что при типичных температурах кристаллизации кремния с участием его тетрахлорида растворимость кремния в золоте довольно высока, около 50% поэтому диапазон допустимых кристаллизационных пересыщений широк, и процесс упорядоченной, ориентированной кристаллизации слабо зависит от колебаний параметров этого процесса. На подложке-пластине кремния с кристаллографической ориентацией (111) создают регулярную систему частиц золота таких размеров, что после сплавления с кремнием при температуре около 1000oC на подложке образуются частично погруженные в нее капли раствора-расплава Si(Au) размерами, например, 2-5 мкм.
Процесс кристаллизации проводится в потоке очищенного водорода при атмосферном давлении. После некоторого прогрева, когда в системе устанавливается термическое равновесие, к потоку водорода добавляют пары SiCl4 в концентрации несколько процентов. В стационарных условиях равновесие приведенной выше реакции (1) устанавливается при относительно высокой температуре источника, затем образовавшиеся реагенты переносятся в малом зазоре посредством газовой диффузии к подложке, имеющей более низкую температуру. Здесь устанавливается новое равновесие этой реакции, и образующийся избыток кремния выделяется на поверхности подложки, а другой продукт этой реакции, SiCl4, возвращается к источнику материала, и процесс повторяется.
Для данного процесса роста нитевидных кристаллов существенно, что реакция с выделением кремния протекает преимущественно на поверхности жидкой фазы в силу ее исключительно высокой адсорбционной способности по отношению к химическим реагентам. Таким образом, капля раствора кремния в расплаве золота Si(Au) оказывается пересыщенной по кремнию, его избыток диффундирует вглубь капли и осаждается эпитаксиально на границе с кристаллической решеткой. По мере роста кристалла капля отодвигается от подложки, и под нею образуется столбчатый (нитевидный) кристалл, направление которого перпендикулярно наиболее плотноупакованной грани кремния (т.е. имеет ориентацию [111] ), причем диаметр нитевидного кристалла определяется размером капли, а его высота длительностью процесса и скоростью роста.
Существенно, что направление роста нитевидных кристаллов совпадает с направлением питания. Тем самым обеспечивается однородность условий роста для разных нитевидных кристаллов на большой поверхности подложки.
В рассматриваемом способе источник материала и подложка имеют, как правило, сантиметровые размеры, в то время как расстояния между ними - миллиметровые. Соответственно, краевые условия практически не сказываются на процессе кристаллизации. Малый зазор обеспечивает строгую перпендикулярность градиента температуры плоскостям источника и подложки (в данном случае особенно важна перпендикулярность температурного градиента подложке, вблизи которой и происходит собственно рост нитевидных кристаллов).
При благоприятных однородных, стабильных условиях кристаллизации все выращенные нитевидные кристаллы ориентированы одинаковым образом, т.е. взаимно параллельны. Такие условия можно обеспечить, когда температурное поле векторно-однородно т. е. Когда изотермы параллельны подложке, иными словами когда они перпендикулярны направлению роста нитевидных кристаллов, что и обеспечивается предлагаемым способом и устройством.
В данном изобретении такие условия кристаллизации лучше всего обеспечиваются специальной конфигурацией устройства, в котором оптимальное температурное поле, обеспечивающее однородное питание растущего кристалла, создается за счет одностороннего нагрева источника материала (тогда подложка нагревается от него, например, излучением или теплопроводностью), или подложки (тогда источник материала нагревается от нее).
В связи с этим одно из важных достоинств предлагаемого устройства состоит в том, что возможные колебания мощности нагрева, способные повлиять на процесс роста нитевидных кристаллов через изменения температур источника или подложки, в значительной степени нивелируются тем обстоятельством, что температуры источника материала и подложки изменяются синхронно с этими колебаниями, а это автоматически стабилизирует условия кристаллизации.
На фиг. 1 показана ориентированная система нитевидных кристаллов кремния, выращенных по способу и посредством устройства, описываемым в настоящем изобретении.
На фиг. 2 показано устройство для выращивания систем нитевидных кристаллов с использованием высокочастотного индукционного нагрева. Этот вариант нагрева является одним из наиболее подходящих для рассматриваемого способа кристаллизации. В таком случае используют осесимметричную индукционную катушку (индуктор) 1, а нагреваемое тело 2 (оно же держатель источника материала 3) выполняют также в виде осесимметричной комбинации конической (в основном) и цилиндрической частей. В таком устройстве силовые линии электромагнитного поля 6 также осесимметричны. На подложке 4 размещают радиатор 5 для выравнивания ее температуры.
Для обеспечения однородного нагрева источника 3 (а от него подложки 4 - пластинки кремния, ориентированной по кристаллографической плоскости (111)) этот ансамбль устанавливают в поле высокочастотного индуктора специальным образом несколько выдвинув его наружу, на расстояние d1. При этом частично теряется мощность источника нагрева, зато обеспечивается однородность нагрева большей плоскости тела 2, на котором располагается источник материала 3.
Дополнительным фактором выравнивания температуры на указанной большей плоскости служит выступ нагреваемого тела с размерами d2 (диаметр) и h1 (высота), а также оптимальный угол конуса (как правило, около 60o). При диаметре большей плоскости, например, 40 мм, диаметре d2 около 10 мм, высоте h1 около 20 мм и расстоянии d1 от большего основания конуса до наружной плоскости наружного витка индуктора около 20 мм источник 3 нагрет достаточно однородно, например, до 1050oC. От источника, также однородно, до температуры около 950oC, нагрета подложка 4. Эта однородность обеспечивается, при указанных выше размерах, формах и положении нагреваемого тела, благодаря т. н. "скин-эффекту" высокочастотного нагрева (протеканию индукционных токов преимущественно по поверхности, в данном случае в основном конической, этого тела).
В варианте химического переноса вещества от более нагретого тела к менее нагретому, при зазоре между нижней плоскостью подложки 4 и верхней плоскостью источника материала 3 от 0,3 до 0,7 мм, при концентрации SiCl4 в водороде около 3% за период времени 1 час на подложке кремния вырастают нитевидные кристаллы кремния высотой 50-100 мкм. 5 радиатор (изготовлен, например, из графита), предназначенный для выравнивания температуры подложки, 6 силовые линии электромагнитного поля.
Этот же вариант устройства пригоден для выращивания нитевидных кристаллов без использования химических реакций, а при физическом переносе вещества, посредством процессов испарение-конденсация. В таком случае в кристаллизационной камере создают вакуум или атмосферу инертного газа.
Иной вариант устройства для выращивания нитевидных кристаллов посредством индукционного нагрева с коническим нагревателем приведен на фиг. 3. Он предназначен для использования в процессах с экзотермическими реакциями, когда вещество переносится от менее нагретого тела к более нагретому. Примерами могут служить иодидные реакции диспропорционирования с осаждением тугоплавких металлов таких как титан, цирконий и др, или перенос вольфрама в оксигалогенных средах. Здесь также используют осесимметричные нагревательные ансамбли, и температурные градиенты создают выдвижением этих ансамблей из зоны индуктора.
Еще один вариант устройства, обеспечивающего формирование векторно-однородного температурного поля при использовании индукционного нагрева, представлен на фиг. 4 и 5. Здесь используется введение индуктора внутрь полого нагревателя, изготовленного, например, из графита. При достаточной толщине стенок нагревателя температура внешних плоскостей нагревателя держателя подложек, имеющего, например, призматическую форму или форму усеченной пирамиды, может быть сделана достаточно однородной. Здесь прилежащий к источнику материала или к подложке радиатор также способствует выравниванию их температуры.
Еще один вариант устройства для создания векторно- однородного температурного поля состоит в том, что односторонний нагрев тела, служащего держателем для подложек и/или для источника материала, обеспечивается лучом лазера, например, на основе углекислого газа. Такой лазер обладает высоким коэффициентом преобразования энергии.
Еще один вариант устройства для однородного, одностороннего нагрева подложек и/или источника материала предполагает использование ламп.
Наконец, для получения однородных на большой площади ориентированных систем нитевидных кристаллов важно обеспечить воспроизводимое приготовление подложек с системами частиц растворителя.
Один из вариантов способа для приготовления таких подложек изображен на фиг. 6.
Типичная процедура заключается в том, что с этой целью используют фотолитографический процесс. На подложке монокристаллического кремния с ориентацией (111) создают защитную маску, например, из окисла кремния толщиной около 0,5 мкм (фиг. 6а). На поверхность такой подложки наносят фоторезист и в указанном окисном слое посредством фотолитографии формируют круглые отверстия микронных размеров, например, диаметром 5-7 мкм (фиг. 6б, в). С помощью специального травителя кремния, слабо действующего на указанный окисел, напротив отверстий в защитной маске создают углубления в кремниевой подложке, например, глубиной 2 мкм. При этом углубления в кремнии расширяются симметрично во все стороны примерно на 2 мкм. Благодаря этому кромки защитной маски предотвращают попадание напыляемого металла-растворителя на границу раздела кремний-окисел, когда сквозь отверстия в маске проводят напыление этого металла (см. фиг. 6г). Благодаря такой форме образовавшихся микроструктур в дальнейшем, при контактном плавлении растворителя и при выращивании нитевидных кристаллов, удается избежать контакта жидкого раствора-расплава с защитной маской (фиг. 6д) и, таким образом, обеспечить формирование однородных систем нитевидных кристаллов (фиг. 6е).

Claims (26)

1. Способ выращивания ориентированных систем нитевидных кристаллов преимущественно для автоэлектронных эмиттеров на монокристаллической подложке, ориентированной по наиболее плотно упакованной для данного материала кристаллографической грани, путем осаждения этого материала из паровой фазы при нагреве через частицы растворителя, нанесенные на подложку в определенном порядке, отличающийся тем, что параллельно подложке размещают источник материала для роста нитевидных кристаллов в виде твердого тела с плоской поверхностью, обращенной к подложке, того же состава, что и выращиваемые кристаллы, так что между подложкой и источником создается векторно-однородное температурное поле, градиент которого перпендикулярен подложке и источнику, причем частицы растворителя наносят на подложку напылением через трафаретную маску или с участием фотолитографического процесса.
2. Способ по п.1, отличающийся тем, что температура источника материала выше, чем температура подложки.
3. Способ по п.2, отличающийся тем, что в пространстве между источником материала и подложкой создают вакуум или вводят инертный газ, и материал переносят от источника к подложке посредством испарения и конденсации.
4. Способ по п.1, отличающийся тем, что температура источника материала ниже, чем температура подложки.
5. Способ по любому из п.2 или 4, отличающийся тем, что в пространство между источником материала и подложкой вводят вещество, которое переносит материал от источника к подложке посредством химической реакции.
6. Способ по п.1, отличающийся тем, что при нанесении частиц растворителя с участием фотолитографического процесса после создания отверстий в защитной маске напротив них в подложке создают углубления, диаметр которых превосходит диаметр отверстий в этой маске, их глубина составляет не менее 0,1 от диаметра указанных отверстий, растворитель наносят на всю подложку, а затем удаляют со всех участков, кроме дна углублений.
7. Способ по п.6, отличающийся тем, что растворитель удаляют с поверхности защитной маски путем механического воздействия.
8. Способ по п.6, отличающийся тем, что растворитель удаляют с поверхности защитной маски химически путем ее растворения вместе с растворителем.
9. Способ по любому из пп.1 3, 5 8, отличающийся тем, что источником материала и подложкой служит кремний, причем в качестве подложки используют пластинку кремния с кристаллографической ориентацией (III).
10. Способ по п.9, отличающийся тем, что в качестве растворителя используют золото.
11. Способ по п.10, отличающийся тем, что выращивание нитевидных кристаллов проводят при температурах выше 800oС.
12. Способ по любому из пп.9 11, отличающийся тем, что в качестве вещества, переносящего материал источника, используют смесь водорода и тетрахлорида кремния.
13. Устройство для выращивания ориентированных систем нитевидных кристаллов преимущественно для автоэлектронных эмиттеров, содержащее трубчатый реактор с протекающими через него газовыми смесями, выделяющими кристаллизуемый материал, подложку, осесимметричный держатель подложки и источник нагрева, отличающееся тем, что в трубчатом реакторе напротив подложки расположен источник материала так, что он воспринимает тепло от источника нагрева, а подложка нагревается от источника материала.
14. Устройство для выращивания ориентированных систем нитевидных кристаллов преимущественно для автоэлектронных эмиттеров, содержащее трубчатый реактор с протекающими через него газовыми смесями, выделяющими кристаллизуемый материал, подложку, осесимметричный держатель подложки и источник нагрева, отличающееся тем, что в трубчатом реакторе напротив подложки расположен источник материала так, что подложка воспринимает тепло от источника нагрева, а источник материала нагревается от подложки.
15. Устройство по любому из пп.13 и 14, отличающееся тем, что источник нагрева выполнен в виде высокочастотного индуктора.
16. Устройство по любому из пп.13 и 15, отличающееся тем, что индуктор имеет цилиндрическую или коническую форму, держатель источника материала выполнен в форме усеченного кругового конуса с основаниями, перпендикулярными его оси, причем большее основание конуса имеет цилиндрическое продолжение и на этом основании лежит источник материала, меньшее основание имеет выступ, а держатель подложки выполнен в форме радиатора тепла с плоской поверхностью, прилежащей к подложке, и с теплоотводящими выступами с противоположной стороны, расположенными по краям указанного радиатора тепла.
17. Устройство по любому из пп.14 и 15, отличающееся тем, что индуктор имеет цилиндрическую или коническую форму, держатель подложки выполнен в форме усеченного кругового конуса с основаниями, перпендикулярными его оси, причем большее основание конуса имеет цилиндрическое продолжение и на этом основании лежит подложка, меньшее основание имеет выступ, а держатель источника материала выполнен в форме радиатора тепла с плоской поверхностью, прилежащей к источнику материала, и с теплоотводящими выступами с противоположной стороны, расположенными по краям указанного радиатора.
18. Устройство по любому из пп.15 17, отличающееся тем, что конус располагается концентрично внутри индуктора, причем часть конуса находится вне индуктора большим основанием наружу.
19. Устройство по п. 18, отличающееся тем, что расстояние от большего основания конуса до наружной плоскости крайнего витка индуктора составляет 0,2 0,8 наружного диаметра индуктора.
20. Устройство по любому из пп.16 19, отличающееся тем, что конус имеет угол 15 120o, а выступ имеет форму цилиндра с отношением диаметра и высоты к диаметру большего основания конуса в пределах 0,1 0,5.
21. Устройство по п.13, отличающееся тем, что источник нагрева находится внутри осесимметричного полого держателя источника материала с наружной поверхностью в форме призмы или усеченной пирамиды, от граней которой получает тепло источник материала, а к противолежащей ему подложке прилежит плоскостью выравниватель температуры.
22. Устройство по п.14, отличающееся тем, что источник нагрева находится внутри осесимметричного полого держателя подложки с наружной поверхностью в форме призмы или усеченной пирамиды, от граней которой получает тепло указанная подложка, а к противолежащему источнику материала прилежит плоскостью выравниватель температуры.
23. Устройство по любому из пп.21 и 22, отличающееся тем, что толщина стенок держателя подложек или источника материала составляет 0,05 0,2 наибольшего диаметра (поперечника) призмы или усеченной пирамиды.
24. Устройство по любому из пп.13 и 14, отличающееся тем, что источник нагрева выполнен в виде лазеров.
25. Устройство по любому из пп.13 и 14, отличающееся тем, что источник нагрева выполнен в виде ламп.
26. Устройство по любому из пп.13 15, 21, 22, 24 и 25, отличающееся тем, что в качестве источников нагрева используют одновременно высокочастотный индуктор, лазеры и лампы.
RU9696106224A 1996-04-01 1996-04-01 Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты) RU2099808C1 (ru)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU9696106224A RU2099808C1 (ru) 1996-04-01 1996-04-01 Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты)
AT97916682T ATE312960T1 (de) 1996-04-01 1997-03-24 Verfahren und vorrichtung zum züchten orientierter whiskermatritzen
DE69734876T DE69734876T2 (de) 1996-04-01 1997-03-24 Verfahren und vorrichtung zum züchten orientierter whiskermatritzen
US09/155,815 US6306734B1 (en) 1996-04-01 1997-03-24 Method and apparatus for growing oriented whisker arrays
EP97916682A EP0896643B1 (en) 1996-04-01 1997-03-24 Method and apparatus for growing oriented whisker arrays
KR1019980707847A KR20000005176A (ko) 1996-04-01 1997-03-24 방향성 위스커 어레이 형성 방법 및 장치
JP9535176A JP2000507541A (ja) 1996-04-01 1997-03-24 配向ホイスカ・アレイを成長させる方法および装置
PCT/RU1997/000078 WO1997037064A1 (en) 1996-04-01 1997-03-24 Method and apparatus for growing oriented whisker arrays
CN97194954A CN1124370C (zh) 1996-04-01 1997-03-24 生长定向晶须列阵的方法和装置
US09/569,147 US6451113B1 (en) 1996-04-01 2000-05-11 Method and apparatus for growing oriented whisker arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9696106224A RU2099808C1 (ru) 1996-04-01 1996-04-01 Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты)

Publications (2)

Publication Number Publication Date
RU2099808C1 true RU2099808C1 (ru) 1997-12-20
RU96106224A RU96106224A (ru) 1998-08-27

Family

ID=20178719

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9696106224A RU2099808C1 (ru) 1996-04-01 1996-04-01 Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты)

Country Status (9)

Country Link
US (2) US6306734B1 (ru)
EP (1) EP0896643B1 (ru)
JP (1) JP2000507541A (ru)
KR (1) KR20000005176A (ru)
CN (1) CN1124370C (ru)
AT (1) ATE312960T1 (ru)
DE (1) DE69734876T2 (ru)
RU (1) RU2099808C1 (ru)
WO (1) WO1997037064A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060597A1 (fr) * 1998-05-19 1999-11-25 Ooo 'vysokie Tekhnologii' Cathode de type film a emission froide et procede de fabrication
RU2536985C2 (ru) * 2013-01-09 2014-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ выращивания планарных нитевидных кристаллов полупроводников
RU2657094C1 (ru) * 2017-07-19 2018-06-08 Акционерное общество "Концерн "Созвездие" Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
WO1999057345A1 (fr) * 1998-04-30 1999-11-11 Asahi Kasei Kogyo Kabushiki Kaisha Element fonctionnel pour dispositif electrique, electronique ou optique, et son procede de production
US6458206B1 (en) * 1998-05-13 2002-10-01 Crystals And Technologies, Ltd. Cantilever with whisker-grown probe and method for producing thereof
WO2000074107A2 (en) * 1999-05-31 2000-12-07 Evgeny Invievich Givargizov Tip structures, devices on their basis, and methods for their preparation
JP4397491B2 (ja) * 1999-11-30 2010-01-13 財団法人国際科学振興財団 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
KR100984585B1 (ko) * 2000-08-22 2010-09-30 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 반도체 성장 방법 및 디바이스 제조 방법
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
KR20090049095A (ko) 2000-12-11 2009-05-15 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
JP4876319B2 (ja) * 2001-03-09 2012-02-15 ソニー株式会社 表示装置およびその製造方法
EP1314801A1 (de) * 2001-11-27 2003-05-28 Finpar Holding S.A. Verfahren zum Züchten fadenformiger Kristalle und Vorrichtung zur Durchführung des Verfahrens
US6605535B1 (en) * 2002-09-26 2003-08-12 Promos Technologies, Inc Method of filling trenches using vapor-liquid-solid mechanism
CN1829654B (zh) * 2003-04-04 2013-04-17 库纳诺公司 精确定位的纳米晶须和纳米晶须阵列及其制备方法
US7785922B2 (en) * 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US7199029B2 (en) * 2004-10-01 2007-04-03 Sharp Laboratories Of America, Inc. Selective deposition of ZnO nanostructures on a silicon substrate using a nickel catalyst and either patterned polysilicon or silicon surface modification
JP2008523590A (ja) 2004-12-06 2008-07-03 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ ナノスケールワイヤベースのデータ格納装置
JP2006239857A (ja) * 2005-02-25 2006-09-14 Samsung Electronics Co Ltd シリコンナノワイヤ、シリコンナノワイヤを含む半導体素子及びシリコンナノワイヤの製造方法
KR101138865B1 (ko) * 2005-03-09 2012-05-14 삼성전자주식회사 나노 와이어 및 그 제조 방법
US20100227382A1 (en) 2005-05-25 2010-09-09 President And Fellows Of Harvard College Nanoscale sensors
WO2006132659A2 (en) 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
KR100681046B1 (ko) * 2005-08-09 2007-02-08 현대자동차주식회사 차량용 커버스텝
US8846551B2 (en) 2005-12-21 2014-09-30 University Of Virginia Patent Foundation Systems and methods of laser texturing of material surfaces and their applications
JP2009522197A (ja) * 2005-12-29 2009-06-11 ナノシス・インコーポレイテッド パターン形成された基板上のナノワイヤの配向した成長のための方法
MX2008011275A (es) * 2006-03-10 2008-11-25 Stc Unm Crecimiento pulsado de nanoalambres de gan y aplicaciones en materiales y dispositivos de substrato semiconductor de nitruros del grupo iii.
GB2436398B (en) * 2006-03-23 2011-08-24 Univ Bath Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials
DE602007012248D1 (de) 2006-06-12 2011-03-10 Harvard College Nanosensoren und entsprechende technologien
US8058640B2 (en) 2006-09-11 2011-11-15 President And Fellows Of Harvard College Branched nanoscale wires
US8483820B2 (en) * 2006-10-05 2013-07-09 Bioness Inc. System and method for percutaneous delivery of electrical stimulation to a target body tissue
US8575663B2 (en) 2006-11-22 2013-11-05 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
GB0701069D0 (en) * 2007-01-19 2007-02-28 Univ Bath Nanostructure template and production of semiconductors using the template
US20100143744A1 (en) * 2007-03-09 2010-06-10 University Of Virginia Patent Foundation Systems and Methods of Laser Texturing of Material Surfaces and their Applications
KR20100044854A (ko) * 2007-07-19 2010-04-30 캘리포니아 인스티튜트 오브 테크놀로지 반도체의 정렬된 어레이의 구조
KR20100064360A (ko) * 2007-07-19 2010-06-14 캘리포니아 인스티튜트 오브 테크놀로지 수직으로 정렬된 si 와이어 어레이를 형성하기 위한 방법 및 구조
KR20100067088A (ko) * 2007-08-28 2010-06-18 캘리포니아 인스티튜트 오브 테크놀로지 수직으로 배열된 와이어 어레이의 성장을 위한 웨이퍼 재사용 방법
US8652947B2 (en) 2007-09-26 2014-02-18 Wang Nang Wang Non-polar III-V nitride semiconductor and growth method
US8158216B2 (en) 2007-10-31 2012-04-17 Metascape Llc Spinulose titanium nanoparticulate surfaces
US20090287302A1 (en) * 2008-05-16 2009-11-19 Chameleon Scientific Corporation Polymer coated spinulose metal surfaces
US20100298925A1 (en) * 2007-10-31 2010-11-25 Chameleon Scientific Corporation Spinulose metal surfaces
US8140282B2 (en) * 2008-05-23 2012-03-20 Oracle America, Inc. Determining a total length for conductive whiskers in computer systems
US9376321B2 (en) * 2009-05-29 2016-06-28 Postech Academy-Industry Foundation Method and apparatus for manufacturing a nanowire
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
WO2011038228A1 (en) 2009-09-24 2011-03-31 President And Fellows Of Harvard College Bent nanowires and related probing of species
EP2507843A2 (en) * 2009-11-30 2012-10-10 California Institute of Technology Semiconductor wire array structures, and solar cells and photodetectors based on such structures
WO2011156042A2 (en) 2010-03-23 2011-12-15 California Institute Of Technology Heterojunction wire array solar cells
WO2011136028A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
KR101838627B1 (ko) 2010-05-28 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
WO2011152190A1 (en) 2010-06-02 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
WO2011155397A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8846530B2 (en) 2010-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor region and method for manufacturing power storage device
WO2012002136A1 (en) 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
JP6035054B2 (ja) 2011-06-24 2016-11-30 株式会社半導体エネルギー研究所 蓄電装置の電極の作製方法
US10131086B2 (en) 2011-06-30 2018-11-20 University Of Virginia Patent Foundation Micro-structure and nano-structure replication methods and article of manufacture
KR20130024769A (ko) 2011-08-30 2013-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
JP6050106B2 (ja) 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
US9476129B2 (en) 2012-04-02 2016-10-25 California Institute Of Technology Solar fuels generator
US9545612B2 (en) 2012-01-13 2017-01-17 California Institute Of Technology Solar fuel generator
US10026560B2 (en) 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
WO2013126432A1 (en) 2012-02-21 2013-08-29 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
WO2013152132A1 (en) 2012-04-03 2013-10-10 The California Institute Of Technology Semiconductor structures for fuel generation
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
US9574135B2 (en) * 2013-08-22 2017-02-21 Nanoco Technologies Ltd. Gas phase enhancement of emission color quality in solid state LEDs
DE102017222279A1 (de) * 2017-12-08 2019-06-13 Siltronic Ag Verfahren zum Abscheiden einer epitaktischen Schicht auf einer Vorderseite einer Halbleiterscheibe und Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836524A (en) * 1955-12-21 1958-05-27 Gen Electric Method and apparatus for the production of single crystals
US3580731A (en) * 1967-09-26 1971-05-25 Gen Technologies Corp Method of treating the surface of a filament
US3536538A (en) 1968-03-29 1970-10-27 Bell Telephone Labor Inc Crystal growth technique
NL6805300A (ru) * 1968-04-13 1969-10-15
GB1533645A (en) 1976-11-05 1978-11-29 G Ni I P I Redkometallich Prom Method of producing mesa and threedimensional semiconductor structures with locally non-uniform composition and device for realizing same
US4900525A (en) * 1986-08-25 1990-02-13 Gte Laboratories Incorporated Chemical vapor deposition reactor for producing metal carbide or nitride whiskers
FR2658839B1 (fr) * 1990-02-23 1997-06-20 Thomson Csf Procede de croissance controlee de cristaux aciculaires et application a la realisation de microcathodes a pointes.
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
JP2697474B2 (ja) 1992-04-30 1998-01-14 松下電器産業株式会社 微細構造の製造方法
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
JP4109809B2 (ja) * 1998-11-10 2008-07-02 キヤノン株式会社 酸化チタンを含む細線の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. US, патент, 3536538, кл. 156-609, 1970. 2. FR, патент, 2658839, кл. C 30 B 29/62, H 01 J 1/30, 1991. 3. D.W.F. James and C.Leyis, Silicon whisker growth and epitaxy by wapour - liquid-solid mechanism, Brit.I.Appl.Phys, 16, 1089-1094, 1965. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060597A1 (fr) * 1998-05-19 1999-11-25 Ooo 'vysokie Tekhnologii' Cathode de type film a emission froide et procede de fabrication
US6577045B1 (en) 1998-05-19 2003-06-10 Alexandr Alexandrovich Blyablin Cold-emission film-type cathode and method for producing the same
RU2536985C2 (ru) * 2013-01-09 2014-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ выращивания планарных нитевидных кристаллов полупроводников
RU2657094C1 (ru) * 2017-07-19 2018-06-08 Акционерное общество "Концерн "Созвездие" Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Also Published As

Publication number Publication date
CN1124370C (zh) 2003-10-15
DE69734876D1 (de) 2006-01-19
US6306734B1 (en) 2001-10-23
DE69734876T2 (de) 2006-07-06
EP0896643B1 (en) 2005-12-14
CN1219985A (zh) 1999-06-16
JP2000507541A (ja) 2000-06-20
US6451113B1 (en) 2002-09-17
EP0896643A1 (en) 1999-02-17
KR20000005176A (ko) 2000-01-25
WO1997037064A1 (en) 1997-10-09
ATE312960T1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
RU2099808C1 (ru) Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты)
RU96106224A (ru) Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления
KR100625224B1 (ko) 유기 액체에 의한 고배향 정렬 카본 나노튜브의 합성 방법및 그 합성 장치
US6066205A (en) Growth of bulk single crystals of aluminum nitride from a melt
US7611651B2 (en) Method for manufacturing carbon nanotubes with uniform length
US5863601A (en) Process of producing graphite fiber
EP1803840A2 (en) Method for growing single crystal of silicon carbide
JP2001072491A (ja) 単結晶の製造方法およびその装置
JPH1179886A (ja) 結晶成長方法および装置
JP2015024937A (ja) グラファイト膜の製造方法およびグラファイト構造体
JP3941727B2 (ja) 炭化珪素単結晶の製造方法および製造装置
EP3276651A1 (en) Method for manufacturing an annular thin film of synthetic material and device for carrying out said method
US3617223A (en) Apparatus for forming monocrystalline ribbons of silicon
KR100513713B1 (ko) 전이금속박막형상 제어에 의한 탄소나노튜브의 수직 성장방법
KR100230958B1 (ko) 고방향성 다이아몬드막 cvd 장치 및 막형성 방법
KR20200053818A (ko) 탄화규소 단결정 성장장치용 지그
JP2534081Y2 (ja) 人工ダイヤモンド析出装置
TW200835808A (en) Apparatus of supplying organometallic compound
RU96102288A (ru) Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления
JPS61271822A (ja) 連続式気相成長装置
JPH02186623A (ja) サセプタ
JP2543754Y2 (ja) 人工ダイヤモンド析出装置
JP2522861Y2 (ja) 人工ダイヤモンド析出装置
RU2568217C2 (ru) Способ получения массивов наноразмерных нитевидных кристаллов кремния с управляемой поверхностной плотностью
KR20200053817A (ko) 단결정 성장용 도가니 및 이를 포함하는 탄화규소 단결정 성장장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110402