KR101138865B1 - 나노 와이어 및 그 제조 방법 - Google Patents

나노 와이어 및 그 제조 방법 Download PDF

Info

Publication number
KR101138865B1
KR101138865B1 KR1020050019579A KR20050019579A KR101138865B1 KR 101138865 B1 KR101138865 B1 KR 101138865B1 KR 1020050019579 A KR1020050019579 A KR 1020050019579A KR 20050019579 A KR20050019579 A KR 20050019579A KR 101138865 B1 KR101138865 B1 KR 101138865B1
Authority
KR
South Korea
Prior art keywords
substrate
nanowire
catalyst
nanowires
metal layer
Prior art date
Application number
KR1020050019579A
Other languages
English (en)
Other versions
KR20060098959A (ko
Inventor
최병룡
이은경
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050019579A priority Critical patent/KR101138865B1/ko
Priority to DE602006004379T priority patent/DE602006004379D1/de
Priority to EP06251195A priority patent/EP1700935B1/en
Priority to US11/369,859 priority patent/US7649192B2/en
Priority to JP2006062815A priority patent/JP2006248893A/ja
Publication of KR20060098959A publication Critical patent/KR20060098959A/ko
Application granted granted Critical
Publication of KR101138865B1 publication Critical patent/KR101138865B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/04Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor involving means for grappling or securing in place objects to be carried; Loading or unloading equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • Y10S977/721On a silicon substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/766Bent wire, i.e. having nonliner longitudinal axis
    • Y10S977/768Helical wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/789Of specified organic or carbon-based composition in array format
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/81Of specified metal or metal alloy composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Abstract

본 발명은 나노 와이어에 관한 것이다. 산화공정에 의하여 실리콘 기판 표면에 규칙적으로 형성된 다수의 마이크로 캐버티 형태를 포함하는 마세 굴곡을 형성시키고, 상기 기판 상에 나노 와이어 형성을 위한 촉매 작용을 하는 물질을 증착하여 금속층을 형성시키며, 상기 금속층을 가열함으로써, 상기 기판 표면의 미세 굴곡 내에 상기 금속층을 덩어리화하여 촉매를 형성시고, 상기 촉매와 상기 기판 사이에 나노 와이어를 성장시키는 것을 포함하는 나노 와이어 제조 방법 및 이를 통하여 제조한 나노 와이어를 제공한다.

Description

나노 와이어 및 그 제조 방법{Nano wire and manufacturing method for the same}
도 1a 내지 도 1d는 종래 기술에 의한 나노 와이어 제조 방법을 나타낸 도면이다.
도 2는 본 발명에 의한 나노 와이어의 구조를 나타낸 도면이다.
도 3a 내지 도 3d는 본 발명에 의한 나노 와이어 제조 방법을 나타낸 도면이다.
도 3e는 상기 도 3a 내지 도 3d에서 제조한 나노 와이어의 직경을 조절하기 위한 산화 공정을 더 실시한 예를 나타낸 도면이다.
도 4a 내지 도 4d는 도 3a에 나타낸 바와 같은 미세 표면 구조가 조절된 기판을 제조하여 그 표면에 대해 측정한 AFM 이미지이다.
도 4e는 상기 도 4d에 나타낸 시편의 표면 조도를 측정한 그래프이다.
< 도면의 주요 부분에 대한 부호의 설명 >
11, 21, 31... 기판 12, 32... 금속층
13, 23, 33... 촉매 14, 22, 34, ... 나노 와이어
35... 산화층
본 발명은 나노 와이어 및 그 제조 방법에 관한 것으로, 보다 상세하게는 실리콘 나노 와이어를 형성하는 경우 나노 와이어 형성을 위한 핵생성(nucleation) 영역의 크기 및 그 분포를 정밀하게 제어한 실리콘 나노 와이어 및 그 제조 방법에 관한 것이다.
나노와이어를 현재 나노 기술 분야에서 널리 연구되고 있으며, 현재 레이저와 같은 광소자, 트랜지스터 및 메모리 소자 등 다양한 분야에 널리 응용되고 있는 차세대 기술이다. 현재 나노 와이어에 사용되는 재료는 실리콘, 아연 산화물과 발광반도체인 갈륨질화물 등이 있다. 현재 나노와이어 제조 공정 기술은 나노 와이어의 길이 및 폭을 조절할 수 있는 수준까지 발전했다.
종래 나노 발광 소자의 경우 퀀텀 도트 또는 퀀텀 도트를 이용한 나노 발광 소자가 사용되었다. 퀀텀 도트를 사용한 유기 EL의 경우 Radiative recombination 효율은 매우 높으나 캐리어 주입 효율이 매우 낮은 단점이 있다. 퀀텀 웰을 이용한 GaN LED의 경우 Radiative recombination 효율 및 캐리어 주입 효율이 비교적 높으나, 통상적으로 사용하는 사파이어 기판과의 결정 구조의 차이에 의한 결함이 발생하여 대면적으로 생산하기 매우 어려우며 제조 비용도 비교적 고가인 단점이 있다. 그러나, 나노 와이어를 이용한 나노 발광 소자의 경우 Radiative recombination 효율이 매우 높고 캐리어 주입 효율이 비교적 높다. 또한, 그 제조 공정이 간단하며 기판과 거의 동일한 결정 구조를 지니도록 형성할 수 있어 대면적으로 형성시키기 용이한 장점이 있다.
도 1a 내지 도 1d는 종래 기술에 의한 나노 와이어 제조 방법인 Vapor-Liquid-Solid(VLS) 방법을 나타낸 도면이다.
도 1a를 참조하면, 먼저 기판(11)을 마련한다. 기판(11)은 널리 사용되는 실리콘 기판을 이용한다.
그리고 나서 도 1b를 참조하면, 기판(11) 상에 Au와 같은 금속을 도포하여 금속층(12)을 형성시킨다.
다음으로 도 1c를 참조하면, 섭씨 약 500도에서 열처리 공정을 실시하면 금속층(12)의 물질이 덩어리화(agglomeration)가 진행되어 촉매(13)를 형성한다. 이때 형성된 촉매(13)는 각각 그 크기가 일정하지 않으며 랜덤한 크기를 지니게 된다.
상술한 바와 같이 촉매(13)를 형성시킨 다음, 도 1d에 나타낸 바와 같이 촉매(13)를 핵생성 위치로 하여 나노 와이어(14)를 형성시킨다. 여기서, 나노 와이어(14)는 상기 촉매(13)에 실리콘 수소 화합물인 실렌(SiH4) 등을 공급하여 공정 온도에서 실렌의 Si 원소를 촉매(13) 위치에서 핵생성을 유도하여 형성시킨 것이다. 계속적으로 실렌을 공급하게되면, 도 1d에 나타낸 바와 같이 촉매(13) 하부에서 지속적으로 나노 와이어가 성장할 수 있게 된다.
상술한 바와 같이 나노 와이어는 실렌과 같은 원료 가스의 공급량을 적절히 조절함으로써 원하는 길이로 용이하게 형성할 수 있다. 그러나, 나노 와이어는 촉 매(13)의 직경 및 그 분포에 제한되어 성장시킬 수 있으므로 정확한 두께 및 그 분포를 조절하기 어려운 문제점이 있다.
본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로, 나노 와이어의 직경 및 분포를 조절하여 성장시킬 수 있는 나노 와이어 제조 방법 및 이에 의해 정밀하게 성장된 나노 와이어를 제공하는 것을 목적으로 한다.
또한, 본 발명은 정밀한 크기로 형성되며, PN 접합 구조를 지닌 나노 와이어 및 그 제조 방법을 제공하는 것을 목적으로 한다.
본 발명에서는 상기 목적을 달성하기 위하여,
(가) 실리콘 기판 표면에 규칙적으로 형성된 다수의 마이크로 캐버티 형태를 포함하는 미세 굴곡을 형성시키는 단계;
(나) 상기 기판 상에 나노 와이어 형성을 위한 촉매 작용을 하는 물질을 증착하여 금속층을 형성시키는 단계;
(다) 상기 금속층을 가열함으로써, 상기 기판 표면의 미세 굴곡 내에 상기 금속층을 덩어리화하여 촉매를 형성시키는 단계; 및
(라) 열처리에 의하여 상기 촉매와 상기 기판 사이에 나노 와이어를 성장시키는 단계;를 포함하는 나노 와이어 제조 방법을 제공한다.
본 발명에 있어서, 상기 (가) 단계는,
상기 기판 표면을 산화시켜 실리콘 산화층을 형성시켜 미세 굴곡 구조를 형 성하는 단계; 및
상기 실리콘 산화층을 제거하여 상기 미세 굴곡 구조를 노출시키는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 (나) 단계의 상기 금속층은 전이 금속 중 적어도 어느 하나를 도포하여 형성하는 것을 특징으로 한다.
본 발명에 있어서, 상기 금속층은 Au, Ni, Ti 또는 Fe 중 적어도 어느 하나의 물질을 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 (라) 단계는 공정 온도 및 분위기 압력을 조절하여 상기 촉매와 상기 기판 사이에 나노 와이어를 형성시키는 것을 특징으로 한다.
본 발명에 있어서, 상기 (라) 단계의 상기 열처리는 상기 촉매 및 상기 기판의 공융(eutectic) 온도 이상의 온도 범위에서 실시하는 것을 특징으로 한다.
본 발명에 있어서, 상기 나노 와이어를 형성한 뒤, 산화 공정을 실시하여 상기 나노 와이어 측부에 산화층을 형성시키는 공정을 더 포함하는 것을 특징으로 한다.
또한, 본 발명에서는, 나노 와이어에 있어서,
다수의 마이크로 캐버티 형태를 포함하는 미세 굴곡 구조를 그 표면에 지닌 기판;
상기 각각의 미세 굴곡 구조 내에서 상기 기판의 상방으로 형성된 나노 와이어; 및
및 상기 나노 와이어의 단부에 형성된 금속 촉매;를 포함하는 나노 와이어를 제공한다.
본 발명에 있어서, 상기 마이크로 캐버티 형태를 포함하는 미세 굴곡은 상기 기판 표면에 규칙적인 배열 및 분포를 지니고 형성된 것을 특징으로 한다.
본 발명에 있어서, 상기 나노 와이어의 측부에 형성된 산화층;을 더 포함하는 것을 특징으로 한다.
이하, 도면을 참조하여 본 발명에 의한 나노 와이어 및 그 제조 방법에 대해 상세히 설명하기로 한다. 다만, 본 발명의 설명을 위하여 도면에서는 그 길이 및 크기를 과장되게 도시하였음을 명심하여야 한다.
도 2는 본 발명에 의한 나노 와이어의 구조를 나타낸 도면이다. 도 2를 참조하면, 기판(21) 표면에는 다수의 마이크로 캐비티(micro cavity) 형태를 포함하는 미세 굴곡이 형성되어 있다. 그리고, 각각의 미세 굴곡 내에는 수직 방향으로 성장된 나노 와이어(22)를 포함하고 있으며, 각 나노 와이어(22)의 단부에는 촉매(23)가 형성되어 있다. 여기서, 기판(21) 표면에 형성된 미세 굴곡의 폭은 원하는 크기로 형성된 것이며, 미세 굴곡의 크기 및 그 분포에 따라 기판(21) 상에 형성된 나노 와이어(22)의 크기 및 분포가 결정된다. 기판(31) 표면에 마이크로 캐비티 형태를 포함하는 미세 굴곡을 형성시키는 방법은 후술할 제조 공정에서 상세히 설명하고자 한다.
도 3a 내지 도 3d는 본 발명에 의한 나노 와이어 제조 방법을 나타낸 도면이다.
도 3a를 참조하면, 먼저 다수의 마이크로 캐비티 형태를 포함하는 미세 굴곡 을 그 표면에 포함하는 기판(31)을 마련한다. 상기 기판(31)에는 d의 폭을 지닌 다수의 미세 굴곡이 형성되어 있다. 이와 같은 마이크로 캐비티 형태를 포함하는 미세 굴곡의 형성 공정을 설명하면 다음과 같다.
먼저, 실리콘 기판(31)의 마이크로 캐버티 형태의 미세 굴곡이 형성될 면에 건식 산화 공정을 실시하여 실리콘 기판 표면에 실리콘 산화층(SiO2)(미도시)을 형성시킨다. 여기서 산화 공정은 산소(O2) 및 염소(Cl2) 가스 분위기하에서 건식 산화 공정에 의해 행해지며, 공정 챔버 내의 압력을 조절하기 위하여 질소(N2)를 더 부가할 수 있다. 이 때의 공정 온도는 약 1150℃정도의 고온이며, 장시간(수 내지 수십 시간)에 행해진다. 또한, 습식 산화 공정에 의해 이루어질 수도 있다. 공정 챔버 내의 압력은, 산소(O2) 및 질소(N2)에 의해 정해지며, 염소(Cl2) 가스는 산소(O2) 가스에 비해 작은 비율로 포함될 수 있다.
여기서, 염소(Cl2)가스는 건식 산화 공정 동안 산화율을 증가시킨다. 즉, 염소 가스는 실리콘 산화층과 기판(31)에 해당하는 실리콘층의 계면에서 반응(reaction)이나 산화체(oxidant)의 확산을 촉진시킨다. 또한, 상기 염소 가스는 산화층에 나트륨의 오염을 트래핑(trapping) 및 중화(neutralization)시키며, 실리콘 층으로부터 금속성 불순물(metallic impurities) 및 적층 단층(stacking faults)을 제거(gettering)한다. 임계 농도(threshold concentration)를 넘어선 염소의 존재는, 가스상태의 산화 산출물(gaseous oxidation products)의 축적에 기인하여 산화 층과 실리콘층 사이의 부가적인 상(additional phases)의 형성(formation)을 이끌고, 이에 의해 산화층과 실리콘층의 계면(SiO2/Si)을 보다 거칠게 한다.
따라서, 상기와 같은 염소는 상기 기판(31)의 실리콘 산화층과 실리콘층 사이의 계면을 보다 거칠게 형성되도록 하여 보다 확실한 미세 결함 굴곡을 얻을 수 있도록 하며, 양질의 실리콘 산화층의 형성을 가능하게 한다. 그 뒤, 상기 기판(31) 표면의 실리콘 산화층을 식각 공정에 의해 제거하면 도 3a에 나타낸 바와 같이 마이크로 캐버티 형태를 포함하는 미세 결함 굴곡 구조를 얻을 수 있다.
도 4a 내지 도 4d에서는 투입된 염소 가스의 양에 따른 그 표면에 대한 AFM 이미지이다. 도 4a 내지 도 4d는 각각 염소를 공정 챔버 내에 0sccm, 80sccm, 160sccm 및 240sccm의 유량으로 투입한 것으로, 염소의 투입량이 증가할수록 그 표면 거칠기가 증가하여 미세 굴곡의 폭(d)이 점차 증가하는 것을 알 수 있다.
도 4e는 염소 가스를 240sccm의 유량으로 투입한 뒤, 그 단면에 대한 표면 조도를 측정한 그래프이다. 중앙 영역과 좌우 측면이 왜곡되게 표현되었으나, 비교적 규칙적인 간격을 지닌 수 nm의 조도를 가진 미세 굴곡 표면이 얻어짐을 확인할 수 있다. 즉, 수 nm의 간격을 지닌 미세 굴곡이 수백 nm의 간격을 가진 마이크로 캐버티 구조를 지니게 됨을 알 수 있다.
상술한 바와 같이 기판(31) 상에 규칙적인 배열을 지닌 마이크로 캐버티 형태를 지닌 미세 굴곡을 형성시킨 다음, 도 3b에 나타낸 바와 같이 기판(31) 상부에 금속층(32)을 형성시킨다. 이때, 금속층(32)은 이후에 성장시킬 나노 와이어의 형 성을 위한 촉매 역할을 할 수 있는 재료를 사용하며, Au, Ni, Ti, Fe 등의 전이 금속을 사용할 수 있다. 이때, 금속층(32)은 nm 사이즈로 얇게 형성되며, 그 하부의 기판(31)의 표면 형상에 따라 금속층(32) 또한 비교적 규칙적인 배열을 지닌 마이크로 캐버티를 포함하는 미세 굴곡 형태로 형성된다.
다음으로, 도 3c에 나타낸 바와 같이 금속층(32)에 열을 가하여, 금속층(32)의 덩어리화(agglomeration)를 유도한다. 이때의 가열 온도는 종래 기술에서 설명한 바와 같이 섭씨 약 500도 내외로 유지하면 충분하며, 열처리에 의하여 금속층(32) 물질은 기판(31) 표면의 미세 굴곡 내에서 덩어리화 되어 나노 크기의 촉매(33) 구조를 형성하게 된다. 즉, 초기에 기판(31) 표면에 형성시켰던 미세 굴곡은 물질층(32)이 덩어리화 하여 형성하는 촉매(33)의 위치 및 크기를 제어하기 위한 것으로, 이를 통하여 촉매(33)의 형성 영역이 한정되며, 미세 굴곡의 크기에 따라 촉매(33)의 크기도 제어할 수 있다.
다음으로, 도 3d에 나타낸 바와 같이, 촉매(33)를 핵생성 위치로 하여 나노 와이어(34)를 형성시킨다. 여기서, 나노 와이어(34)는 기판(31)의 미세 굴곡 내에 형성된 촉매(33)에 공융 온도(Eutectic Temperature, Au의 경우 섭씨 약 363도) 이상의 온도에서 기판(31)의 Si 원소를 촉매(33) 위치에서 핵생성을 유도하여 형성시킨 것이다. 이때, 온도, 분위기 압력 및 시간을 적절히 조절하면 나노 와이어(34)의 길이를 원하는 길이만큼 성장시킬 수 있다. 예를 들어 온도 범위는 섭씨 500도 내지 1100도 이며, 압력 범위는 100 Torr 내지 상압 범위에서 조절 가능하다.
결과적으로, 기판(31) 표면에 원하는 크기를 지닌 마이크로 캐버티 형태의 미세 굴곡을 형성시킴으로써 나노 와이어(34)의 두께를 제어할 수 있으며, 비교적 균질한 폭으로 성장시킬 수 있다.
그리고, 도 3e를 참조하면, 나노 와이어(34)의 폭을 조절하기 위하여, 부가적으로 산화 공정을 더 실시할 수 있다. 즉, 나노 와이어(34)를 형성시킨 후, 산화 공정을 실시하면, 특히 나노 와이어(34)의 측부에 실리콘 산화층(35)의 형성이 촉진되어 나노 와이어(34)의 두께를 조절할 수 있다.
상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 바람직한 실시예의 예시로서 해석되어야 한다. 따라서, 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.
본 발명에 의하면, 그 크기 및 분포가 조절된 마이크로 캐버티 형태를 포함하는 미세 굴곡이 형성된 기판 상에 나노 와이어를 제조함으로써, 형성되는 나노 와이어의 폭과 분포를 미세 굴곡의 형태 및 분포에 한정시켜 제조할 수 있는 장점이 있다.

Claims (12)

  1. (가) 산소 및 염소 분위기 하에서 산화공정을 실시하여 실리콘 기판 표면에 실리콘 산화층을 형성시켜 상기 실리콘 기판 및 상기 실리콘 산화층 사이의 계면에 마이크로 캐버티 형태를 지닌 미세 굴곡 구조를 형성하고, 상기 실리콘 산화층을 제거하여 상기 미세 굴곡 구조를 노출시키는 단계;
    (나) 상기 기판 상에 나노 와이어 형성을 위한 촉매 작용을 하는 물질을 증착하여 금속층을 형성시키는 단계;
    (다) 상기 금속층을 가열함으로써, 상기 기판 표면의 미세 굴곡 구조 내에 상기 금속층을 덩어리화 하여 촉매를 형성시키는 단계; 및
    (라) 열처리에 의하여 상기 촉매와 상기 기판 사이에 나노 와이어를 성장시키는 단계;를 포함하는 것을 특징으로 하는 나노 와이어 제조 방법.
  2. 삭제
  3. 제 1항에 있어서,
    상기 (나) 단계의 상기 금속층은 전이 금속 중 적어도 어느 하나를 도포하여 형성하는 것을 특징으로 하는 나노 와이어 제조 방법.
  4. 제 3항에 있어서,
    상기 금속층은 Au, Ni, Ti 또는 Fe 중 적어도 어느 하나의 물질을 포함하는 것을 특징으로 하는 나노 와이어 제조 방법.
  5. 제 1항에 있어서,
    상기 (라) 단계는 공정 온도 및 분위기 압력을 조절하여 상기 촉매와 상기 실리콘 기판 사이에 나노 와이어를 형성시키는 것을 특징으로 하는 나노 와이어 제조 방법.
  6. 제 1항에 있어서,
    상기 (라) 단계의 상기 열처리는 상기 촉매 및 상기 실리콘 기판의 공융(eutectic) 온도 이상의 온도 범위에서 실시하는 것을 특징으로 하는 나노 와이어 제조 방법.
  7. 제 1항에 있어서,
    상기 나노 와이어를 형성한 뒤, 산화 공정을 실시하여 상기 나노 와이어 측부에 산화층을 형성시키는 공정을 더 포함하는 것을 특징으로 하는 나노 와이어 제조 방법.
  8. 나노 와이어에 있어서,
    산소 및 염소 분위기 하의 산화공정 과정에서 형성된 다수의 마이크로 캐버티 형태를 포함하는 미세 굴곡 구조를 그 표면에 지닌 기판;
    상기 각각의 미세 굴곡 구조 내에서 상기 기판의 상방으로 형성된 나노 와이어; 및
    및 상기 나노 와이어의 단부에 형성된 금속 촉매;를 포함하는 것을 특징으로 하는 나노 와이어.
  9. 제 8항에 있어서,
    상기 마이크로 캐버티 형태를 포함하는 미세 굴곡 구조는 상기 기판 표면에 규칙적인 배열 및 분포를 지니고 형성된 것을 특징으로 하는 나노 와이어.
  10. 제 8항에 있어서,
    상기 나노 와이어의 측부에 형성된 산화층;을 더 포함하는 것을 특징으로 하는 나노 와이어.
  11. 제 8항에 있어서,
    상기 금속 촉매는 전이 금속 중 적어도 어느 한 물질을 포함하여 형성된 것을 특징으로 하는 나노 와이어.
  12. 제 11항에 있어서,
    상기 금속 촉매는 Au, Ti, Ni 또는 Fe 중 적어도 어느 한 물질을 포함하여 형성된 것을 특징으로 하는 나노 와이어.
KR1020050019579A 2005-03-09 2005-03-09 나노 와이어 및 그 제조 방법 KR101138865B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020050019579A KR101138865B1 (ko) 2005-03-09 2005-03-09 나노 와이어 및 그 제조 방법
DE602006004379T DE602006004379D1 (de) 2005-03-09 2006-03-07 Nanodraht-Struktur und Verfahren zu ihrer Herstellung
EP06251195A EP1700935B1 (en) 2005-03-09 2006-03-07 Nanowire structure and method of manufacturing the same
US11/369,859 US7649192B2 (en) 2005-03-09 2006-03-08 Nano wires and method of manufacturing the same
JP2006062815A JP2006248893A (ja) 2005-03-09 2006-03-08 ナノワイヤー及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050019579A KR101138865B1 (ko) 2005-03-09 2005-03-09 나노 와이어 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20060098959A KR20060098959A (ko) 2006-09-19
KR101138865B1 true KR101138865B1 (ko) 2012-05-14

Family

ID=36356576

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050019579A KR101138865B1 (ko) 2005-03-09 2005-03-09 나노 와이어 및 그 제조 방법

Country Status (5)

Country Link
US (1) US7649192B2 (ko)
EP (1) EP1700935B1 (ko)
JP (1) JP2006248893A (ko)
KR (1) KR101138865B1 (ko)
DE (1) DE602006004379D1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159953A1 (en) * 2019-01-28 2020-08-06 Global Graphene Group, Inc. Process for producing metal nanowires and nanowire-graphene hybrid particulates
US11394028B2 (en) 2019-01-21 2022-07-19 Global Graphene Group, Inc. Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785922B2 (en) * 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
KR101138865B1 (ko) * 2005-03-09 2012-05-14 삼성전자주식회사 나노 와이어 및 그 제조 방법
US7230286B2 (en) * 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
US7951422B2 (en) 2005-12-29 2011-05-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
DE102006013245A1 (de) * 2006-03-22 2007-10-04 Infineon Technologies Ag Verfahren zur Ausbildung von Öffnungen in einer Matrizenschicht und zur Herstellung von Kondensatoren
US8822030B2 (en) 2006-08-11 2014-09-02 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
US7892447B2 (en) 2006-08-11 2011-02-22 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
KR100829159B1 (ko) * 2006-11-03 2008-05-13 한양대학교 산학협력단 나노 와이어 및 반도체 소자 제조 방법
KR100825765B1 (ko) * 2006-12-05 2008-04-29 한국전자통신연구원 산화물계 나노 구조물의 제조 방법
KR100872332B1 (ko) * 2007-05-28 2008-12-05 연세대학교 산학협력단 인장응력을 이용한 단결정 열전 나노선 제조 방법
US20100221894A1 (en) * 2006-12-28 2010-09-02 Industry-Academic Cooperation Foundation, Yonsei University Method for manufacturing nanowires by using a stress-induced growth
US7670908B2 (en) * 2007-01-22 2010-03-02 Alpha & Omega Semiconductor, Ltd. Configuration of high-voltage semiconductor power device to achieve three dimensional charge coupling
WO2008149548A1 (ja) * 2007-06-06 2008-12-11 Panasonic Corporation 半導体ナノワイヤおよびその製造方法
KR100972909B1 (ko) * 2007-10-31 2010-07-28 주식회사 하이닉스반도체 반도체 소자 및 그 형성 방법
KR100952048B1 (ko) * 2007-11-13 2010-04-07 연세대학교 산학협력단 실리콘 나노 구조체를 이용한 액상 제조 공정 기반의실리콘박막 결정화방법
US7897494B2 (en) 2008-06-24 2011-03-01 Imec Formation of single crystal semiconductor nanowires
KR101475524B1 (ko) 2008-08-05 2014-12-23 삼성전자주식회사 실리콘 풍부산화물을 포함하는 나노와이어 및 그의제조방법
KR101144744B1 (ko) * 2009-02-11 2012-05-24 연세대학교 산학협력단 나노와이어 밀도를 증대시킬 수 있는 나노와이어 제조 방법
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
WO2011090863A1 (en) * 2010-01-19 2011-07-28 Eastman Kodak Company Ii-vi core-shell semiconductor nanowires
US8212236B2 (en) 2010-01-19 2012-07-03 Eastman Kodak Company II-VI core-shell semiconductor nanowires
US8377729B2 (en) 2010-01-19 2013-02-19 Eastman Kodak Company Forming II-VI core-shell semiconductor nanowires
US9012080B2 (en) * 2010-09-21 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Needle-like microstructure and device having needle-like microstructure
KR101287611B1 (ko) * 2010-11-15 2013-07-18 전북대학교산학협력단 실리콘 나노선의 제조 방법
TWI441305B (zh) * 2010-12-21 2014-06-11 Ind Tech Res Inst 半導體裝置
KR101329172B1 (ko) 2012-08-08 2013-11-14 순천대학교 산학협력단 실리콘 나노와이어의 제조방법 및 이를 통해 제조되는 실리콘 나노와이어
US9755104B2 (en) * 2014-05-09 2017-09-05 Epistar Corporation Method of manufacturing optoelectronic element having rough surface
KR20160021314A (ko) 2014-08-14 2016-02-25 삼성디스플레이 주식회사 나노 와이어 제조 방법
KR101631854B1 (ko) * 2015-09-09 2016-06-20 인천대학교 산학협력단 나노 와이어 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083886A1 (fr) * 1981-12-31 1983-07-20 Thomson-Csf Composé organique du type benzoate de biphényle triplement substitué et son procédé de fabrication
US6306734B1 (en) * 1996-04-01 2001-10-23 Evgeny Invievich Givargizov Method and apparatus for growing oriented whisker arrays
JP2004122283A (ja) * 2002-10-01 2004-04-22 Japan Science & Technology Corp 規則配列したナノサイズの微細構造物の作製方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870459B2 (ja) * 1996-10-28 2007-01-17 ソニー株式会社 量子細線の製造方法
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
WO1998048456A1 (en) * 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
EP1190206A2 (en) * 1999-05-31 2002-03-27 Evgeny Invievich Givargizov Tip structures, devices on their basis, and methods for their preparation
JP4397491B2 (ja) * 1999-11-30 2010-01-13 財団法人国際科学振興財団 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
JP2002220300A (ja) * 2001-01-18 2002-08-09 Vision Arts Kk ナノファイバーおよびナノファイバーの作製方法
US20070297216A1 (en) * 2001-03-02 2007-12-27 William Marsh Rice University Self-assembly of molecular devices
JP4876319B2 (ja) * 2001-03-09 2012-02-15 ソニー株式会社 表示装置およびその製造方法
JP2003246700A (ja) * 2002-02-22 2003-09-02 Japan Science & Technology Corp シリコンナノニードルの製法
EP1388521B1 (en) * 2002-08-08 2006-06-07 Sony Deutschland GmbH Method for preparing a nanowire crossbar structure
JP2004202602A (ja) * 2002-12-24 2004-07-22 Sony Corp 微小構造体の製造方法、及び型材の製造方法
KR20050115861A (ko) * 2003-02-07 2005-12-08 나노 클러스터 디바이스즈 리미티드 템플릿된 클러스터 어셈블링된 와이어
US7521851B2 (en) * 2003-03-24 2009-04-21 Zhidan L Tolt Electron emitting composite based on regulated nano-structures and a cold electron source using the composite
US7067328B2 (en) * 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
US7351607B2 (en) * 2003-12-11 2008-04-01 Georgia Tech Research Corporation Large scale patterned growth of aligned one-dimensional nanostructures
JP3994166B2 (ja) * 2004-03-17 2007-10-17 独立行政法人産業技術総合研究所 多溝性表面を有するシリコン基板及びその製造方法
KR100553317B1 (ko) * 2004-04-23 2006-02-20 한국과학기술연구원 실리콘 나노선을 이용한 실리콘 광소자 및 이의 제조방법
CA2567930A1 (en) * 2004-06-08 2005-12-22 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
WO2006016914A2 (en) * 2004-07-07 2006-02-16 Nanosys, Inc. Methods for nanowire growth
JP2006239857A (ja) * 2005-02-25 2006-09-14 Samsung Electronics Co Ltd シリコンナノワイヤ、シリコンナノワイヤを含む半導体素子及びシリコンナノワイヤの製造方法
KR100624461B1 (ko) * 2005-02-25 2006-09-19 삼성전자주식회사 나노 와이어 및 그 제조 방법
KR101138865B1 (ko) * 2005-03-09 2012-05-14 삼성전자주식회사 나노 와이어 및 그 제조 방법
EP1871162B1 (en) * 2005-04-13 2014-03-12 Nanosys, Inc. Nanowire dispersion compositions and uses thereof
US7609432B2 (en) * 2006-10-13 2009-10-27 Hewlett-Packard Development Company, L.P. Nanowire-based device and method of making same
US7850941B2 (en) * 2006-10-20 2010-12-14 General Electric Company Nanostructure arrays and methods for forming same
KR101345432B1 (ko) * 2007-12-13 2013-12-27 성균관대학교산학협력단 무촉매 단결정 실리콘 나노와이어의 제조방법, 그에 의해형성된 나노와이어 및 이를 포함하는 나노소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083886A1 (fr) * 1981-12-31 1983-07-20 Thomson-Csf Composé organique du type benzoate de biphényle triplement substitué et son procédé de fabrication
US6306734B1 (en) * 1996-04-01 2001-10-23 Evgeny Invievich Givargizov Method and apparatus for growing oriented whisker arrays
JP2004122283A (ja) * 2002-10-01 2004-04-22 Japan Science & Technology Corp 規則配列したナノサイズの微細構造物の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394028B2 (en) 2019-01-21 2022-07-19 Global Graphene Group, Inc. Graphene-carbon hybrid foam-protected anode active material coating for lithium-ion batteries
WO2020159953A1 (en) * 2019-01-28 2020-08-06 Global Graphene Group, Inc. Process for producing metal nanowires and nanowire-graphene hybrid particulates

Also Published As

Publication number Publication date
US20060212975A1 (en) 2006-09-21
EP1700935B1 (en) 2008-12-24
JP2006248893A (ja) 2006-09-21
EP1700935A1 (en) 2006-09-13
US7649192B2 (en) 2010-01-19
DE602006004379D1 (de) 2009-02-05
KR20060098959A (ko) 2006-09-19

Similar Documents

Publication Publication Date Title
KR101138865B1 (ko) 나노 와이어 및 그 제조 방법
KR100723418B1 (ko) 실리콘 나노 와이어, 실리콘 나노 와이어를 포함하는반도체 소자 및 실리콘 나노 와이어 제조 방법
US10177275B2 (en) Epitaxial structure and method for making the same
JP2006239857A (ja) シリコンナノワイヤ、シリコンナノワイヤを含む半導体素子及びシリコンナノワイヤの製造方法
CN108352424B (zh) 石墨基板上生长的纳米线或纳米锥
US8865577B2 (en) Method for making epitaxial structure
US8900977B2 (en) Method for making epitaxial structure
JP2006225258A (ja) シリコンナノワイヤおよびその製造方法
US20130285212A1 (en) Epitaxial structure
US20130285016A1 (en) Epitaxial structure
US9450142B2 (en) Method for making epitaxial structure
JP2008519462A (ja) 発光素子用シリコン窒化膜及びこれを利用した発光素子、並びに、発光素子用シリコン窒化膜の製造方法
KR20120100338A (ko) 나노와이어의 성장방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150313

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180320

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190320

Year of fee payment: 8