JP2008523590A - ナノスケールワイヤベースのデータ格納装置 - Google Patents
ナノスケールワイヤベースのデータ格納装置 Download PDFInfo
- Publication number
- JP2008523590A JP2008523590A JP2007544625A JP2007544625A JP2008523590A JP 2008523590 A JP2008523590 A JP 2008523590A JP 2007544625 A JP2007544625 A JP 2007544625A JP 2007544625 A JP2007544625 A JP 2007544625A JP 2008523590 A JP2008523590 A JP 2008523590A
- Authority
- JP
- Japan
- Prior art keywords
- shell
- storage device
- data storage
- electronic data
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/02—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using ferroelectric record carriers; Record carriers therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/22—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/54—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5657—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using ferroelectric storage elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/003—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/02—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
- G11C13/025—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/701—IGFETs having ferroelectric gate insulators, e.g. ferroelectric FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/121—Nanowire, nanosheet or nanotube semiconductor bodies oriented parallel to substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/123—Nanowire, nanosheet or nanotube semiconductor bodies comprising junctions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/22—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
- G11C11/223—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/16—Memory cell being a nanotube, e.g. suspended nanotube
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/17—Memory cell being a nanowire transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/18—Memory cell being a nanowire having RADIAL composition
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/75—Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/77—Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Neurology (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
本出願は、Lieberらによる「Nanoscale Wire Based Data Storage」と題される米国特許出願第60/633,733号(2004年12月6日出願)に対する優先権を主張し、上記出願は、本明細書において参照により援用される。
本発明の様々な局面は、米国防省高等研究計画局助成第N−00014−01−1−0651号および第N00014−04−1−0591号によって後援される。米国政府は、本発明に関して一定の権利を有し得る。
本発明は、概して、回路網において使用され得るナノテクノロジーおよびサブマイクロ電子デバイスに関連し、特に、ナノスケールワイヤおよびデータを符号化することが可能なナノ構造に関連する。
以下の定義は、本発明の理解を助け得る。本発明の特定のデバイスは、ワイヤまたはナノスケールワイヤと等しい大きさの他のコンポーネントを含み、他のコンポーネントは、ナノチューブおよびナノワイヤを含む。しかしながら、一部の実施形態において、本発明は、ナノメートルのサイズを上回る(例えば、マイクロメートルのサイズの)製品を備え得る。本明細書において使用されるように、「ナノスケールの大きさ」、「ナノスケールの」、「ナノメートルのスケール」、「ナノスケール」、(例えば、「ナノ構造の」において使用されるような)接頭語「ナノ」などは、概して、約1マイクロメートルを下回り、かつ一部の場合において100nmを下回る幅または直径を有する要素または製品を言う。全ての実施形態において、特定された幅は、最も狭い幅(すなわち、製品が異なる場所において、より広い幅を有し得る場所において特定された幅)であり得るか、または最も広い幅(すなわち、製品が特定されたものより広い幅を有さないが、より長い長さを有し得る場所において特定された幅)であり得る。
この例は、本発明の実施形態に従って、半導体/誘電性の酸化物/強電性酸化物のコア/シェル/シェルナノスケールワイヤ構造、特に、p−Si/ZrO2/BaTiO3コア/シェル/シェルナノワイヤの合成を示す(図1A)。この例において、シェルが、ALD(原子層堆積)技術を使用して、製造されたが、他の技術、例えば溶液ベースのアプローチがまた、使用され得る。
この実施例は、原子層堆積(ALD)によって、シリコン−機能性酸化物のコア−シェルナノワイヤのヘテロ構造を製造することを示し、異なる反応体に対するパルスおよびパージの周期を変化させることによって、周期的自己制御式表面応答を介して、酸化物を含む様々な材料の絶縁保護コーティングが、シリコンナノワイヤ上において達成された。コーティングの厚みは、堆積周期の数によって、原子スケールにまで制御され得、したがって、本技術は、不純物のない界面を有する複合的なヘテロ構造を製造することに適切であり得る。
この実施例は、不純物のない界面を有する、はっきりした(well−defined)半導体−機能性酸化物コア−シェルナノワイヤのヘテロ構造の合成を示す。この例において、Si/ZrO2/BaTiO3コア−シェルナノワイヤのヘテロ構造に基づいて、電界効果トランジスタ(FET)デバイスが準備された。デバイスを形成するために、ソース−ドレイン領域における酸化物が、フッ化水素(HF)酸によってエッチングされ、次に、p型Siコア上に金属接触が堆積した。ニッケルのトップゲートが、BaTiO3シェルの頂上部にソース−ドレイン接触の間に製造された(図14Aの挿入図は、SEMイメージが、デバイスの形状を示し、かつソース−ドレイン接触は、p型Siナノワイヤのコア上の分離およびチャネルの中央においてBaTiO3シェル頂上部に幅800nmのトップゲートを有する。)挿入図のスケールバーは2マイクロメーターである。全直径が〜60nm(Siコアが25nm、ZrO2シェルが2.5nm、およびBaTiO3シェルが15nm)であるコア−シェルナノワイヤから獲得される異なるゲート電圧(Vgs)における電流(ISD)対ソース−ドレイン電圧(VSD)の移送結果のデータが、予期されたデプレションp型FETの動作を示した。図14Aは、(最低で−4Vから最大で+6V、2V間隔の)異なるトップゲート電圧において、60nmのコア−シェルナノワイヤのヘテロ構造トランジスタに関する例示的な特徴を示す。
この実施例において、強電性の酸化物に基づくFET型メモリデバイスに関して、強電性の酸化物に不可欠な厚みおよびゲートの最小限の幅/ピッチが考察された。第1の課題を述べると、より薄いBaTiO3シェルを有するコア−シェルナノワイヤのヘテロ構造が製造された。移送測定(データは示されていない)は、BaTiO3シェルの厚みが10nmに減少したときに、強電性の金属酸化物ゲートの界面における双極子によってもたらされた、期待の分極電界効果は、酸化物の強電性の特性を実質的に減少させた。しかしながら、このことは、ひずみペロブスカイト酸化物超格子構造を使用して克服され得、ひずみペロブスカイト酸化物超格子構造は、必要な厚みを単位細胞のレベルにまで低下させ得る。
上記の実施例は、異なる強電性の分極が、クロストークのない、ナノワイヤの小さな領域における異なるドメインに存在し得、それらの分極状態は、さらに個々に区別され得る。これらの特徴を有するデバイスが、この実施例において準備された(図17)。
Claims (70)
- 第1の電極と、
第2の電極と、
該第1の電極と該第2の電極との間に電気的経路を定義する半導体材料と、
半導体材料近似の材料であって、少なくとも第1の分極状態と第2の分極状態との間でスイッチ可能である、材料と
を備える、電子データ格納デバイスであって、該半導体材料は、強電性の酸化材料の第1の分極状態または第2の分極状態にそれぞれ応答して、第1の伝導状態と第2の伝導状態との間でスイッチ可能であり、第1の伝導性と該第1の伝導性の少なくとも1000倍の第2の伝導性とのそれぞれを、該第1の電極と該第2の電極との間に提供する、電子データ格納デバイス。 - 前記半導体材料近似の前記材料は強電性の酸化材料を含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、IV族半導体を含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、元素半導体を含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、Siを含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、III−V族半導体を含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、p型のドーパントを含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、n型のドーパントを含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、Baを含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、チタン酸バリウムを含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、Zrを含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、ジルコン酸チタン酸鉛を含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、Srを含む、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、タンタル酸ストロンチウムビスマスを含む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約1マイクロメートルを下回る、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約500ナノメートルを下回る、請求項15に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約200ナノメートルを下回る、請求項16に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約100ナノメートルを下回る、請求項17に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約50ナノメートルを下回る、請求項18に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約30ナノメートルを下回る、請求項19に記載の電子データ格納デバイス。
- 前記半導体材料は、少なくとも一部分の最小幅が約10ナノメートルを下回る、請求項20に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約1マイクロメートルを下回る、請求項1に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約500ナノメートルを下回る、請求項22に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約200ナノメートルを下回る、請求項23に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約100ナノメートルを下回る、請求項24に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約50ナノメートルを下回る、請求項25に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約30ナノメートルを下回る、請求項26に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、少なくとも一部分の最小幅が約10ナノメートルを下回る、請求項27に記載の電子データ格納デバイス。
- 前記強電性の酸化材料は、前記半導体材料の少なくとも一部分を取り囲む、請求項1に記載の電子データ格納デバイス。
- 前記半導体材料は、コアを定義し、前記強電性の酸化材料は、該コアを少なくとも部分的に取り囲む第1のシェルを定義する、請求項29に記載の電子データ格納デバイス。
- 前記第1のシェルは、前記コアを同心円状に取り囲む、請求項30に記載の電子データ格納デバイス。
- ナノスケールワイヤの一部分は、前記コアを備え、前記第1のシェルは、円柱状である、請求項30に記載の電子データ格納デバイス。
- 前記ナノスケールワイヤの一部分は、前記コアを備え、前記第1のシェルは、切子状である、請求項30に記載の電子データ格納デバイス。
- 前記ナノスケールワイヤは、前記コアの少なくとも一部分を取り囲む第2のシェルをさらに備える、請求項30に記載の電子データ格納デバイス。
- 前記第2のシェルは、前記第1のシェルと前記コアとの間に配置される、請求項34に記載の電子データ格納デバイス。
- 前記第2のシェルは、金属酸化物を含む、請求項34に記載の電子データ格納デバイス。
- 前記第2のシェルは、少なくとも約15の誘電率を有する、請求項34に記載の電子データ格納デバイス。
- 前記第2のシェルは、少なくとも約20の誘電率を有する、請求項37に記載の電子データ格納デバイス。
- 前記第2のシェルは、少なくとも約25の誘電率を有する、請求項38に記載の電子データ格納デバイス。
- 前記第2のシェルは、Zrを含む、請求項34に記載の電子データ格納デバイス。
- 前記第2のシェルは、ZrO2を含む、請求項40に記載の電子データ格納デバイス。
- 前記第2のシェルは、ZrSiO4を含む、請求項40に記載の電子データ格納デバイス。
- 前記第2のシェルは、Hfを含む、請求項34に記載の電子データ格納デバイス。
- 前記第2のシェルは、HfO2を含む、請求項43に記載の電子データ格納デバイス。
- 前記第2のシェルは、HfSiO4を含む、請求項43に記載の電子データ格納デバイス。
- 前記第2のシェルは、Al2O3を含む、請求項34に記載の電子データ格納デバイス。
- 前記コアの少なくとも一部分を取り囲む第3のシェルをさらに備える、請求項34に記載の電子データ格納デバイス。
- 前記第3のシェルは、前記第1のシェルと前記第2のシェルとの間に配置される、請求項47に記載の電子データ格納デバイス。
- 前記第3のシェルは、金属を含む、請求項47に記載の電子データ格納デバイス。
- 前記第3のシェルは、貴金属を含む、請求項47に記載の電子データ格納デバイス。
- 前記第3のシェルは、Ptを含む、請求項47に記載の電子データ格納デバイス。
- 前記第2の伝導性は、前記第1の伝導性の少なくとも10,000倍である、請求項1に記載の電子データ格納デバイス。
- 前記第2の伝導性は、前記第1の伝導性の少なくとも100,000倍である、請求項1に記載の電子データ格納デバイス。
- ナノスケールワイヤを備える製品であって、該ナノスケールワイヤは、コアと該コアを少なくとも部分的に取り囲むシェルとを備え、該コアは、半導体または導体であり、該シェルは、強電性の酸化材料を含む、製品。
- 前記コアは、半導体である、請求項54に記載の製品。
- 前記コアは、Siを含む、請求項54に記載の製品。
- 前記強電性の酸化材料は、Baを含む、請求項54に記載の製品。
- 前記強電性の酸化材料は、チタン酸バリウムを含む、請求項54に記載の製品。
- 前記ナノスケールワイヤは、少なくとも一部分の最小幅が約1マイクロメートルを下回る、請求項54に記載の製品。
- 前記ナノスケールワイヤは、前記コアの少なくとも一部分を取り囲む第2のシェルをさらに備える、請求項54に記載の製品。
- 前記第2のシェルは、前記シェルと前記コアとの間に配置される、請求項60に記載の製品。
- 前記第2のシェルは、金属酸化物を含む、請求項60に記載の製品。
- 前記第2のシェルは、少なくとも約15の誘電率を有する、請求項60に記載の製品。
- 前記第2のシェルは、Zrを含む、請求項60に記載の製品。
- 前記第2のシェルは、ZrO2を含む、請求項64に記載の製品。
- 前記コアの少なくとも一部分を取り囲む第3のシェルをさらに備える、請求項60に記載の製品。
- 前記第3のシェルは、前記シェルと前記第2のシェルとの間に配置される、請求項66に記載の製品。
- 前記第3のシェルは、金属を含む、請求項66に記載の製品。
- 前記第3のシェルは、貴金属を含む、請求項66に記載の製品。
- 前記第3のシェルは、Ptを含む、請求項66に記載の製品。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63373304P | 2004-12-06 | 2004-12-06 | |
PCT/US2005/044212 WO2007044034A2 (en) | 2004-12-06 | 2005-12-06 | Nanoscale wire-based data storage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008523590A true JP2008523590A (ja) | 2008-07-03 |
Family
ID=37891786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007544625A Pending JP2008523590A (ja) | 2004-12-06 | 2005-12-06 | ナノスケールワイヤベースのデータ格納装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8154002B2 (ja) |
EP (1) | EP1831973A2 (ja) |
JP (1) | JP2008523590A (ja) |
KR (1) | KR20070101857A (ja) |
CN (1) | CN101124638A (ja) |
WO (1) | WO2007044034A2 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100995457B1 (ko) | 2000-08-22 | 2010-11-18 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 제조 방법 |
KR100991573B1 (ko) | 2000-12-11 | 2010-11-04 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 |
US7557433B2 (en) | 2004-10-25 | 2009-07-07 | Mccain Joseph H | Microelectronic device with integrated energy source |
US7767564B2 (en) * | 2005-12-09 | 2010-08-03 | Zt3 Technologies, Inc. | Nanowire electronic devices and method for producing the same |
US8058640B2 (en) | 2006-09-11 | 2011-11-15 | President And Fellows Of Harvard College | Branched nanoscale wires |
US8575663B2 (en) | 2006-11-22 | 2013-11-05 | President And Fellows Of Harvard College | High-sensitivity nanoscale wire sensors |
US7960715B2 (en) | 2008-04-24 | 2011-06-14 | University Of Iowa Research Foundation | Semiconductor heterostructure nanowire devices |
WO2010065587A2 (en) | 2008-12-02 | 2010-06-10 | Drexel University | Ferroelectric nanoshell devices |
US8830037B2 (en) * | 2008-12-31 | 2014-09-09 | The Regents Of The University Of California | In vivo RFID chip |
JP2012528020A (ja) | 2009-05-26 | 2012-11-12 | ナノシス・インク. | ナノワイヤおよび他のデバイスの電場沈着のための方法およびシステム |
US9297796B2 (en) | 2009-09-24 | 2016-03-29 | President And Fellows Of Harvard College | Bent nanowires and related probing of species |
US8969179B2 (en) * | 2010-11-17 | 2015-03-03 | International Business Machines Corporation | Nanowire devices |
KR101919934B1 (ko) * | 2012-04-19 | 2018-11-20 | 삼성전자주식회사 | 불휘발성 메모리 장치를 제어하는 컨트롤러의 동작 방법 및 극 부호화된 부호어를 불휘발성 메모리 장치의 멀티 비트 데이터에 매핑하는 매핑 패턴을 선택하는 매핑 패턴 선택 방법 |
US10049871B2 (en) * | 2013-02-06 | 2018-08-14 | President And Fellows Of Harvard College | Anisotropic deposition in nanoscale wires |
US9337210B2 (en) | 2013-08-12 | 2016-05-10 | Micron Technology, Inc. | Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors |
US9263577B2 (en) | 2014-04-24 | 2016-02-16 | Micron Technology, Inc. | Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors |
WO2015171699A1 (en) | 2014-05-07 | 2015-11-12 | President And Fellows Of Harvard College | Controlled growth of nanoscale wires |
EP2950124A1 (en) * | 2014-05-28 | 2015-12-02 | Paul Scherrer Institut | Integrated photonic nanowires-based waveguide |
US9472560B2 (en) * | 2014-06-16 | 2016-10-18 | Micron Technology, Inc. | Memory cell and an array of memory cells |
US9159829B1 (en) | 2014-10-07 | 2015-10-13 | Micron Technology, Inc. | Recessed transistors containing ferroelectric material |
US9276092B1 (en) | 2014-10-16 | 2016-03-01 | Micron Technology, Inc. | Transistors and methods of forming transistors |
KR101492588B1 (ko) * | 2014-10-27 | 2015-02-11 | 한국기계연구원 | 섬유상 전기 이중층 커패시터 및 그 제조방법 |
US9305929B1 (en) | 2015-02-17 | 2016-04-05 | Micron Technology, Inc. | Memory cells |
CN105140391B (zh) * | 2015-07-02 | 2017-12-08 | 河北大学 | 一种双电荷注入俘获存储器及其制备方法 |
US9853211B2 (en) | 2015-07-24 | 2017-12-26 | Micron Technology, Inc. | Array of cross point memory cells individually comprising a select device and a programmable device |
US10134982B2 (en) | 2015-07-24 | 2018-11-20 | Micron Technology, Inc. | Array of cross point memory cells |
CN107845679A (zh) * | 2016-09-20 | 2018-03-27 | 上海新昇半导体科技有限公司 | 一种基于负电容的环栅场效应晶体管及其制作方法 |
US10796901B2 (en) * | 2016-09-29 | 2020-10-06 | Nanoco Technologies Ltd. | Shelling of halide perovskite nanoparticles for the prevention of anion exchange |
US10396145B2 (en) | 2017-01-12 | 2019-08-27 | Micron Technology, Inc. | Memory cells comprising ferroelectric material and including current leakage paths having different total resistances |
CN108305877B (zh) * | 2017-01-13 | 2020-09-25 | 上海新昇半导体科技有限公司 | 一种后栅无结与非门闪存存储器及其制作方法 |
KR101926028B1 (ko) * | 2017-07-25 | 2018-12-06 | 한국과학기술연구원 | 구형의 상보적 저항 변화성 충전재 및 그를 포함하는 비휘발성 상보적 저항 변화 메모리 |
US11170834B2 (en) | 2019-07-10 | 2021-11-09 | Micron Technology, Inc. | Memory cells and methods of forming a capacitor including current leakage paths having different total resistances |
CN115125620B (zh) * | 2021-03-26 | 2023-07-28 | 清华大学 | 碲化铁的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1064255A (ja) * | 1996-08-20 | 1998-03-06 | Tokyo Inst Of Technol | 単一トランジスタ型強誘電体メモリへのデータ書込み方法 |
JPH10107215A (ja) * | 1996-09-30 | 1998-04-24 | Fujitsu Ltd | 強誘電体記憶装置 |
JP2004311512A (ja) * | 2003-04-02 | 2004-11-04 | Mitsubishi Electric Corp | 多値情報記憶素子、その使用方法およびその製造方法 |
Family Cites Families (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873359A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3900614A (en) | 1971-11-26 | 1975-08-19 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3873360A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
JPS6194042A (ja) * | 1984-10-16 | 1986-05-12 | Matsushita Electric Ind Co Ltd | 分子構築体およびその製造方法 |
US4939556A (en) | 1986-07-10 | 1990-07-03 | Canon Kabushiki Kaisha | Conductor device |
US5089545A (en) * | 1989-02-12 | 1992-02-18 | Biotech International, Inc. | Switching and memory elements from polyamino acids and the method of their assembly |
US5023139A (en) * | 1989-04-04 | 1991-06-11 | Research Corporation Technologies, Inc. | Nonlinear optical materials |
CA2070389A1 (en) | 1989-10-18 | 1991-04-19 | Ramesh C. Patel | Coated particles and methods of coating particles |
US5274602A (en) | 1991-10-22 | 1993-12-28 | Florida Atlantic University | Large capacity solid-state memory |
JP3243303B2 (ja) * | 1991-10-28 | 2002-01-07 | ゼロックス・コーポレーション | 量子閉じ込め半導体発光素子及びその製造方法 |
US5475341A (en) | 1992-06-01 | 1995-12-12 | Yale University | Sub-nanoscale electronic systems and devices |
US5252835A (en) | 1992-07-17 | 1993-10-12 | President And Trustees Of Harvard College | Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale |
US5453970A (en) | 1993-07-13 | 1995-09-26 | Rust; Thomas F. | Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe |
WO1995002709A2 (en) | 1993-07-15 | 1995-01-26 | President And Fellows Of Harvard College | EXTENDED NITRIDE MATERIAL COMPRISING β-C3N¿4? |
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US5776748A (en) | 1993-10-04 | 1998-07-07 | President And Fellows Of Harvard College | Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor |
US5900160A (en) * | 1993-10-04 | 1999-05-04 | President And Fellows Of Harvard College | Methods of etching articles via microcontact printing |
US6180239B1 (en) * | 1993-10-04 | 2001-01-30 | President And Fellows Of Harvard College | Microcontact printing on surfaces and derivative articles |
JP3254865B2 (ja) | 1993-12-17 | 2002-02-12 | ソニー株式会社 | カメラ装置 |
EP0659911A1 (en) | 1993-12-23 | 1995-06-28 | International Business Machines Corporation | Method to form a polycrystalline film on a substrate |
US5620850A (en) * | 1994-09-26 | 1997-04-15 | President And Fellows Of Harvard College | Molecular recognition at surfaces derivatized with self-assembled monolayers |
US5581091A (en) | 1994-12-01 | 1996-12-03 | Moskovits; Martin | Nanoelectric devices |
US5866434A (en) * | 1994-12-08 | 1999-02-02 | Meso Scale Technology | Graphitic nanotubes in luminescence assays |
US5539214A (en) | 1995-02-06 | 1996-07-23 | Regents Of The University Of California | Quantum bridges fabricated by selective etching of superlattice structures |
US5524092A (en) * | 1995-02-17 | 1996-06-04 | Park; Jea K. | Multilayered ferroelectric-semiconductor memory-device |
EP0812434B1 (en) | 1995-03-01 | 2013-09-18 | President and Fellows of Harvard College | Microcontact printing on surfaces and derivative articles |
US5747180A (en) * | 1995-05-19 | 1998-05-05 | University Of Notre Dame Du Lac | Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays |
US5824470A (en) | 1995-05-30 | 1998-10-20 | California Institute Of Technology | Method of preparing probes for sensing and manipulating microscopic environments and structures |
US5751156A (en) * | 1995-06-07 | 1998-05-12 | Yale University | Mechanically controllable break transducer |
US6190634B1 (en) * | 1995-06-07 | 2001-02-20 | President And Fellows Of Harvard College | Carbide nanomaterials |
JPH0963282A (ja) * | 1995-08-23 | 1997-03-07 | Sharp Corp | 強誘電体型半導体記憶素子並びに、記憶装置及びそのアクセス方法 |
US5757038A (en) * | 1995-11-06 | 1998-05-26 | International Business Machines Corporation | Self-aligned dual gate MOSFET with an ultranarrow channel |
WO1997019208A1 (en) * | 1995-11-22 | 1997-05-29 | Northwestern University | Method of encapsulating a material in a carbon nanotube |
US5897945A (en) * | 1996-02-26 | 1999-04-27 | President And Fellows Of Harvard College | Metal oxide nanorods |
US6036774A (en) * | 1996-02-26 | 2000-03-14 | President And Fellows Of Harvard College | Method of producing metal oxide nanorods |
ES2166987T3 (es) | 1996-03-15 | 2002-05-01 | Harvard College | Metodo de formar articulos y superficies modeladas mediante micromoldeo capilar. |
US6355198B1 (en) * | 1996-03-15 | 2002-03-12 | President And Fellows Of Harvard College | Method of forming articles including waveguides via capillary micromolding and microtransfer molding |
US6060121A (en) | 1996-03-15 | 2000-05-09 | President And Fellows Of Harvard College | Microcontact printing of catalytic colloids |
US5640343A (en) * | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
RU2099808C1 (ru) | 1996-04-01 | 1997-12-20 | Евгений Инвиевич Гиваргизов | Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты) |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5726524A (en) * | 1996-05-31 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Field emission device having nanostructured emitters |
EP0927331B1 (en) * | 1996-08-08 | 2004-03-31 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
JPH10106960A (ja) * | 1996-09-25 | 1998-04-24 | Sony Corp | 量子細線の製造方法 |
KR100413805B1 (ko) * | 1996-10-31 | 2004-06-26 | 삼성전자주식회사 | 누설전류를이용한매트릭스형다진법강유전체랜덤액세서메모리 |
US6038060A (en) * | 1997-01-16 | 2000-03-14 | Crowley; Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US5908692A (en) * | 1997-01-23 | 1999-06-01 | Wisconsin Alumni Research Foundation | Ordered organic monolayers and methods of preparation thereof |
US6008777A (en) | 1997-03-07 | 1999-12-28 | Intel Corporation | Wireless connectivity between a personal computer and a television |
US5997832A (en) | 1997-03-07 | 1999-12-07 | President And Fellows Of Harvard College | Preparation of carbide nanorods |
DE69830847T2 (de) | 1997-03-07 | 2006-01-12 | William Marsh Rice University, Houston | Kohlenstofffasern ausgehend von einwandigen kohlenstoffnanoröhren |
JP3183845B2 (ja) | 1997-03-21 | 2001-07-09 | 財団法人ファインセラミックスセンター | カーボンナノチューブ及びカーボンナノチューブ膜の製造方法 |
US5847565A (en) | 1997-03-31 | 1998-12-08 | Council Of Scientific And Industrial Research | Logic device |
US6359288B1 (en) * | 1997-04-24 | 2002-03-19 | Massachusetts Institute Of Technology | Nanowire arrays |
US5864823A (en) * | 1997-06-25 | 1999-01-26 | Virtel Corporation | Integrated virtual telecommunication system for E-commerce |
US6069380A (en) * | 1997-07-25 | 2000-05-30 | Regents Of The University Of Minnesota | Single-electron floating-gate MOS memory |
US7001996B1 (en) * | 1997-08-21 | 2006-02-21 | The United States Of America As Represented By The Secretary Of The Army | Enzymatic template polymerization |
US6187165B1 (en) * | 1997-10-02 | 2001-02-13 | The John Hopkins University | Arrays of semi-metallic bismuth nanowires and fabrication techniques therefor |
US5903010A (en) * | 1997-10-29 | 1999-05-11 | Hewlett-Packard Company | Quantum wire switch and switching method |
JP3740295B2 (ja) | 1997-10-30 | 2006-02-01 | キヤノン株式会社 | カーボンナノチューブデバイス、その製造方法及び電子放出素子 |
US6004444A (en) | 1997-11-05 | 1999-12-21 | The Trustees Of Princeton University | Biomimetic pathways for assembling inorganic thin films and oriented mesoscopic silicate patterns through guided growth |
US20030135971A1 (en) | 1997-11-12 | 2003-07-24 | Michael Liberman | Bundle draw based processing of nanofibers and method of making |
US6762056B1 (en) | 1997-11-12 | 2004-07-13 | Protiveris, Inc. | Rapid method for determining potential binding sites of a protein |
US6123819A (en) | 1997-11-12 | 2000-09-26 | Protiveris, Inc. | Nanoelectrode arrays |
US6207392B1 (en) * | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
JP3902883B2 (ja) | 1998-03-27 | 2007-04-11 | キヤノン株式会社 | ナノ構造体及びその製造方法 |
US6287765B1 (en) | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
JP2000041320A (ja) * | 1998-05-20 | 2000-02-08 | Yazaki Corp | グロメット |
EP0962773A1 (en) | 1998-06-03 | 1999-12-08 | Mark Howard Jones | Electrochemical based assay processes instrument and labels |
US6159742A (en) | 1998-06-05 | 2000-12-12 | President And Fellows Of Harvard College | Nanometer-scale microscopy probes |
US6203864B1 (en) | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
US7416699B2 (en) | 1998-08-14 | 2008-08-26 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube devices |
WO2000017101A1 (en) | 1998-09-18 | 2000-03-30 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes |
DE69938353T2 (de) | 1998-09-24 | 2009-03-05 | Indiana University Research and Technology Corp., Indianapolis | Wasserlösliche lumineszente quantum-dots sowie deren biokonjugate |
EP1135792A4 (en) | 1998-09-28 | 2005-06-08 | Xidex Corp | METHOD FOR PRODUCING CARBON NANOROES AS FUNCTIONAL ELEMENTS OF MEMS COMPONENTS |
US6705152B2 (en) | 2000-10-24 | 2004-03-16 | Nanoproducts Corporation | Nanostructured ceramic platform for micromachined devices and device arrays |
US6468657B1 (en) | 1998-12-04 | 2002-10-22 | The Regents Of The University Of California | Controllable ion-exchange membranes |
US20020013031A1 (en) * | 1999-02-09 | 2002-01-31 | Kuen-Jian Chen | Method of improving the reliability of gate oxide layer |
US6149819A (en) | 1999-03-02 | 2000-11-21 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation and peroxygenation |
US6143184A (en) | 1999-03-02 | 2000-11-07 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation |
US6314019B1 (en) | 1999-03-29 | 2001-11-06 | Hewlett-Packard Company | Molecular-wire crossbar interconnect (MWCI) for signal routing and communications |
US6459095B1 (en) | 1999-03-29 | 2002-10-01 | Hewlett-Packard Company | Chemically synthesized and assembled electronics devices |
US7030408B1 (en) * | 1999-03-29 | 2006-04-18 | Hewlett-Packard Development Company, L.P. | Molecular wire transistor (MWT) |
US6128214A (en) | 1999-03-29 | 2000-10-03 | Hewlett-Packard | Molecular wire crossbar memory |
US6256767B1 (en) | 1999-03-29 | 2001-07-03 | Hewlett-Packard Company | Demultiplexer for a molecular wire crossbar network (MWCN DEMUX) |
US6270074B1 (en) | 1999-04-14 | 2001-08-07 | Hewlett-Packard Company | Print media vacuum holddown |
AUPP976499A0 (en) | 1999-04-16 | 1999-05-06 | Commonwealth Scientific And Industrial Research Organisation | Multilayer carbon nanotube films |
US20030124509A1 (en) | 1999-06-03 | 2003-07-03 | Kenis Paul J.A. | Laminar flow patterning and articles made thereby |
WO2001003208A1 (en) | 1999-07-02 | 2001-01-11 | President And Fellows Of Harvard College | Nanoscopic wire-based devices, arrays, and methods of their manufacture |
US6538367B1 (en) * | 1999-07-15 | 2003-03-25 | Agere Systems Inc. | Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same |
US6465132B1 (en) | 1999-07-22 | 2002-10-15 | Agere Systems Guardian Corp. | Article comprising small diameter nanowires and method for making the same |
US6286226B1 (en) | 1999-09-24 | 2001-09-11 | Agere Systems Guardian Corp. | Tactile sensor comprising nanowires and method for making the same |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
US6741019B1 (en) * | 1999-10-18 | 2004-05-25 | Agere Systems, Inc. | Article comprising aligned nanowires |
US6437329B1 (en) | 1999-10-27 | 2002-08-20 | Advanced Micro Devices, Inc. | Use of carbon nanotubes as chemical sensors by incorporation of fluorescent molecules within the tube |
US6974706B1 (en) | 2003-01-16 | 2005-12-13 | University Of Florida Research Foundation, Inc. | Application of biosensors for diagnosis and treatment of disease |
US20050037374A1 (en) * | 1999-11-08 | 2005-02-17 | Melker Richard J. | Combined nanotechnology and sensor technologies for simultaneous diagnosis and treatment |
US7186355B2 (en) * | 2000-02-04 | 2007-03-06 | Massachusetts Institute Of Technology | Insulated nanoscopic pathways, compositions and devices of the same |
US6503375B1 (en) * | 2000-02-11 | 2003-01-07 | Applied Materials, Inc | Electroplating apparatus using a perforated phosphorus doped consumable anode |
JP2004502554A (ja) * | 2000-03-22 | 2004-01-29 | ユニバーシティー オブ マサチューセッツ | ナノシリンダー・アレイ |
US6720240B2 (en) | 2000-03-29 | 2004-04-13 | Georgia Tech Research Corporation | Silicon based nanospheres and nanowires |
JP4089122B2 (ja) | 2000-03-31 | 2008-05-28 | 株式会社リコー | 接触型帯電器の製造方法、該方法によって得られる接触型帯電器、帯電方法および画像記録装置 |
US7323143B2 (en) | 2000-05-25 | 2008-01-29 | President And Fellows Of Harvard College | Microfluidic systems including three-dimensionally arrayed channel networks |
US6724655B2 (en) * | 2000-06-22 | 2004-04-20 | Progressant Technologies, Inc. | Memory cell using negative differential resistance field effect transistors |
US6440637B1 (en) | 2000-06-28 | 2002-08-27 | The Aerospace Corporation | Electron beam lithography method forming nanocrystal shadowmasks and nanometer etch masks |
EP1170799A3 (de) | 2000-07-04 | 2009-04-01 | Infineon Technologies AG | Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements |
US6468677B1 (en) | 2000-08-01 | 2002-10-22 | Premark Rwp Holdings Inc. | Electroluminescent high pressure laminate |
KR100995457B1 (ko) * | 2000-08-22 | 2010-11-18 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 제조 방법 |
US7301199B2 (en) * | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
WO2003005450A2 (en) | 2001-05-18 | 2003-01-16 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
US20060175601A1 (en) | 2000-08-22 | 2006-08-10 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
AU2002211807A1 (en) | 2000-09-11 | 2002-03-26 | Massachusetts Institute Of Technology | Direct haplotyping using carbon nanotube probes |
WO2002022499A1 (en) * | 2000-09-18 | 2002-03-21 | President And Fellows Of Harvard College | Fabrication of nanotube microscopy tips |
AU2001294876A1 (en) * | 2000-09-29 | 2002-04-08 | President And Fellows Of Harvard College | Direct growth of nanotubes, and their use in nanotweezers |
AU2002211587A1 (en) | 2000-10-10 | 2002-04-22 | Bioforce Nanosciences, Inc | Nanoscale sensor |
JP3811004B2 (ja) * | 2000-11-26 | 2006-08-16 | 喜萬 中山 | 導電性走査型顕微鏡用プローブ |
KR100991573B1 (ko) * | 2000-12-11 | 2010-11-04 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | 나노센서 |
US20020084502A1 (en) | 2000-12-29 | 2002-07-04 | Jin Jang | Carbon nanotip and fabricating method thereof |
WO2002079514A1 (en) | 2001-01-10 | 2002-10-10 | The Trustees Of Boston College | Dna-bridged carbon nanotube arrays |
US6586095B2 (en) | 2001-01-12 | 2003-07-01 | Georgia Tech Research Corp. | Semiconducting oxide nanostructures |
AU2002344316A1 (en) | 2001-01-19 | 2002-11-25 | California Institute Of Technology | Carbon nanobimorph actuator and sensor |
WO2002073699A2 (en) | 2001-03-14 | 2002-09-19 | University Of Massachusetts | Nanofabrication |
US8029734B2 (en) * | 2001-03-29 | 2011-10-04 | The Board Of Trustees Of The Leland Stanford Junior University | Noncovalent sidewall functionalization of carbon nanotubes |
US6996147B2 (en) | 2001-03-30 | 2006-02-07 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US6803840B2 (en) | 2001-03-30 | 2004-10-12 | California Institute Of Technology | Pattern-aligned carbon nanotube growth and tunable resonator apparatus |
WO2002086480A1 (en) | 2001-04-18 | 2002-10-31 | Stanford University | Photodesorption in carbon nanotubes |
US7232460B2 (en) * | 2001-04-25 | 2007-06-19 | Xillus, Inc. | Nanodevices, microdevices and sensors on in-vivo structures and method for the same |
US6902720B2 (en) | 2001-05-10 | 2005-06-07 | Worcester Polytechnic Institute | Cyclic peptide structures for molecular scale electronic and photonic devices |
US7132275B2 (en) | 2001-05-14 | 2006-11-07 | The John Hopkins University | Multifunctional magnetic nanowires |
US20030048619A1 (en) * | 2001-06-15 | 2003-03-13 | Kaler Eric W. | Dielectrophoretic assembling of electrically functional microwires |
US6846565B2 (en) * | 2001-07-02 | 2005-01-25 | Board Of Regents, The University Of Texas System | Light-emitting nanoparticles and method of making same |
US20030113940A1 (en) * | 2001-07-16 | 2003-06-19 | Erlanger Bernard F. | Antibodies specific for nanotubes and related methods and compositions |
CN100506689C (zh) * | 2001-07-20 | 2009-07-01 | 哈佛学院 | 过渡金属氧化物纳米导线及将它们结合的装置 |
KR100455284B1 (ko) | 2001-08-14 | 2004-11-12 | 삼성전자주식회사 | 탄소나노튜브를 이용한 고용량의 바이오분자 검출센서 |
US7063946B2 (en) * | 2001-09-10 | 2006-06-20 | Meso Scale Technologies, Llc. | Methods, reagents, kits and apparatus for protein function analysis |
US7482168B2 (en) * | 2001-09-15 | 2009-01-27 | The Regents Of The University Of California | Photoluminescent polymetalloles as chemical sensors |
US20030073071A1 (en) * | 2001-10-12 | 2003-04-17 | Jurgen Fritz | Solid state sensing system and method for measuring the binding or hybridization of biomolecules |
JP4435569B2 (ja) * | 2001-11-26 | 2010-03-17 | ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 常温に近い温度で製造され及び動作する、化学的検出材料としての半導体材料の用途 |
US20030124717A1 (en) | 2001-11-26 | 2003-07-03 | Yuji Awano | Method of manufacturing carbon cylindrical structures and biopolymer detection device |
US7385262B2 (en) * | 2001-11-27 | 2008-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Band-structure modulation of nano-structures in an electric field |
WO2003054931A1 (en) | 2001-12-12 | 2003-07-03 | Jorma Virtanen | Method and apparatus for nano-sensing |
US6882767B2 (en) * | 2001-12-27 | 2005-04-19 | The Regents Of The University Of California | Nanowire optoelectric switching device and method |
US20030134433A1 (en) | 2002-01-16 | 2003-07-17 | Nanomix, Inc. | Electronic sensing of chemical and biological agents using functionalized nanostructures |
US7073157B2 (en) | 2002-01-18 | 2006-07-04 | California Institute Of Technology | Array-based architecture for molecular electronics |
CN1444259A (zh) | 2002-03-12 | 2003-09-24 | 株式会社东芝 | 半导体器件的制造方法 |
US20040026684A1 (en) * | 2002-04-02 | 2004-02-12 | Nanosys, Inc. | Nanowire heterostructures for encoding information |
US6872645B2 (en) | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
US20030189202A1 (en) | 2002-04-05 | 2003-10-09 | Jun Li | Nanowire devices and methods of fabrication |
US20040067530A1 (en) * | 2002-05-08 | 2004-04-08 | The Regents Of The University Of California | Electronic sensing of biomolecular processes |
US7335552B2 (en) * | 2002-05-15 | 2008-02-26 | Raytheon Company | Electrode for thin film capacitor devices |
AU2003258969A1 (en) | 2002-06-27 | 2004-01-19 | Nanosys Inc. | Planar nanowire based sensor elements, devices, systems and methods for using and making same |
US7335908B2 (en) * | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
WO2004010552A1 (en) * | 2002-07-19 | 2004-01-29 | President And Fellows Of Harvard College | Nanoscale coherent optical components |
ATE360873T1 (de) * | 2002-07-25 | 2007-05-15 | California Inst Of Techn | Sublithographische nanobereichs- speicherarchitektur |
WO2004027822A2 (en) | 2002-09-05 | 2004-04-01 | Nanosys, Inc. | Oriented nanostructures and methods of preparing |
JP2005538573A (ja) | 2002-09-05 | 2005-12-15 | ナノシス・インク. | ナノ構造及びナノ複合材をベースとする組成物 |
US7572393B2 (en) * | 2002-09-05 | 2009-08-11 | Nanosys Inc. | Organic species that facilitate charge transfer to or from nanostructures |
CN100466297C (zh) * | 2002-09-05 | 2009-03-04 | 奈米系统股份有限公司 | 纳米结构、纳米复合物基的组合物及光生伏打装置 |
US7135728B2 (en) | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
JP5336031B2 (ja) | 2002-09-30 | 2013-11-06 | ナノシス・インク. | 大面積ナノ可能マクロエレクトロニクス基板およびその使用 |
US7051945B2 (en) * | 2002-09-30 | 2006-05-30 | Nanosys, Inc | Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites |
TWI354261B (en) | 2002-09-30 | 2011-12-11 | Nanosys Inc | Integrated displays using nanowire transistors |
US7067867B2 (en) * | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US7303875B1 (en) | 2002-10-10 | 2007-12-04 | Nanosys, Inc. | Nano-chem-FET based biosensors |
US7163659B2 (en) * | 2002-12-03 | 2007-01-16 | Hewlett-Packard Development Company, L.P. | Free-standing nanowire sensor and method for detecting an analyte in a fluid |
US6815706B2 (en) | 2002-12-17 | 2004-11-09 | Hewlett-Packard Development Company, L.P. | Nano optical sensors via molecular self-assembly |
EP1652218A2 (en) * | 2003-08-04 | 2006-05-03 | Nanosys, Inc. | System and process for producing nanowire composites and electronic substrates therefrom |
US7067328B2 (en) * | 2003-09-25 | 2006-06-27 | Nanosys, Inc. | Methods, devices and compositions for depositing and orienting nanostructures |
US20050253137A1 (en) | 2003-11-20 | 2005-11-17 | President And Fellows Of Harvard College | Nanoscale arrays, robust nanostructures, and related devices |
US7662706B2 (en) * | 2003-11-26 | 2010-02-16 | Qunano Ab | Nanostructures formed of branched nanowhiskers and methods of producing the same |
US20090227107A9 (en) * | 2004-02-13 | 2009-09-10 | President And Fellows Of Havard College | Nanostructures Containing Metal Semiconductor Compounds |
WO2005093831A1 (en) | 2004-02-13 | 2005-10-06 | President And Fellows Of Harvard College | Nanostructures containing metal-semiconductor compounds |
US7595528B2 (en) | 2004-03-10 | 2009-09-29 | Nanosys, Inc. | Nano-enabled memory devices and anisotropic charge carrying arrays |
US20050202615A1 (en) | 2004-03-10 | 2005-09-15 | Nanosys, Inc. | Nano-enabled memory devices and anisotropic charge carrying arrays |
EP1723676A4 (en) | 2004-03-10 | 2009-04-15 | Nanosys Inc | MEMORY BLOCKS WITH NANO-ABILITY AND ANISOTROPE CHARGE CARRIER ARRAYS |
US7057881B2 (en) | 2004-03-18 | 2006-06-06 | Nanosys, Inc | Nanofiber surface based capacitors |
US7115971B2 (en) | 2004-03-23 | 2006-10-03 | Nanosys, Inc. | Nanowire varactor diode and methods of making same |
KR20070011550A (ko) | 2004-04-30 | 2007-01-24 | 나노시스, 인크. | 나노와이어 성장 및 획득 시스템 및 방법 |
CA2565765A1 (en) | 2004-05-13 | 2005-12-01 | The Regents Of The University Of California | Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices |
US7129154B2 (en) | 2004-05-28 | 2006-10-31 | Agilent Technologies, Inc | Method of growing semiconductor nanowires with uniform cross-sectional area using chemical vapor deposition |
EP1797584A4 (en) | 2004-06-08 | 2014-08-13 | Sandisk Corp | METHOD AND DEVICES FOR FORMING NANOSTRUCTURE MONOSLAYS AND EQUIPMENT WITH SUCH MONOSLAYS |
CA2572798A1 (en) * | 2004-07-07 | 2006-07-27 | Nanosys, Inc. | Systems and methods for harvesting and integrating nanowires |
US20060269927A1 (en) | 2005-05-25 | 2006-11-30 | Lieber Charles M | Nanoscale sensors |
WO2006132659A2 (en) | 2005-06-06 | 2006-12-14 | President And Fellows Of Harvard College | Nanowire heterostructures |
US20090299213A1 (en) | 2006-03-15 | 2009-12-03 | President And Fellows Of Harvard College | Nanobioelectronics |
WO2007145701A2 (en) | 2006-04-07 | 2007-12-21 | President And Fellows Of Harvard College | Nanoscale wire methods and devices |
US8058640B2 (en) | 2006-09-11 | 2011-11-15 | President And Fellows Of Harvard College | Branched nanoscale wires |
WO2008123869A2 (en) | 2006-11-21 | 2008-10-16 | President And Fellows Of Harvard College | Millimeter-long nanowires |
-
2005
- 2005-12-06 WO PCT/US2005/044212 patent/WO2007044034A2/en active Application Filing
- 2005-12-06 JP JP2007544625A patent/JP2008523590A/ja active Pending
- 2005-12-06 US US11/792,444 patent/US8154002B2/en not_active Expired - Fee Related
- 2005-12-06 CN CNA2005800462921A patent/CN101124638A/zh active Pending
- 2005-12-06 KR KR1020077015434A patent/KR20070101857A/ko not_active Withdrawn
- 2005-12-06 EP EP05858579A patent/EP1831973A2/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1064255A (ja) * | 1996-08-20 | 1998-03-06 | Tokyo Inst Of Technol | 単一トランジスタ型強誘電体メモリへのデータ書込み方法 |
JPH10107215A (ja) * | 1996-09-30 | 1998-04-24 | Fujitsu Ltd | 強誘電体記憶装置 |
JP2004311512A (ja) * | 2003-04-02 | 2004-11-04 | Mitsubishi Electric Corp | 多値情報記憶素子、その使用方法およびその製造方法 |
Non-Patent Citations (2)
Title |
---|
JPN6012012254; S.T.Hsu etal.: 'MFMox Ferroelectric Memory Transistor' Non-Volatile Memory Technology Symposium, 2004 , 20041117, PAGES 24-27, IEEE * |
JPN7012000852; Bo Lei etal.: 'Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects' APPLIED PHYSICS LETTERS VOLUME 84,NUMBER 22, 20040531, P.4553-4555 * |
Also Published As
Publication number | Publication date |
---|---|
KR20070101857A (ko) | 2007-10-17 |
WO2007044034A2 (en) | 2007-04-19 |
WO2007044034A3 (en) | 2007-09-13 |
US8154002B2 (en) | 2012-04-10 |
US20090095950A1 (en) | 2009-04-16 |
EP1831973A2 (en) | 2007-09-12 |
CN101124638A (zh) | 2008-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8154002B2 (en) | Nanoscale wire-based data storage | |
Yoong et al. | Epitaxial ferroelectric Hf0. 5Zr0. 5O2 thin films and their implementations in memristors for brain‐inspired computing | |
CN104040746B (zh) | 存储器单元与电阻切换层的合成 | |
KR101438468B1 (ko) | 다층의 재구성가능한 스위치 | |
US6518156B1 (en) | Configurable nanoscale crossbar electronic circuits made by electrochemical reaction | |
US10134985B2 (en) | Non-volatile solid state resistive switching devices | |
CN101548403B (zh) | 电动开关 | |
US9025372B2 (en) | Large array of upward pointing p-i-n diodes having large and uniform current | |
US8981331B2 (en) | Memory cells having storage elements that share material layers with steering elements and methods of forming the same | |
CN103003971A (zh) | 具有包括击穿层的电阻开关层的存储单元 | |
TW201030752A (en) | Method of programming a nonvolatile memory device containing a carbon storage material | |
CN102487124A (zh) | 纳米多层膜、场效应管、传感器、随机存储器及制备方法 | |
WO2005093831A1 (en) | Nanostructures containing metal-semiconductor compounds | |
KR20170030969A (ko) | 나노구조체 형성방법과 이를 적용한 반도체소자의 제조방법 및 나노구조체를 포함하는 반도체소자 | |
US8440993B2 (en) | Ultrahigh density patterning of conducting media | |
US7553335B2 (en) | Scanning probe microscope probe and manufacturing method therefor, scanning probe microscope and using method therefor, needle-like body and manufacturing method therefor, electronic device and manufacturing method therefor, charge density wave quantum phase microscope, and charge density wave quantum interferometer | |
JP6813844B2 (ja) | トンネル接合素子及び不揮発性メモリ素子 | |
US20120018698A1 (en) | Low-power nanoscale switching device with an amorphous switching material | |
Lemme et al. | 2D Materials for Neuromorphic Computing Devices | |
Jiang et al. | Local on/off currents in BiFeO3 thin films modulated by bipolar polarization orientations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120605 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120612 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121113 |