RU2092435C1 - Осажденный диоксид кремния и способ его получения - Google Patents

Осажденный диоксид кремния и способ его получения Download PDF

Info

Publication number
RU2092435C1
RU2092435C1 RU9495112453A RU95112453A RU2092435C1 RU 2092435 C1 RU2092435 C1 RU 2092435C1 RU 9495112453 A RU9495112453 A RU 9495112453A RU 95112453 A RU95112453 A RU 95112453A RU 2092435 C1 RU2092435 C1 RU 2092435C1
Authority
RU
Russia
Prior art keywords
silicate
amount
silicon dioxide
added
sio
Prior art date
Application number
RU9495112453A
Other languages
English (en)
Other versions
RU95112453A (ru
Inventor
Щеваллье Ивоникк
Прат Эвелин
Original Assignee
Рон-Пуленк Шими
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26230634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2092435(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9311553A external-priority patent/FR2710629B1/fr
Priority claimed from FR9410046A external-priority patent/FR2723581B1/fr
Application filed by Рон-Пуленк Шими filed Critical Рон-Пуленк Шими
Publication of RU95112453A publication Critical patent/RU95112453A/ru
Application granted granted Critical
Publication of RU2092435C1 publication Critical patent/RU2092435C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Steroid Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к осажденному диоксиду кремния и способу его получения. Диоксиды кремния находятся в виде порошка, практически сферических шариков или гранул, имеют удельную поверхность СТАВ между 140 и 240 м2/г, высокий фактор дезагломерации ультразвуком, низкий средний диаметр после дезагломерации ультразвуком и, возможно, такое распределение пор, что объем пор, состоящий из пор, диаметр которых находится между 175 и
Figure 00000001
, составляет менее 50% от объема пор, состоящего из пор с диаметром, меньшим или равным
Figure 00000002
, их используют в качестве усиливающих наполнителей для каучуков. Способ получения осажденного диоксида кремния, заключающийся во взаимодействии силиката щелочного металла М с подкисляющим агентом, с получением при этом суспензии осажденного диоксида кремния, ее разделения и сушки этой суспензии, в котором осаждение проводят следующим образом: формируют основу исходной ванны, состоящую из части суммарного количества силиката щелочного металла М, вступившего в реакцию, концентрация, выраженная в SiO2, в указанной основе ванна должна быть ниже 20 г/л; прибавляют подкисляющий агент к указанной основе исходной ванны до тех пор, пока не будет нейтрализовано по крайней мере 5% количества M2O, имеющегося в указанной основе исходной ванны; прибавляют в реакционную среду подкисляющий агент и оставшееся количество силиката щелочного металла М таким образом, чтобы отношение количества прибавленного силиката, выраженного в SiO2, к количеству диоксида кремния, имеющегося в основе исходной ванны /выраженному в SiO2 /было больше 4 и меньше 100. 2 с. и 13 з.п.ф-лы, 8 табл.

Description

Изобретение относится к способу получения осажденного диоксида кремния, причем осажденные диоксиды кремния, в частности, находятся в виде порошка, практически сферических шариков или в гранулированном виде, которые используются в качестве усиливающего наполнителя для эластомеров.
Известен осажденный диоксид кремния, используемый в качестве усиливающего наполнителя для эластомеров и имеющий следующие характеристики: удельная поверхность (метод ВЕТ) и удельная поверхность (метод СТАВ) находятся между 140 и 200 м2/г, схватывание в масле (метод ДОР) 180-350 мл/100 г.
Описан способ его получения путем взаимодействия силиката щелочного металла с подкисляющим агентом с последующим отделением и сушкой осадка продукта.
Известно, что осажденный диоксид кремния уже давно используют в качестве усиливающего наполнителя в эластомерах, в частности в пневматических шинах.
Однако любой усиливающий наполнитель, с одной стороны, должен быть удобным в работе, а с другой стороны, легко включаться в смеси.
В общем известно, что для получения оптимальных усиливающих свойств, присущих наполнителю, следует, чтобы этот последний находился в матрице эластомера в готовом виде, т.е. был по возможности наиболее тонко измельчен и распределен по возможности равномерно. Итак, такие условия могут быть осуществлены только тогда, когда, с одной стороны, наполнитель обладает способностью очень хорошо включаться в матрицу при смешивании с эластомером /включаемость наполнителя/ и расслаиваться или распределяться в виде очень тонкого порошка /дезагрегация наполнителя/, и когда, с другой стороны, сам порошок, выходящий из описанного процесса дезагрегации, может в свою очередь хорошо и равномерно диспергироваться в эластомере /диспергирование порошка/.
Кроме того, по причинам взаимного сродства частицы диоксида кремния обладают нежелательной тенденцией слипаться между собой в матрице эластомера. Такие взаимодействия диоксид кремния/диоксид кремния, следовательно, являются неблагоприятными из-за более низкого уровня усиливающих свойств, чем теоретически возможный для достижения, если все взаимодействия диоксид кремния/эластомер, которые могут быть созданы во время операции смешивания, эффективно получены /это теоретическое число взаимодействий оксид кремния/эластомер, как хорошо известно, прямо пропорционально наружной поверхности использованного диоксида кремния/.
Кроме того, такие взаимодействия диоксид кремния/диоксид кремния, когда они уже созданы, приводят к увеличению жесткости и плотности смесей, затрудняя таким образом их приготовление.
Возникает проблема иметь наполнители, которые даже при относительно большом размере, обладают способностью очень хорошо диспергироваться в эластомерах.
Целью изобретения является устранение указанных недостатков и решение указанной проблемы.
Более конкретно целью изобретения является разработка нового способа получения осажденного диоксида кремния, обладающего способностью диспергироваться /и отсутствием тенденции к слипанию/ и/или значительно улучшенными усиливающими свойствами, в частности, при использовании в качестве усиливающего наполнителя для эластомеров, придавая последним отличный компромисс между их различными механическими свойствами.
Изобретение также относится к осажденным диоксидам кремния, которые предпочтительно находятся в виде порошков, практически сферических шариков или, возможно, гранул и которые, даже имея относительно большие размеры, обладают способностью диспергироваться /и не слипаться/ в очень удовлетворительной степени и улучшенными в целом усиливающими свойствами.
Наконец, оно относится к использованию указанных осажденных диоксидов кремния в качестве усиливающего наполнителя для эластомеров.
Также одним из объектов изобретения является способ получения диоксида кремния осажденного типа, заключающийся во взаимодействии силиката щелочного металла М с подкисляющим агентом, в результате чего получают суспензию осажденного диоксида кремния с последующими разделением и сушкой указанной суспензии, отличающийся тем, что осаждение проводят следующим образом:
/i/ формируют основу исходной ванны, содержащую часть общего количества силиката щелочного металла М, вовлеченного в реакцию, концентрация силиката, выраженная в SiO2, в указанной основе ванны ниже 20 г/л,
/ii/ прибавляют подкисляющий агент к указанной основе ванны до тех пор, чтобы по крайней мере 5% от количества М2O, имеющегося в указанной основе исходной ванны, было нейтрализовано,
/iii/ прибавляют в реакционную среду одновременно подкисляющий агент и остальное количество силиката щелочного металла М, чтобы отношение количества прибавленного силиката /выраженного в SiO2/ к количеству силиката, имеющегося в основе исходной ванны /выраженному в SiO2/, называемое степенью консолидации, было выше 4 и не более 100.
Также было обнаружено, что очень низкая концентрация силиката, выраженная в SiO2, в основе исходной ванны, а также степень консолидации, примененная на стадии одновременного добавления, являются важными условиями для придания полученным продуктам их отличных свойств.
В общем следует отметить, что рассматриваемый способ является способом синтеза диоксида кремния осаждением, т.е. что речь идет о подкисляющем агенте для силиката щелочного металла М.
Выбор подкисляющего агента и силиката осуществляется хорошо известным образом. Модно указать, что обычно в качестве подкисляющего агента используют сильную минеральную кислоту, такую как серная кислота, азотная кислота или соляная кислота, или органическую кислоту, такую как уксусная кислота, муравьиная кислота или угольная кислота.
Кроме того, можно использовать в качестве силиката любую обычную форму силикатов, такую как метасиликаты, дисиликаты и преимущественно силикат щелочного металла М, в котором М является натрием или калием.
Обычно в качестве подкисляющего агента используют серную кислоту, а в качестве силиката силикат натрия.
В случае, когда используют силикат натрия, он имеет обычно молярное соотношение SiO2/Na2O, лежащее между 2 и 4, более конкретно, между 3,0 и 3,7.
Что касается способа получения согласно изобретению, осаждение проводят специфическим образом в соответствии со следующими стадиями.
Сначала формируют основу ванны, которая состоит из силиката. Количество силиката, имеющегося в этой основе исходной ванны, целесообразно составляет только часть общего количества силиката, вводимого в реакцию.
Согласно существенному признаку способа получения согласно изобретению концентрация силиката в основе исходной ванны ниже 20 г/л, считая на SiO2.
Эта концентрация может быть не более 11 г/л, и возможно не более 8 г/л.
Например, когда разделение, проводимое позже в способе настоящего изобретения, представляет собой фильтрацию, проводимую с помощью фильтр-пресса, предпочтительно эта концентрация составляет по крайней мере 8 г/л, в частности она находится между 10 и 15 г/л, например, между 11 и 15 г/л; сушку, проводимую далее в способе согласно изобретению, тогда целесообразно осуществлять распылением с помощью распыляющих сопел.
Условия, предписанные для концентрации силиката в основе исходной ванны, частично вносят вклад в характеристики полученных диоксидов кремния.
Основа исходной ванны может представлять собой электролит. Тем не менее предпочтительно не использовать никакого электролита во время процесса получения согласно изобретению; в частности предпочтительно, чтобы основа исходной ванны не являлась электролитом.
Термин электролит используется здесь в его обычном значении, т.е. он означает любое ионное или молекулярное вещество, которое, находясь в растворе, разлагается или растворяется с образованием ионов или заряженных частиц. В качестве электролита можно привести соль или группы солей щелочных и щелочно-земельных металлов, например соль металла исходного силиката и подкисляющего агента, например сульфат натрия в случае реакции силиката натрия с серной кислотой.
Вторая стадия заключается в добавлении подкисляющего агента к основе ванны указанного состава.
Так, на этой второй стадии прибавляют подкисляющий агент к указанной основе исходной ванны до тех пор, пока по крайней мере 5% предпочтительно по крайней мере 50% от количества M2O, имеющегося в указанной основе исходной ванны, не будет нейтрализовано.
Предпочтительно на этой второй стадии прибавляют подкисляющий агент к указанной основе исходной ванны до тех пор, пока не будет нейтрализовано 50-99% количества M2O, имеющегося в указанной основе исходной ванны.
Подкисляющий агент может быть разбавленным или концентрированным, его нормальность может быть между 0,4 и 36н. например между 0,6 и 1,5н.
В частности, когда подкисляющий агент является серной кислотой, ее концентрация предпочтительно находится между 40 и 180 г/л, например между 60 и 130 г/л.
Как только достигается желаемая величина нейтрализованного количества M2O, проводят одновременно добавление /стадия /iii/ подкисляющего агента и остального количества силиката щелочного металла М, чтобы степень консолидации, т.е. отношение количества прибавленного силиката /выраженного в SiO2/ к количеству силиката, имеющегося в основе исходной ванны /выраженному в SiO2/ было выше 4 и ниже 100.
Согласно варианту способа изобретения проводят это одновременное добавление подкисляющего агента и количества щелочного металла М, чтобы степень консолидации находилась между 12 и 100, предпочтительно между 12 и 50, например между 13 и 40.
Согласно другому варианту способа изобретения осуществляют это одновременное добавление подкисляющего агента и остального количества силиката щелочного металла М таким образом, чтобы степень консолидации была выше 4 и ниже 12, предпочтительно между 5 и 11,5, а именно между 7,5 и 11. Этот вариант обычно осуществляют, когда концентрация силиката в основе исходной ванны составляет по крайней мере 8 г/л, в частности она находится между 10 и 15 г/л, например между 11 и 15 г/л.
Предпочтительно во время всей стадии /iii/ количество прибавленного подкисляющего агента является таким, что 80-99% например 85-97% от прибавленного количества M2O, было нейтрализовано.
На стадии /iii/ можно осуществлять одновременное добавление подкисляющего агента и силиката при первом уровне pH реакционной среды, pH1, затем при втором уровне pH реакционной среды, pH2, таким образом, что 7< pH2 <pH1<9.
Подкисляющий агент, использованный во время стадии /iii/, может быть разбавленным или концентрированным, его нормальность может быть между 0,4 и 36н. например, между 0,6 и 1,5н.
В частности в случае, когда этот подкисляющий агент является серной кислотой, ее концентрация предпочтительно находится между 40 и 180 г/л, например между 60 и 130 г/л.
Обычно силикат щелочного металла М, прибавленный на стадии /iii/, имеет концентрацию, выраженную в SiO2, между 40 и 330 г/л, например между 60 и 300 г/л, в частности между 60 и 250 г/л.
Реакция осаждения, собственно говоря, заканчивается, когда прибавляют все количество оставшегося силиката.
Может быть выгодно проводить, например, после одновременного указанного прибавления вызревание реакционной среды, это вызревание может длиться, например, в течение 1-60 мин, в частности 5-30 мин.
Наконец, желательно после осаждения на последней стадии, например перед возможным вызреванием, добавить в реакционную среду дополнительное количество подкисляющего агента. Такое добавление обычно проводят до получения величины pH реакционной среды, лежащей между 3 и 6,5, предпочтительно между 4 и 5,5. Оно позволяет, например, нейтрализовать все количество M2O, добавленного на стадии /iii/ и регулировать pH готового диоксида кремния на желаемом уровне для данного применения.
Подкисляющий агент, используемый для этого добавления, является обычно идентичным подкисляющему агенту, использованному на стадии /iii/ способа получения согласно изобретению.
Температура реакционной среды обычно находится между 60 и 98oC.
Предпочтительно добавление подкисляющего агента на стадии /ii/ осуществляют в основу исходной ванны, температура которой находится между 60 и 96oC.
Согласно варианту изобретения реакцию проводят при постоянной температуре, лежащей между 70 и 90oC /а именно, когда указанная степень консолидации выше 4 и ниже 12/ или между 75 и 96oC /а именно, когда указанная степень консолидации находится между 12 и 100/.
Согласно другому варианту изобретения температура в конце реакции является более высокой, чем температура в начале реакции: так, предпочтительно в начале реакции поддерживают температуру между 70 и 90oC /а именно, когда указанная степень консолидации выше 4 и ниже 12/ или между 70 и 96oC /а именно, когда указанная степень консолидации лежит между 12 и 100/, потом повышают температуру во время реакции в течение нескольких минут, предпочтительно до величины, лежащей между 75 и 98oC, например между 80 и 90oC /а именно, когда указанная степень консолидации выше 4 и ниже 12/ или между 80 и 98oC /а именно, когда указанная степень консолидации находится между 12 и 100/, величина которой поддерживается до конца реакции.
По окончании операций, которые будут описаны, получают кашицу диоксида кремния, которую затем разделяют /разделение жидкость-твердое/. Это разделение обычно представляет собой фильтрацию с последующей промывкой при необходимости. Если фильтрация может производиться согласно любому удобному способу /например, с помощью фильтр-пресса, полосового фильтра или вращающегося вакуумного фильтра/, ее выгодно осуществлять с помощью фильтр-пресса, когда концентрация силиката в основе исходной ванны равна по крайней мере 8 г/л (и ниже 20 г/л), в частности находится между 10 и 15 г/л, например, между 11 и 15 г/л.
Суспензию извлеченного таким образом осажденного диоксида кремния /осадок на фильтре/ затем сушат.
Эта сушка может быть осуществлена любым известным средством.
Предпочтительно сушку осуществляют распылением.
Для этой цели можно использовать подходящие атомизаторы любого типа, а именно атомизаторы с турбиной, с соплами, под давлением жидкости или двух жидкостей.
Сушку выгодно осуществлять путем распыления с помощью атомизатора с соплами, когда концентрация силиката в основе исходной ванны равна по крайней мере 8 г/л (и ниже 20 г/л), в частности находится между 10 и 15 г/л, например между 11 и 15 г/л.
Осажденный диоксид кремния, который может быть получен в этих условиях концентрации силиката и с использованием фильтр-пресса и атомизатора с соплами, обычно находится в виде практически сферических шариков, предпочтительно со средним размером по крайней мере 80 мкм.
Согласно варианту способа изобретения суспензия, подлежащая сушке, имеет содержание сухого материала выше 15 мас. предпочтительно выше 17 мас. и, например, выше 20 мас. Сушку тогда предпочтительно проводят с помощью атомизатора с соплами.
Осажденный диоксид кремния, который может быть получен согласно этому варианту изобретения, обычно находится в виде практически сферических шариков, предпочтительно со средним размером по крайней мере 80 мкм.
Такое содержание сухого материала может быть получено непосредственно при фильтрации с использованием подходящего фильтра /в частности, фильтр-пресса/, дающего осадок на фильтре с хорошим содержанием. Другой способ заключается в том, что после фильтрации на последующей стадии способа прибавляют к осадку на фильтре сухой материал, например диоксид кремния в виде тонкого порошка, чтобы получить необходимое содержание.
Следует отметить, что, как хорошо известно, осадок, полученный таким образом, обычно не соответствует условиям, позволяющим распыление из-за его слишком высокой вязкости.
Известным образом тогда осадок на фильтре подвергают операции расслаивания. Эта операция может быть проведена при пропускании осадка через мельницу коллоидного или шарикового типа. Кроме того, для снижения вязкости распыляемой суспензии можно добавлять алюминий, например, в виде алюмината натрия во время процесса, как описано, например, во французской заявке на патент FR-A-2536380, которая приведена здесь в качестве уровня техники. Такое добавление в частности можно осуществлять в момент расслаивания.
При выходе из сушки можно проводить стадию измельчения рекуперированного продукта, например продукта, полученного при сушке суспензии, имеющей содержание сухого материала выше 15 мас. Осажденный оксид кремния, который тогда может быть получен, обычно находится в виде порошка, предпочтительно со средним размером по крайней мере 15 мкм, в частности между 15 и 60 мкм, например между 20 и 45 мкм.
Измельченные продукты с желаемой гранулометрией могут быть отделены от возможных несоответствующих продуктов с помощью, например, вибрирующих сит, имеющих соответствующие размеры сеток, и извлеченные таким образом несоответствующие продукты снова направляют на измельчение.
Кроме того, согласно другому варианту способа изобретения, суспензия, подлежащая сушке, имеет содержание сухого материала ниже 15 мас. Сушку тогда обычно проводят с помощью турбинного атомизатора. Осажденный оксид кремния, полученный таким образом, обычно находится в виде порошка предпочтительно со средним размером по крайней мере 15 мкм, в частности, лежащим между 30 и 150 мкм, например между 45 и 120 мкм.
Здесь также может быть проведена операция расслаивания.
Наконец, высушенный /а именно из суспензии, имеющий содержание сухого материала ниже 15 мас./ или измельченный материал может быть также подвергнут в агломерации.
Под агломерацией здесь понимают любой процесс, который позволяет связать между собой тонко измельченные объекты, чтобы придать им форму объектов более крупного размера и механическую прочность.
Эти процессы являются, например, прямым прессованием, гранулированием мокрым путем /т.е. с использованием такого связующего, как вода, паста диоксида кремния и т.п./, экструзия и, предпочтительно, сухое уплотнение.
При использовании этого последнего метода может оказаться выгодным перед проведением уплотнения дезаэрировать /операция также называется предуплотнением или дегазацией/ пылевидные продукты, чтобы удалить воздух, заключенный между ними, и обеспечить более регулярное уплотнение.
Осажденный диоксид кремния, который может быть получен согласно этому варианту изобретения, целесообразно находится в виде гранул, предпочтительно с размером по крайней мере 1 мм, в частности между 1 и 10 мм.
При выходе со стадии агломерации продукты могут быть калиброваны на желаемый размер, например, просеиванием, потом кондиционированы для их дальнейшего использования.
Порошки, также как и шарики осажденного диоксида кремния, полученные по способу изобретения, обладают тем преимуществом, наряду с другими, что позволяют простым, эффективным и экономичным способом получить такие гранулы, как указано, например, с помощью классических операций формирования, таких как, например, гранулирование или прессование, без того, чтобы не подвергались разрушениям, способным замаскировать, уничтожить отличные свойства усилителей, присущие этим порошкам, как это может быть в случае использования классических порошков.
Другими объектами изобретения являются новые осажденные диоксиды кремния, обладающие хорошей способностью к дисперсии /и к дезагломерации/ и в целом улучшенными усиливающими свойствами, указанные диоксиды кремния имеют предпочтительно относительно большой размер и в общем были получены в соответствии с одним из вариантов способа получения изобретения, описанных ранее.
В последующем описании удельная поверхность ВЕТ была определена по методу БРУНАУЕРа ЭММЕТа ТЕЛЛЕРа, описанному в "The journal of the American Chemical Society", т. 69, с. 309, февраль 1938 г. и соответствующему стандарту NFT 45007 /ноябрь 1987/.
Удельная поверхность СТАВ является наружной поверхностью, определенной по стандарту NFT 45007 /ноябрь 1987 года/ /5.12/.
Поглощение масла ДОР определено по стандарту NFT 30-022 /март 1953/ с использованием диоктилфталата.
Плотность заполнения в уплотненном состоянии /DRT/ измерена по стандарту NFT-030100.
Наконец уточняется, что приведенные объемы пор были изменены с помощью порозиметрии с ртутью, диаметры пор были рассчитаны по соотношению WASHBURNA с углом контакта тета, равным 130o и поверхностным натяжением гамма, равным 484 дин/см (порозиметр MICROMERITICS 9300/.
Способность к диспергированию и к дезагломерации диоксидов кремния согласно изобретению может быть количественно оценена с помощью сферического теста на дезагломерацию.
Испытание на дезагломерацию проводят по следующей методике:
когезия агломератов оценивается с помощью измерения гранулометрии /лазерной дифракцией/, проводимом на суспензии диоксида кремния, предварительно дезагломерированной ультразвуком; также измеряют способность к дезагломерации диоксида кремния /разрыв объектов от 0,1 до нескольких десятков микрон/. Дезагломерацию под действием ультразвука проводят с помощью озвучивающего устройства VIBRACELL BIOBLOCK /600 W/, снабженного зондом диаметром 19 мм. Измерение гранулометрии проводят с помощью лазерной дифракции на гранулометре.
Взвешивают в лодочке /высота 6 см и диаметр 4 см/ 2 г диоксида кремния и доводят до 50 г, добавляя пермутированную воду; таким образом получают 4%-ную водную суспензию диоксида кремния, которую гомогенизируют в течение 2 мин перемешиванием магнитной мешалкой. Затем проводят дезагломерацию под действием ультразвука следующим образом: зонд погружают на глубину 4 см, регулируют мощность на выходе таким образом, чтобы получить отклонение стрелки кардана мощности, указывающее 20% /что соответствует энергии, рассеянной наконечником зонда, 120 Вт/см2/. Дезагломерацию проводят в течение 420 с. Затем проводят измерение гранулометрии после введения в чашу гранулометра известного объема /выраженного в мл/ гомогенизированной суспензии.
Величина среднего диаметра ⌀50 которую получают, будет тем меньше, чем более высокой способностью к дезагломерации обладает диоксид кремния. Также определяют отношение (10 х объем введенной суспензии /в мл/) оптическую плотность суспензии, определенную с помощью гранулометра /эта оптическая плотность порядка 20/. Это отношение указывает степень тонины, т.е. количество частиц с размером менее 0,1 мкм, которые не определяются с помощью гранулометра. Это отношение, называемое фактором дезагломерации ультразвуком /FД/, будет тем выше, чем выше способность к дезагломерации диоксида кремния.
Согласно осуществлению изобретения теперь предложен новый осажденный диоксид кремния, отличающийся тем, что он имеет:
удельную поверхность СТАВ /Sстав/ между 140 и 240 м2/г, предпочтительно между 140 и 225 м2/г, например между 150 и 225 м2/г, в частности между 150 и 200 м2/г,
фактор дезагломерации ультразвуком /FД/ выше 11 мл, например выше 12,5 мл,
средний диаметр / ⌀50 / после дезагломерации ультразвуком ниже 2,5 мкм, в частности ниже 2,4 мкм, например ниже 2,0 мкм.
Диоксиды кремния согласно изобретению обычно имеют удельную поверхность ВЕТ /Sвет/ между 140 и 300 м2/г, в частности между 140 и 280 м2/г, например между 150 и 270 м2/г.
Согласно изобретению диоксиды кремния имеют отношение Sвет/Sстав между 1,0 и 1,2, т.е. диоксиды кремния имеют низкую микропористость.
Согласно другому варианту изобретения оксиды кремния имеют отношение Sвет/Sстав выше 1,2, например, между 1,21 и 1,4, т.е. оксиды кремния имеют относительно высокую микропористость.
Диоксиды кремния согласно изобретению обычно обладают поглощением масла ДОР между 150 и 400 мл/100 г, более конкретно между 180 и 350 мл/100 г, например, между 200 и 310 мл/100 г.
Диоксиды кремния согласно изобретению находятся в виде порошка, практически сферических шариков или, возможно, гранул и отличаются тем, что, имея относительно большой размер, они обладают замечательной способностью к дезагломерации и диспергированию и очень удовлетворительными усиливающими свойствами. Они также обладают способностью к дезагломерации и к диспергированию выгодно более высокой при одинаковой или близкой удельной поверхности и одинаковом или близком размере частиц, чем известные диоксиды кремния.
Порошки диоксида кремния согласно изобретению предпочтительно имеют средний размер по крайней мере 15 мкм, например он находится между 20 и 120 мкм или между 15 и 60 мкм /например между 20 и 45 мкм/, или между 30 и 150 мкм /например между 45 и 120 мкм/.
Плотность заполнения в уплотненном состоянии /DRT/ указанных порошков обычно составляет по крайней мере о,17 и, например, находится между 0,2 и 0,3.
Указанные порошки обычно имеют суммарный объем пор по крайней мере 2,5 см3/г, более конкретно между 3 и 5 см3/г.
Они позволяют получить очень хороший компромисс между осуществлением/конечными механическими свойствами в вулканизированном состоянии.
Наконец, они являются основными предшественниками для синтеза гранул, таких как описано далее.
Практически сферические шарики согласно изобретению предпочтительно имеют средний размер по крайней мере 80 мкм.
Согласно некоторым вариантам изобретения этот средний размер шариков составляет по крайней мере 100 мкм, например по крайней мере 150 мкм; обычно он не превышает 300 мкм и предпочтительно находится между 100 и 270 мкм. Этот средний размер определяют согласно стандарту NF X 11507 /декабрь 1970 г./ путем просеивания сухого и определения диаметра соответствующего полному остатку на сите 50%
Плотность заполнения в уплотненном состоянии /DRT/ указанных шариков обычно равна по крайней мере 0,17, например она находится между 0,2 и 0,34.
Они обычно имеют суммарный объем пор по крайней мере 2,5 см3/г более конкретно между 3 и 5 см3/г.
Как указывалось ранее, такой диоксид кремния в виде практически сферических шариков, выгодно целых, однородных, мало пылящих и с хорошей текучестью, обладает хорошей способностью к дезагрегации и к диспергированию. Кроме того, они обладают отличными усиливающими свойствами. Такой диоксид кремния также является основным предшественником для синтеза порошков и гранул согласно изобретению.
Размеры гранул согласно изобретению предпочтительно составляют по крайней мере 1 мм, в частности находятся между 1 и 10 мм по оси самого большого размера /длина/.
Указанные гранулы могут находиться в самых различных формах. В качестве примера, например, можно привести сферическую, цилиндрическую форму, форму параллелепипеда, пластины, таблетки, шарика, экструдата с круглым или многогранным сечением.
Плотность заполнения в уплотненном состоянии /DRT/ указанных гранул обычно составляет по крайней мере 0,27 и может достигать 0,37.
Они обычно имеют суммарный объем пор по крайней мере 1 см3/г, более конкретно между 1,5 и 2 см3/г.
Диоксиды кремния согласно изобретению, например в виде порошков, практически сферических шариков или гранул, предпочтительно получают в соответствии с одним из подходящих вариантов способа получения согласно изобретению и описанных ранее.
Диоксиды кремния согласно изобретению или полученные по способу согласно изобретению находят особенно интересное применение для усиления эластомеров, природных или синтетических, например пневматических шин. Они создают в этих эластомерах отличный компромисс между различными механическими свойствами, например, значительно улучшают их прочность на разрыв и на раздир и обычно хорошую прочность на истирание. Кроме того, эти эластомеры предпочтительно подвергаются меньшему разогреву.
Пример 1. В реактор из нержавеющей стали, снабженный винтовой системой перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,4/, имеющего концентрацию, выраженную в SiO2, 7,1 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 7,1 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем туда вводят в течение 3 мин 20 с раствор серной кислоты с концентрацией 80 г/л и расходом 7,3 л/мин; по окончании этого добавления степень нейтрализации основы ванны равна 85% т.е. нейтрализовано 85% от количества Na2O, имеющегося в основе исходной ванны.
Затем одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты с концентрацией 80 г/л и расходом 7,3 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 130 г/л, и расходом 10,1 л/мин.
При этом одновременном прибавлении степень мгновенной нейтрализации составляет 92% т.е. нейтрализовано 92% добавленного количества Na2O /в минуту/.
Степень консолидации по окончании этого прибавления равна 19,6.
После введения всего силиката продолжают введение раствора серной кислоты с тем же расходом в течение 10 мин. Такое дополнительное введение кислоты приводит тогда к pH реакционной среды, равному 4,5.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают на вращающемся вакуумном фильтре таким образом, что в результате получают осадок диоксида кремния на фильтре, потеря веса при нагревании которого составляет 87% /следовательно, содержание сухого материала равно 13 мас./.
Этот осадок затем ожижают простым механическим перемешиванием. После этой операции расслаивания полученную кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния PI в виде порошка /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 159 м2
Удельная поверхность ВЕТ 195 м2
Объем пор У1, представленный порами с d≅400
Figure 00000005
0,94 см3
Объем пор У2, представленный порами с
Figure 00000006
0,41 см3
Отношение У2/У1 44%
Средний размер частиц 60 мкм
Диоксид кремния P1 подвергают испытанию на дезагломерацию, как приведено ранее в описании.
После дезагломерации ультразвуком он имеет средний размер / ⌀50 / частиц 1,2 мкм и фактор дезагломерации ультразвуком /FД/ 12 мл.
Пример 2. В реактор из нержавеющей стали, снабженный системой винтового перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,4/, имеющего концентрацию, выраженную в SiO2, 5 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 5 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем вводят туда в течение 3 мин 20 с раствор серной кислоты концентрацией 80 г/л с расходом 5,1 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 85% т. е. нейтрализовано 85% количества Na2O, имеющегося в основе исходной ванны.
Затем одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты концентрацией 80 г/л с расходом 5,1 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 130 г/л, с расходом 7,1 л/мин.
При таком одновременном введении степень мгновенной нейтрализации составляет 92% т.е. нейтрализуется 92% добавленного количества Na2O /в минуту/.
Степень консолидации по окончание этого одновременного прибавления равна 19,5.
После введения всего силиката продолжают введение раствора серной кислоты с тем же расходом в течение 10 мин. Это дополнительное введение кислоты придает тогда реакционной смеси величину pH, равную 4,5.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают на вращающемся вакуумном фильтре таким образом, что в результате получают осадок на фильтре, потере при нагреве которого составляют 87% /следовательно, содержание сухого материала составляет 13 мас./.
Этот осадок на фильтре затем ожижают простым механическим воздействием. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р2 в виде порошка являются следующими:
Удельная поверхность СТАВ 182 м2
Удельная поверхность ВЕТ 225 м2
Объем пор У1, представленный порами с d≅400
Figure 00000007
0,93 см3
Oбъем пор У2, представленный порами с
Figure 00000008
0,303
Oтношение У2/У1 32%
Cредний размер частиц 60 мкм
Диоксид кремния Р2 подвергают испытанию на дезагломерацию, как было описано в описании ранее.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 частиц 2,9 мкм и фактор дезагломерации /FД/ 14 мл.
Пример 3. Работают по методике примера 2, исключая уровень одновременного добавления растворов серной кислоты и силиката натрия.
В реактор из нержавеющей стали, снабженный системой винтового перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,4/, имеющего концентрацию, выраженную в SiO2, 5 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 5 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем туда вводят в течение 3 мин 20 с раствор серной кислоты с концентрацией 80 г/л и расходом 5,1 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 85% т. е. 85% количества Na2O, имеющегося в основе исходной ванны было нейтрализовано.
Потом одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты с концентрацией 80 г/л и расходом 5,1 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 230 г/л и расходом 4,1 л/мин.
Во время этого одновременного прибавления степень мгновенной нейтрализации равна 92% т.е. 92% прибавленного количества Na2O /в минуту/ было нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 19,9.
После введения всего силиката продолжают вводить раствор серной кислоты с тем же расходом в течение 10 мин. Это дополнительное введение кислоты придает тогда реакционной среде величину pH, равную 4,5.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют на вращающемся вакуумном фильтре таким образом, что получают в результате осадок на фильтре, потери которого при нагревании равны 87,1% /следовательно, содержание сухого материала составляет 12,9 мас./.
Затем этот осадок на фильтре ожижают простым механическим воздействием. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р3 в виде порошка являются следующими:
Удельная поверхность СТАВ 215 м2
Удельная поверхность ВЕТ 221 м2
Объем пор У1, представленный порами с d≅400
Figure 00000009
0,93 см3
Объем пор У2, представленный порами с
Figure 00000010
0,42 см3
Отношение У2/У1 45%
Средний размер частиц 60 мкм.
Подвергают диоксид кремния Р3 испытанию на дезагломерацию, описанному ранее в описании.
После дезагломерации ультразвуком он имеет средний диаметр частиц ⌀50 1,2 мкм и фактор дезагломерации ультразвуком /FД/ 20 мл.
Пример 4. В реактор из нержавеющей стали, снабженный системой винтового перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,4/, имеющего концентрацию, выраженную в SiO2, 3,85 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 3,85 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем вводят туда в течение 3 мин 20 с раствор серной кислоты с концентрацией 80 г/л и расходом 3,9 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 85% т.е. 85% количества Na2O основы исходной ванны было нейтрализовано.
Затем вводят одновременно в течение 70 мин в реакционную среду:
раствор серной кислоты концентрацией 80 г/л с расходом 3,9 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, 65 г/л и расходом 10,9 л/мин.
При этом одновременном прибавлении степень мгновенной нейтрализации равна 92% т.е. 92% количества добавленного Na2O/в минуту/ нейтрализуется.
Степень консолидации по окончании этого одновременного добавления равна 19,5.
После введения всего силиката продолжают введение раствора серной кислоты с тем же расходом в течение 10 мин. Это дополнительное введение кислоты придает реакционной смеси pH, равный 4,5.
При этом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают на вращающемся вакуумном фильтре таким образом, что в результате извлекают осадок на фильтре, потери при нагревании которого составляют 87,1% /следовательно, содержание сухого материала равно 12,9%/.
Затем этот осадок на фильтре ожижают простым механическим воздействием. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р4 в виде порошка /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 210 м2
Удельная поверхность ВЕТ 244 м2
Объем пор У1, представленный порами с d≅400
Figure 00000011
0,89 см3
Объем пор У2, представленный порами с
Figure 00000012
0,20 см3
Отношение У2/У1 22%
Средний размер частиц 60 мкм.
Подвергают диоксид кремния Р4 испытанию на дезагломерацию, как описано в описании ранее.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 4,1 мкм и фактор дезагломерации ультразвуком /FД/ 13 мл.
Пример 5. В реактор из нержавеющей стали, снабженный системой винтового перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,5/, имеющего концентрацию, выраженную в SiO2, 5 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 5 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем туда вводят в течение 3 мин 8 с раствор серной кислоты концентрацией 80 г/л с расходом 5,2 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 85% т.е. 85% количества Na2O, имеющегося в основе ванны было нейтрализовано.
Затем одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты концентрацией 80 г/л с расходом 5,2 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, 230 г/л и расходом 4,1 л/мин.
При этом одновременном введении степень мгновенной нейтрализации равна 95% т.е. 95% введенного количества Na2O /в минуту/ нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 19,9.
После введения всего силиката продолжают введение раствора серной кислоты с тем же расходом в течение 10 мин. Это дополнительное введение кислоты придает тогда реакционной смеси pH, равный 4,5.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают на вращающемся вакуумном фильтре таким образом, что в результате извлекают осадок на фильтре диоксида кремния, потери при нагревании которого составляют 86,4% /следовательно, содержание сухого материала составляет 13,6 мас./.
Затем этот осадок на фильтре ожижают простым механическим воздействием. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р5 в виде порошка /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 164 м2
Удельная поверхность ВЕТ 194 м2
Объем пор У1, представленный порами с d≅400
Figure 00000013
1,15 см3
Объем пор, представленный порами с
Figure 00000014
0,70 см3
Отношение У2/У1 61%
Средний размер частиц 65 мкм.
Подвергают диоксид кремния Р5 испытанию на дезагломерацию, описанному ранее в описании.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 1,2 мкм и фактор дезагломерации ультразвуком /FД/ 12 мл.
Пример 6. В реактор из нержавеющей стали, снабженный системой винтового перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,5/, имеющего концентрацию, выраженную в SiO2, 5 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 5 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем туда вводят в течение 3 мин 9 с раствор серной кислоты с концентрацией 80 г/л и расходом 5,2 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 85% т. е. 85% количества Na2O, имеющегося в основе исходной ванны, было нейтрализовано.
Потом одновременно вводят в течение 80 мин в реакционную среду:
раствор серной кислоты с концентрацией 80 г/л и расходом 5,2 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 230 г/л, с расходом 4,1 л/мин.
При этом одновременном прибавлении степень мгновенной нейтрализации равна 95% т.е. 95% вводимого количества Na2O /в минуту/ нейтрализуется.
Степень консолидации по окончании этого одновременного прибавления равна 22,8.
После введения всего силиката продолжают вводить серную кислоту с тем же расходом в течение 10 мин. Такое дополнительное введение кислоты придает тогда реакционной смеси pH 4,5.
Таким образом получают кашицу диоксида кремния, которую фильтруют и промывают с помощью вращающегося вакуумного фильтра так, что в результате извлекают осадок на фильтре диоксида кремния, потери которого при нагревании равны 86,1% /следовательно, содержание сухого материала равно 13,9 мас./.
Затем этот осадок ожижают простым механическим воздействием. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р6 в виде порошка /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 157 м2
Удельная поверхность ВЕТ 193 м2
Объем пор У1, представленный порами с d≅400
Figure 00000015
0,95 см3
Объем пор У2, представленный порами с
Figure 00000016
0,42 см3
Отношение У2/У1 44%
Средний размер частиц 70 мкм.
Подвергают диоксид кремния Р6 испытанию на дезагломерацию, описанному ранее в описании.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 1,3 мкм и фактор дезагломерации ультразвуком /FД/ 10 мл.
Пример 7. В реактор из нержавеющей стали, снабженный винтовой системой перемешивания и нагревом через рубашку, вводят 662 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,5/, имеющего концентрацию, выраженную в SiO2, 5 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 5 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем в течение 3 мин 30 с вводят раствор серной кислоты с концентрацией 80 г/л и расходом 5,2 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 95% т.е. 95% количества Na2O, имеющегося в основе исходной ванны, было нейтрализовано.
Затем одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты с концентрацией 80 г/л с расходом 5,2 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 230 г/л и расходом 4,1 л/мин.
При этом мгновенном прибавлении степень нейтрализации равна 95% т.е. 95% прибавленного количества Na2O /в минуту/ нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 19,9.
После введения всего силиката натрия продолжают вводить раствор серной кислоты с тем же расходом в течение 10 мин. Такое дополнительное введение кислоты обеспечивает тогда pH реакционной среды, равной 4,5.
Таким образом получают кашицу осажденного оксида кремния, которую фильтруют и промывают с помощью вращающегося вакуумного фильтра так, что в конце извлекают осадок на фильтре, потеря при нагревании которого равна 86,7% /следовательно, степень содержания сухого материала равна 13,3 мас./.
Этот остаток затем ожижают путем простого механического воздействия. После этой операции расслаивания полученную в результате кашицу распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р7 в виде порошка /согласно изобретению/ тогда являются следующими:
Удельная поверхность СТАВ 168 м2
Удельная поверхность ВЕТ 195 м2
Объем пор У1, представленный порами с d≅400
Figure 00000017
0,94 см3
Объем пор У2, представленный порами с
Figure 00000018
0,47 см3
Отношение У2/У1 50%
Средний размер частиц 65 мкм
Подвергают диоксид кремния Р7 испытанию на дезагломерацию, как описано в начале описания.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 1,1 мкм и фактор дезагломерации ультразвуком /FД/ 13 мл.
Пример 8. В реактор из нержавеющей стали, снабженный системой винтового перемешивания и рубашкой для нагрева, вводят 626 л воды и 36 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,4/, имеющего концентрацию, выраженную в SiO2, 135 г/л.
Концентрация силиката, выраженная в SiO2, основы исходной ванны, следовательно, равна 7: 3 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC. Затем вводят туда в течение 3 мин 30 с раствор серной кислоты с концентрацией 80 г/л и расходом 5,6 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 67% т.е. 67% имевшегося в основе исходной ванны количества Na2O было нейтрализовано.
Затем одновременно вводят в течение 70 мин в реакционную среду:
раствор серной кислоты концентрацией 80 г/л расходом 5,6 л/мин, и
раствор силиката натрия с концентрацией, выраженной в SiO2, равной 135 г/л, и расходом 8,6 л/мин.
При этом одновременно введении степень мгновенной нейтрализации равна 80% т.е. 80% от добавленного количества Na2O /в минуту/ было нейтрализовано.
Степень консолидации по окончании этого одновременного добавления равна 16,7.
После введения всего силиката продолжают вводить раствор серной кислоты с тем же расходом в течение 10 мин. Такое дополнительное введение кислоты придает тогда реакционной среде pH 4,5.
Затем реакционной среде дают вызреть в течение 10 мин /при перемешивании при 85oC/.
Таким образом получают кашицу осажденного диоксида кремния, которую после разбавления 540 л воды фильтруют и промывают на вращающемся вакуумном фильтре так, что в результате извлекают осадок на фильтре, потери которого при нагреве составляют 88,0% /следовательно, содержание сухого материала равно 12,0 мас./.
Этот осадок на фильтре затем ожижают при механическом и химическом воздействии /прибавляют количество алюмината натрия, соответствующее массовому отношению Al/SiO2 3000 ppm /частей на миллион/. После этой операции расслаивания получают перекачиваемый осадок с pH 6,4, который затем распыляют с помощью турбинного атомизатора.
Характеристики диоксида кремния Р8 в виде порошка /согласно изобретения/ являются следующими:
Удельная поверхность СТАВ 149 м2
Удельная поверхность ВЕТ 200 м2
Ообъем пор У1, представленный порами с d≅400
Figure 00000019
0,92 см3
Объем пор У2, представленный порами с
Figure 00000020
0,50 см3
Отношение У2/У1 54%
Средний размер шариков 55 мкм
Подвергают диоксид кремния Р8 испытанию на дезагломерацию, которое описано ранее в описании.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 2,3 мкм и фактор дезагломерации ультразвуком /FД/ 17 мл.
Пример 9. В реактор из нержавеющей стали, снабженный винтовой системой перемешивания и рубашкой для нагрева, вводят 750 л воды, 26,5 л раствора силиката натрия /молярное отношение SiO2/Na2O равно 3,5/, имеющего концентрацию, выраженную в SiO2, 235 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 8 г/л. Затем раствор нагревают до 85oC при постоянном перемешивании. Все реакции проводят при 85oC при перемешивании. Затем туда вводят в течение 5 мин 35 с разбавленную серную кислоту с плотностью при 20oC, равной 1,050, с расходом 6,0 л/мин; по окончании этого прибавления степень нейтрализации основы ванны составляет 95% т.е. 95% количества Na2O, имеющегося в основе ванны, было нейтрализовано.
Затем одновременно вводят в течение 75 мин в реакционную среду раствор силиката натрия описанного выше типа с расходом 4,8 л/мин и разбавленную серную кислоту описанного выше типа с расходом, регулируемым таким образом, чтобы поддерживать в реакционной среде pH, равный 8,5±0,1.
При таком одновременном введении степень мгновенной нейтрализации равна 90% т.е. 90% добавленного /в минуту/ количества Na2O нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 13,5.
После этого одновременного прибавления прекращают введение силиката и продолжают введение разбавленной серной кислоты, чтобы довести величину pH реакционной среды до величины, равной 4,0, в течение 14 минут.
Затем прекращают введение кислоты, реакционную смесь выдерживают при перемешивании 10 минут при температуре 85oC.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают с помощью фильтр-пресса, так, что в результате извлекают осадок диоксида кремния, потери которого при нагревании равны 81% /следовательно, содержание сухого материала равно 19 мас./.
Этот осадок затем ожижают механическим и химическим воздействием /прибавляют количество алюмината натрия, соответствующее массовому отношению Al/SiO2 2700 ppm/частей на миллион/ и прибавляют серную кислоту/. После операции расслаивания получают перекачиваемый осадок, pH которого равен 6,7, который распыляют с помощью атомизатора с соплами.
Характеристики диоксида кремния Р9 в виде шариков практически сферической формы /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 157 м2
Удельная поверхность ВЕТ 194 м2
Объем пор У1, представленный порами с d≅400
Figure 00000021
0,99 см3
Объем пор У2, представленный порами с
Figure 00000022
0,64 см2
Отношение У2/У1 64%
Средний размер шариков 260 мкм
Подвергают диоксид кремния Р9 испытанию на дезагломерацию, которое описано в описании ранее.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 1,7 мкм и фактор дезагломерации ультразвуком /FД/ 19 мл.
Пример 10. В реактор из нержавеющей стали, снабженный винтовой системой перемешивания и рубашкой для нагрева, вводят 733 л воды и 46,5 л раствора силиката натрия /молярное отношение SiO2/a2O равно 3,5/, имеющего концентрацию, выраженную в SiO2, 235 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 14 г/л. Затем раствор нагревают до 80oC при постоянном перемешивании. Все реакции проводят при 80oC при перемешивании. Затем туда вводят в течение 9 мин разбавленную серную кислоту с плотностью при 20oC, равной 1,050, с расходом 5,4 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 78% т.е. 78% количества Na2O, имеющегося в основе ванны, было нейтрализовано.
Затем одновременно вводят в течение 90 мин в реакционную смесь раствор силиката натрия описанного выше типа с расходом 4,3 л/мин и разбавленную серную кислоту также описанного выше типа с расходом, регулируемым таким образом, чтобы поддерживать в реакционной смеси pH:
на величине 8,5±0,1 в течение первых 55 мин, затем
на величине 7,8±0,1 в течение последних 35 мин.
При этом одновременном добавлении степень мгновенной нейтрализации равна 94% т.е. 94% добавленного /в минуту/ количества Na2O было нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 8,3.
После этого одновременного добавления прекращают введение силиката натрия и продолжают введение разбавленной серной кислоты таким образом, чтобы снизить величину pH реакционной среды до величины, равной 4,2 в течение 6 мин.
Затем прекращают ведение кислоты, после чего выдерживают реакционную смесь при перемешивании в течение 10 мин при 80oC.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают с помощью фильтр-пресса так, чтобы в результате получить осадок на фильтре диоксида кремния, потери при нагревании которого составляют 77% /следовательно, содержание сухого материала равно 23 мас./.
Этот осадок затем ожижают с помощью механического и химического воздействия /прибавляют количество алюмината натрия, соответствующее массовому отношению Al/SiO2 3000 ppm /частей на миллион/ и прибавляют серную кислоту/. После этой операции расслаивания получают перекачиваемый осадок с pH, равным 6,3, который затем распыляют с помощью атомизатора с соплом.
Характеристики диоксида кремния Р10 в виде практически сферических шариков /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 149 м2
Удельная поверхность ВЕТ 177 м2
Объем пор У1, представленный порами с d≅400
Figure 00000023
0,94 см3
Объем пор У2, представленный порами с
Figure 00000024
0,46 см3
Отношение У2/У1 49%
Средний размер шариков 240 мкм
Подвергают диоксид кремния Р10 испытанию на дезагломерацию, которое описано в описании ранее.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 1,7 мкм и фактор дезагломерации ультразвуком /FД/ 12 мл.
Пример 11. В реактор из нержавеющей стали, снабженный винтовой системой перемешивания и рубашкой для нагрева, вводят 747 л воды и 33,2 л раствора силиката натрия /молярное отношение SiO2/(Na2O равно 3,5), имеющего концентрацию, выраженную в SiO2, 235 г/л.
Концентрация силиката, выраженная в SiO2, в основе исходной ванны, следовательно, равна 10 г/л. Затем раствор нагревают до 80oC при постоянном перемешивании. Все реакции проводят при 80oC при перемешивании. Затем туда вводят в течение 7 мин 20 с разбавленную серную кислоту с плотностью при 20oC, равной 1,050, с расходом 5,4 л/мин; по окончании этого прибавления степень нейтрализации основы ванны равна 89% т.е. количества Na2, имеющегося в основе исходной ванны, было нейтрализовано.
Затем одновременно вводят в течение 80 мин в реакционную среду раствор силиката натрия описанного выше типа с расходом 4,3 л/мин и разбавленную серную кислоту описанного выше типа с расходом, регулируемым таким образом, чтобы поддержать в реакционной среде pH:
равный 8,5±0,1 в течение первых 55 мин, потом
равный 7,8±0,1 в течение последних 25 мин.
При этом одновременно прибавлении степень мгновенной нейтрализации равна 90% т.е. 90% добавленного количества /в минуту/ Na2O было нейтрализовано.
Степень консолидации по окончании этого одновременного прибавления равна 10,4.
После этого одновременного прибавления прекращают введение силиката и продолжают введение разбавленной серной кислоты, чтобы снизить величину pH реакционной среды до величины, равной 4,3, в течение 10 мин.
Затем прекращают введение кислоты, потом выдерживают реакционную смесь при перемешивании в течение 10 мин при 80oC.
Таким образом получают кашицу осажденного диоксида кремния, которую фильтруют и промывают на фильтр-прессе таким образом, что в результате получают осадок на фильтре оксида кремния, потери при нагревании которого составляют 78,5% /следовательно, содержание сухого материала равно 21,5 мас./.
Этот осадок затем ожижают с помощью механического и химического воздействия /прибавляют количество алюмината натрия, соответствующее массовому отношению Al/SiO2 3000 ppm /частей на миллион/ и прибавляют серную кислоту/. После этой операции расслаивания получают перекачиваемый осадок с pH, равным 6,6, который затем распыляют с помощью атомизатора с соплами.
Характеристики оксида кремния Р11 в виде практически сферических шариков /согласно изобретению/ являются следующими:
Удельная поверхность СТАВ 172 м2
Удельная поверхность ВЕТ 205 м2
Объем пор У1, представленный порами с d≅400
Figure 00000025
1,00 см3
Объем пор У2, представленный порами с
Figure 00000026
0,57 см3
Отношение У2/У1 57%
Средний размер шариков 270 мкм
Подвергают диоксид кремния Р11 испытанию на дезагломерацию, которое описано ранее в описании.
После дезагломерации ультразвуком он имеет средний диаметр ⌀50 2,3 мкм и фактор дезагломерации ультразвуком /FД/ 18,9 мл.
Пример 12. Для сравнения исследовали три диоксида кремния с удельной поверхностью СТАВ между 140 и 240 м2/г, используемых в качестве усиливающих наполнителей для эластомеров. Речь идет о:
с одной стороны, двух коммерческих силикатах в виде порошка;
порошок ПЕРКАСИЛ KSR /упоминаемый далее как РС1/, продаваемый фирмой АКЗО,
порошок УЛЬТРАСИЛ VN3R /упоминаемый здесь далее как РС2/, продаваемый фирмой ДЕГУССА,
с другой стороны, диоксиде кремния /упоминаемом далее как MEI/ в виде практически сферических шариков, из примера 12 европейской заявки на патент EP-A-0520862 /N подачи 92401677.7/.
Характеристики этих диоксидов кремния объединены в табл.1. В табл. 1 также приведены для сравнения характеристики диоксидов кремния Р1 Р11 согласно изобретению.
Пример 13. Этот пример иллюстрирует применение и поведение диоксидов кремния согласно изобретению и известных из уровня техники диоксидов кремния в рецептуре для промышленного каучука.
Используют следующую рецептуру /мас.ч./:
Каучук S.B.R. 1712/1/ 100
Диоксид кремния 51
ZnO активный /2/ 1,81
Стеариновая кислота 0,35
6PPD/3/ 1,45
CBS /4/ 1,3
DРG/5/ 1,45
Сера/6/ 1,1
Силан X50S/7/ 8,13
/1/ Сополимер стирол-бутадиенового типа 1712
/2/ Оксид цинка качества для каучука
/3/ N-/1,3-диметилбутил/-N'-фенил-п-фенилендиамин
/4/ N-циклогексил-2-бензотиазилсульфенамид
/5/ Дифенилгуанидин
/6/ Вулканизирующий агент
/7/ Сочетающий агент диоксид кремния/каучук (продукт продается фирмой ДЕГУССА).
Рецептуры готовят следующим образом.
Во внутренний смеситель /типа BANBURY/ вводят в таком порядке и по времени и температурам смеси, указанных в скобках:
SBK 1712 /t0/ (55oC)
X50S и 2/3 диоксида кремния /t0 + 1 мин/ (90oC)
ZnO стеариновая кислота, 6РРД и 1/3 диоксида кремния /t0 + 2 мин/ (110oC).
Разгрузку смесителя /опускание смеси/ проводят, когда температура в камере достигнет 165oC /т.е. почти при t0 + 5 мин/. Смесь вводят в цилиндрический смеситель, выдерживаемый при 30oC, для каландрования. В этот смеситель вводят CBS, DPG и серу.
После гомогенизации и трех проходов в конце готовую смесь каландруют в виде листов толщиной 2,5-3 мм.
Результаты опытов являются следующими:
1-Реологические свойства
Измерения проведены на рецептурах в сыром состоянии.
Результаты приведены в табл. 2. Указана аппаратура, использованная для проведения измерений.
/1/ Вискозиметр MOONEY/MV 200E
/Измерение ширины Муни /1 + 4/
/2/ Реометр MONSANTO 100S
Рецептуры, полученные из диоксидов кремния согласно изобретению, приводят к значительно более низким величинам.
Это приводит к намного большей легкости применения смесей, приготовленных из диоксидов кремния согласно изобретению, в частности на уровне операций экструзии и каландрования, часть осуществляемых при производстве пневматических шин /меньшее потребление энергии для приготовления смесей, большая легкость инжектирования при смешивании, меньшее набухание в фильтре при экструзии, меньшая усадка при каландровании,/
2-Механические свойства
Измерения проводят на вулканизированных рецептурах.
Вулканизацию проводят при нагревании рецептур при 150oC в течение 40 мин.
Использованы следующие нормы:
/i/ опыты на растяжение /модули, прочность на разрыв/
NFT 46-002 или ISO 37-1977
/ii/ опыты на разрывную прочность
DIN 53-507
/iii/ опыты на прочность к истиранию
DIN 53-516
Полученные результаты приведены в табл.3 и 4.
/1/ Соответствует отношению: модуль 300% /модуль 100%
Эти последние результаты показывают значительное улучшение усиливающего действия, придаваемого диоксидами кремния согласно изобретению, по сравнению с диоксидами кремния известного уровня техники при эквивалентной теоретической усиливающей мощности.
С другой стороны, диоксиды кремния согласно изобретению приводят к более высоким показателям усиления, чем те, что получены с известными диоксидами кремния, т. е. компромисс между модулем 100% и модулем 300% является очень удовлетворительным: диоксиды кремния согласно изобретению приводят к довольно низким модулям 100% доказательство хорошей дисперсии диоксида кремния, и к относительно высоким модулям 300% доказательство большой плотности взаимодействий диоксид кремния/каучук; если диоксид кремния Р7 согласно изобретению приводит к менее высокому модулю 300% он в то же время приводит к очень низкому модулю 100%
С другой стороны, более высокая усиливающая мощность диоксидов кремния согласно изобретению также подтверждается более высокими полученными величинами прочности на разрыв и на раздир.
Что касается прочности к истиранию, следует отметить, что потери на истирание снижаются на 10-20% по сравнению с диоксидами кремния, взятыми для сравнения. Речь идет о существенном преимуществе для применения в пневматических шинах.
3-Динамические свойства
Измерения проведены на вулканизированных рецептурах.
Вулканизацию проводят при нагревании рецептур при 150oC в течение 40 мин.
Результаты приведены в табл.5. Указана аппаратура, использованная для проведения измерений.
Нагрев, полученный с диоксидами кремния согласно изобретению, является относительно слабым.
Пример 14 Этот пример иллюстрирует использование и поведение диоксидов кремния согласно изобретению и известного диоксида кремния в рецептуре промышленного каучука.
Используют следующую рецептуру /мас.ч./:
Каучук Туфден 2330 75
Каучук B.R. 1220/1/ 25
Диоксид кремния 51
ZnO активный/2/ 1,81
6PPD/3/ 1,45
CBS/4/ 1,3
DPG/5/ 1,45
Сера/6/ 1,1
Силан X50S/7/ 8,13
/1/ Полимер типа бутадиен 1220
/2/ Оксид цинка качества для каучука
/3/ N-/1,3-Диметилбутил/-N'-фенил-п-фенилендиамин
/4/ N-Циклогексил-2-бензотиазилсульфенамид
/5/ Дифенилгуанидин
/6/ Вулканизирующий агент
/7/ Агент сочетания диоксид кремния/каучук (продукт, продаваемый фирмой ДЕГУССА)
Рецептуры готовят следующим образом.
Во внутренний смеситель /типа BANBURY/ вводят в том порядке и во время, и при температурах смеси, указанных в скобках:
Туфден 2330 и B.R. 1220 /t0/ (55oC)
X50S и 2/3 диоксида кремния /t0 + 1 мин/ (90oC)
ZnO, стеариновая кислота, 6РРД и 1/3 диоксида кремния /t0 + 2 мин/ (110oC).
Выгрузка смесителя /опускание смеси/ производится, когда температура камеры достигнет 165oC /т.е. почти при t0 + 5 мин/. Смесь вводят в цилиндрический смеситель, выдерживаемый при 30oC, для каландрования. В этот смеситель вводят CBS, DPG и серу.
После гомогенизации и трех проходов в конце готовую смесь каландруют в форме листов толщиной 2,5-3 мм.
Результаты опытов являются следующими:
1 Реологические свойства
Измерения проводят на рецептурах в сыром состоянии.
Результаты приведены в табл.6. Указана аппаратура, использованная для проведения измерений.
Рецептуры, полученные из диоксидов кремния согласно изобретению, приводят к более низким величинам.
Это приводит к большей легкости приготовления смесей, полученных из диоксидов кремния согласно изобретению, в частности на уровне операций экструзии и каландрования, часто используемым при изготовлении пневматических шин /меньшие затраты энергии для приготовления смеси, большая легкость инжектирования при смешивании, меньшее вздутие в фильтре при экструзии, меньшая усадка при каландровании.
2-Механические свойства
Измерения проводят на вулканизированных рецептурах.
Вулканизацию проводят при нагревании рецептур при 150oC в течение 40 мин.
Использовали следующие нормы:
/i/ опыт на растяжение /модули, прочность на разрыв/
NFT 46-002 или ISO 37-1977 /IN 53504/
/ii/ опыт на прочность при разрыве
NFT 46-007
/iii/ опыт на прочность на истирание
DIN 53-516
Полученные результаты в табл. 7 и 8.
Эти последние результаты показывают глобальное улучшение усиливающего действия, придаваемого диоксидами кремния согласно изобретению, по сравнению с диоксидом кремния известного уровня техники при теоретически эквивалентной усиливающей мощности.
С одной стороны диоксиды кремния согласно изобретению приводят к более высоким показателям усиления, чем те, что получены с известным диоксидом кремния, т.е. достигается очень удовлетворительный компромисс между модулем 100% и модулем 300% диоксиды кремния согласно изобретению приводят к достаточно низким модулям 100% доказательство хорошей дисперсии диоксида кремния, и к относительно высоким модулям 300% доказательство большой плотности взаимодействий диоксид кремния/каучук.
С другой стороны, более высокая усиливающая мощность диоксидов кремния согласно изобретению достаточно подтверждается более высокими величинами, полученными для сопротивления на разрыв и разрывной прочности.
Что касается прочности к истиранию, следует отметить, что потери при истирании примерно на 10% ниже по сравнению с диоксидом кремния, выбранным для сравнения. Речь идет о важном преимуществе для применения в пневматических шинах.

Claims (16)

1. Осажденный диоксид кремния, отличающийся тем, что он имеет удельную поверхность СТАВ Sстав 140 240 м2/г, фактор дезагломерации ультразвуком Fd > 11 мл, средний диаметр после дезагломерации ультразвуком ниже 2,5 мкм.
2. Диоксид кремния по п.1, отличающийся тем, что он имеет удельную поверхность ВЕТ SВЕТ 140 300 м2/г.
3. Диоксид кремния по пп.1 и 2, отличающийся тем, что он имеет отношение SВЕТ/Sстав 1,0 1,2.
4. Диоксид кремния по пп.1 и 2, отличающийся тем, что он имеет отношение SВЕТ/Sстав > 1,2.
5. Диоксид кремния по пп. 1 4, отличающийся тем, что он имеет поглощение масла ДОР 150 400 мл/100 г.
6. Диоксид кремния по пп.1 5, отличающийся тем, что он представляет собой порошок со средним размером частиц по крайней мере 15 мкм.
7. Диоксид кремния по пп.1 5, отличающийся тем, что он представляет собой сферические шарики со средним размером по крайней мере 80 мкм.
8. Диоксид кремния по пп.1 5, отличающийся тем, что он представляет собой гранулы с размером по крайней мере 1 мм.
9. Способ получения осажденного диоксида кремния, включающий взаимодействие силиката щелочного металла М с подкисляющим агентом с осаждением диоксида кремния, который затем отделяют и сушат, отличающийся тем, что осаждение проводят следующим образом: (i) в емкость вводят часть от необходимого для реакции общего количества силиката щелочного металла М, чтобы концентрация силиката в пересчете на SiO2 в емкости была менее 20 г/л, (ii) добавляют подкисляющий агент в количестве, необходимом для разложения по крайней мере 5% от количества силиката. находящеегося в емкости в пересчете на M2O, (iii) добавляют в реакционную смесь одновременно подкисляющий агент и остальное количество силиката щелочного металла М так, чтобы отношение количества прибавленного силиката в пересчете на SiO2 к количеству силиката, имеющегося в емкости в пересчете на SiO2, было более 4 и менее 100.
10. Способ по п.9, отличающийся тем, что добавляют подкисляющий агент в количестве, необходимом для разложения по крайней мере 50% от количества силиката, находящегося в емкости в пересчете на М2О.
11. Способ по пп.9 и 10, отличающийся тем, что на стадии (iii) добавляют в реакционную смесь одновременно подкисляющий агент и остальное количество силиката щелочного металла М так, чтобы отношение количества прибавленного силиката в пересчете на SiO2 к количеству силиката, имеющегося в емкости в пересчете на SiO2, было более 12 и менее 100, предпочтительно более 12 и менее 50.
12. Способ по пп.9 и 10, отличающийся тем, что на стадии (iii) добавляют в реакционную смесь одновременно подкисляющий агент и остальное количество силиката щелочного металла М так, чтобы отношение количества прибавленного силиката в пересчете на SiO2 к количеству силиката, имеющегося в емкости в пересчете на SiO2, было более 4 и менее 12, предпочтительно более 5 и менее 11,5.
13. Способ по пп.9 12, отличающийся тем, что на стадии (iii) добавляют подкисляющий агент в количестве, необходимом для разложения 80 99% от количества добавленного силиката в пересчете на М2О.
14. Способ по пп.9 13, отличающийся тем, что на стадии (iii) проводят одновременное добавление подкисляющего агента и силиката так, чтобы поддержать в реакционной смеси сначала pH1, а затем pH2, причем 7 < pH2 < pH1 < 9.
15. Способ по пп.9 14, отличающийся тем, что на стадии (iii) добавляют в реакционную смесь дополнительное количество подкисляющего агента до получения величины pH реакционной смеси 3,0 6,5.
Приоритет по пунктам
29.09.93 по пп.1 8 и по п.9, за исключением признака, касающегося отношения количества прибавленного силиката к количеству силиката, имеющегося в емкости, по пп. 10 и 11 и по п.13, за исключением признака в части степени разложения добавленного силиката между 97 и 99% и по п.15.
12.08.94 по п.9 при отношении количества прибавленного силиката к количеству силиката, имеющегося в емкости, более 4 и менее 12, по п.13 и 14 при степени разложения добавленного силиката 97 и 99%
RU9495112453A 1993-09-29 1994-09-29 Осажденный диоксид кремния и способ его получения RU2092435C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9311553A FR2710629B1 (fr) 1993-09-29 1993-09-29 Nouveau procédé de préparation de silice précipitée, nouvelles silices précipitées et leur utilisation au renforcement des élastomères.
FR9311553 1993-09-29
FR9410046A FR2723581B1 (fr) 1994-08-12 1994-08-12 Nouveau procede de preparation de silice precipitee
FR9410046 1994-08-12
PCT/FR1994/001143 WO1995009127A1 (fr) 1993-09-29 1994-09-29 Silice precipitee

Publications (2)

Publication Number Publication Date
RU95112453A RU95112453A (ru) 1997-07-27
RU2092435C1 true RU2092435C1 (ru) 1997-10-10

Family

ID=26230634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9495112453A RU2092435C1 (ru) 1993-09-29 1994-09-29 Осажденный диоксид кремния и способ его получения

Country Status (15)

Country Link
US (1) US6335396B1 (ru)
EP (1) EP0670813B1 (ru)
JP (1) JP2799773B2 (ru)
KR (2) KR0158071B1 (ru)
CN (1) CN1047149C (ru)
AT (1) ATE234264T1 (ru)
AU (2) AU686240B2 (ru)
BR (1) BR9405616A (ru)
CA (1) CA2150369C (ru)
DE (1) DE69432248T2 (ru)
ES (1) ES2194874T3 (ru)
FI (1) FI120581B (ru)
PT (1) PT670813E (ru)
RU (1) RU2092435C1 (ru)
WO (1) WO1995009127A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544697C2 (ru) * 2008-04-07 2015-03-20 Эвоник Дегусса Гмбх Осажденные кремниевые кислоты в качестве усиливающего наполнителя для эластомерных композиций

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977065B1 (en) * 1993-10-07 2005-12-20 Degussa Ag Precipitated silicas
FR2732331B1 (fr) * 1995-03-29 1997-06-20 Rhone Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
FR2732329B1 (fr) * 1995-03-29 1997-06-20 Rhone Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
DE19526476A1 (de) * 1995-07-20 1997-01-23 Degussa Fällungskieselsäure
DE19527278A1 (de) * 1995-07-26 1997-01-30 Degussa Fällungskieselsäure
GB2308588B (en) 1995-12-27 1999-06-02 Rhone Poulenc Chemicals Silica particulates
CN1048956C (zh) * 1996-05-14 2000-02-02 汪承源 二次结晶超细白炭黑的制法
FR2750692B1 (fr) * 1996-07-05 1998-10-16 Rhone Poulenc Chimie Nouvelle silice abrasive, utilisable dans les dentifrices, son procede de preparation et compositions dentifrices la contenant
US5929156A (en) * 1997-05-02 1999-07-27 J.M. Huber Corporation Silica product for use in elastomers
US5891949A (en) * 1997-05-02 1999-04-06 J.M. Huber Corporation Natural rubber compound
FR2763581B1 (fr) 1997-05-26 1999-07-23 Rhodia Chimie Sa Silice precipitee utilisable comme charge renforcante pour elastomeres
FR2763593B1 (fr) * 1997-05-26 1999-07-09 Michelin & Cie Composition de caoutchouc a base de silice destinee a la fabrication d'enveloppes de pneumatiques routiers ayant une resistance au roulement amelioree
JP4071343B2 (ja) * 1998-02-18 2008-04-02 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
JPH11236208A (ja) * 1998-02-25 1999-08-31 Nippon Silica Ind Co Ltd ゴム補強用含水ケイ酸
DE19840153A1 (de) * 1998-09-03 2000-04-20 Degussa Fällungskieselsäure
JP3678627B2 (ja) 2000-04-11 2005-08-03 横浜ゴム株式会社 ゴム組成物
WO2003016215A1 (fr) * 2001-08-13 2003-02-27 Rhodia Chimie Procede de preparation de silices, silices a distribution granulometrique et/ou repartition poreuse particulieres et leurs utilisations, notamment pour le renforcement de polymeres
FR2831178B1 (fr) 2001-10-22 2006-04-14 Rhodia Chimie Sa Compositions pigmentaires a base de silice
FR2833937B1 (fr) * 2001-12-26 2004-11-12 Rhodia Chimie Sa Silices a faible reprise en eau
WO2004007366A1 (ja) * 2002-07-10 2004-01-22 Tokuyama Corporation 易分散性沈降シリカのケーク及びその製造方法
FR2843121B3 (fr) 2002-08-02 2004-09-10 Rhodia Chimie Sa Agent ignifugeant, procede de preparation et l'utilisation de cet agent
FR2856680B1 (fr) 2003-06-30 2005-09-09 Rhodia Chimie Sa Materiaux d'isolation thermique et/ou acoustique a base de silice et procedes pour leur obtention
BRPI0415751A (pt) * 2003-10-22 2006-12-19 Comalco Alu destruição de compostos orgánicos em correntes do processo bayer
FR2862978B1 (fr) 2003-12-01 2005-12-30 Rhodia Chimie Sa Nouvel agent promoteur d'adherence sur une surface d'isolant thermique et en particulier sur une surface de polystyrene, et son utilisation dans le domaine de la construction et plus particulierement dans les systemes d'isolation
FR2864063B1 (fr) * 2003-12-19 2006-04-07 Rhodia Chimie Sa Silice de haute structure a faible reprise en eau
US7202154B2 (en) * 2004-01-05 2007-04-10 International Business Machines Corporation Suspension for filling via holes in silicon and method for making the same
CN100341956C (zh) * 2004-05-28 2007-10-10 河南大学 一种纳米二氧化硅微粒制备方法
FR2886303B1 (fr) 2005-05-26 2007-07-20 Rhodia Chimie Sa Utilisation d'une combinaison particuliere d'un agent de couplage et d'un agent de recouvrement, comme systeme de couplage(charge blanche-elastomere) dans les compositions de caoutchouc comprenant une charge inorganique
FR2928363B1 (fr) * 2008-03-10 2012-08-31 Rhodia Operations Nouveau procede de preparation de silices precipitees, silices precipitees a morphologie, granulometrie et porosite particulieres et leurs utilisations, notamment pour le renforcement de polymeres
DE102008017731A1 (de) 2008-04-07 2009-10-08 Continental Aktiengesellschaft Kautschukmischung
DE102008035867A1 (de) * 2008-08-01 2010-02-04 Evonik Degussa Gmbh Neuartige Fällungskieselsäuren für Trägeranwendungen
DE102008046874A1 (de) 2008-09-11 2010-03-18 Continental Reifen Deutschland Gmbh Gummiartikel
FR2962996B1 (fr) * 2010-07-23 2012-07-27 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2966830B1 (fr) 2010-11-03 2012-11-16 Rhodia Operations Utilisation d'une silice precipitee contenant de l'aluminium, d'une silice precipitee et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
ES2401813B2 (es) 2011-10-11 2013-08-12 Industrias Químicas Del Ebro, S.A. Carga reforzante de caucho.
FR2985992B1 (fr) * 2012-01-25 2015-03-06 Rhodia Operations Nouveau procede de preparation de silices precitees
FR2985990B1 (fr) * 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees a morphologie, granulometrie et porosite particulieres
FR2985991B1 (fr) * 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2985993B1 (fr) * 2012-01-25 2014-11-28 Rhodia Operations Nouveau procede de preparation de silices precipitees
FR2988386B1 (fr) 2012-03-22 2014-05-09 Rhodia Operations Procede de preparation de silice precipitee comprenant une etape de delitage a chaud
FR2988384B1 (fr) 2012-03-22 2015-09-11 Rhodia Operations Procede de preparation de silice precipitee comprenant une etape de fort compactage
FR2988385B1 (fr) 2012-03-22 2014-05-09 Rhodia Operations Procede de preparation de silice precipitee comprenant une etape de concentration membranaire
FR2988383B1 (fr) 2012-03-22 2017-06-09 Rhodia Operations Procede de preparation de silice precipitee mettant en oeuvre un malaxeur ou une extrudeuse
FR2997405B1 (fr) 2012-10-29 2015-11-13 Rhodia Operations Utilisation d'une silice precipitee contenant du titane et d'un agent de couplage specifique dans une composition d'elastomere(s)
JP2015504842A (ja) * 2013-01-23 2015-02-16 ローディア オペレーションズ 特有のモルフォロジ、粒度、および気孔率を有する沈澱シリカの製造方法
FR3001971B1 (fr) * 2013-02-14 2016-05-27 Rhodia Operations Utilisation d'un acide polycarboxylique lors de la preparation d'une composition d'elastomere(s)
WO2017016712A1 (en) 2015-07-28 2017-02-02 Rhodia Operations Process for the recovery of sodium sulfate
EP3156368A1 (en) 2015-10-15 2017-04-19 Rhodia Operations Novel process for the preparation of silicate, novel process for the preparation of precipitated silica
CN105460940B (zh) * 2016-02-22 2017-05-31 冷水江三A新材料科技有限公司 一种介孔药物载体二氧化硅及其制备方法
PL3507850T3 (pl) 2016-08-30 2021-01-25 Rhodia Operations Elektrolit stało-ciekły do stosowania w akumulatorze
US20200392312A1 (en) 2017-08-04 2020-12-17 Rhodia Operations Elastomer composition comprising precipitated silica and a sulfur-containing aromatic polymer
US11365306B2 (en) 2017-11-29 2022-06-21 Pirelli Tyre S.P.A. Microbeads comprising silicate fibres with needle-shaped morphology of nanometric size, preparation thereof, elastomeric compositions and tyres for vehicles comprising them
EP3732131A1 (en) 2017-12-27 2020-11-04 Rhodia Operations Silica suspensions
EP3746403B1 (en) 2018-02-01 2024-05-15 Rhodia Operations Silica suspension in an organic solvent and method for its manufacture
WO2019149873A1 (en) 2018-02-02 2019-08-08 Rhodia Operations Composite electrolyte
WO2019170694A1 (en) 2018-03-08 2019-09-12 Solvay Sa A process for the preparation of a solid polymer electrolyte useful in batteries
WO2020070119A1 (en) 2018-10-04 2020-04-09 Rhodia Operations Process for the manufacture of precipitated silica
US20210387858A1 (en) * 2018-11-08 2021-12-16 Rhodia Operations Precipitated silica and process for its manufacture
EP3653673A1 (en) 2018-11-16 2020-05-20 Rhodia Operations Organosilane-modified precipitated silica
EP3691015A1 (en) 2019-02-01 2020-08-05 Rhodia Operations Electrolyte
WO2021009550A1 (en) 2019-07-18 2021-01-21 Rhodia Brasil Ltda Preparation of immobilized enzymes
WO2021069256A1 (en) * 2019-10-07 2021-04-15 Rhodia Operations Silica for oral care compositions
EP4125781A1 (en) 2020-03-24 2023-02-08 Rhodia Operations Whitening oral care compositions
WO2022180133A1 (en) 2021-02-26 2022-09-01 Solvay Specialty Polymers Italy S.P.A. Method for sanitizing or sterilizing the surface of an article having a fluoropolymer coating
WO2022207932A1 (en) 2021-04-02 2022-10-06 Rhodia Operations New silica, process for its preparation and its uses
US20240158615A1 (en) 2022-11-02 2024-05-16 The Goodyear Tire & Rubber Company Precipitated silica pretreated with a coupling agent and polyethylene glycol for a rubber composition
WO2024104971A1 (en) 2022-11-14 2024-05-23 Rhodia Operations Modified precipitated silica, its manufacture and use

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB710015A (en) 1950-12-02 1954-06-02 Degussa An improved process for the production of finely divided silica
US2731326A (en) * 1951-08-31 1956-01-17 Du Pont Process of preparing dense amorphous silica aggregates and product
GB719918A (en) 1951-12-11 1954-12-08 Wyandotte Chemicals Corp Production of pigment grade silica
US3024199A (en) 1958-09-02 1962-03-06 Du Pont Stable aquasols of hydrous rare earth oxides and their preparation
US3383172A (en) 1964-02-04 1968-05-14 Degussa Process for producing silica in the form of hollow spheres
DE1807714C2 (de) 1968-11-08 1971-01-04 Degussa Verfahren und Vorrichtung zum kontinuierlichen Vorverdichten sowie gleichzeitigen Formen von feinteiligen Stoffen
US3669624A (en) 1970-07-09 1972-06-13 Grace W R & Co Process for producing high average pore volume silica
US3963512A (en) 1971-02-10 1976-06-15 Commonwealth Scientific And Industrial Research Organization Modification of mineral surfaces
US3794712A (en) 1971-10-26 1974-02-26 Nat Petro Chem Preparation of silica gels
US3923533A (en) 1972-03-02 1975-12-02 Ppg Industries Inc Thermally stable and crush resistant microporous glass catalyst supports
US3800031A (en) 1972-04-06 1974-03-26 Grace W R & Co Process for preparing silica hydrogel
US3803046A (en) 1972-06-28 1974-04-09 Grace W R & Co Process for preparing silica organogel
US3928541A (en) 1972-09-05 1975-12-23 Huber Corp J M Amorphous precipitated siliceous pigments for cosmetic or dentrifrice use and methods for their production
US4216113A (en) 1973-01-18 1980-08-05 W. R. Grace & Co. Process for preparing thickening grade of silica and process of using same
US3954944A (en) 1973-03-08 1976-05-04 Joseph Crosfield & Sons, Ltd. Fine silicas
US4049781A (en) 1973-11-02 1977-09-20 W. R. Grace & Co. Method of preparing loosely aggregated 200-500 millimicron silica
AU497891B2 (en) 1974-05-22 1979-01-18 J.M. Huber Corp. Siliceous pigments & their production
FR2353486A1 (fr) 1976-06-04 1977-12-30 Rhone Poulenc Ind Nouvelle silice de synthese amorphe, procede pour son obtention et application de ladite silice dans les vulcanisats
WO1979000248A1 (en) 1977-11-01 1979-05-17 Atomic Energy Authority Uk Production of dispersions
FR2453880A1 (fr) 1979-04-13 1980-11-07 Rhone Poulenc Ind Nouveau pigment a base de silice sous forme de bille, procede pour l'obtenir et application, notamment comme charge renforcante dans les elastomeres
US4340583A (en) 1979-05-23 1982-07-20 J. M. Huber Corporation High fluoride compatibility dentifrice abrasives and compositions
FR2471947A1 (fr) 1979-12-20 1981-06-26 Rhone Poulenc Ind Silice de precipitation, notamment utilisable comme charge renforcante
US4356106A (en) 1980-05-09 1982-10-26 United Kingdom Atomic Energy Authority Cerium compounds
US4508607A (en) 1982-10-18 1985-04-02 W. R. Grace & Co. Particulate dialytic silica
JPS60105609A (ja) 1983-03-04 1985-06-11 Taki Chem Co Ltd 歯磨用シリカ基剤及びその製造方法
JPS59163306A (ja) 1983-03-08 1984-09-14 Taki Chem Co Ltd 歯磨用シリカ基剤及びその製法
FR2567505B1 (fr) * 1984-07-11 1986-11-21 Rhone Poulenc Chim Base Silice a prise d'huile elevee et a structure primaire controlee et procede pour son obtention
US5236623A (en) 1984-07-11 1993-08-17 Rhone-Poulenc Chimie Process for the production of a silica colloid
GB8430244D0 (en) 1984-11-30 1985-01-09 Atomic Energy Authority Uk Preparation of materials
US4562066A (en) 1984-12-11 1985-12-31 Colgate-Palmolive Company Astringent dentifrice containing monofluorophosphate
FR2583735B1 (fr) 1985-06-20 1990-11-23 Rhone Poulenc Spec Chim Nouvelles dispersions colloidales d'un compose de cerium iv en milieu aqueux et leur procede d'obtention.
FR2584698B1 (fr) 1985-07-15 1990-05-18 Rhone Poulenc Spec Chim Procede de preparation de particules de silice spheroidales
FR2589871B1 (fr) 1985-09-13 1987-12-11 Rhone Poulenc Chim Base Charge renforcante pour elastomere a base de silice
JPH0643246B2 (ja) 1985-10-08 1994-06-08 川鉄鉱業株式会社 シリカの高純度化方法
GB8529970D0 (en) 1985-12-05 1986-01-15 Unilever Plc Spheroidal silica
FR2596382B1 (fr) 1986-03-26 1988-05-27 Rhone Poulenc Chimie Dispersions aqueuses colloidales d'un compose de cerium iv et leur procede d'obtention
DE3776416D1 (de) 1986-06-06 1992-03-12 Rhone Poulenc Chimie Koernchen auf der basis von kieselsaeure, verfahren zur deren herstellung und deren anwendung als fuellstoff in elastomeren.
DE3639844A1 (de) 1986-11-21 1988-06-01 Degussa Zahnpflegemittel
FR2611196B1 (fr) 1987-02-25 1990-07-27 Rhone Poulenc Chimie Nouvelles silices de precipitation a faible reprise en eau, leur procede de preparation et leur application au renforcement des elastomeres silicones
FR2613708B1 (fr) 1987-04-13 1990-10-12 Rhone Poulenc Chimie Silice de precipitation hydrophobe, son procede de preparation et son application au renforcement des elastomeres silicones
US4973462A (en) 1987-05-25 1990-11-27 Kawatetsu Mining Company, Ltd. Process for producing high purity silica
FR2621576B1 (fr) 1987-10-09 1990-01-05 Rhone Poulenc Chimie Dispersion colloidale d'un compose de cerium iv en milieu aqueux et son procede de preparation
FR2627176B1 (fr) 1988-02-11 1990-06-15 Rhone Poulenc Chimie Suspension aqueuse stable de silice de precipitation
IL89607A0 (en) 1988-03-31 1989-09-10 Reo Lp Process for fractionating a mixture of rare earth metals by ion exchange
DE3815670A1 (de) * 1988-05-07 1990-01-25 Degussa Feinteilige faellungskieselsaeure mit hoher struktur, verfahren zu seiner herstellung und verwendung
FR2631620B1 (fr) * 1988-05-19 1990-07-27 Rhone Poulenc Chimie Nouvelle silice precipitee absorbante et composition a base de cette s ilice
NZ232170A (en) * 1989-03-23 1993-01-27 Tasman Pulp & Paper Co Ltd Precipitation of amorphous silica from geothermal fluid; use of silica in coating paper sheet
FR2646673B1 (fr) 1989-05-02 1991-09-06 Rhone Poulenc Chimie Silice sous forme de bille, procede de preparation et son utilisation au renforcement des elastomeres
FR2649089B1 (fr) * 1989-07-03 1991-12-13 Rhone Poulenc Chimie Silice a porosite controlee et son procede d'obtention
CA2021229A1 (en) * 1989-07-18 1991-01-19 Tadashi Mochizuki High purity silica and method for producing high purity silica
JP2670154B2 (ja) 1989-10-06 1997-10-29 日東電工株式会社 逆浸透膜分離プロセスを有する希土類の分離精製システム
FR2655972B1 (fr) 1989-12-15 1992-04-24 Rhone Poulenc Chimie Procede de preparation d'une dispersion collouidale d'un compose de cerium iv en milieu aqueux et dispersions obtenues.
US5094829A (en) 1990-06-21 1992-03-10 Ppg Industries, Inc. Reinforced precipitated silica
FR2678259B1 (fr) * 1991-06-26 1993-11-05 Rhone Poulenc Chimie Nouvelles silices precipitees sous forme de granules ou de poudres, procedes de synthese et utilisation au renforcement des elastomeres.
US5231066A (en) 1991-09-11 1993-07-27 Quantum Chemical Corporation Bimodal silica gel, its preparation and use as a catalyst support
KR960010781B1 (ko) 1991-10-02 1996-08-08 유니레버 엔브이 실리카
DE59400684D1 (de) 1993-08-07 1996-10-24 Degussa Verfahren zur Herstellung einer Fällungskieselsäure
US6001322A (en) * 1993-09-29 1999-12-14 Rhone-Poulenc Chimie Precipitated silicas
JPH07204609A (ja) * 1994-01-14 1995-08-08 Matsushita Electric Works Ltd 生ごみ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EP, заявка, 0520862, кл. C 01 B 33/193, 1992. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544697C2 (ru) * 2008-04-07 2015-03-20 Эвоник Дегусса Гмбх Осажденные кремниевые кислоты в качестве усиливающего наполнителя для эластомерных композиций

Also Published As

Publication number Publication date
KR0158071B1 (ko) 1998-11-16
WO1995009127A1 (fr) 1995-04-06
ATE234264T1 (de) 2003-03-15
JPH08502716A (ja) 1996-03-26
KR950704193A (ko) 1995-11-17
AU7816394A (en) 1995-04-18
DE69432248D1 (de) 2003-04-17
AU712323B2 (en) 1999-11-04
ES2194874T3 (es) 2003-12-01
KR0158188B1 (en) 1999-10-15
FI952605A0 (fi) 1995-05-29
JP2799773B2 (ja) 1998-09-21
US6335396B1 (en) 2002-01-01
EP0670813A1 (fr) 1995-09-13
CA2150369A1 (fr) 1995-04-06
CA2150369C (fr) 2001-05-01
EP0670813B1 (fr) 2003-03-12
FI120581B (fi) 2009-12-15
FI952605A (fi) 1995-05-29
CN1047149C (zh) 1999-12-08
BR9405616A (pt) 1999-09-08
DE69432248T2 (de) 2004-08-19
AU686240B2 (en) 1998-02-05
AU4366797A (en) 1998-02-05
PT670813E (pt) 2003-07-31
CN1114832A (zh) 1996-01-10

Similar Documents

Publication Publication Date Title
RU2092435C1 (ru) Осажденный диоксид кремния и способ его получения
RU2087417C1 (ru) Осажденный диоксид кремния (варианты) и способ его получения
RU2129985C1 (ru) Способ получения осажденной двуокиси кремния и осажденная двуокись кремния, полученная этим способом
RU2136591C1 (ru) Способ получения осажденной двуокиси кремния и осажденная двуокись кремния, полученная этим способом
AU743439B2 (en) Precipitated silica used as reinforcing filler for elastomers
KR0133506B1 (ko) 침전 실리카의 제조방법 침전 실리카 및 그의 강화 엘라스토머에의 용도
RU2130425C1 (ru) Способ получения осажденной двуокиси кремния и осажденная двуокись кремния, полученная этим способом
RU2130896C1 (ru) Способ получения осажденного диоксида кремния, осажденные диоксиды кремния, содержащие цинк, и их применение для усиления эластомеров
JP2004522682A (ja) アルミニウムを含有する沈降シリカの製造法
US6214912B1 (en) Elastomeric matrix reinforced with precipitated silicas
US6169135B1 (en) Precipitated silica
KR100244062B1 (ko) 침강 실리카의 제조 방법, 알루미늄을 함유하는침강 실리카 및 이의 엘라스토머 강화용 용도
KR100260328B1 (ko) 침강 실리카의 새로운 제조 방법, 아연-함유의 새로운 침강 실리카, 및 엘라스토머의 보강에 사용되는 그것의 용도
MXPA96005925A (es) Nuevo proceso para la preparacion de silice precipitado, nuevo silices precipitados que contienenzinc y su uso para reforzar elastomeros
MXPA96005927A (en) New process for the preparation of precipitated silice, new precipitated silicks that contain zinc, and its use for the reinforcement of elastome