RU2058813C1 - Катализатор для получения синтез-газа и способ получения синтез-газа - Google Patents

Катализатор для получения синтез-газа и способ получения синтез-газа Download PDF

Info

Publication number
RU2058813C1
RU2058813C1 SU914894467A SU4894467A RU2058813C1 RU 2058813 C1 RU2058813 C1 RU 2058813C1 SU 914894467 A SU914894467 A SU 914894467A SU 4894467 A SU4894467 A SU 4894467A RU 2058813 C1 RU2058813 C1 RU 2058813C1
Authority
RU
Russia
Prior art keywords
catalyst
platinum group
group metal
reforming
gas
Prior art date
Application number
SU914894467A
Other languages
English (en)
Inventor
Басини Лука
Марчионна Марио
Россини Стефано
Санфилиппо Доменико
Original Assignee
Снампрогетти С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снампрогетти С.П.А. filed Critical Снампрогетти С.П.А.
Application granted granted Critical
Publication of RU2058813C1 publication Critical patent/RU2058813C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Использование: каталитическая химия, в частности получение синтез-газа реформингом легких углеводородов с CO2 и производство катализаторов для этого процесса. Сущность изобретения: катализатор содержит металл платиновой группы - платину, палладий, родий, рутений, иридий или их смесь 0,01 - 20 мас. %, предпочтительно, 0,1 - 5,0 мас.% на неорганическом носителе - оксиде алюминия и/или магния или силикатизированном оксиде алюминия или магния. Катализатор имеет площадь поверхности предпочтительно 1 - 400 м2/г и объем пор 0,1 - 3,0 см3/г. Способ включает реформинг легких углеводородов с CO2 при 350 - 850oС в присутствии катализатора вышеуказанного состава. 2 с. и 8 з. п. ф-лы, 3 ил., 2 табл.

Description

Изобретение относится к каталитической системе и ее использованию в процессе риформинга с целью одностадийного получения газообразной смеси из Н2 и СО.
Используемые в процессе основные реагенты представляют собой СO2 и легкие углеводороды, предпочтительно, метан. Уравнение реакции, описывающее процесс изобретения имеет вид
CO2+CH4
Figure 00000001
2CO+2H2 (I)
Реакции риформинга углеводородов с использованием СО2 обладают некоторыми значительными преимуществами по сравнению с широкораспространенными процессами с использованием пара, которые описываются следующим химическим уравнением:
H2O+CH4
Figure 00000002
CO+3H2 (II)
Процессы, в которых главным образом используется реакция (I), представляют собой лучший способ получения смесей Н2 и СО, если в качестве сырья используют природный газ, содержащий большие количества СО2.
Кроме этого, смесь Н2/CO с соотношением компонентов, близким к 1, которая может быть легко получена в соответствии с изобретением, может с успехом применяться в синтезе спиpтов и в оксосинтезе. В настоящее время при использовании сингаза, полученного по реакции парового риформинга (II), полученные смеси Н2/CO имеют соотношение компонентов ≥3. Для получения более низких соотношений приходится использовать вторую стадию, в которой применяется реакция
CO2+H2
Figure 00000003
CO+H2O (III)
Регулирование соотношения СО/H2 с помощью такой химической реакции отрицательно влияет на общие экономические показатели процесса.
Потенциальными потребителями процесса риформинга с использованием в качестве основного реагента СО2 вместо пара являются установки (заводы) для синтеза по Фишеру-Тропшу, в которых полученные СО2 и метан могут снова рециркулироваться в сингаз с низким соотношением Н2/СО.
Процесс рифоpминга, протекающий по реакции (I), в котором в одну стадию получают смеси Н2/CO с примерно эквимолярным содержанием компонентов может также с успехом использоваться на высоко интегрированных установках, предназначенных для восстановления железосодержащих минералов.
Процессы риформинга метана с использованием СО2 могут в отличии от реакций парового риформинга с успехом использоваться в тепловых циклах для хранения и транспорта энергии по термохимическому трубопроводу (ТСР). Однако, в отличие от парового риформинга, системы, включающие синтез Н2 и СО из СО2 и легких углеводородов не обеспечены разработанной технологией. Основанные на Ni катализаторы, обычно используемые в процессе парового риформинга, не обладают достаточной селективностью и они быстро дезактивируются при соотношении Н2О/С менее 2.
Дезактивация происходит в результате образования углерода, который покрывает активные металлические центры в ходе катализа и накапливается в порах катализатора, возможно вызывая тем самым фрагментацию.
До настоящего времени не найдено каталитической системы, которая позволяла бы получать синтез-газ (Н2 и СО) по реакции риформинга легких углеводородов без какой-либо видимой дезактивации за счет образования кокса по реакциям
2CO __→ CO2+C
CH4__→ 2H2+C даже если соотношение Н2О/С явно благоприятствует такому образованию.
Каталитическая система согласно изобретению характеризуется тем, что она образована из одного или более соединений металлов платиновой группы, предпочтительно выбранных из родия, рутения и иридия, подложки, состоящей из неорганических соединений, выбранных из оксидов и/или шпинелей алюминия, магния, циркония, кремния, церия и/или лантана, либо по отдельности, либо в комбинации друг с другом и возможно в присутствии щелочных металлов, в которой содержание металла или металлов платиновой группы в каталитической системе составляет 0,01-20 мас. предпочтительно 0,1-5 мас.
Используемые подложки могут также состоять из силикатизированных оксидов алюминия, магния, церия и лантана.
Площадь поверхности используемых катализаторов предпочтительно составляет 1-400 м2/г, более предпочтительно 10-200 м2/г, тогда как объем пор составляет 0,1-3 см3/г, более предпочтительно 0,5-2 см3/г.
Каталитическая система может быть получена импрегнированием (пропиткой) неорганических соединений раствором соли металлов платиновой группы с последующей термической сушкой и обжигом, или диспергированием неорганических соединений в органическом растворителе с последующей реакцией полученного продукта в среде монооксида углерода или в инертной атмосфере с раствором соединений металлов платиновой группы. На такой второй стадии протекающая экзотермическая реакция, которая в результате приводит к окрашенным продуктам реакции, сопровождается фильтрацией, сушкой и обжигом.
Более конкретно, рассматриваемая каталитическая система может быть получена гетерогенной твердожидкостной реакцией при 0-150оС, предпочтительно 20-50оС, между соединениями металлов платиновой группы в среде органического растворителя и указанными неорганическими соединениями, диспергированными в том же растворителе.
В ходе такой процедуры количество металла, фиксирующееся на субстрате определяется главным образом химическими свойствами неорганического оксида, а не его пористостью и площадью поверхности. Однако, эти последние характеристики важны в отношении целостности и стабильности катализатора в ходе реакции риформинга. В этом отношении накопление углерода в слишком малых порах приводит к фрагментации материала. Пониженная площадь поверхности подложки также приводит в результате к меньшему диспергированию металла и благоприятствует явлению спекания с последующей дезактивацией катализатора.
Способ получения подложек из силикатизированных оксидов алюминия, магния, церия или лантана заключается главным образом, в реакции конденсации между неорганическим оксидом (алюминия, магния, церия или лантана) и соединением кремния, содержащим гидролизуемые органические группы, с последующим удалением негидролизованных органических остатков путем сгорания или реакции в присутствии пара.
С использованием таких способов силикатизации могут быть получены материалы, содержащие кремний в количестве 0,5-15 мас. предпочтительно, 1-5 мас.
Изобретение предусматривает процесс каталитического риформинга легких углеводородов, предпочтительно, метана, который позволяет получать смеси Н2 и СО с мольными соотношениями компонентов 0,6-6, предпочтительно 0,8-3.
Такой каталитический способ характеризуется тем, что риформинг проводят предпочтительно в одну стадию с использованием указанной выше каталитической системы и температурного интервала 350-850оС, предпочтительно 550-750оС, при давлениях в интервале 0,5-50 атм, предпочтительно 1-40 атм. При использовании метана требуемое объемное соотношение СО2/CH4 составляет 0,5-15, предпочтительно 0,8-10.
При всех таких термодинамических условиях процесс можно также проводить в присутствии пара, если конкретное применение полученного синтез-газа требует этого.
В этом случае необходимо лишь регулировать количества подаваемых СО2 и Н2О с получением синтез-газа с любым желаемым соотношением Н2/СО в интервале 1-6.
Хотя такой способ особенно применим для процесса риформинга метана, могут также использоваться любые другие легкие углеводороды или их смеси.
Так, например, могут использоваться С1-4 парафины и олефины при подходящем подборе оптимальной температуры и условий проведения процесса, а также соответствующих количеств СО2.
Могут использоваться любые углеводородные смеси, содержащие природный газ, в которых содержание метана предпочтительно превышает 80 об.
П р и м е р 1. Получение катализатора.
Неорганический оксид, используемый в качестве подложки, получают по следующей методике.
Промышленный оксид магния, выпускаемый Карло Эрба, с площадью поверхности 210 м2/г суспендируют при перемешивании в тетраэтилсиликатном (ТЭС) растворе. Температуру поддерживают в интервале 80-90оС с целью облегчения выпаривания этанола, образовавшегося в ходе реакций конденсации. В реакционную систему вводят поток сухого газообразного азота. Газохроматографический анализ выходящего потока показывает образование этанола.
Окончанием реакции конденсации считают прекращение детекции этанола в выходящем газовом потоке. В этот момент температуру повышают до 180оС с целью отгонки непрореагировавшего ТЭС. Затем непрореагировавшие этокси группы, связанные с атомами кремния, закрепленными на твердой неорганической подложке, подвергают гидролизу путем подачи потока азота с паром при 200оС. На этой стадии в газовом потоке также определяют этанол. В ИК-спектре материала, полученного к этому моменту, обнаруживают наличие многочисленных гидроксильных полос, которые отсутствуют в исходном материале. Затем твердое вещество нагревают до 850оС (5оС/мин) и выдерживают при этой температуре в течение 10 ч. После такой обработки площадь поверхности уменьшается до 32 м2/г, содержание кремния составляет 1,5% Дифференциальный термический, термогравиметрический и ИК-спектроскопический анализы, проведенные в ходе трех циклов при 25-750оС, не обнаруживают значительного изменения физико-химических свойств полученных силикатизированных материалов. Затем 50 г силикатизированного оксида магния суспендируют в 100 мл 2-метилпентана в атмосфере азота. Второй раствор 50 мл этого же растворителя, содержащий 0,91 г Rh4 (CO)12 в атмосфере СО, при перемешивании быстро прикапывают в суспензию силикатизированного оксида. Органический раствор быстро обесцвечивается с переходом окраски от интенсивно красной до бесцветной при одновременной окраске белого твердого вещества. Это вещество отфильтровывают в инертной атмосфере с получением материала, содержащего 1 мас. Рh в высоко диспергированном состоянии, о чем можно судить по анализу вращательных карбонильных полос поверхностных комплексов (фиг. 1).
На фиг. 1 показан спектр диффузионного отражения пылевидного твердого вещества, в котором по горизонтальной оси отложено волновое число в см-1, а по горизонтальной оси единицы интенсивности Кубелка-Мунка).
Методом ИК-спектроскопии также изучены трансформации поверхностных комплексов в ходе термического восстановления водородом в атмосферах газообразного СН4 и СО2. Эти исследования внесли удовлетворительное понимание в явление образования центров поверхностной кристаллизации, обеспечивающее высокую воспроизводимость получения материала.
Реакция риформинга.
Реакцию риформинга осуществляют в кварцевом реакторе с неподвижным слоем катализатора, содержанием 3 см3 катализатора путем подачи газообразного эквимолярного потока СН4 и СО2 при давлении 1 атм. Газохроматографический анализ и линии потока выходящего газа проводят, начиная с 300оС, и продолжают до 750оС. Часовую объемную скорость газа поддерживают равной 1000 л/кг·ч.
На фиг. 2 показаны значения различных экспериментальных конверсий СН4 и СО2 при различных изученных температурах (черные квадраты и точки соответственно), а также теоретически рассчитанные значения конверсий равновесной системы для реакций:
CO2+CH4
Figure 00000004
2CO+2H2
CO2+H2
Figure 00000005
CO+H2O (A)
Теоретическая конверсия СО2 в состоянии равновесия показана треугольниками, а СН4 белыми квадратами.
Из полученных результатов можно сделать вывод о том, что катализатор проявляет чрезвычайную активность и позволяет получать конверсии близкие к значениям конверсий в термодинамическом равновесии, в изученном температурном интервале. Процентное содержание Н2О в смеси продуктов реакции также близко к значениям, рассчитанным для системы (А) в состоянии равновесия.
На фиг. 3 показаны теоретические рассчитанные изменения концентраций газообразных продуктов от температуры для изученной системы при общем давлении 1 атм. Экспериментально полученные концентрации газообразных продуктов в полной мере отвечают расчетным значениям. Соотношение Н2/CO в интервале 650-750оС имеет значение несколько меньше 1.
В табл. 1 представлены результаты, полученные в каталитических испытаниях длительностью 100 ч при 700оС, которые проводят в присутствии катализаторов, описанных в примерах 1-4 и 6 в сравнении с результатами, полученными с использованием промышленного катализатора парового риформинга (пример 7), содержащего примерно 15,5% Ni на α-оксиде алюминия.
В ходе таких испытаний катализаторы, содержащие Rh, нанесенный на силикатизированный оксид магния, оказались чрезвычайно активными в катализе реакций, протекающих в системе (А), но неожиданно не катализировали реакции образования углерода даже в тех случаях, когда выбранные условия благоприятствовали их протеканию.
В табл. 1 приведены результаты количественного анализа выгруженных катализаторов на содержание углерода. В течение 100 ч активность и селективность каталитических систем оставалась постоянной.
П р и м е р 2. Повторяют методику синтеза катализатора, описанную в примере 1, но с использованием раствора, содержащего 1,05 г Rh(CO)12 с получением твердого вещества, содержащего 1 мас. Rh.
Реакцию риформинга проводят согласно методике примера 1, вводя те же реагенты при том же давлении и объемной скорости при 300-750оС. И в этом случае конверсии СН4 и СО2 близки к равновесным значениям даже в том случае, когда они несколько ниже значений полученных в примере 1 (см. табл. 1).
П р и м е р 3-4. В этих примерах используемые катализаторы содержат благородные металлы Rh (0,1 мас.) (пример 3) или Ru (0,5 мас.) (пример 4) и силикатизированный оксид алюминия. Последнее вещество получают конденсацией тетраэтилсиликата с гамма-оксидом алюминия, выпускаемого АК ZO, в соответствии с методикой, описанной в примере 1. Полученные таким образом каталитические системы обладают теми же характеристиками, что и описанные в примерах 1 и 2, т.е. проявляют активность в катализе реакций в системе (А) во всем изученном температурном интервале и не активны в катализе реакций, приводящих к образованию углерода на катализаторе. В табл. 1 также приведены результаты, полученные в ходе 100-часовых каталитических испытаний в двух указанных случаях.
П р и м е р 5. В этом примере реагенты представляют собой газообразный поток С2Н6 и Со2 в соотношение 1/2. Каталитические испытания проводят при 400 и 700оС с использованием катализатора примера 2. Установлено, что конверсия этана при 700оС в каталитическом испытании длительностью 100 ч составляет 100% а конверсия СO2 98% Соотношение Н2/CO составляет 0,7. Содержание метана в отходящем газе составляет величину менее 3%
П р и м е р 6. В этом примере методику синтеза катализатора, описанную в примере 1, модифицируют таким образом, что благородный металл наносят на силикатизированный оксид с помощью реакции импрегнирования пропитывания, осуществляемой прикапыванием водного раствора нитрата Ph на силикатизированный оксид до его пропитывания. Полученный таким образом катализатор содержит 1 мас. Ph. В этом примере каталитические испытания, проводимые согласно методикам, описанным в примерах 1-5, показывают что характеристики материала модифицируются в течение первых 10 ч реакции при 700оС. В ходе этого периода времени значения конверсий повышают до тех пор, пока они не устанавливаются на значениях, указанных в табл. 1.
Однако, после индукционного периода опять достигаются характеристики каталитических систем, описанных в примерах 1-4.
П р и м е р 7. Повторяют методику синтеза катализатора, описанную в примере 1, с использованием раствора Ir3(CO)12 для того, чтобы получить твердое вещество с содержанием иридия 2 мас.
Реакцию риформинга проводят согласно методике примеров 1 и 2, подачей смеси тем же самых реагентов при том же давлении и температурных условиях. В табл. 1 указаны показательные значения реакционной способности, полученные при 750оС.
П р и м е р 8. Используют катализатор, содержащий Ru (5 мас.) и Pd (1 мас. ) на подложке из силикатизированного оксида алюминия. Способ получения подложки раскрыт в примерах 3 и 4.
Катализатор получают подачей раствора Ru3(CO)12 по каплям в н-гексан, в суспензию силикатизированного оксида алюминия в том же самом растворителе.
После высушивания наносят покрытие палладия на твердое вещество путем пропитки при начинающейся смачиваемости из водного раствора Pd(CH3COO)2.
После дальнейшего высушивания, катализатор восстановлен смесью Н2 и N2(H2/N2=1/1) при 500оС.
Испытания катализаторов выполнены в соответствии с процедурами, указанными в примере 1.
В табл. 1 указаны характеристики реакционной способности.
П р и м е р 9. Получен катализатор, содержащий как Rh (0,1 мас.), так и Рt (1 мас.) на силикатизированном оксиде алюминия.
Способ получения силикатизированного оксида алюминия раскрыт в примерах 3 и 4. Катализатор получают подачей по каплям раствора кластера Rh4(CO)12 в н-гексане в суспензию силикатизированного оксида алюминия в соответствии со способом, указанным в примерах 1 и 4.
На полученную таким образом подложку после высушивания наносят покрытие платины путем пропитки при начинающейся смачиваемости из водного раствора Pt(СН3СОО)2.
Таким образом полученный продукт сушат при 160оС в течение 2 ч, и затем проводят восстановительную обработку смесью Н2 и N22/N2=1/1) при 500оС в течение 10 ч.
Испытания катализаторов выполнены в соответствии со способом, указанным в примере 1.
П р и м е р 10. Катализатор получают осаждением катализатора, который содержит 5 мас. рутения, на подложке из силикатизированного оксида алюминия по методике примера 6. Рутений осаждают пропитыванием под действием начинающейся смачиваемости подложки из силикатизированного оксида алюминия. После высыхания, катализатор восстанавливают в потоке водорода азота (H2:N2=1) при температуре до 500оС. Испытания на катализатор проводят по методике примера 1. Данные испытаний приведены в табл. 1.
П р и м е р 11. Катализатор получают осаждением катализатора, содержащего 0,5 мас. Rh и 0,5 мас. Ru на подложку смешанных оксидов алюминия и магния.
Подложка, содержащая 16,7 мас. магния и 42,1 мас. алюминия, приготовлена исходя из следующих двух водных растворов:
в 20 мл воды растворяют 7,5 г Mg(NO3)2·6H2O;
1,5 г Al(NO3)3·9H2O растворено в 10 мл водного раствора 27 мас. NaOH.
Растворы смешивают, получая осадок, который затем промывают и высушивают. Осадок затем прокаливают до 1000оС.
Процедура получения химической абсорбции Rh и Ru из двух органических растворов Rh4(CO)12 и Ru3(CO)12 та же, как в примерах 1 и 2.
Затем катализатор исследуют в условиях, аналогичных описанным в примере 1. Результаты каталитических исследований приведены в табл. 1.
В табл. 2 приведены характеристики носителя с указанием удельной поверхности и объема пор.
П р и м е р 12 (сравнительный). В целях сравнения с данными примерами 1 используют промышленный катализатор парового риформинга, состоящий из 15,5 мас. Ni, нанесенного на оксид алюминия.
Полученные результаты представлены в табл. 1.

Claims (8)

1. Катализатор для получения синтез-газа реформингом легких углеводородов с CO2, содержащий металл платиновой группы и неорганический носитель, отличающийся тем, что в качестве металла платиновой группы он содержит один или более металлов из группы: платина, палладий, родий, рутений, иридий, в качестве неорганического носителя оксиды алюминия и/или магния или силикатизированный оксид алюминия или магния при следующем содержании компонентов, мас.
Металл платиновой группы 0,01 20,0
Неорганический носитель Остальное
2. Катализатор по п.1, отличающийся тем, что он содержит металл платиновой группы в количестве 0,1 5,0 мас.
3. Катализатор по п.1, отличающийся тем, что он имеет площадь поверхности 1 400 м2/г и объем пор 0,1 3,0 см3/г.
4. Катализатор по п.3, отличающийся тем, что он имеет площадь поверхности 10 200 м2/г и объем пор 0,5 2,0 см3/г.
5. Способ получения синтез-газа реформингом легких углеводородов с CO2 в одну стадию в присутствии катализатора на основе металла платиновой группы на неорганическом носителе при 350 850oС, отличающийся тем, что используют катализатор, содержащий в качестве металла платиновой группы один или более металлов из группы: платина, палладий, родий, рутений, иридий, в качестве неорганического носителя оксиды алюминия и/или магния или силикатизированный оксид алюминия или магния при следующем содержании компонентов, мас.
Металл платиновой группы 0,01 20,0
Неорганический носитель Остальное
6. Способ по п.5, отличающийся тем, что процесс проводят при давлении 0,5 50 атм.
7. Способ по пп.5 и 6, отличающийся тем, что процесс ведут при температуре 550 750oС и давлении 1 40 атм.
8. Способ по п.5, отличающийся тем, что процесс ведут при объемном соотношении CO2/CH4 от 0,5 до 15.
9. Способ по п.8, отличающийся тем, что процесс проводят при объемном соотношении CO2/CH4 от 0,8 до 10.
10. Способ по п.5, отличающийся тем, что процесс проводят с добавлением пара до соотношения H2/CO, равном 1 6.
SU914894467A 1990-01-26 1991-01-25 Катализатор для получения синтез-газа и способ получения синтез-газа RU2058813C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT19162A/90 1990-01-26
IT19162A IT1238676B (it) 1990-01-26 1990-01-26 Sistema catalitico e procedimento per la produzione di gas di sintesi mediante reazione di reforming di idrocarubri leggeri con co2

Publications (1)

Publication Number Publication Date
RU2058813C1 true RU2058813C1 (ru) 1996-04-27

Family

ID=11155408

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914894467A RU2058813C1 (ru) 1990-01-26 1991-01-25 Катализатор для получения синтез-газа и способ получения синтез-газа

Country Status (11)

Country Link
US (1) US5336655A (ru)
CN (2) CN1028745C (ru)
CA (1) CA2034674A1 (ru)
DE (1) DE4102185C2 (ru)
DZ (1) DZ1487A1 (ru)
GB (1) GB2240284B (ru)
IT (1) IT1238676B (ru)
NL (1) NL9100116A (ru)
NO (1) NO910278L (ru)
RU (1) RU2058813C1 (ru)
SE (2) SE507226C2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1272532B (it) * 1993-08-27 1997-06-23 Snam Progetti Processo di ossidazione parziale catalitica del gas naturale per ottenere gas di sintesi e formaldeide
JP3517973B2 (ja) * 1993-09-30 2004-04-12 マツダ株式会社 排気ガス浄化用触媒、該排気ガス浄化用触媒の製造方法及び、排気ガス浄化用ハニカム触媒の製造方法
CN1051463C (zh) * 1995-01-19 2000-04-19 陈曦 一种镇痛消炎药物组合物
CN1046436C (zh) * 1995-03-23 1999-11-17 中国科学院成都有机化学研究所 天然气部分氧化制合成气用催化剂及其制备方法
MY128194A (en) * 1997-04-11 2007-01-31 Chiyoda Corp Process for the production of synthesis gas
US5985178A (en) * 1997-10-31 1999-11-16 Exxon Research And Engineering Co. Low hydrogen syngas using CO2 and a nickel catalyst
PL345190A1 (en) * 1998-06-30 2001-12-03 Shell Int Research Catalytic partial oxidation with two catalytically-active metals
US6180559B1 (en) * 1999-03-02 2001-01-30 Eastman Chemical Company Supported catalysts and catalyst support materials and process for the manufacture of 1,2-epoxybutane
JP3473898B2 (ja) * 1999-04-22 2003-12-08 松下電器産業株式会社 水素精製装置
CN1090588C (zh) * 1999-05-14 2002-09-11 清华大学 用于二氧化碳重整甲烷制合成气的镍基催化剂的制备方法
US6287393B1 (en) 1999-09-03 2001-09-11 Air Products And Chemicals, Inc. Process for producing carburizing atmospheres
US6521143B1 (en) 2000-04-13 2003-02-18 Air Products And Chemicals, Inc. Co-production of carbon monoxide-rich syngas wth high purity hydrogen
ATE348075T1 (de) 2000-07-06 2007-01-15 Haldor Topsoe As Rückgewinnung des ammoniaksynthesekatalysators
AU2003295465A1 (en) 2002-11-11 2004-06-03 Conocophillips Company Stabilized alumina supports, catalysts made therefrom, and their use in partial oxidation
ITMI20072209A1 (it) 2007-11-21 2009-05-22 Eni Spa Procedimento migliorato per la produzione di gas di sintesi a partire da idrocarburi ossigenati ricavati da biomasse
US9616414B2 (en) 2013-05-09 2017-04-11 Sabic Global Technologies B.V. Alkaline earth metal/metal oxide supported catalysts
RU2532924C1 (ru) * 2013-07-10 2014-11-20 Общество с ограниченной ответственностью "Газохим Техно" Катализатор окислительной конверсии углеводородных газов с получением оксида углерода и водорода
US10738247B2 (en) 2017-11-15 2020-08-11 Gas Technology Institute Processes and systems for reforming of methane and light hydrocarbons to liquid hydrocarbon fuels
US11111142B2 (en) * 2018-09-18 2021-09-07 Gas Technology Institute Processes and catalysts for reforming of impure methane-containing feeds
US20220081786A1 (en) * 2020-09-16 2022-03-17 Battelle Energy Alliance, Llc Methods for producing ammonia and related systems
IT202100015473A1 (it) 2021-06-14 2022-12-14 Nextchem S P A Metodo di produzione di catalizzatori per processi chimici ad alta temperatura e catalizzatori cosi' ottenuti

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2036480A5 (ru) * 1969-03-20 1970-12-24 Azote & Prod Chim
JPS5244802A (en) * 1975-10-06 1977-04-08 Osaka Gas Co Ltd Preparation of high calorific value fuel gas
US4101450A (en) * 1977-05-09 1978-07-18 Celanese Corporation Catalyst for production of acetic acid
US4171288A (en) * 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
FR2423469A1 (fr) * 1978-03-07 1979-11-16 Elf Union Catalyseurs ameliores de desalkylation a l'eau des hydrocarbures aromatiques (catalyseurs sur alumine g)
JPS5815013B2 (ja) * 1980-07-17 1983-03-23 株式会社豊田中央研究所 水蒸気改質用触媒とその製造方法
EP0082614B1 (en) * 1981-12-21 1986-07-23 Imperial Chemical Industries Plc Process for steam reforming a hydrocarbon feedstock and catalyst therefor
EP0084273A3 (en) * 1982-01-04 1984-05-23 The Standard Oil Company Production of synthesis gas
CA1213876A (en) * 1982-09-21 1986-11-12 Exxon Research And Engineering Company Catalysts and process for oxidation of olefins to ketones
JPS59112840A (ja) * 1982-12-16 1984-06-29 Osaka Gas Co Ltd 燃料ガス製造用触媒組成物
DE3340569A1 (de) * 1983-11-09 1985-05-23 Sued Chemie Ag Katalysator zur herstellung von synthesegas bzw. von wasserstoff und verfahren zu dessen herstellung
GB8514344D0 (en) * 1985-06-06 1985-07-10 Ici Plc Catalyst support
US4714692A (en) * 1986-04-03 1987-12-22 Uop Inc. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 4690777, кл. C 01B 3/38, 1987. *

Also Published As

Publication number Publication date
US5336655A (en) 1994-08-09
GB9100951D0 (en) 1991-02-27
NO910278D0 (no) 1991-01-24
CA2034674A1 (en) 1991-07-27
SE9100148L (sv) 1991-07-27
SE507226C2 (sv) 1998-04-27
DZ1487A1 (fr) 2004-09-13
CN1028745C (zh) 1995-06-07
SE9604092L (sv) 1996-11-08
DE4102185C2 (de) 1994-05-05
CN1053596A (zh) 1991-08-07
IT9019162A0 (it) 1990-01-26
IT9019162A1 (it) 1991-07-27
CN1104606A (zh) 1995-07-05
SE9100148D0 (sv) 1991-01-17
GB2240284B (en) 1993-09-15
GB2240284A (en) 1991-07-31
IT1238676B (it) 1993-09-01
NO910278L (no) 1991-07-29
SE9604092D0 (sv) 1996-11-08
DE4102185A1 (de) 1991-08-08
NL9100116A (nl) 1991-08-16

Similar Documents

Publication Publication Date Title
RU2058813C1 (ru) Катализатор для получения синтез-газа и способ получения синтез-газа
RU2201392C2 (ru) Способ получения синтез-газа
RU2126376C1 (ru) Способ каталитического частичного окисления природного газа, способ синтеза метанола, способ синтеза фишера-тропша
EP0974550B1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
EP0979799B1 (en) Process for preparing synthesis gas by autothermal reforming
US7375051B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
NO343821B1 (no) Koboltbasert katalysator for Fischer-Tropsch syntese
US5989457A (en) Process for the production of synthesis gas
JP2000104078A (ja) 炭素ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
RU2638534C1 (ru) Катализатор конверсии природного или попутного газа в синтез-газ в процессе автотермического риформинга и способ его получения
JPS5929633B2 (ja) 炭化水素の低温水蒸気改質法
JP4226684B2 (ja) 部分酸化法による合成ガスの製造方法
CA2050143A1 (en) Catalytic process for the production of synthetic gas by means of hydrocarbon reforming and combustion reactions
AU649359B2 (en) Catalyst and process for the catalytic partial oxidation of hydrocarbons
EP0076602A2 (en) Catalysts for methane production
AU2003291498A1 (en) Improved supports for high surface area catalysts
Maniecki et al. Catalytic activity and physicochemical properties of Ni-Au/Al 3 CrO 6 system for partial oxidation of methane to synthesis gas
Hicks et al. Effect of catalyst structure on the rate of alkane oxidation over platinum
EP2452915B1 (en) Catalyst composition comprising gold on a sulfated zirconia and a method of making the catalyst
JPH11323352A (ja) 炭化水素油の製造方法
EA043038B1 (ru) Способ фишера-тропша, катализатор на подложке для синтеза фишера-тропша и его применение
AU2022293970A1 (en) Method for producing catalysts for high temperature chemical processes and catalysts thus obtained.
Gaigneaux P. Moggi", G. Predieri", D. Cauzzi", M. Devillers, P. Ruiz', S. Morselli" and O. Ligabue