RU2054408C1 - Способ получения фторированного соединения - Google Patents

Способ получения фторированного соединения Download PDF

Info

Publication number
RU2054408C1
RU2054408C1 SU925052177A SU5052177A RU2054408C1 RU 2054408 C1 RU2054408 C1 RU 2054408C1 SU 925052177 A SU925052177 A SU 925052177A SU 5052177 A SU5052177 A SU 5052177A RU 2054408 C1 RU2054408 C1 RU 2054408C1
Authority
RU
Russia
Prior art keywords
cfcl
anhydrous
tetrafluoroethylene
reaction
formula
Prior art date
Application number
SU925052177A
Other languages
English (en)
Inventor
Аояма Хирокацу
Кояма Сатоси
Original Assignee
Дайкин Индастриз Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дайкин Индастриз Лтд. filed Critical Дайкин Индастриз Лтд.
Application granted granted Critical
Publication of RU2054408C1 publication Critical patent/RU2054408C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Использование: как промежуточное соединение для получения гидрофторуглеродов, слабо разрушающих озоновый слой атмосферы. Сущность изобретения: реагент 1 - тетрафторэтилен, реагент 2 - соответствующий полихлорполифторалкил - насыщенный углеводород. Условия синтеза: температура преимущественно от -20 до 150oС, катализатор - безводный хлорид алюминия или безводный тетрахлорид циркония, или безводный хлорфторид алюминия. Получают фторированное соединение формулы R - CCl2CF2CF3, где R - перфторалкил, перхлоралкил, полифторалкил, полихлоралкил или каждый из которых содержит по крайней мере один атом углерода. 2 з. п. ф-лы.

Description

Изобретение относится к способу получения фторированного соединения, в частности фторированного соединения формулы
R-CCl2CF2CF3 (I) где R перфторалкильная группа, перхлоралкильная группа, полифторалкильная группа, полихлоралкильная группа или полихлорполифторалкильная группа, каждая имеющая по крайней мере один атом углерода.
Фторированное соединение (I), полученное в соответствии со способом предлагаемого изобретения, используется в качестве промежуточного соединения для получения гидрохлорфторуглерода и гидрофторуглерода, которые в меньшей степени разрушают озоновый слой, или других фторированных соединений.
Известно, что фторированное соединение, имеющее три атома углерода, получают взаимодействием галоидометана, имеющего один атом углерода (например, тетрахлорметан, трихлорфторметан и дихлорфторметан), и фтор-содержащего этилена (например, тетрафторэтилен, трифторэтилен, хлортрифторэтилен и 1,1-дихлор-2,2-дифторэтилен) в присутствии безводного хлорида алюминия. Однако неизвестно присоединительное взаимодействие галоидоалкана, содержащего по крайней мере два атома углерода, с фторсодержащим этиленом, таким как тетрафторэтилен, в присутствии кислоты Льюиса, такой как безводный хлорид алюминия.
Объектом предлагаемого изобретения является способ получения указанного выше фторированного соединения (I) с высокой селективностью и высоким выходом.
Согласно изобретению предлагается способ получения фторированного соединения формулы
R-CCl2CF2CF3, (I) где R перфторалкильная группа, перхлоралкильная группа или полихлорполифторалкильная группа, каждая имеющая по крайней мере один атом углерода, который включает взаимодействие тетрафторэтилена с соединением формулы
R-CFCl2 (II) где R то же, что указано выше, в присутствии кислоты Льюиса.
В формулах (I) и (II) группа R имеет по меньшей мере один атом углерода, преимущественно от 1 до 10 атомов углерода, более преимущественно от 1 до 4 атомов углерода.
Конкретными примерами соединения (I) являются CF3CFCl2, CF3CF2CFCl2, ClCF2CFCl2, ClCF2CFClCFCl2, CFCl2CF2CFCl2, CF3CF2CF2CFCl2, ClCF2CFCl-CF2CFCl2, HCF2CF2CFCl2, HCF2CF2CF2CF2CFCl2 и подобные соединения.
Катализатором, используемым в настоящей реакции, служит кислота Льюиса. Примерами кислоты Льюиса являются хлориды, такие как безводный тетрахлорид алюминия, безводный тетрахлорид циркония, безводный хлорид цинка, безводный хлорид олова, безводный тетрахлорид титана, безводный хлорид железа, безводный пентахлорид сурьмы и другие, хлорфториды, такие, у которых часть атомов хлора замещена атомами фтора, и им подобные. Среди них преимущественными являются безводный хлорид алюминия, безводный тетрахлорид циркония, безводный хлорфторид алюминия и безводный хлорфторид циркония.
Коммерчески доступные кислоты Льюиса могут использоваться в форме порошка, жидкости или частичек.
Альтернативно, фторхлорид алюминия формулы:
AlClxFy (III) где х число больше чем 0 и меньше чем 3 и у число больше чем 0 и меньше чем 3 при условии, что сумма х и у равна 3, или хлорид циркония формулы
ZrClpFq, (IV) где р число больше чем 0 и меньше чем 4 и q число больше чем 0 и меньше чем 4 при условии, что сумма р и q равна 4, получают обработкой безводных хлорида алюминия или тетрахлорида циркония фтороводородом, фтористоводородной кислотой или хлорфторуглеродом, фторуглеводородом или хлорфторуглеводородом, содержащим от 1 до 4 атомов углерода, преимущественно 1 или 2 атома углерода (например, трифторметан, тетрафторэтан, хлордифторметан, дихлорфторметан, трифтордихлорэтан, трифторхлорметан, дихлордифторметан, трихлорфторметан, дифтортетрахлорэтан, трифтортрихлорэтан и другие).
В вышеуказанной стадии получения фтороводород, фтористоводородная кислота, хлорфторуглерод, фторуглеводород или хлорфторуглеводород могут взаимодействовать отдельно или в виде смеси двух или более этих соединений.
Температура реакции от 0 до 120оС, преимущественно от 0 до 100оС. Указанное выше фторированное соединение может взаимодействовать с безводным хлоридом алюминия или тетрахлоридом циркония в жидком или газообразном состояниях.
Количество кислоты Льюиса является каталитическим количеством, и это обычно от 0,1 до 20 мас. преимущественно от 0,25 до 10 мас. относительно веса исходного соединения (II).
Тетрафторэтилен добавляют до окончания реакции. Количество тетрафторэтилена обычно от 1 до 1,5 эквивалента к соединению (II). Даже если может быть добавлено большее количество тетрафторэтилена, то избыточное количество его не осаждается в процессе реакции и повышает рециркулируемое количество. Тетрафторэтилен может быть использован в газообразном или жидком состоянии.
Температура реакции в предлагаемом изобретении обычно от -20оС до 150оС, преимущественно от -20оС до 100оС. Если температура реакции ниже чем -20оС, то скорость реакции также низкая, и это является невыгодным. Если температура реакции выше чем 150оС, то могут иметь место побочные реакции и образование нежелательных побочных продуктов.
Реакционное давление зависит от температуры реакции и обычно бывает от атмосферного до 20 кг/см2 G, преимущественно от атмосферного давления до 15 кг/см2 G.
Реакция по предлагаемому изобретению может проводиться в присутствии растворителя. Преимущественными примерами растворителя являются четыреххлористый углерод, хлороформ, метиленхлорид, 1,1,1-трихлор-2,2,2-трифторэтан, 1,2-дихлортетрафторэтан, 3,3-дихлор-1,1,1,2,2-пентафторпропан, 1,3-дихлор-1,1,2,2,3-пентафторпропан и им подобные. Кроме того, полученные соединения (I) могут быть использованы в качестве растворителя. В этом случае нет необходимости в отделении продукта реакции от растворителя, и этот способ экономически более выгоден.
П р и м е р 1. В автоклав из нержавеющей стали емкостью 200 мл, снабженный мешалкой, загрузили безводный хлорид алюминия (2 г). После понижения давления в автоклаве и охлаждения до -20оС был загружен 1,1-дихлортетрафторэтан (65 г). После нагревания до 80оС был инжектирован газообразный тетрафторэтилен до давления 13 кг/см2 G. По мере протекания реакции тетрафторэтилен расходовался, и давление падало. В то время как поддерживали температуру 80оС, добавляли и тетрафторэтилен, поддерживая давление на уровне 13 кгс/см2 G. После 15 ч падения давления не наблюдалось. Автоклав охлаждали до 0оС и непрореагировавший тетрафторэтилен удалили.
Содержимое автоклава было проанализировано при помощи газовой хроматографии и было найдено, что требуемый 2,2,-дихлороктафторбутан (CF3Cl2CF2CF3) был получен с выходом 75% (рассчитанным от количества 1,1-дихлортетрафторэтана).
П р и м е р 2. В такой же автоклав, как использованный в примере 1, были загружены безводный хлорид алюминия (2 г) и трихлорфторметан (11 г). После перемешивания в течение 3 ч при комнатной температуре непрореагировавшие трихлорфторметан, а также четыреххлористый углерод, дихлорфторметан и трифторхлорметан, которые образовались из трихлорфторметана, были удалены при пониженном давлении. Таким образом, был получен хлорфторид алюминия.
После понижения давления в автоклаве и охлаждения до -20оС был загружен 1,1-дихлортетрафторэтан (65 г). Затем после нагревания до 20оС в автоклав до достижения давления 5 кг/см2 G был инжектирован газообразный тетрафторэтилен. Сразу же начиналась реакция, и выделялось тепло.
Одновременно с охлаждением автоклава ледяной водой для поддержания температуры 20оС или ниже производили дополнительное введение тетрафторэтилена до давления 5 кг/см2 G. После 4 ч тетрафторэтилен не поглощался, и реакция останавливалась. Автоклав охладили до 0оС и непрореагировавший тетрафторэтилен удалили.
Содержимое автоклава было проанализировано при помощи газовой хроматографии и было найдено, что требуемый 2,2-дихлороктафторбутан (CF3Cl2CF2CF3) был получен с выходом 83% (рассчитанным на количество 1,1-дихлортетрафторэтана).
П р и м е р 3. Способом, подобным описанному в примере 2, в автоклаве было получено такое же количество хлорфторида алюминия. После загрузки 1,1,3,4-тетрахлоргексафторбутана (78,5 г) давление в автоклаве было понижено и затем при температуре 70оС был инжектирован газообразный тетрафторэтилен до достижения давления 7 кг/см2 G. По мере протекания реакции тетрафторэтилен расходовался, и давление падало. Поэтому во время реакции поддерживали температуру 70оС и дополнительным введением тетрафторэтилена поддерживали давление 7 кг/см2 G. После 13 ч непрореагировавший тетрафторэтилен был удален.
Содержимое автоклава было проанализировано при помощи газовой хроматографии и было найдено, что требуемый 3,3,5,6-тетрахлордекафторгексан был получен с выходом 85% (рассчитанным на количество тетрахлоргексафторбутана).
П р и м е р 4. Подобным образом, как описано в примере 2, но используя 1,1-дихлоргексафторпропан (70 г) вместо 1,1-дихлортетрафторэтана, получают требуемый 3,3-дихлордекафторпентан (CF3CF2CCl2CF2CF3) с выходом 92% (рассчитанным на количество дихлоргексафторпропана).
П р и м е р 5. В стеклянную колбу емкостью 200 мл, снабженную осушающим патроном с силикагелем для предотвращения попадания воды в колбу и газовым вводом, загрузили 2,2-дихлороктафторбутан (40 г) и хлорфторид алюминия (2 г), полученные пpоцедурой, аналогичной описанной в примере 2. После перемешивания смеси магнитной мешалкой через газовый ввод подали тетрафторэтилен и 1,1-дихлортетрафторэтан при скоростях подачи 20 мл/мин и 18 мл/мин соответственно после их предварительного смешения. В течение этого периода колбу охлаждали ледяной водой для установления температуры реакции от 5 до 10оС. По мере протекания времени реакции количество 2,2-дихлороктафторбутана повышается. После 5 ч количество реакционной смеси повысилось до 99 г. Реакционная смесь была проанализирована с помощью газовой хроматографии и было найдено, что смесь содержала 96% 2,2-дихлороктафторбутана. Это означает, что было получено 55 г 2,2-дихлороктафторбутана.
П р и м е р 6. Реакцию проводят способом, подобным описанному в примере 2, но вместо безводного хлорида алюминия используют безводный тетрахлорид циркония (2 г). Требуемый 2,2-дихлороктафторбутан (CF3CCl2CF2CF3) был получен с выходом 92% (рассчитанным на количество 2,2-дихлортетрафторэтана).

Claims (3)

1. СПОСОБ ПОЛУЧЕНИЯ ФТОРИРОВАННОГО СОЕДИНЕНИЯ формулы
R - CCl2CF2 - CF2,
где R - перфторалкил, перхлоралкил, полифторалкил, полихлоралкил или полихлорполифторалкил, причем алкил по крайней мере содержит один атом углерода,
путем взаимодействия тетрафторэтилена с соответствующим полихлорполифторалкилнасыщенным углеводородом в присутствии катализатора - галоида металла, отличающийся тем, что в качестве насыщенного углеводородов берут соединение, выбранное из группы
CF3CFCl2, CF3CF2CFCl2, ClCF2 CFCl2, ClCF2 CFClCFCl2,
CFCl2 CF2 CFCl2, CF3 CF2CF2 CFCl2, ClCF2 CFClCF2
CFCl2, HCF2 CF2 CFCl2 и HCF2 CF2 CF2 CF2 CFCl2
а в качестве галоида металла берут безводный хлорид алюминия, или безводный тетрахлорид циркония, или безводный хлорфторид алюминия формулы
AlClxFy,
где 0 < x < 3 0 < y 3 при условии, что сумма x и y равна 3,
или хлорфторид циркония формулы
ZnClpFq,
где 0 < p < 4, 0 < q < 4 при условии, что сумма p и q равна 4.
2. Способ по п. 1, отличающийся тем, что процесс ведут при количестве катализатора 0,1 - 20 мас.% в расчете на исходный насыщенный углеводород.
3. Способ по п.1, отличающийся тем, что процесс ведут при температуре от - 20 до 150oС.
SU925052177A 1991-06-14 1992-06-12 Способ получения фторированного соединения RU2054408C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14308891 1991-06-14
JP143088/1991 1991-06-14

Publications (1)

Publication Number Publication Date
RU2054408C1 true RU2054408C1 (ru) 1996-02-20

Family

ID=15330635

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925052177A RU2054408C1 (ru) 1991-06-14 1992-06-12 Способ получения фторированного соединения

Country Status (7)

Country Link
US (1) US5326913A (ru)
EP (1) EP0518353B1 (ru)
KR (1) KR100211776B1 (ru)
CN (1) CN1035250C (ru)
CA (1) CA2070924C (ru)
DE (1) DE69207818T2 (ru)
RU (1) RU2054408C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319302A (zh) * 2013-06-28 2013-09-25 南京信息工程大学 一种七氯丙烷的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633237B1 (en) * 1992-02-28 1997-10-08 Daikin Industries, Limited Process for producing 1,1,1,2,2,4,4,5,5,5-decafluoropentane
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
JPH09509147A (ja) * 1993-12-14 1997-09-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー パーハロフルオロ化されたブタンのための方法
RU2181114C2 (ru) * 1997-03-24 2002-04-10 И.Ай.Дю Пон Де Немурс Энд Кампани Способ получения аддуктов фторсодержащих углеводородов и олефинов
US6518467B2 (en) * 2000-12-29 2003-02-11 Honeywell International Inc. Method of making hydrofluorocarbons and hydrochlorofluorocarbons
US7396965B2 (en) * 2005-05-12 2008-07-08 Honeywell International Inc. Method for producing fluorinated organic compounds
JPWO2015186556A1 (ja) * 2014-06-06 2017-04-20 旭硝子株式会社 1,1−ジクロロ−3,3,3−トリフルオロプロパンの製造方法
CN104496746B (zh) * 2014-12-18 2018-10-16 浙江衢化氟化学有限公司 一种同时制备1,1,1,2,2-五氯丙烷和2,3,3,3-四氯丙烯的方法
CN112811975B (zh) * 2021-04-22 2021-07-30 泉州宇极新材料科技有限公司 气相异构化制备z-1-r-3,3,3-三氟丙烯的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308175A (en) * 1954-04-07 1967-03-07 Pennsalt Chemicals Corp Method for preparation of fluorine subsituted dienes
BE638397A (ru) * 1962-10-09
FR2573068B1 (fr) * 1984-11-13 1987-01-09 Atochem Hydrocarbures perchlorofluores et leur procede de preparation
DE69005770T2 (de) * 1989-09-30 1994-06-23 Daikin Ind Ltd Verfahren zur Herstellung von Pentafluordichlorpropanen.
US5157171A (en) * 1989-10-16 1992-10-20 E. I. Du Pont De Nemours And Company Process for chlorofluoropropanes
US5177274A (en) * 1990-01-08 1993-01-05 Daikin Industries Ltd. Process for preparing pentafluorodichloropropanes
JPH03251546A (ja) * 1990-01-08 1991-11-11 Daikin Ind Ltd ペンタフルオロジクロロプロパン類の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент США N 2462402, кл. C 07C 19/08, опублик. 1949. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319302A (zh) * 2013-06-28 2013-09-25 南京信息工程大学 一种七氯丙烷的制备方法

Also Published As

Publication number Publication date
CN1067879A (zh) 1993-01-13
KR100211776B1 (ko) 1999-08-02
DE69207818T2 (de) 1996-07-04
DE69207818D1 (de) 1996-03-07
CA2070924A1 (en) 1992-12-15
KR930000441A (ko) 1993-01-15
EP0518353B1 (en) 1996-01-24
CN1035250C (zh) 1997-06-25
US5326913A (en) 1994-07-05
EP0518353A3 (ru) 1994-04-27
CA2070924C (en) 2002-08-13
EP0518353A2 (en) 1992-12-16

Similar Documents

Publication Publication Date Title
JP3389251B2 (ja) ハイドロクロロカーボン及びハイドロクロロフルオロカーボンの液相接触フッ素化
US5574192A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
EP0734366B1 (en) Production of pentafluoroethane
EP0971866B1 (en) Addition of hydrofluorocarbons to fluoroolefins
RU2433992C2 (ru) Способ получения простых фторгалогенированных эфиров
WO1995004021A1 (en) Process for the preparation of hydrofluorocarbons having 3 to 7 carbon atoms
JP2001213820A (ja) 1,1,1,3,3−ペンタクロロプロパンの製造方法
KR19990036037A (ko) 할로카본의 제조 방법, 선택된 화합물 및 hf 함유 공비 조성물
JPS5946211B2 (ja) 1− クロロ −1,1− ジフルオロエタンマタハ / オヨビ 1,1,1− トリフルオロエタンオセイゾウスルホウホウ
GB2313118A (en) Synthesis of 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane
RU2054408C1 (ru) Способ получения фторированного соединения
US5744659A (en) Process for the preparation of difluoromethane
JPH0824362A (ja) 1,1,1,2,3,3,3−ヘプタフルオロプロパンの製造方法
JP2001322956A (ja) 1,1,1,2,3,3−ヘキサクロロプロペンの製造方法
JPH11158089A (ja) 1,1,1,3,3−ペンタフルオロプロパンの合成
JPH0449257A (ja) 1―クロロ―2,2,2―トリフルオロエタンの製造方法
US20120004474A1 (en) Process for producing 1, 1-dichloro-2, 2, 3, 3, 3-pentafluoropropane
KR19990036036A (ko) 할로카본의 제조 방법
US5055624A (en) Synthesis of 1,1-dichloro-1,2,2,2-tetrafluoroethane
EP1123911B1 (en) Process for producing difluoromethane and difluorochloromethane
EP0456841B1 (en) Method for producing dichloropentafluoropropanes
JP2001508462A (ja) ハロカーボンの製造方法
JPH04224527A (ja) ペンタフルオロジクロロプロパンの製造方法
JP2523936B2 (ja) ジカルボニルフロライドの製造方法
JP3057824B2 (ja) フッ素化合物の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080613

REG Reference to a code of a succession state

Ref country code: RU

Ref legal event code: MM4A

Effective date: 20080613