PT1149919E - Genes relacionados com a biossíntese de ml-236b - Google Patents

Genes relacionados com a biossíntese de ml-236b Download PDF

Info

Publication number
PT1149919E
PT1149919E PT01303527T PT01303527T PT1149919E PT 1149919 E PT1149919 E PT 1149919E PT 01303527 T PT01303527 T PT 01303527T PT 01303527 T PT01303527 T PT 01303527T PT 1149919 E PT1149919 E PT 1149919E
Authority
PT
Portugal
Prior art keywords
seq
dna
polynucleotide
sequence
vector
Prior art date
Application number
PT01303527T
Other languages
English (en)
Inventor
Hiroji Yoshikawa
Yuki Abe
Chiho Ono
Original Assignee
Daiichi Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Sankyo Co Ltd filed Critical Daiichi Sankyo Co Ltd
Publication of PT1149919E publication Critical patent/PT1149919E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/385Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Penicillium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/181Heterocyclic compounds containing oxygen atoms as the only ring heteroatoms in the condensed system, e.g. Salinomycin, Septamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

ΡΕ1149919 1 DESCRIÇÃO " GENES RELACIONADOS COM A BIOSSÍNTESE DE ML-2"
Campo do invento 0 presente invento está relacionado com um grupo de genes e, mais particularmente, com genes de um agrupamento de genes.
Mais particularmente, o invento está relacionado com polinucleótidos, tais como DNA, que aceleram a biossintese de um inibidor da redutase de HMG-CoA, ML-236B, num microrganismo produtor de ML-236B, quando introduzido no microrganismo produtor de ML-236B. O invento ainda está relacionado com vectores nos quais os referidos polinucleótidos estão inseridos, células hospedeiras transformadas pelos referidos vectores, proteínas expressas pelos referidos vectores, um método para a produção de ML-236B usando os referidos polinucleótidos e/ou proteínas, em que o método se caracteriza pela recuperação de ML-236B a partir da cultura da referida célula hospedeira e o invento está ainda relacionado com outros aspectos associados.
Fundamento do invento A pravastatina é um inibidor da redutase de HMG-CoA. A pravastatina sódica tem sido usada no tratamento de 2 PE1149919 hiperlipémia ou hiperlipidémia e possui o efeito farmacológico útil de ser capaz de reduzir o colesterol do soro. A pravastatina pode ser obtida usando Streptomyces carbophillus através da conversão microbiana de ML-236B produzida por Penicillium citrinum [descrito em Endo, A., et al., J. Antibiot., 29 1346(1976); Matsuoka, T., et al.f Eur. J. Biochem, , 184, 707 (1989) e no Pedido de Patente Japonesa N° 57-2240].
Foi demonstrado que ML-236B, um precursor de pravastatina e lovastatina, um inibidor de HMG-CoA, partilha a mesma estrutura parcial. Eles são sintetizados biologicamente através de policetidos [descritos em Moore, R.N., et al., J. Am. Chem. Soc., 107, 3694 (1985); Shiao, 0M. e Don, H.S., Proc. Natl. Sei. Counc. Repub. China B, 223 (1987)] .
Os policetidos são compostos derivados de cadeias de carbono β-ceto que resultam de uma reacção de condensação continua de ácidos carboxilicos de baixo peso molecular, tais como ácido acético, ácido propriónico, ácido butírico ou similares. Várias estruturas podem ser derivadas dependendo da via de condensação ou redução de cada um dos grupos carbonilo β-ceto [descrito em Hopwood, D.A. e Sherman, D.H., Annu. Ver. Genet., 24, 37-66 (1990); Hutchinson, C.R. e Fujii, I., Annu. Ver. Microbiol., 49, 201-238 (1995) ] .
As sintetases de policetido (daqui em diante referidas como PKSs) que contribuem para a sintese de 3 PE1149919 policetidos são enzimas que se sabe estarem presentes em fungos filamentosos e bactérias. As enzimas dos fungos filamentosos têm sido estudadas usando técnicas de biologia molecular [como descrito em Feng, G.H. e Leonard, T.J., J. Bacteriol., 177, 6246 (1995); Takano, Y., et al., Mol. Gen. Genet. 249, 162 (1995)]. Em Aspergillus terreus, que é um microrganismo produtor de lovastatina, foi analisado um gene pks relacionado com a biossíntese de lovastatina [descrito no pedido de patente internacional publicada no Japão (KOHYO) N° 9-504436 e ver a correspondente WO 9512661 que reivindica DNA codificador de uma sintetase de triolpolicetido].
Os genes relacionados com a biossíntese de metabolitos secundários de fungos filamentosos muitas vezes encontram-se agrupados no genoma. Nas vias da biossíntese de policetidos, são conhecidos os grupos de genes que participam na referida via. Na biossíntese de Aflatoxina, que é um policetido produzido por Aspergillus flavus e Aspergillus parasiticus, é conhecido que os genes codificadores das enzimas que participam na referida biossíntese (tais como PKS) formam um agrupamento. Foi realizada a análise genómica e uma comparação dos genes que participam na biossíntese de Aflatoxina em cada um dos microrganismos [ver Yu, J., et al., Appl. Environ. Microbiol., 61, 2365 (1995)]. Foi descrito que os genes que participam na biossíntese de Esterigmatocistina produzida por Aspergillus nidulans formam um agrupamento com cerca de 60 Kb numa região contínua do seu genoma [descrito em Brown, D.W., et al., Proc. Natl. Acad. Sei. USA, 93, 1418 4 ΡΕ1149919 (1996) ] . A modulação da actividade de sintetase de policetido, através de proteínas acessórias, durante a síntese de lovastatina foi estudada [ver Kennedy, J., et al.r Science Vol. 284, 1368 (1999)].
No entanto, até à data, tem havido uma análise insuficiente da biologia molecular da biossíntese de ML-236B e dos factores que a regulam. 0 presente invento pretende abordar esta questão.
Sumário do invento
De acordo com o presente invento, é obtido um polinucleótido que é adequado para usar na aceleração da biossíntese de ML-236B, sendo um polinucleótido seleccionado do grupo constituído por: (a) um polinucleótido codificador de uma proteína tendo a sequência de aminoácidos de SEQ ID NO:42; (b) um polinucleótido que compreende a sequência nucleotídica de SEQ ID NO:41, adequado para usar na aceleração da biossíntese de ML-236B; (c) um polinucleótido que consiste na sequência nucleotídica de SEQ ID NO:41; (d) um polinucleótido que híbrida com um 5 PE1149919 polinucleótido de acordo com (a) a (c) sob condições restringentes e que se caracteriza pela aceleração da biossintese de ML-236B, num microrganismo produtor de ML-236B, quando introduzido no referido microrganismo produtor de ML-236B; e (e) um mRNA que pode hibridar com um polinucleótido de (d) em condições restringentes. 0 polinucleótido é tipicamente um polinucleótido codificador de uma proteina incluindo ou consistindo na sequência de aminoácidos de SEQ ID NO:42.
Tabela da lista de sequências
Uma lista de sequências faz parte desta descrição de patente. Para ajudar a compreensão é proporcionada a tabela das sequências listadas que se segue. SEQ ID NO: 1 2 3 4 5 6 7 8 9 10
Identidade Inserto de pML48 Complementar de SEQ ID NO: 1
Sequência iniciadora de PCR para o Exemplo 4 Sequência iniciadora de PCR para o Exemplo 4 Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8
Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8
Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8
Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8
Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8
Oligonucleótido de DNA (1) para 5'-RACE, Exemplo 8 ΡΕ1149919 6 para 5'-RACE, Exemplo para 5'-RACE, Exemplo para 5'-RACE, Exemplo para 5'-RACE, Exemplo para 5'-RACE, Exemplo para 5'-RACE, Exemplo cDNA, Exemplo 8 cDNA, Exemplo 8 cDNA, Exemplo 8 cDNA, Exemplo 8 cDNA, Exemplo 8 cDNA, Exemplo 8 para 3'-RACE, Exemplo para 3'-RACE, Exemplo para 3'-RACE, Exemplo para 3'-RACE, Exemplo para 3'-RACE, Exemplo para 3'-RACE, Exemplo cDNA, Exemplo 8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Extremo 3 do fragmento de cDNA, Exemplo 8
Extremo 3' do fragmento de cDNA, Exemplo 8
Extremo 3' do fragmento de cDNA, Exemplo 8
Extremo 3' do fragmento de cDNA, Exemplo 8
Extremo 3'do fragmento de cDNA, Exemplo 8
Sequência iniciadora para RT-PCR, Exemplo 9
Sequência iniciadora para RT-PCR, Exemplo 9 mlcE; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida
Polipeptideo mlcE deduzido
Sequência iniciadora de RT-PCR, Exemplo 12 7 ΡΕ1149919 40 Sequência iniciadora de RT-PCR, Exemplo 12 41 mlcR; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida 42 Polipeptídeo mlcR deduzido 43 mica; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida 44 Polipeptídeo mlcR deduzido 45 mlcB; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida 46 Polipeptídeo mlcB deduzido 47 mlcC; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida 48 Polipeptídeo mlcC deduzido 49 mlcO; sequência nucleotidica do cDNA e sequência de aminoácidos deduzida 50 Polipeptídeo mlcD deduzido 51 Sequência iniciadora para RT-PCR, Exemplo 17 52 Sequência iniciadora para RT-PCR, Exemplo 17 53 Sequência iniciadora para RT-PCR, Exemplo 17 54 Sequência iniciadora para RT-PCR, Exemplo 17 55 Sequência iniciadora para RT-PCR, Exemplo 17 56 Sequência iniciadora para RT-PCR, Exemplo 17 57 Sequência iniciadora para RT-PCR, Exemplo 17 58 Sequência iniciadora para RT-PCR, Exemplo 17 59 Sequência iniciadora para RT-PCR, Exemplo 17 60 Sequência iniciadora para RT-PCR, Exemplo 17 61 Sequência iniciadora para RT-PCR, Exemplo 17 62 Sequência iniciadora para RT-PCR, Exemplo 17
Os polinucleótidos codificadores das sequências ΡΕ1149919 de aminoácidos de SEQ ID NOS:: 38, 42, 44, 46, 48 ou 50 podem ser cDNA, DNA genómico ou mRNA. Os DNAs genómicos codificadores de cada uma destas seis sequências são referidos como genes estruturais mlcE, mlcR, mlcA, mlcB, mlcC e mlcO, respectivamente. Sem estarmos presos a estas designações, pensamos que os genes estruturais codificam proteínas com as seguintes funções: mlcA sintetase de policetido mlcB sintetase de policetido mlcC monoxigenase P450 mlcD redutase de HMG-CoA mlcE bomba de efluxo mlcR factor de transcrição
Descobrimos que a incorporação de mlcE, ou cDNA correspondendo a mlcE, pode acelerar a biossíntese de ML-236B e a incorporação de mlcR, ou de cDNA correspondendo a mlcR, pode acelerar a biossíntese de ML-236B. Ainda, mlcR estimula a transcrição de mlc A a D. mlc A, B, C e D estão envolvidos na produção de ML-236B, independentemente ou em combinação, como mostrado pelos estudos de destruição de genes.
As variantes de mlc A, B e/ou C obtidas por alteração natural ou artificial serão úteis para produzir derivados de ML-236B, incluindo estatinas tais como pravastatina ou lovastatina. Neste contexto, pode ser possível produzir pravastatina directamente, usando tais variantes, com apenas um passo de fermentação e sem a 9 ΡΕ1149919 necessidade da conversão microbiana de ML-236B em pravastatina realizada com Streptomyces carbophilus.
Um polinucleótido de DNA que inclui uma sequência compreendendo SEQ ID NO: 37, ou compreendendo um seu mutante ou variante, capaz de acelerar a biossintese de ML-236B é obtido a partir de Escherichia coli transformada pSAKexpE SANK 72499 (FERM BP-7005).
Um polinucleótido preferido inclui uma sequência compreendendo um polinucleótido seleccionado entre (a) a (e) acima, de preferência compreendendo SEQ ID NO: 41, capaz de acelerar a biossintese de ML-236B. Tal polinucleótido de DNA é obtido a partir de Escherichia coli pSAKexpR SANK 72599 (FERM BP-7006) transformada.
Os polinucleótidos deste invento como descrito em (a) a (e) acima podem ser empregues numa combinação operacional com um ou mais polinucleótidos, tais combinações sendo adequadas para usar no aumento da produção de ML-236B num microrganismo produtor de ML-236B.
Exemplos de tais combinações incluem um polinucleótido seleccionado entre (a) a (e) acima, de preferência o polinucleótido de SEQ ID NO: 41, em combinação com uma ou mais sequências seleccionadas de entre SEQ ID NO: 37, a própria 41, 43, 45, 47 ou 49.
Num aspecto, o polinucleótido é, de preferência, um polinucleótido codificador de uma proteína incluindo ou 10 ΡΕ1149919 consistindo na sequência de aminoácidos de SEQ ID NO: 38, 42, 44, 46, 48 ou 50 e capaz de acelerar a biossíntese de ML-236B conjuntamente com um polinucleótido seleccionado entre (a) e (e) acima, de preferência SEQ ID NO: 41. O presente invento estende-se a polinucleótidos que sejam capazes de hibridar, em condições restringentes, com um polinucleótido deste invento. Tais polinucleótidos incluem polinucleótidos adequados para a acelerar a biossintesse de ML-3236B, num microrganismo produtor de ML-236B, quando introduzido no microrganismo produtor de ML-236B. O polinucleótido é tipicamente DNA, cDNA ou DNA genómico, ou RNA, e pode ser codificador ou complementar da sequência codificadora. O polinucleótido é, tipicamente, um polinucleótido purificado, como seja um polinucleótido sem a presença de outros componentes celulares.
As variantes polinucleotídicas codificam sequências de aminoácidos indicadas em SEQ ID NO: 38, 42, 44, 46, 48 ou 50, em que um ou mais nucleótidos foi alterado. As alterações podem ocorrer naturalmente e podem ser preparadas dentro da redundância ou degeneração dos tripletos do código genético. Tais polinucleótidos alterados por degeneração codificam assim a mesma sequência de aminoácidos. Dentro destas variantes polinucleotídicas, incluimos DNA genómico tendo exões e intrões, em vez de simplesmente a sequência de cDNA. 11 PE1149919
As variantes polinucleotídicas codificam as sequências de aminoácidos indicadas em SEQ ID NO: 38, 42, 44, 46, 48 ou 50 que codificam uma sequência de aminoácidos modificada tendo pelo menos uma deleção, adição, substituição ou alteração. As variantes polinucleotídicas das sequências indicadas codificam sequências de aminoácidos mais curtas, mais longas ou do mesmo tamanho das codificadas pelas sequências indicadas. De preferência, os polipeptideos variantes retêm capacidade para acelerar a síntese de ML-236B e, de preferência, possuem actividade substancialmente semelhante ou melhor que a sequência parental que deu origem à sequência variante.
As variantes polinucleotídicas retêm um determinado grau de identidade com a sequência parental. Adequadamente, o grau de identidade é pelo menos 60%, pelo menos 80%, pelo menos 90% ou pelo menos 95% ou 100%. O grau de identidade de uma variante é, de preferência, avaliado por programas informáticos, tais como o programa BLAST que usa um algoritmo para efectuar as pesquisas de homologia.
Num aspecto, o polinucleótido preferido deste invento é DNA seleccionado do grupo consistindo em: (a) DNA que compreende uma ou mais sequências polinucleotídicas mostradas nos nucleótidos N°1 a 1380 de SEQ ID NO: 41 da Listagem de Sequências, e que é caracterizado pela aceleração da biossíntese de ML-236B num microrganismo produtor de ML-236B quando introduzido no referido microrganismo produtor de ML-236B; (b) DNA que híbrida com o DNA descrito em (a) em condições 12 ΡΕ1149919 restringentes e que se caracteriza pela aceleração da biossíntese de ML-236B num microrganismo produtor de ML-236B quando introduzido no referido microrganismo produtor de ML-236B.
Os polinucleótidos deste invento aceleram a biossíntese de ML-236B num microrganismo que produz ML-236B. Exemplos de microrganismos produtores de ML-236B incluem espécies de Penicíllíum, tais como Penícíllíum citrinum, Penicillium brevicompactum [descrito em Brown, A.G., et al., J. Chem. Soc. Perkin-1., 1165 (1976)], Penicillium cyclopium [descrito em Doss, S.L., et al., J. Natl. Prod., 49, 357 (1986)] ou similares. Outros exemplos incluem: Eupenicillium sp.M6603 [descrito em Endo, A., et al., J. Antibiot.-Tokyo, 39, 1609(1986)], Paecilomyces viridis FERM P-6236 [descrito na Publicação do Pedido de Patente Japonesa N° 58-98092], Paecilomyces sp. M2016 [descrito em Endo, A., et al., J. Antibiot. - Tokyo, 39, 1609 (1986)], Trichoderma longibrachiatum m6735 [descrito em Endo, A., et al., J. Antibiot. - Tokyo, 39, 1609 (1986)], Hypomyces chrysospermus IFO 7798 [descrito em Endo, A., et al., J. Antibiot. - Tokyo, 39, 1609 (1986)], Gliocladium sp. YJ9515 [descrito em WO 9806867],
Trichoderma viride IFO 5836 [descrito na Publicação de Patente Japonesa N°62-19159], Eupenicillium reticulisporum IFO 9022 [descrito na Publicação de Patente Japonesa N° 62-19159] ou qualquer outro organismo adequado.
Entre estes microrganismos produtores de ML-236B, é preferido Penicillium citrinum e Penicillium citrinum 13 PE1149919 estirpe SANK 13380 é a mais preferida. Penicillium citrinum estirpe SANK 13380 foi depositada no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 22 de Dezembro de 1992, com o depósito N° FERM BP-4129, de acordo com o Tratado de Budapeste sobre depósito de microrganismos. Exemplos de microrganismos produtores de ML-236B também incluem os isolados a partir de fontes naturais e os alterados naturalmente ou artificialmente. O invento ainda proporciona vectores compreendendo um polinucleótido deste invento, como seja o vector obtido a partir de Escherichia coli pSAKexpR SANK 72599 (FERM BP-7006). Como aqui descrito, um vector de acordo com o invento pode ainda compreender um polinucleótido tendo a sequência de nucleótidos de SEQ ID NO: 37; ou um vector de acordo com o invento pode ainda compreender um ou mais polipeptídeos seleccionados entre SEQ ID NO: 43, 45, 47 ou 49. O invento inclui vectores que não compreendem as sequências polinucleotidicas SEQ ID NO: 37, 43, 45, 47 ou 49; ou não compreendem as sequências polinucleotidicas SEQ ID NO: 43, 45, 47 ou 49. Tais vectores deste invento incluem vectores de expressão. São igualmente proporcionadas células hospedeiras transformadas por um vector deste invento, incluindo microrganismos produtores de ML-236B. Células hospedeiras deste invento incluem Penicillium citrinum e Escherichia coli, como seja Escherichia coli pSAKexpR SANK 72599 (FERM BP-7006). 14 PE1149919
Ainda, o invento estende-se a polipeptideos codificados por um polinucleótido deste invento. Exemplos de polipeptideos deste invento incluem a sequência de SEQ ID NO: 42, ou uma sua variante que tem pelo menos 80% de identidade com SEQ ID NO: 42 e que é capaz de acelerar a produção de ML236B num organismo produtor de ML236B. Outros polipeptideos são os codificados pelas outras sequências polinucleotídicas deste invento e variantes que mantêm algum grau de identidade.
Adequadamente o grau de identidade de variantes polipeptidicas com SEQ ID NO: 42 é pelo menos 80%, pelo menos 90% ou pelo menos 95% ou 100%. O grau de identidade de uma variante é, de preferência, avaliado por programas informáticos, tais como o programa BLAST que usa um algoritmo para fazer as pesquisas de homologia.
Os polipeptideos deste invento incluem sequências mais curtas ou mais longas de SEQ ID NO: 42 ou suas variantes. Polipeptideos mais curtos compreendem sequências de aminoácidos parciais de SEQ ID NO: 42 ou suas variantes e, de preferência, retêm a capacidade para acelerar a biossintese de ML-236B. Polipeptideos mais longos compreendem a totalidade ou sequências de aminoácidos parciais de SEQ ID NO: 42 ou variantes das mesmas e, de preferência, mantêm a capacidade de acelerar a biossintese de ML-236B. Os polipeptideos mais longos incluem proteinas de fusão tais como proteína fundida com Fc.
Anticorpos contra polipeptideos deste invento, 15 ΡΕ1149919 tais como anticorpo policlonal e anticorpo monoclonal, são úteis na regulação da produção de ML-236B e na produção de derivados de ML-236B tais como estatinas, incluindo pravastatina e lovastatina. Ainda, o referido anticorpo pode ser, preferencialmente, usado na análise da biossintese de ML-236B e dos seus mecanismos reguladores. Tal análise é útil para a modulação da produção de ML-236B e para a produção de derivados de ML-236B.
As células hospedeiras deste invento que possuem um vector deste invento podem ser usadas num método para a produção de ML-236B, compreendendo a cultura de tal célula hospedeira e depois recuperação de ML-236B a partir da cultura. Num método, o vector compreende mlcR e não genes adicionais tais como mlcA (SEQ ID NO: 43), mlcB (SEQ ID NO:45), mlcC (SEQ ID NO: 47) ou mlcD (SEQ ID NO:49). Neste método de produção de ML-236B, a célula hospedeira pode ser transformada com um vector compreendendo a sequência nucleotidica de SEQ ID NO: 41 (mlcR) . Um vector compreendendo mlcR (SEQ ID NO:41) pode não compreender a sequência polinucleotidica de SEQ ID NO:37 e/ou o vector pode não compreender pelo menos um polinucleótido codificador da sequência de aminoácidos de SEQ ID NOS:: 44, 46, 48 e/ou 50. Os métodos de produção de ML-236B podem ocorrer na ausência de um ou mais cDNAs correspondendo a SEQ ID NOS:: 37, 43, 45, 47 e/ou 49. Assim, a produção por um método deste invento pode ocorrer na ausência de mlcA, mlcB, mlcC e/ou mlcD recombinantes (polipeptideos) correspondendo a SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48 OU SEQ ID NO: 50. 16 ΡΕ1149919 0 invento ainda está relacionado com um método para a produção de pravastatina, o qual compreende um método para a produção de ML-236B de acordo com o invento e conversão de ML-236B em pravastatina.
Descrição de realizações especificas 0 presente invento será daqui em diante descrito mais detalhadamente.
Os inventores do presente invento clonaram DNA genómico compreendendo genes que participam na biossíntese de ML-236B em Penicíllíum citrinum. 0 DNA genómico é daqui em diante referido como DNA genómico relacionado com a biossintese de ML-236B e foi clonado a partir de uma biblioteca de DNA genómico de um microrganismo produtor de ML-236B. O DNA genómico foi analisado para se encontrar genes estruturais no referido DNA genómico, depois os cDNAs correspondentes aos referidos genes estruturais foram obtidos por transcrição reversa - reacção em cadeia da polimerase (daqui em diante referido como "RT-PCR") usando como matriz RNA total que contem mRNA de Penicillium citrinum. Encontrou-se que a biossintese de ML-236B num microrganismo produtor de ML-236B era acelerada quando o microrganismo produtor de ML-236B foi transformado por um vector de DNA recombinante contendo os referidos cDNAs. 0 presente invento está relacionado particularmente com cDNAs (daqui em diante referido como cDNA acelerador da biossintese de ML-236B) que acelera a 17 PE1149919 biossíntese de ML-236B num microrganismo produtor de ML-236B, quando introduzido no referido microrganismo produtor de ML-236B.
Um polinucleótido acelerador da biossíntese de ML-236B, inclui, como exemplo: (I) DNA obtido por síntese usando, como matriz, um produto transcrito (RNA mensageiro, daqui em diante referido como mRNA) de um gene estrutural que participa na biossíntese de ML-236B e que está presente no DNA genómico de um microrganismo produtor de ML-236B; (II) DNA de cadeia dupla formado como resultado da associação de um DNA (I) e da segunda cadeia de DNA sintetizada usando o DNA (I) como primeira cadeia; (III) DNA de cadeia dupla formado através da replicação ou amplificação do DNA de cadeia dupla (II), por exemplo, por um método de clonagem e similar; (IV) DNA que pode hibridar com um dos DNAs referidos atrás ou mRNA em condições restringentes. 0 DNA (IV) pode ser os nucleótidos 1 a 1380 de SEQ ID NO: 41, em que um ou mais nucleótidos são facultativamente substituídos, eliminados e/ou adicionados, e que pode acelerar a biossíntese de ML-236B num microrganismo produtor de ML-236B, quando introduzido no microrganismo produtor de ML-236B.
Quando dois ácidos nucleicos de cadeia simples hibridam, eles formam uma molécula de cadeia dupla numa região em que são complementares ou altamente 18 PE1149919 complementares um do outro e "condições restringentes" adequadamente refere-se ao caso em que a solução de hibridação é SSC 6X [SSC IX tem uma composição de NaCl 150 mM, citrato de sódio 15 mM] e a temperatura de hibridação é 55°C. O cDNA acelerador da biossintese de ML-236B pode ser obtido, por exemplo, através do isolamento de um clone contendo o cDNA derivado de uma biblioteca de cDNA de um microrganismo produtor de ML-236B. Como alternativa, RT-PCR pode ser usado empregando um par de sequências iniciadoras desenhado com base na sequência de nucleótidos de um DNA genómico relacionado com a biossintese de ML-236B juntamente com mRNA ou RNA total de um microrganismo produtor de ML-236B.
Um microrganismo produtor de ML-236B é um microrganismo tendo uma capacidade inerente para produzir ML-236B. Conforme indicado previamente, os exemplos de microrganismos produtores de ML-236B incluem espécies de Penicillium, tais como Penicillium citrinum, Peniccillium brevicompactum, Penicillium cyclopium ou similares e outros exemplos incluem: Eupenicillium sp. M6603, Paecilomyces vírídís FERM P-6236, Paecilomyces sp.M2016, Trichoderma Longibrachiatum M6735, Hypomyces chrysospermus IFO 7798, Gliocladium sp. YJ-9515, Trichoderma viridae IFO 5836, Eupenicillium reticulisporum IFO 9022 e quaisquer outros organismos adequados.
Entre estes microrganismos produtores de ML-236B, 19 PE1149919 prefere-se Penicillium citrinum, sendo mais preferido Penicillium citrinum estirpe SANK 13380. Penicillium citrinum estirpe SANK 13380 foi depositada no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 22 de Dezembro de 1992, com o depósito N° FERM BP-4129, de acordo com o Tratado de Budapeste sobre depósito de microrganismos. Exemplos de microrganismos produtores de ML-236B também incluem os isolados a partir de fontes naturais e os alterados naturalmente ou artificialmente. O DNA genómico relacionado com a biossintese de ML-236B pode ser obtido através do rastreio de uma biblioteca de DNA genómico de um microrganismo produtor de ML-236B com uma sonda adequada. Adequadamente, a sonda é projectada com base numa sequência de DNA que se prevê ter um papel na biossintese de ML-236B, adequadamente proveniente de fungos filamentosos. A escolha de métodos para criar uma biblioteca de DNA genómico não está limitada e pode ser usado qualquer método adequado, de preferência será um método geral para a construção de uma biblioteca de DNA genómico de um organismo eucariótico. Exemplos incluem o método de Maniatis et al., [Maniatis, T., et al., "Molecular cloning, a laboratory manual", 2o ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989)]. Na área são conhecidos outros métodos adequados.
De forma geral o DNA genómico de um 20 PE1149919 microrganismo produtor de ML-236B pode ser obtido por recuperação das células de uma cultura do referido microrganismo produtor de ML-236B, rebentamento físico das mesmas, extracção do DNA presente nos seus núcleos e purificação do referido DNA. A cultura de um microrganismo produtor de ML-236B pode ser realizada em condições adeguadas para os microrganismos produtores de ML-236B particulares. Por exemplo, a cultura de Penícíllium citrinum, um microrganismo produtor de ML-236B preferido, pode ser realizada inoculando as células em meio MBG3-8 [composição: 7% (p/v) de glicerina, 3% (p/v) de glucose, 1% (p/v) de farinha de soja, 1% (p/v) de peptona (produzido por Kyokuto Seiyaku Kogyo), 1% (p/v) de melaço de milho (produzido por Honen), 0,5% (p/v) de nitrato de sódio, 0,1% (p/v) de sulfato de magnésio hepta-hidratado (pH 6,5] e incubação entre 22 e 28°C, com agitação, durante 3 a 7 dias. Uma preparação de agar inclinado para armazenamento da bactéria pode ser preparada vertendo meio de agar PGA fundido [composição: 200 g/1 de extracto de batata, 15% (p/v) de glicerina, 2% (p/v) de agar] num tubo de ensaio e permitindo que o agar solidifique em ângulo inclinado. Penicillium citrinum pode então ser inoculado no referido agar inclinado usando uma agulha de platina, seguido de incubação entre 22 e 28°C durante 7 a 15 dias. Os microrganismos ou bactérias crescidos desta forma podem ser mantidos continuamente no agar inclinado mantendo o agar entre 0 e 4°C. 21 PE1149919
As células de um microrganismo produtor de ML-236B cultivadas num meio liquido podem ser recuperadas por centrifugação e as cultivadas num meio sólido podem ser recuperadas raspando o meio sólido com um raspador de células ou similar. 0 rebentamento físico das células pode ser realizado triturando as células com um pilão e almofariz, após a sua congelação em azoto líquido ou similar. 0 DNA no núcleo das células rebentadas pode ser extraído usando um tensioactivo como seja dodecilsulfato de sódio (daqui em diante referido como SDS) ou outro tensioactivo adequado. 0 DNA genómico extraído foi adequadamente tratado com fenol -clorofórmio para remover proteína e recuperado como precipitado fazendo uma precipitação com etanol. 0 DNA genómico resultante foi fragmentado por digestão com uma enzima de restrição adequada. Não existe limite relativamente às enzimas de restrição que podem ser usadas para a digestão de restrição, sendo, de um modo geral, preferidas as enzimas de restrição disponíveis. Exemplos incluem Sau3AI. Na área são conhecidas outras enzimas adequadas. 0 DNA digerido é então sujeito a electroforese em gel e o DNA genómico tendo um tamanho adequado é recuperado do gel. 0 tamanho do fragmento de DNA não está particularmente limitado, mas é de preferência 20 Kb ou mais.
Igualmente, não existe limitação na escolha do vector de DNA usado na construção da biblioteca de DNA 22 PE1149919 genómico, desde que o vector tenha uma sequência de DNA necessária à replicação na célula hospedeira que será transformada pelo vector. Exemplos de vectores adequados incluem um vector plasmidico, um vector fágico, um vector cosmídeo, um vector BAC ou similares, sendo um cosmídeo o vector preferido. 0 vector de DNA é, de preferência, um vector de expressão. Mais de preferência, o vector de DNA compreende um DNA ou uma sequência nucleotídica que confere um fenótipo selectivo à célula hospedeira transformada pelo vector. 0 vector de DNA é adequadamente um vector que pode ser usado na clonagem e na expressão. De preferência o vector é um vector vai-vem que pode ser usado na transformação de um ou mais microrganismos hospedeiros. 0 vector vai-vem adequadamente possui uma sequência de DNA que permite a replicação numa célula hospedeira e, de preferência, uma sequência ou sequências que permitem a replicação numa série de diferentes células hospedeiras derivadas de grupos de microrganismos diferentes, tais como bactérias e fungos. Ainda, o vector vai-vem de preferência compreende uma sequência de DNA que pode proporcionar uma fenótipo seleccionável a uma gama de diferentes células hospedeiras, tais como células de diferentes grupos de microrganismos. A escolha da combinação dos grupos de microrganismos e células hospedeiras transformadas pelo vector vai-vem não está particularmente limitada, desde que um dos grupos de microrganismos possa ser usado na clonagem 23 PE1149919 e o outro tenha capacidade de produzir ML-236B. Tal combinação pode ser, por exemplo, uma combinação de uma bactéria e de um fungo filamentoso, uma combinação de levedura e de um fungo filamentoso, sendo preferida a combinação de uma bactéria e de um fungo filamentoso. A escolha da bactéria não está particularmente limitada desde que possa ser usada em biotecnologia, como seja por exemplo Escherichia coli, Bacillus subtilis ou similares. Escherichia coli é preferida e Escherichia coli XLl-Blue MR é mais preferida. De forma semelhante, não existe restrição nas espécies de leveduras desde que possam ser, de um modo geral, usadas em biotecnologia, como seja por exemplo, Saccharomyces cerevisiae ou similares. Exemplos de fungos filamentosos incluem microrganismos produtores de ML-236B descritos atrás. Na área são conhecidos outros exemplos de microrganismos adequados.
No presente invento, o grupo de microrganismos pode ser seleccionado entre bactérias, fungos filamentosos e leveduras.
Exemplos do vector vai-vem atrás referido incluem um vector cosmideo tendo um gene marcador adequado para selecção de um fenótipo e um local cos. São conhecidos na área outros vectores adequados. 0 vector preferido é pSAKcosl, construído através da inserção de um local cos do vector cosmideo pWEl5 (produzido pela STRATAGENE) no plasmídeo pSAK333, o qual compreende a sequência do gene da fosfotransferase de higromicina B de Escherichia coli [descrito na Publicação do Pedido de Patente Japonesa N° 3- 24 PE1149919 262486]. Na Figura 1 está apresentado um método para a construção de pSAKcosl. 0 presente invento não está limitado a este vector.
Uma biblioteca de DNA genómico pode ser preparada através da introdução de um vector vai-vem numa célula hospedeira, o vector contendo um fragmento de DNA genómico derivado de um microrganismo produtor de ML-236B. A célula hospedeira a ser usada é de preferência Escherichia coli, mais preferencialmente Escherichia coli XLl-Blue MR. Quando a célula hospedeira é Escherichia coli, a introdução pode ser realizada por encapsidação in vitro. No presente invento, a transformação também inclui a introdução do DNA estranho por encapsidação in vitro e uma célula transformada também abrange uma célula em que o DNA estranho é introduzido por encapsidação in vitro.
Uma biblioteca genómica pode ser testada para identificar um clone com interesse usando um anticorpo ou uma sonda de ácido nucleico, sendo preferida uma sonda de ácido nucleico. De preferência, a sonda de ácido nucleico é preparada com base na sequência nucleotídica de um gene ou DNA relacionado com a biossintese de policetidos, de preferência sendo uma sequência derivada de um fungo filamentoso. A escolha de um gene particular não está limitada, desde que esteja envolvido na biossintese de policetidos e a sua sequência nucleotídica seja conhecida. Exemplos de tais genes incluem o gene Aflatoxina PKS de Aspergillus flavus e Aspergillus parasiticus, o gene Esterigmatocistina PKS de Aspergillus nidulans ou similares. 25 ΡΕ1149919
Sondas de ácido nucleico adequadas podem ser obtidas, por exemplo, através da sintese de uma sonda oligonucleotidica compreendendo parte de uma sequência de DNA genómico conhecida como descrito atrás, ou através da preparação de sequências iniciadoras oligonucleotídicas e amplificação do DNA alvo usando a reacção em cadeia da polimerase [aqui referida como "PCR", descrito em Saiki, R.K., et al., Science, 239, 487 (1988)] e DNA genómico como matriz, ou por RT-PCR usando mRNA como matriz. Na área são conhecidos outros métodos adequados para obtenção de tais sondas.
Uma sonda de ácido nucleico pode ser obtida a partir de microrganismos produtores de ML-236B usando, por exemplo, PCR ou RT-PCR. A projecção das sequências iniciadoras usadas para PCR ou RT-PCR (daqui em diante referida como "sequência iniciadora para PCR") é, de preferência, realizada com base na sequência nucleotídica de um gene relacionado com a biossintese de policetidos para o qual é conhecida a sequência nucleotídica. De preferência, o gene é o gene Aflatoxina PKS de Aspergillus flavus, Aspergillus parasiticus ou o gene Esterigmatocistina PKS de Aspergillus nidulans.
As sequências iniciadoras para PCR são adequadamente projectadas de forma a compreender sequências nucleotídicas que codificam sequências de aminoácidos altamente conservadas dentro dos genes PKS. Métodos para identificar sequências nucleotídicas correspondendo a um determinado aminoácido incluem dedução com base na 26 PE1149919 utilização de codões da célula hospedeira e métodos de preparação de sequências oligonucleotidicas mistas usando múltiplos codões (daqui em diante referido como "oligonucleótidos degenerados"). Neste último caso, a multiplicidade de oligonucleótidos pode ser reduzida através da introdução de hipoxantina nas suas sequências nucleotidicas. A sequência iniciadora para PCR pode compreender uma sequência nucleotidica projectada para emparelhar com uma cadeia matriz, a sequência iniciadora sendo ligada a uma outra sequência adicional 5'. A escolha de tal sequência nucleotidica adicional 5' não está particularmente limitada, desde que a sequência iniciadora possa ser usada para PCR ou RT-PCR. Tal sequência 5' adicional pode ser, por exemplo, uma sequência nucleotidica conveniente para a operação de clonagem de um produto de PCR. Tal sequência nucleotidica pode ser, por exemplo, um local de clivagem por enzimas de restrição ou uma sequência nucleotidica contendo um local para enzimas de restrição.
Ainda, na projecção da sequência iniciadora para PCR, prefere-se que a soma do número de bases guanina (G) e o número de bases citosina (C) seja 40 a 60% do número total de bases. Ainda, de preferência, existe pouco ou nenhum auto-emparelhamento para uma determinada sequência iniciadora e, no caso de um par de sequências iniciadoras, de preferência pouco ou nenhum emparelhamento entre as sequências iniciadoras. O número de nucleótidos que constituem a 27 PE1149919 sequência iniciadora para PCR não está particularmente limitado, desde que possa ser usada para PCR. 0 limite inferior do número é de um modo geral 10 a 14 nucleótidos, com o limite superior estando limitado a 40 a 60 nucleótidos. De preferência, as sequências iniciadoras são oligonucleótidos de 14 a 40 nucleótidos de comprimento. A sequência iniciadora para PCR é de preferência DNA. Os nucleósidos na sequência iniciadora podem ser desoxiadenosina, desoxicitidina, desoxitimidina e desoxiguanosina e, ainda, desoxinosina. A posição 5' do nucleósido no extremo 5' da sequência iniciadora para PCR é adequadamente um grupo hidroxilo a que um ácido fosfórico é ligado por uma ligação éster. A síntese de uma sequência iniciadora para PCR pode ser realizada por métodos geralmente usados para a síntese de ácidos nucleicos, por exemplo o método de fosforamideto. Neste método pode ser preferencialmente usado um sintetizador automático de DNA. O DNA genómico e o mRNA derivados de um microrganismo produtor de ML-236B podem ser usados como matriz para PCR ou RT-PCR, respectivamente. RNA total pode também ser usado como matriz para RT-PCR em vez de mRNA. O produto de PCR ou de RT-PCR pode ser clonado através da incorporação num vector de DNA adequado. A escolha do vector de DNA usado no passo de clonagem, de um modo geral, não está limitado. Os kits para uma clonagem fácil dos produtos de PCR e de RT-PCR são comercializados. Por 28 PE1149919 exemplo, o "Original TA Cloning Kit" (fabricado pela Invitrogen: usando pCR2.1 como DNA vector) é adequado a tal clonagem.
Para se obter um produto de PCR clonado, as células hospedeiras transformadas, contendo plasmideos compreendendo o produto de PCR pretendido, são cultivadas e depois os plasmideos extraídos das células e purificados. 0 fragmento de DNA inserido é então recuperado a partir do plasmídeo resultante. A cultura das células hospedeiras transformadas é adequadamente realizada em condições adequadas para as células hospedeiras. Uma célula hospedeira adequada, Escherichia coli, pode ser cultivada em meio LB [1% (p/v) de triptona, 0,5% (p/v) de extracto de levedura, 0,5% (p/v) de cloreto de sódio], entre 30 e 37°C, durante 18 horas a dois dias com agitação. A preparação de plasmideos a partir de uma cultura de células hospedeiras transformadas pode ser realizada através da recuperação das células hospedeiras e do isolamento de plasmideos sem outros componentes celulares tais como DNA genómico ou proteína do hospedeiro. A preparação de DNA plasmídico a partir de uma cultura de Escherichia coli pode ser realizada de acordo com o método alcalino de Maniatis [descrito em Maniatis, T. et al., "Molecular cloning, a laboratory manual", 2o ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989)]. Os kits para obtenção de um plasmídeo tendo um maior grau 29 PE1149919 de pureza podem ser obtidos no mercado. Prefere-se o "Plasmid Mini Kit" [fabricado pela Qiagen AG]. A concentração do DNA do plasmideo resultante pode ser determinada medindo a absorvância num comprimento de onda de 260 nm, após diluição adequada da amostra de DNA, e calculando com base no facto de uma solução com uma absorvância DO260 de 1 conter 50 pg/ml de DNA (descrito em Maniatis, T., et al., supra). A pureza do DNA pode ser calculada a partir da razão dos valores de absorvância nos comprimentos de onda de 280 nm e 260 nm (descrito em Maniatis, T., et al., supra) .
Os métodos de marcação de sondas de ácido nucleico podem ser, de um modo geral, classificados como radioactivos e não radioactivos. A escolha de um radionucleótido para marcação radioactiva não está, de um modo geral, limitada e pode ser, por exemplo, 32P, 35S, 14C ou similares. Na marcação prefere-se a utilização de 32P. A escolha do agente para marcação não radioactiva não está igualmente limitada, desde que possa ser usada, de um modo geral, na marcação de ácidos nucleicos e pode ser, por exemplo, digoxigenina, biotina ou similares, sendo preferida digoxigenina.
Os métodos para a marcação de uma sonda de ácido nucleico, de um modo geral, também não estão limitados. São preferidos os métodos normalmente usados, tais como, por exemplo, métodos que incorporam a marca no produto, por PCR 30 PE1149919 ou RT-PCR, usando como substrato nucleótidos marcados, translação de corte, utilização de sequências iniciadoras ao acaso, marcação terminal e métodos para a síntese de um oligonucleótido de DNA usando substratos nucleotídicos marcados. Um método adequado pode ser seleccionado de entre estes métodos dependendo do tipo de sonda de ácido nucleico. A presença no genoma de um microrganismo produtor de ML-236B de uma sequência nucleotídica que é a mesma da sequência nucleotídica de uma sonda de ácido nucleico particular pode ser confirmada por transferências para membrana e hibridação Southern com o DNA genómico do referido microrganismo produtor de ML-236B. A transferência para membranas e hibridação Southern pode ser realizada de acordo com o método de Maniatis [descrito em Maniatis, T., et al, supra] .
Uma sonda de ácido nucleico marcada, preparada como descrito atrás, pode ser usada para testar uma biblioteca de DNA genómico. A escolha do método de rastreio não está particularmente limitada, desde que seja de um modo geral adequado para a clonagem de genes, mas é de preferência o método de hibridação de colónias [descrito em Maniatis, T., et al., supra]. A cultura das colónias usadas para hibridação de colónias é adequadamente realizada em condições adequadas para as células hospedeiras. A cultura de Escherichia coli, 31 ΡΕ1149919 um hospedeiro preferido, pode ser realizada por incubação em meio de agar LB [1% (p/v) de triptona, 0,5% (p/v) de extracto de levedura, 0,5% (p/v) de cloreto de sódio, 1,5% (p/v) de agarose], entre 30 e 37°C, durante 18 horas a dois dias. A preparação do vector de DNA recombinante a partir do clone positivo obtido por hibridação de colónias é, geralmente, realizado por extracção do plasmideo a partir da cultura do clone positivo e purificação do mesmo.
Uma estirpe de Escherichia coli transformada, Escherichia coli pML48 SANK71199, representando um clone positivo obtido de acordo com o presente invento, foi depositada no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 7 de Julho de 1999, de acordo com o Tratado de Budapeste sobre depósito de microrganismos e foi-lhe concedido o número de acesso FERM BP-6780.
Um vector de DNA típico contido em Escherichia coli pML48 SANK71199 foi designado como pML48. A confirmação de que o vector de DNA recombinante presente no clone positivo contem DNA genómico relacionado com a biossíntese de ML-236B pode ser adequadamente avaliado determinando a sequência nucleotídica do inserto do vector de DNA recombinante, transferência para membrana e hibridação Southern ou expressão do inserto para determinar a sua função. 32 PE1149919 A sequência nucleotídica de DNA pode ser determinada de acordo com a técnica de modificação química de Maxam e Gilbert [descrita em Maxam, A.M.M. e Gilbert, W., Methods in Enzymology, 65, 499 (1980)] ou pelo método de terminação de cadeias didesoxi [descrito em Messing, j. e Vieira, J., Gene 19, 269 (1982)]. Outros métodos adequados são conhecidos na área. O DNA plasmídico usado para determinação da sequência nucleotídica é, de preferência, uma amostra de elevado grau de pureza, como descrito atrás.
A sequência nucleotídica do inserto de pML48 está apresentada em SEQ ID NO:l da Listagem de Sequências. A sequência nucleotídica mostrada em SEQ ID NO: 2 da Listagem de Sequências é totalmente complementar da sequência nucleotídica mostrada em SEQ ID NO:l. De um modo geral uma sequência nucleotídica de um DNA genómico pode ter polimorfismos genéticos intra-específicos, ou seja diferenças alogénicas. Ainda, no processo de clonagem e sequenciação de DNA, sabe-se que podem ocorrer substituições nucleotídicas, ou outras alterações, com alguma frequência. Assim, o DNA genómico relacionado com a biossíntese de ML-236B do presente invento também inclui DNA genómico e outros DNAs que podem ser hibridados em condições restringentes com o DNA dos nucleótidos 1 a 34203 de SEQ ID NO: 1 ou 2 da Listagem de Sequências. Estes DNAs incluem o DNA do nucleótido N° 1 a 34203 de SEQ ID NO: 1 ou 2 da Listagem de Sequências, em que um ou mais nucleótidos são substituídos, eliminados e/ou adicionados. Ainda, estes DNAs genómicos ou outros que hibridam podem incluir DNA 33 PE1149919 derivado de microrganismos produtores de ML-236B diferentes de Penicillium citrínum SANK13380, de preferência, os capazes de aumentar a produção de ML-236B quando introduzidos num microrgarnismo produtor de ML-236B. 0 DNA genómico relacionado com a biossintese de ML-236B é adequadamente analisado de acordo com os métodos que se seguem 1) a 3). 1) Análise com programa informático de análise de genes.
Os genes dentro do DNA genómico podem ser localizados usando um programa para encontrar genes (daqui em diante referido como "GRAIL") e um programa de pesquisa de sequências homólogas (BLASTN e BLASTX). GRAIL é um programa que pesquisa genes estruturais no DNA genómico através da separação da sequência genómica em sete parâmetros para avaliação do aparecimento de uma sequência de um gene e integração dos resultados usando um método neutro [descrito em Uberbacher, E.C. & Mural, R.J., Proc. Natl. Acad. Sei. USA., 88, 11261 (1991)]. Como exemplo, pode ser usado o ApoCom GRAIL Toolkit [produzido pela Apocom]. 0 blast é um programa que usa um algoritmo para pesquisa de homologias de sequências nucleotidicas e sequências de aminoácidos [descrito em Altschuk, S.F., Madden, T.L., et al.r Nucl. Acids Res., 25, 3389 (1997)]. 34 PE1149919 A posição e a direcção de um gene estrutural numa amostra da sequência de DNA genómico podem ser previstas através da divisão da sequência de DNA em comprimentos adequados e fazendo uma pesquisa de homologia numa base de dados genéticos usando BLASTN. A posição e a direcção do gene estrutural numa sequência de DNA a ser testada podem também ser previstas através da tradução das sequências de DNA genómico nas seis grelhas de tradução (três no sentido codificador e as outras três na cadeia complementar) e fazendo uma pesquisa de homologia das sequências de aminoácidos derivadas numa base de dados de peptídeos usando BLASTX.
As regiões codificadoras para os genes estruturais no DNA genómico estão por vezes divididas com intrões nos organismos eucarióticos. Para análise dos genes estruturais tendo tais intervalos, o programa BLAST para sequências contendo intervalos é mais eficaz, sendo preferido o programa Gapped-BLAST (instalado em BLAST2: WISCONSIN GCG package ver. 10.0). 2) Análise de acordo com o método de transferência para membrana e hibridação Northern A expressão de um gene estrutural previsto pelos métodos de análise descritos no parágrafo 1) pode ser estudada usando o método de transferência para membrana e hibridação Northern.
Adequadamente, RNA total derivado de 35 PE1149919 microrganismos produtores de ML-236B foi obtido a partir de uma cultura do microrganismo. Uma cultura do microrganismo preferido produtor de ML-236B, Penicillium citrinum, pode ser obtida por inoculação do referido organismo derivado de agar inclinado em meio MGB3-8, seguido de incubação com agitação, entre 22 e 28°C, durante um a guatro dias. A escolha do método de extracção de RNA derivado de um microrganismo produtor de ML-236B não está limitado, sendo preferido o método de tiocianato de guanidina-fenol guente, o método de tiocianato de guanidina-guanidina ácido clorídrico ou similares. Exemplos de um kit comercial para a preparação de RNA total de grau de pureza elevado incluem "RNeasy Plant Mini Kit" (produzido pela Qiagen AG) . Ainda, o mRNA pode ser obtido aplicando RNA total numa coluna de oligo (dT) e recuperação da fracção adsorvida à coluna. A transferência de RNA para uma membrana, preparação de uma sonda, hibridação e detecção de um sinal podem ser realizadas de forma semelhante ao método de transferência para membrana e hibridação Southern descrito atrás. 3) Análise do extremo 5' e do extremo 3' do transcrito A análise do extremo 5' e do extremo 3' de cada transcrito pode ser realizada de acordo com o método de "RACE" (amplificação rápida dos extremos de cDNA). RACE é um método de obtenção de um cDNA abrangendo uma região 36 ΡΕ1149919 nucleotídica conhecida e uma região desconhecida nos extremos 5' e 3' de um gene, usando RT-PCR com mRNA como matriz [descrito em Frohman, M.A., Methods Enzymol. 218, 340 (1998)] . 5'-RACE pode ser realizado de acordo com o método que se segue. A primeira cadeia de um cDNA é sintetizada de acordo com uma reacção de transcriptase reversa, usando mRNA como matriz. Como sequência iniciadora, foram usados oligonucleótidos complementares da cadeia codificadora (1) projectados para uma parte conhecida de uma sequência nucleotídica. Uma cadeia nucleotídica homopolimérica (consistindo num único tipo de base) foi adicionada ao extremo 3' da primeira cadeia do cDNA usando transferase de desoxinucleotidilo terminal. Em seguida, o cDNA de cadeia dupla na região do extremo 5' foi amplificado por PCR usando a primeira cadeia do CDNA como matriz. Para amplificação, foram usadas duas sequências iniciadoras, um oligonucleótido de DNA derivado da cadeia codificadora contendo uma sequência complementar da sequência homopolimérica e um oligonucleótido (2) na cadeia complementar e no lado do extremo 3' do oligonucleótido de DNA (1) [descrito em Frohman, M.A., Methods in Enzymol., 218, 340 (1993)]. É comercializado um kit para 5'RACE, "5' RACE System para for Rapid amplification of cDNA ends", Versão 2.0 (fabricado pela GIBCO). 3'RACE é um método que usa a região poliA existente no extremo 3' do mRNA. Especificamente, a primeira cadeia de cDNA é sintetizada através de uma 37 ΡΕ1149919 reacção de transcriptase reversa usando mRNA como matriz e um adaptador oligo d(T) como sequência iniciadora. Em seguida, o cDNA de cadeia dupla na região 3' é amplificado por PCR usando a primeira cadeia do cDNA como matriz. Como sequências iniciadoras foram usados um oligonucleótido de DNA (3) na cadeia codificadora projectado para uma parte conhecida da sequência codificadora e o adaptador oligo d(T) na cadeia complementar. É comercializado um kit para 3'RACE, "Ready-To-Go T-primed First-Strand Kit" (Pharmacia).
Os resultados da análise 1) e 2) atrás foram preferencialmente usados no procedimento de RACE, na projecção das sequências iniciadoras baseadas numa parte conhecida da sequência nucleotídica com interesse.
Usando os métodos da análise descrita em 1) a 3) atrás, podem ser deduzidas a localização do local de iniciação da transcrição no gene estrutural, a posição do codão de iniciação da tradução e o codão de terminação da tradução e a sua posição. Baseado na referida informação, pode ser obtido cada um dos genes estruturais e o respectivo cDNA, nomeadamente cDNAs de aceleração da biossintese de ML-236B.
Seis genes estruturais foram assumidos como estando presentes na sequência incorporada num vector de DNA recombinante pML48 obtido de acordo com o presente invento. Foram designados mlcA, mlcB, mlcC, mlcD, mlcE e mlcR, respectivamente. Entre estes, mcA, mlcB, mlcE e mlcR 38 ΡΕ1149919 são assumidos como tendo uma região codificadora na sequência nucleotidica apresentada em SEQ ID NO: 2 da Listagem de Sequências. mlC e mlcD são assumidos como tendo uma região codificadora na sequência nucleotidica mostrada em SEQ ID NO: 1 da Listagem de Sequências.
Exemplos de um método para obtenção de cDNAs específicos aceleradores da biossintese de ML-236B correspondendo aos genes estruturais atrás referidos incluem: clonagem com RT-PCR usando sequências iniciadoras projectadas para a sequência de cada um dos genes estruturais e respectivo DNA flanqueante e clonagem a partir de uma biblioteca de cDNA usando sondas de DNA adequadas projectadas para sequências nucleotidicas conhecidas. São conhecidos na área outros métodos adequados. Para expressar funcionalmente o cDNA obtido de acordo com estes métodos, é preferível obter um cDNA de tamanho completo.
Descreve-se de seguida um método para obtenção de cDNA acelerador da biossintese de ML-236B usando RT-PCR. É necessário projectar um par de sequências iniciadoras para RT-PCR e para a obtenção de cDNA acelerador da biossintese de ML-236B para que a sequência iniciadora emparelhe selectivamente com uma cadeia matriz, permitindo a obtenção do cDNA. No entanto, não é essencial que as sequências iniciadoras para RT-PCR sejam totalmente complementares de uma parte de cada cadeia matriz, desde que satisfaçam a condição descrita atrás. Sequências 39 ΡΕ1149919 iniciadoras adequadas para RT-PCR que possam emparelhar com a cadeia complementar da cadeia codificadora (daqui em diante referido como "sequência iniciadora codificadora") são sequências iniciadoras codificadoras totalmente complementares de uma parte da cadeia complementar da cadeia codificadora (daqui em diante referido como "sequência iniciadora codificadora não substituída") ou sequências iniciadoras codificadoras que não são totalmente complementares de uma parte da cadeia complementar da cadeia codificadora (daqui em diante referido como "sequência iniciadora codificadora parcialmente substituída"). As outras sequências iniciadoras adequadas para RT-PCR que podem emparelhar com a cadeia codificadora (daqui em diante referido como "sequência iniciadora complementar da sequência codificadora") são sequências iniciadoras complementares da cadeia codificadora que são totalmente complementares de uma parte da cadeia codificadora (daqui em diante referido como "sequência iniciadora complementar da cadeia codificadora não substituída") ou sequências iniciadoras complementares da cadeia codificadora que não são totalmente complementares de uma parte da cadeia codificadora (daqui em diante referido como "sequência iniciadora complementar da cadeia codificadora parcialmente substituída").
Uma sequência iniciadora codificadora é adequadamente projectada para que o produto de RT-PCR obtido usando-a possua o codão ATG na posição original da iniciação da tradução. Adequadamente, o produto de RT-PCR também contem apenas o codão de terminação da tradução 40 ΡΕ1149919 correcto na grela de leitura tendo o local de iniciação ATG original e sem codões de paragem da tradução adicionais (espúrios). A posição do codão de iniciação da tradução dos genes estruturais previstos no presente invento está apresentada na Tabela 5 para genes localizados em SEQ ID NO: 1 e SEQ ID NO: 2 da Listagem de Sequências. O extremo 5' da sequência iniciadora codificadora não substituída é adequadamente o nucleótido "A" do codão de iniciação da tradução ATG ou uma base existente no lado do extremo 5'.
Uma sequência iniciadora codificadora parcialmente substituída emparelha com uma região específica em SEQ ID NO: 1 ou SEQ ID NO: 2 da Listagem de sequências, a sequência de nucleótidos de SEQ ID NO: 2 da Listagem de Sequências sendo totalmente complementar de SEQ ID NO: 1 da Listagem de Sequências.
Quando uma sequência iniciadora codificadora parcialmente substituída possui uma sequência nucleotídica presente no lado 3' do codão de iniciação da tradução ATG, adequadamente não possui sequências nucleotidicas nesta região que sejam codões de terminação (TAA, TAG ou TGA) na mesma grelha de leitura do ATG.
Uma sequência iniciadora codificadora parcialmente substituída pode conter o nucleótido "A", sequência de nucleótidos "AT" ou "ATG" (daqui em diante referido como "nucleótido ou sequência de nucleótidos m'") que 41 ΡΕ1149919 corresponde ao nucleótido "A", à sequência de nucleótidos "AT" ou "ATG" do codão de iniciação da tradução (daqui em diante referido como "nucleótido ou sequência de nucleótidos m". Quando o nucleótido m' é "A", correspondendo ao "A" da sequência m, preferimos que o "A" de m' esteja situado no extremo 3' da sequência iniciadora codificadora parcialmente substituída. De forma semelhante, quando m' é "AT", preferimos que esta sequência "AT" de m' esteja situada no extremo 3' da sequência iniciadora codificadora parcialmente substituída. Quando o nucleótido ou a sequência de nucleótidos m é "ATG", correspondendo ao "ATG" de m', preferimos que os trinucleótidos que estão 3' relativamente ao ATG na sequência iniciadora não sejam codões de paragem. Por outras palavras, para os trinucleótidos cujo nucleótido do extremo 5' é o nucleótido (3x n+l)° (n representa um inteiro igual ou superior a um) contado a partir do A do "ATG" de m' na direcção do extremo 3', a sequência nucleotídica do trinucleótido é de preferência nem TAA, nem TAG ou TGA. As sequências iniciadoras descritas atrás podem ser usadas para obter cDNA tendo um codão de metionina na posição correspondente ao codão de iniciação da tradução do mRNA usado como matriz de RT-PCR.
Sempre que o extremo 3' de uma sequência iniciadora codificadora parcialmente substituída seja a posição nucleotídica (3 x n+1), de preferência o trinucleótido que começa nesta posição não é TAA, TAG ou TGA no produto de RT-PCR obtido usando a sequência iniciadora codificadora parcialmente substituída como uma 42 PE1149919 das sequências iniciadoras, e RNA ou mRNA do microrganismo produtor de ML-236B como matriz ou nos produtos de PCR obtidos usando DNA genómico ou cDNA como matriz. A posição de nucleótido é contada a partir do "A" do codão de iniciação da tradução "ATG" na direcção do extremo 3' e "n" representa um inteiro igual ou superior a um.
Quando o extremo 3' de uma sequência iniciadora codificadora parcialmente substituída é a posição nucleotídica (3 x n+2), o tripleto para o qual a posição 3 x n+2 é o nucleótido central é de preferência nenhuma das sequências TAA, TAG ou TGA para um produto de PCR ou RT-PCR obtido como atrás.
Quando o extremo 3' de uma sequência iniciadora codificadora parcialmente substituída é a posição nucleotídica (3 x n+3), o tripleto para o qual a posição (3 x n+3) é o nucleótido 3' é de preferência nenhuma das sequências TAA, TAG ou TGA.
Os requisitos para a sequência iniciadora codificadora são os discutidos atrás.
Uma sequência iniciadora complementar da sequência codificadora foi projectada de forma a quando usada conjuntamente com a sequência iniciadora codificadora, poder ser amplificado cDNA codificador de cada um dos genes estruturais (mlcA, mlcB, mlcC, mlcD, mlcE e mlcR) usando RT-PCR numa direcção equivalente ao extremo N para o extremo C dos peptídeos correspondentes. 43 ΡΕ1149919 A escolha da sequência iniciadora complementar da sequência codificadora não substituída não está limitada, desde que seja uma sequência iniciadora complementar da sequência codificadora tendo uma sequência nucleotidica complementar de uma sequência nucleotidica situada na região do local de terminação da tradução do cDNA. No entanto, é preferida uma sequência iniciadora tendo uma base do extremo 5' que é complementar da base no extremo 3' do codão de terminação da tradução ou tendo uma base no lado do extremo 5' da referida base da sequência iniciadora. É preferida uma sequência iniciadora contendo três bases complementares de um codão de terminação da tradução. As Tabelas 8 a 10 mostram o codão de terminação da tradução de cada um dos genes estruturais, a sequência complementar do codão de iniciação da tradução, um residuo de aminoácido no extremo C do peptideo codificado por cada um dos genes estruturais, a sequência nucleotidica codificadora o residuo de aminoácido e a sua posição em SEQ ID NO: 1 ou SEQ ID NO: 2.
Sequências iniciadoras complementares da sequência codificadora parcialmente substituídas emparelham selectivamente com uma região especifica na sequência nucleotidica de SEQ ID NO: 1 ou SEQ ID NO: 2 da Listagem de Sequências.
Foram referidos atrás os requisitos para uma sequência iniciadora complementar da sequência codificadora. 44 ΡΕ1149919 É possível adicionar sequências nucleotídicas adequadas ao extremo 5' das sequências iniciadoras codificadoras parcialmente substituídas e às sequências iniciadoras complementares da sequência codificadora parcialmente substituídas, desde que sejam satisfeitos os requisitos atrás referidos. A escolha de tal sequência nucleotídica não está particularmente limitada, desde que a sequência iniciadora possa ser usada para PCR. Exemplos de sequências adequadas incluem sequências nucleotídicas convenientes para a clonaqem dos produtos de PCR, tais como locais de clivaqem por enzimas de restrição e sequências nucleotídicas contendo locais de clivagem por enzimas de restrição adequados.
Ainda, a sequência iniciadora codificadora e a sequência iniciadora complementar da sequência codificadora são adequadamente projectadas de acordo com a descrição atrás e de acordo com as regras gerais de projecção de sequências iniciadoras para PCR.
Como descrito atrás, mRNA ou RNA total derivado de microrganismo produtor de ML-2346B pode ser usado como matriz para RT-PCR. Um cDNA acelerador da biossíntese de ML-2346B correspondendo ao gene estrutural mlcE foi obtido projectando e sintetizando um par de sequências iniciadoras adequadas para amplificar toda a região codificadora do gene estrutural mlcE na sequência do inserto de pML48 e depois realização de RT-PCR usando RNA total de SANK13380 como matriz [sequências iniciadoras representadas respectivamente pelas sequências nucleotídicas SEQ id NOS: 45 ΡΕ1149919 35 e 36 da Listagem de Sequências].
Um cDNA acelerador da biossintese de ML-236B correspondendo ao gene estrutural mlcR foi obtido de forma semelhante usando as sequências iniciadoras representadas respectivamente pelas sequências nucleotidicas SEQ ID NOS: 39 e 40 da Listagem de Sequências.
Conforme descrito atrás, o produto de RT-PCR pode ser clonado através da inserção num vector de DNA adequado. A escolha do vector de DNA usado para tal clonagem não está limitada e é adequadamente um vector de DNA geralmente usado para clonagem de fragmentos de DNA. Os kits para uma clonagem fácil de um produto de RT-PCR são comercializados e é preferido o "Original TA Cloning kit" [fabricado pela Invitrogen, usando pCR2.1 como vector de DNA]. A confirmação da expressão funcional dos cDNAs aceleradores da biossintese de ML-236B obtidos, usando os métodos atrás descritos, num microrganismo produtor de ML-236B pode ser conseguida por clonagem do cDNA num vector de DNA adequado para a expressão funcional num microrganismo produtor de ML-236B. Células adequadas são então transformadas com o vector de DNA recombinante e comparada a capacidade de biossintese de ML-236B das células hospedeiras transformadas e não transformadas. Se o cDNA acelerador da biossintese de ML-236B for funcionalmente expresso na célula transformada, então a capacidade de biossintese de ML-236B da célula transformada é melhorada comparativamente com a de uma célula hospedeira. 46 ΡΕ1149919 A escolha do vector de DNA adequado para expressão num microrganismo produtor de ML-236B [daqui em diante referido como um vector de expressão funcional] não está particularmente limitada, desde que possa ser usado para transformar o microrganismo produtor de ML-236B e possa funcionalmente expressar o polipeptideo codificado pelo cDNA acelerador da biossíntese de ML-236B naquele organismo. De preferência, o vector é estável na célula hospedeira e tem uma sequência nucleotidica que permite a replicação na célula hospedeira. 0 vector para a expressão funcional pode conter um ou mais dos cDNAs aceleradores da biossíntese de ML-236B, por exemplo cDNAs correspondendo aos genes estruturais mlcR ou mlcR e mlcE.
Um vector para a expressão funcional pode conter um ou mais tipos de DNA, diferentes do cDNA correspondendo ao gene estrutural mlcR ou mlcR e mlcE, que acelere a biossíntese de ML-236B quando introduzido no microrganismo produtor de ML-236B. Exemplos de tal DNA incluem: cDNAs correspondendo aos genes estruturais mlcA, mlcB, mlcC ou mlcD, DNA genómico relacionado com a biossíntese de ML-236B, DNA codificador de factores reguladores da expressão do cDNA acelerador da biossíntese de ML-236B do presente invento, ou similares.
Um vector para a expressão funcional, de preferência, compreende uma sequência nucleotidica que proporciona um fenótipo selectivo para o plasmídeo numa 47 ΡΕ1149919 célula hospedeira, e é, de preferência, um vector vai-vem.
Ainda, o fenótipo selectivo pode ser um fenótipo de resistência a drogas ou similares, sendo preferencialmente resistência a antibióticos, e, mais de preferência, resistência à ampicilina ou resistência à higromicina B.
No caso do vector de expressão ser um vector vai-vem, o vector adequadamente compreende uma sequência nucleotidica que permite ao vector replicar-se numa célula hospedeira de um dos grupos de microrganismos e uma sequência nuleotidica necessária para a expressão do polipeptideo codificado pelo inserto do vector num outro tipo de célula hospedeira. Prefere-se que o vector confira um fenótipo selectivo diferente a cada célula hospedeira dos diferentes grupos de microrganismos transformados. Os requisitos para combinações de grupos de microrganismos é semelhante aos requisitos para o vector vai-vem usado na clonagem e expressão de DNA genómico relacionado com a biossíntese de ML-236B descrito na presente descrição.
No presente invento, um vector vai-vem adequado é pSAK700, construído através da combinação, por esta ordem, do promotor 3-fosfoglicerato cinase (daqui em diante referido como "pgk") derivado de Aspergillus nidulans existente no vector de dna pSAK333 (descrito na Publicação do Pedido de Patente Japonesa N° 3-262486), um adaptador para inserção de um gene estranho e o terminador pgk existente no DNA, (ver Figura 4). 48 ΡΕ1149919
Um polipeptídeo pode ser expresso num microrganismo produtor de ML-236B através da inserção do cDNA correspondente ao gene estrutural mlcE, descrito atrás, no vector de expressão igualmente descrito atrás. Um vector de expressão de cDNA recombinante pSAKexpE foi obtido através da inserção do cDNA correspondente ao gene estrutural mlcE num local adaptador de pSAK700. A sequência incorporada em pSAKexpE, nomeadamente a sequência nucleotidica do cDNA correspondente ao gene estrutural mlcE está apresentada em SEQ ID NO: 37 da Listagem de Sequências. De forma semelhante, um vector de expressão de cDNA recombinante pSAKexpR foi obtido através da inserção do cDNA correspondente ao gene estrutural mlcR num local adaptador de pSAK700. A sequência inserida em pSAKexpE, nomeadamente a sequência nucleotidica do cDNA correspondente ao gene estrutural mlcR está, apresentada em SEQ ID NO: 41 da Listagem de Sequências.
Escherichia coli pSAKexpE SANK 72499, que é a estirpe de Escherichia coli transformada por pSAKexpE, foi depositada no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 25 de Janeiro de 2000, como depósito N° FERM BP-7005, de acordo com o Tratado de Budapeste sobre depósito de microrganismos. Escherichia coli pSAKexpE SANK 72599, que é a estirpe de Escherichia coli transformada por pSAKexpR, foi depositada no "Research institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 25 de Janeiro de 2000, como depósito N° FERM BP-7006, de acordo com o Tratado de Budapeste sobre 49 ΡΕ1149919 depósito de microrganismos. Métodos adequados de transformação podem ser adequadamente seleccionados, dependendo da célula hospedeira, para obter expressão do cDNA acelerador da biossintese de ML-236B, DNA genómico relacionado com a biossintese de ML-236B ou seus fragmentos. A transformação de Penicillium citrinum, um microrganismo preferido produtor de ML-236B, pode ser realizada preparando protoplastos a partir de esporos de Penicillium citrinum, seguido da introdução do vector de dna recombinante no protoplasto [descrito em Nara, F., et al., Curr. Genet. 23, 28 (1993)].
Adequadamente, os esporos de uma cultura em agar inclinado de Penicillium citrinum são inoculados numa placa de meio de agar PGA e incubados entre 22 e 28°C, durante 10 a 14 dias. Os esporos são então colhidos da placa e 1 x 107 1 x 109 esporos inoculados em 50 a 100 ml de meio de cultura YPL-20 [composição: 0,1% (p/v) de extracto de levedura (fabricado pela Difco), 0,5% (p/v) de polipeptona (produzido pela Niheon Seiyaku), 20% (p/v) de lactose, pH 5,0], depois incubado entre 22 e 28°C durante 18 horas a dois dias. Os esporos que germinam são recuperados da cultura e tratados com enzimas que degradam a parede celular para originar protoplastos. A escolha da enzima que degrada a parede celular não está particularmente limitada, desde que seja degradada a parede celular de Penicillium citrinum e não tenha um efeito deletério para o microrganismo. Exemplos incluem: zimoliase, quitinase ou 50 ΡΕ1149919 similares . A mistura de um vector de DNA recombinante compreendendo um cDNA acelerador da biossintese de ML-236B e microrganismo produtor de ML-236B ou seu protoplasto, nas condições adequadas, permite a introdução do vector de DNA recombinante no referido protoplasto para se conseguir um transformante. A cultura dos transformantes do microrganismo produtor de ML-236B é convenientemente realizada em condições adequadas a cada célula hospedeira. A cultura de um transformante de Penicillium citrinum, um microrganismo preferido produtor de ML-236B, pode ser realizada cultivando o referido protoplasto transformado em condições adequadas à regeneração da parede celular e depois cultura. Nomeadamente, o protoplasto transformado de Penicillium citrinum pode ser introduzido em meio de agar com camada intermédia VGS [composição: meio mínimo de Vogel, 2% (p/v) de glucose, glucitol 1 M, 2% (p/v) de agar], o agar VGS da camada intermédia é em seguida intercalado entre o meio de agar VGS da camada inferior [composição: meio mínimo de Vogel, 2% (p/v) de glucose, glucitol 1 M, 2,7% (p/v) de agar] e o meio de agar VGS da camada superior [composição: meio mínimo de Vogel, 2% (p/v) de glucose, glucitol 1M, 1,5% (p/v) de agar] contendo 800 pg/ml de higromicina B, depois incubado entre 22 e 28°C, durante 7 a 15 dias. A estirpe resultante foi subcultivada com incubação entre 22 e 28°C em meio PGA. A estirpe foi inoculada com uma agulha de platina num agar inclinado preparado a partir de meio 51 ΡΕ1149919 PGA, incubada entre 22 e 28°C, durante 10 a 14 dias e depois mantido entre 0 e 4°C.
Como descrito atrás, ML-236B pode ser eficientemente produzido através da inoculação de um transformante de Penicillium citrinum obtido a partir de um agar inclinado como atrás e tendo uma parede celular regenerada, em meio MBG 3-8, seguido de incubação entre 22 e 28°C, durante 7 a 12 dias com agitação. Penicillium citrinum como hospedeiro pode ser cultivado em meio liquido assim como para produzir ML-236B. A purificação de ML-236B a partir da cultura de um transformante do microrganismo produtor de ML-236B pode ser realizada através da combinação de vários métodos normalmente usados para a purificação de produtos naturais. A escolha de tais métodos não está particularmente limitada e, pode ser, por exemplo, centrifugação, separação de sólidos e líquidos por filtração, tratamento com bases ou ácidos, extracção com solventes orgânicos, dissolução, métodos cromatográficos tais como cromatografia de adsorção, cromatografia de partição ou similares, e cristalização ou similares. ML-236B pode estar na forma de hidroxi-ácido ou lactona, que podem ser reciprocamente convertidos. O hidroxi-ácido pode ser convertido num seu sal mais estável. Usando tais propriedades físicas, pode ser obtido a forma de hidroxi-ácido de ML-236B (daqui em diante referido como hidroxi-ácido livre), sais de ML-236B hidroxi-ácido (daqui em diante referido como um sal de hidroxi-ácido) ou a forma de lactona de ML-263B (daqui em 52 ΡΕ1149919 diante referido como lactona). A cultura é sujeita a hidrólise alcalina, a uma temperatura elevada ou à temperatura ambiente, para abertura do anel e conversão num sal de hidroxi-ácido, e depois a solução de reacção é acidificada, seguido de filtração. 0 filtrado é extraído com um solvente orgânico que se separa da água para dar o produto pretendido na forma de hidroxi-ácido livre. A escolha do solvente orgânico não está particularmente limitada. Exemplos incluem: hidrocarbonetos alifáticos tais como hexano, heptano ou similares; hidrocarbonetos aromáticos tais como benzeno, tolueno ou similares; hidrocarbonetos halogenados tais como cloreto de metileno, clorofórmio ou similares; éteres tais como éter dietílico ou similares; ésteres tais como formato de etilo, acetato de etilo ou similares; ou uma mistura consistindo em dois ou mais solventes. 0 composto pretendido pode ser obtido como sal de hidroxi-ácido através da dissolução do hidroxi-ácido livre numa solução aquosa de um sal de metal alcalino como seja hidróxido de sódio.
Ainda, o composto pretendido pode ser obtido como lactona através do encerramento do anel por aquecimento do hidroxi-ácido livre num solvente orgânico a ser desidratado ou através de outros métodos adequados. É possível purificar e isolar o hidroxi-ácido livre, hidroxi-ácido ou lactona assim obtido usando 53 ΡΕ1149919 cromatografia em coluna ou similares. 0 suporte para a coluna usada na cromatografia não está particularmente limitado. Exemplos incluem: Sephadex LH-20 (produzido pela Pharmacia), Diaion HP-20 (produzido pela Mitsubishi Kagaku), sílica gel, suportes de fase reversa ou similares, sendo preferidos os suportes da série C18. A escolha de um método para a quantificação de ML-236B não está particularmente limitada, de preferência é um método usado, de um modo geral, para a quantificação de compostos orgânicos. Exemplos incluem: cromatografia líquida de alta resolução em fase reversa (daqui em diante referida como "HPLC de fase reversa") ou similares. A quantificação por HPLC de fase reversa pode ser realizada submetendo uma cultura de um microrganismo produtor de ML-236B a hidrólise alcalina, submetendo a fracção solúvel a HPLC de fase reversa usando uma coluna C18, medição da absorção de UV e conversão do valor de absorção numa quantidade de ML-236B. A escolha da coluna C18 não está particularmente limitada, de preferência sendo uma coluna C18 usada geralmente para HPLC de fase reversa. Exemplos incluem: SSC-ODS-262 (diâmetro de 6 mm, comprimento de 100 mm, fabricado por Senshu Kagaku) ou similares. A escolha do solvente para a fase móvel não está particularmente limitada, desde que seja um solvente normalmente usado para HPLC em fase reversa. É, por exemplo, 75% (v/v) metanol -0,1% (v/v) trietilamina - 0,1% (v/v) de ácido acético ou similares. Quando ML-236B é adicionado à temperatura ambiente a uma coluna SSC-ODS-262, em que se usa 75% (v/v) metanol - 0,1% (v/v) trietilmanina - 0,1% (v/v) ácido 54 ΡΕ1149919 acético como fase móvel, a uma velocidade de 2 ml/minuto, ML-236B é eluído após 4,0 minutos. ML-236B pode ser detectado usando um detector de UV para HPLC. O comprimento de onda absorvido para detecção por UV é 220 a 280 nm, de preferência 220 a 260 nm, mais de preferência 236 nm.
As composições farmacêuticas podem ser preparadas contendo ML-236B obtido usando o presente invento, juntamente com um veiculo farmacêutico.
Podem ser preparadas composições farmacêuticas contendo pravastatina preparada a partir de ML-236B, obtido usando o presente invento, juntamente com um veículo farmacêutico.
As composições farmacêuticas podem ser convencionais e as mesmas usadas para as formulações de ML-236B ou pravastatina já existentes. O invento é agora ilustrado mais detalhadamente com referência às Figuras e Exemplos que se seguem. Os Exemplos são ilustrativos do presente invento mas não lhe estão limitados.
Descrição das figuras
Figura 1 é um diagrama que descreve a construção do vector de DNA pSAKcosl;
Figura 2 é o resultado da análise dos genes 55 ΡΕ1149919 estruturais da sequência inserida de pML48;
Figura 3 mostra a transferência para membranas e hibridação Northern da sequência inserida de pML48;
Figura 4 é um diagrama que descreve a construção do vector de expressão de cDNA pSAK700; e
Figura 5 mostra a análise por RT-PCR da transcrição de mlcA-E e R num transformante pSAKexpR.
Figura 6 mostra a análise por RT-PCR da transcrição de mlcE num transformante pSAKexpE.
Exemplos do invento
Exemplo 1: Construção do vector pSAKcosl 0 plasmideo pSAK333 contendo o gene da fosfotransferase de higromicina B (daqui em diante referido como "HPT") derivado de Escherichia colí (Publicação do Pedido de Patente Japonesa N° 3-262486) foi digerido com a enzima de restrição BamHI (fabricado por Takara Shuzo Co., Ltd., Japão) e tratado para formar extremos cerses com polimerase do DNA de T4 (produzida por Takara Shuzo Co., Ltd., Japão). 0 fragmento de DNA obtido como atrás foi auto-ligado numa forma circular usando um kit de ligação de DNA ("DNA ligation kit Ver.2", produzido por Takara Shuzo Co., Ltd., Japão) e células competentes JM 109 de Escherichia 56 ΡΕ1149919 coli (produzidas por Takara Shuzo Co., Ltd., Japão) foram então transformadas com ele. Uma estirpe tendo um plasmídeo com o local BamHI eliminado foi seleccionada a partir de Escherichia coli transformada e foi designada pSAK360. pSAK360 foi digerido com a enzima de restrição PvuII e depois tratado com fosfatase alcalina para produzir um fragmento desfosforilado no extremo 5'. Um fragmento SalI-SacI (cerca de 3 Kb) contendo um local cos foi obtido a partir de um vector cosmideo pWEl5 (fabricado pela STRATAGENE) e foi tratado para formar extremos cerses com polimerase do DNA de T4. Foi subsequentemente ligado ao local PvuII de pSAK360. JM109 foi transformada com este DNA. As estirpes tendo um plasmideo no qual o fragmento Sall-Scal (cerca de 3 Kb) foi inserido no local PvuII foram seleccionadas a partir de Escherichia coli transformada e o plasmideo da estirpe foi designado pSAKcosl. pSAKcosl possui um local de clivagem para as enzimas de restrição BamHI, EcoRI e Notl, cada um dos locais derivado de pWEl5. pSAKcosl tem um gene de resistência à ampicilina e um gene de resistência à higromicina como marcas de selecção.
Nos exemplos que se seguem, em que Escherichia coli foi usada como hospedeiro, a selecção dos transformantes pSAKcosl ou transformantes pSAKcosl compreendendo um inserto de gene estranho, foi realizada pela adição de 40 μρ/ιηΐ de ampicilina (Ampicilina: produzida pela Sigma) ao meio relevante. Sempre que Penicillium citrinum SANK13380 foi usado como hospedeiro, a selecção dos transformantes pSAKcos ou transformantes 57 PE1149919 pSAKcosl compreendendo um inserto de gene estranho, foi realizada pela adição de 200 μρ/πιΐ de higromicina (Higromicina B: produzida pela Sigma) ao meio em causa. O método de construção de pSAKcosl está apresentado na Fig. 1.
Exemplo 2: Preparação de DNA genómico de Penicillium citrinum SANK 13380 1) Cultura de Penicillium citrinum SANK13380
Uma cultura de sementeira de Penicillium citrinum SANK 13380 foi preparada a partir de agar inclinado de meio PGA. Nomeadamente, o agar foi inoculado com Penicillium citrinum SANK 13380 usando uma agulha de platina e mantido a 26°C durante 14 dias. O agar inclinado foi guardado a 4°C. A cultura principal foi realizada através de cultura em meio líquido com arejamento. As células de um quadrado de 5 mm do agar inclinado atrás referido foram inoculadas em 50 ml de meio MBG3-8 num frasco cónico de 500 ml e incubadas a 26°C, com agitação a 210 rpm, durante cinco dias. 2) Preparação de DNA genómico a partir de Penicillium citrinum SANK 13380 A cultura obtida no passo 1) foi centrifugada a 58 ΡΕ1149919 10000 xg, à temperatura ambiente, durante 10 minutos e as células foram colhidas. 3 g (peso molhado) de células foram esmagadas num almofariz com gelo seco para formar um pó. As células esmagadas foram colocadas num tubo de centrífuga cheio com 20 ml de EDTA.2Na 62,5 mM (fabricado por Wako Pure Chemical Industries, Ltd.) - 5% (p/v) SDS - tampão Tris ácido clorídrico 50 mM (fabricado por Wako Pure Chemical Industries, Ltd.) (pH 8,0) e foram misturadas suavemente, depois deixadas em repouso a 0°C durante uma hora. Adicionou-se 10 ml de fenol saturado com Tris ácido clorídrico 10 mM - edta.2Na 0,1 mM (pH 8,0, daqui em diante referido como "TE") e a mistura foi suavemente agitada a 50° durante uma hora.
Após centrifugação à temperatura ambiente a 10000 xg durante 10 minutos, 15 ml da camada superior (fase aquosa) foi colocada num outro tubo de centrífuga. À solução adicionou-se 0,5 vezes o volume de fenol saturado com TE e 0,5 vezes o volume de solução de clorofórmio. A mistura foi agitada durante dois minutos e centrifugada à temperatura ambiente a 10000 xg durante 10 minutos (daqui em diante referido como "extracção com fenol-clorofórmio"). A 10 ml da fase superior (fase aquosa) adicionou-se 10 ml de acetato de amónio 8M (pH 7,5) e 25 ml de 2-propanol (produzido por Wako Pure Chemical Industries, Ltd.), seguido de 80°C durante 15 minutos e centrifugação a 4°C a 10000 xg durante 10 minutos.
Após precipitação, os precipitados foram dissolvidos em 5 ml de TE, após o que se adicionou 20 μΐ de 59 PE1149919 10 mg/ml de ribonuclease A (produzida pela Sigma) e 250 unidades de ribonuclease TI (fabricado pela GIBCO Corporation), seguido de incubação a 37°C durante 20 minutos. 20 ml de 2-propanol foi adicionado e misturado suavemente. Subsequentemente, as fitas de DNA genómico foram enroladas na ponta de uma pipeta de Pasteur e dissolvidas em um ml de TE.
Em seguida, 0,1 vezes por volume de acetato de sódio 3M (pH 6,5) e 2,5 vezes por volume de etanol foram adicionados à solução de DNA. A solução foi arrefecida a -80°C durante 15 minutos e depois centrifugada a 4°C, a 10000 xg durante cinco minutos (daqui em diante referido como "precipitação com etanol") . O precipitado resultante foi dissolvido em 200 μΐ de TE originando uma fracção de DNA genómico.
Exemplo 3: Preparação de biblioteca de DNA genómico de Penicillium citrinum SANK13380 1) Preparação de fragmento de DNA genómico 0,25 unidades de Sau3Al (Takara Shuzo Co., Ltd., Japão) foram adicionadas a 100 μΐ de uma solução aquosa de DNA genómico (50 μg) de Penicillium citrinum SANK13380 obtido no Exemplo 2. Após intervalos de 10, 30, 60, 90 e 120 segundos, amostras de 20 μΐ da mistura foram colhidas e adicionado EDTA 0,5 M (pH 8,0) a cada uma das amostras para terminar a reacção da enzima de restrição. Os fragmentos de DNA parcialmente digeridos resultantes foram separados por 60 PE1149919 electrof orese em gel de agarose e recuperado o gel de agarose contendo fragmentos de DNA de 30 Kb ou mais. O gel recuperado foi finamente triturado e colocado numa unidade de ultrafiltração, "Ultra Free C3 Centrifuged Filtration Unit" (fabricada pela Japan
Millipore). O gel foi arrefecido a -80°C durante 15 minutos até congelar e depois fundido por incubação a 37°C durante 10 minutos. Centrifugou-se a 5000 xg durante 5 minutos para extrair DNA. O DNA foi sujeito a extracção com fenol- clorofórmio e precipitação com etanol. Os precipitados resultantes foram dissolvidos numa pequena quantidade adequada de TE. 2) Pré-tratamento de DNA vector pSAKcosl pSAKcosl foi digerido com a enzima de restrição BamHI (Takara Shuzo Co., Ltd., Japão) e depois sujeito a tratamento com fosfatase alcalina a 65°C durante 30 minutos. A solução de reacção resultante foi sujeita a extracção com fenol-clorofórmio e precipitação com etanol. O precipitado resultante foi dissolvido numa pequena quantidade de TE. 3) Ligação e encapsidação in vitro O fragmento de DNA genómico (2 pg) descrito no passo 1) acima e pSAKcosl (1 μρ) sujeito a pré-tratamento como acima foram misturados e depois ligados a 16°C durante 16 horas usando um kit de ligação de DNA ("DNA ligation 61 PE1149919
kit" Ver.2, Takara Shuzo Co., Ltd., Japão). A solução de reacção resultante foi sujeita a extracção com fenol-clorofórmio e precipitação com etanol. Os precipitados resultantes foram dissolvidos em 5 μΐ de TE. A solução do produto de ligação foi sujeita a encapsidação in vitro usando o kit GIGAPAK II Gold (produzido pela STRATAGENE Corporation) para obter transformantes de Escherichia coli contendo um vector de DNA recombinante. 3 ml de meio LB foram vertidos numa placa sobre a qual se formaram as colónias dos transformantes de Escherichia coli e depois as colónias na placa foram recuperadas usando um raspador de células (referido como "solução recuperada 1"). A placa foi lavada com mais 3 ml de meio LB e as células recuperadas (referido como "solução recuperada 2") . Adicionou-se glicerol a uma mistura das soluções recuperadas 1 e 2, para se conseguir uma concentração final de 18% (referido como solução de células de Escherichia coli), que foi mantido a -80°C como uma biblioteca de DNA genómico de Penicillium citrinum SANK13380.
Exemplo 4: Amplificação do fragmento do gene PKS por PCR usando DNA genómico de Penicillium citrinum SANK13380 como matriz 1) Projecção e síntese de sequências iniciadoras
para PCR
Baseado na sequência de aminoácidos de um gene PKS de Aspergillus flavus (descrito em Brown, D.W., et al., Proc. Natl. Acad. Sei. USA, 93, 1418 (1996)), foram 62 ΡΕ1149919 projectadas e sintetizadas sequências iniciadoras degeneradas mostradas em SEQ ID NOS: 3 e 4 da Listagem de Sequências. A síntese foi realizada de acordo com o método de fosforamideto. SEQ ID NO: 3 da Listagem de Sequências: gayacngcntgyasttc SEQ ID NO: 4 da Listagem de Sequências: tcnccnknrcwgtgncc
Na sequência de nucleótidos de SEQ ID NOS: 3 e 4, n representa inosina (hipoxantina), y representa t ou c, s representa g ou c, k representa g ou t, r representa g ou a e w representa a ou t.
2) Amplificação do segmento de DNA por PCR 50 μΐ de solução de reacção foram preparados contendo as sequências iniciadoras do PCR descritas no passo 1) acima (100 pmoles de cada), DNA genómico de Penicillium citrínum SANK13380 obtido no Exemplo 2 (500
ng) , ATP 0,2 mM, dCTP 0,2 mM, dGTP 0,2 mM, dTTP 0,2 mM, cloreto de potássio 50 mM, cloreto de magnésio 2 mM e 1,25 unidades de polimerase do DNA Taq (Takara Shuzo Co., Ltd., Japão). A solução foi sujeita a um ciclo de reacção consistindo em três passos consecutivos como se seguem: um minuto a 94°c, dois minutos a 58°C e 3 minutos a 70°C. O ciclo foi repetido 30 vezes para amplificar o fragmento de DNA. Realizou-se PCR usando o termociclador TaKaRa PCR 63 ΡΕ1149919
Thermal Cycler MP TP 3000 (fabricado por Takara Shuzo Co., Ltd., Japão).
Os fragmentos de DNA amplificados foram sujeitos a electroforese em gel de agarose e depois fragmentos de DNA em agarose tendo um tamanho de cerca de 1,0 a 2,0 Kb foram recuperados. O DNA foi recuperado do gel e sujeito a extracção com fenol-clorofórmio e precipitação com etanol. O precipitado resultante foi dissolvido numa pequena quantidade de TE. 3) Ligação e transformação O fragmento de DNA obtido no passo 2) foi ligado ao plasmideo pCR.l usando o sistema de clonagem TA pCR2.1 (fabricado pela Invitrogen Corporation), o plasmideo constituindo parte do kit. O plasmideo foi usado para transformar Escherichia coli JM 109 para se obter transformantes.
Foram seleccionadas várias colónias a partir dos transformantes resultantes e foram cultivadas de acordo com o método de Maniatis, et al., [Maniatis, T., et al., Molecular cloning, a laboratory manual, 2o ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989)]. Nomeadamente, cada uma das colónias foi inoculada num tubo de ensaio de 24 ml contendo 2 ml de meio LB e foi incubada a 37°C durante 18 horas com agitação.
Um vector de DNA recombinante foi preparado a 64 ΡΕ1149919 partir da cultura de acordo com o método de fosfatase alcalina (descrito em Maniatis, T., et al. , supra).
Nomeadamente, 1,5 ml da solução de cultura foram centrifugados à temperatura ambiente a 10000 xg durante dois minutos. As células foram então recuperadas do precipitado. Às células adicionou-se 100 μΐ de uma solução de glucose 50 mM, Tris-ácido clorídrico 25 mM, EDTA 10 mM (pH 8,0), para formar uma suspensão. A isto adicionou-se 200 μΐ de hidróxido de sódio 0,2N - 1% (p/v) SDS. A suspensão foi agitada suavemente para lisar os microrganismos. 150 μΐ de acetato de potássio 3M - 11,5% (p/v) de ácido acético foram então adicionados para desnaturar qualquer proteína, seguido de centrifugação à temperatura ambiente a 10000 xg durante 10 minutos. O sobrenadante foi recuperado. O sobrenadante foi sujeito a extracção com fenol-clorofórmio e precipitação com etanol. O precipitado resultante foi dissolvido em 50 μΐ de TE contendo 40 μρ/ΓηΙ de ribonuclease A (produzido pela Sigma) .
Cada um dos vectores de DNA recombinante foi digerido com enzimas de restrição e sujeito a electroforese. As sequências nucleotidicas dos insertos de DNA nos vectores de DNA recombinante foram determinadas usando um sequenciador de DNA (modelo 377: fabricado pela Perkin Elmer Japão) para todos os insertos tendo padrões de digestão diferentes em electroforese.
Desta forma, foi identificado um transformante tendo um vector de DNA recombinante possuidor de um fragmento PKS derivado de Penicillium citrinum. 65 PE1149919
Exemplo 5: Transferência para membrana e hibridação Southern de DNA genómico de Penicillivm citrinvm SANK13380 1) Electroforese e transferência para membrana 0 DNA genómico (10 pg) de Penicillium citrinum SANK13380, obtido no Exemplo 2, foi digerido com as enzimas de restrição EcoRI, Sall, HindIII ou Saci (todas produzidas pela Takara Shuzo Co., Ltd., Japão) e depois sujeitas a electroforese em gel de agarose. O gel foi preparado usando agarose L03 "TAKARA" (Takara Shuzo Co., Ltd., Japão). Após electroforese, o gel foi embebido em ácido clorídrico 0,25N (fabricado por Wako Pure Chemicals Industries, Ltd.) e incubado à temperatura ambiente durante 10 minutos com agitação suave. O gel foi transferido para hidróxido de sódio 0,4N (produzido por Wako Pure Chemical Industries, Ltd.), e incubado à temperatura ambiente, durante 30 minutos, com agitação suave. Usando o método da transferência alcalina de Maniatis et al. (supra), o DNA no gel foi transferido para uma membrana de nylon Hybond™ -N+ (fabricada pela Amersham) e fixado. A membrana foi lavada com SSC 2X (SSC lx contem NaCl 150 mM, citrato de sódio 15 mM) e depois seco ao ar. 2) Hibridação e detecção de sinal A membrana obtida no passo 1) foi hibridada com o fragmento do gene PKS obtido no Exemplo 4 como sonda. 66 ΡΕ1149919
Para a sonda, 1 μς do fragmento de DNA do gene PKS obtido no Exemplo 4 foi marcado com o kit de marcação "DIG DNA Labeling kit" (fabricado pela Boehringer-Mannheim) e foi fervido durante 10 minutos e depois rapidamente arrefecido antes de usar. A membrana descrita no passo 1) foi embebida em liquido de hibridação (DIG Easy Hybond, fabricado pela Boehringer-Mannheim) e depois sujeito a pré-hibridação com agitação a 20 rpm, a 42°C, durante 2 horas. Em seguida, a sonda marcada atrás referida foi adicionada ao líquido de hibridação e a hibridação foi efectuada com agitação a 20 rpm a 42°C durante 18 horas usando o Multishaker Oven HB (fabricado por TAITEC). A membrana sujeita a hibridação foi então submetida a três lavagens usando SSC 2X, à temperatura ambiente, durante 20 minutos, e duas lavagens usando SSC 0,1X, a 55° durante 30 minutos. A membrana lavada foi tratada com o kit de detecção de luminescência "DIG Luminescent Detection Kit for Nucleic Acids" (fabricado pela Boehringer-Mannheim) e exposta a filme de raios X (Lumifilm, fabricado pela Boehringer-Mannheim). A exposição foi realizada com o processador de películas médicas Fuji FPM 800A (fabricado pela Fuji Film).
Como resultado, confirmou-se que o fragmento do gene PKS obtido no Exemplo 4 existia no genoma de
Penicillium citrinum. 67 PE1149919
Exemplo 6: Rastreio da biblioteca de DNA genómico de Penicillium citrinum SANK13380 usando como sonda o fragmento do gene PKS A clonagem de uma fragmento de DNA genómico contendo um gene PKS foi realizada usando um método de hibridação de colónias. 1) Preparação da membrana A solução de células de Escherichia coli, mantida como uma biblioteca de DNA genómico de Penicillium citrinum SANK13380 (descrita no Exemplo 3), foi diluída e espalhada sobre uma placa de meio LB com agar, de forma a crescerem 5000 a 10000 colónias por placa. A placa foi mantida a 26°C durante 18 horas e arrefecida a 4°C durante uma hora. Hybond™ - N+ (fabricado pela Amersham) foi colocado sobre a placa e posto em contacto com ela durante um minuto. A membrana sobre a qual as colónias aderiram foi cuidadosamente removida da placa. A superfície que tinha estado em contacto com as colónias foi virada para cima e embebida em 200 ml de uma solução de cloreto de sódio 1,5M, hidróxido de sódio 0,5 N durante 7 minutos e depois embebida em 200 ml de uma solução de cloreto de sódio 1,5M, Tris ácido clorídrico 0,5M, EDTA 1 mM (pH 7,5) durante três minutos e depois lavada com 400 ml de SSC 2X. A membrana lavada foi seca ao ar durante 30 minutos. 2) Hibridação 68 PE1149919 0 DNA do inserto do gene PKS obtido no Exemplo 4 (1 μρ) foi usado como sonda. 0 DNA foi marcado usando o kit de marcação "DIG DNA Labeling kit" (fabricado pela Boehringer-Mannheim) e foi fervido durante 10 minutos e depois rapidamente arrefecido antes de usar. A membrana descrita no passo 1) foi embebida em líquido de hibridação (DIG Easy Hybond, fabricado pela Boehringer-Mannheim) e depois sujeita a pré-hibridação com agitação a 20 rpm, a 42°C, durante 2 horas. Em seguida, a sonda marcada atrás referida foi adicionada ao líquido de hibridação e a hibridação foi efectuada com agitação a 20 rpm a 42°C durante 18 horas usando o Multishaker Oven HB (fabricado por TAITEC Corporation). A membrana sujeita a hibridação foi então submetida a três lavagens usando SSC 2X à temperatura ambiente, durante 20 minutos e duas lavagens com SSC 0,1X a 55° durante 30 minutos. A membrana lavada foi tratada com o kit de detecção de luminescência "DIG Luminescent Detection Kit for Nucleic Acids" (fabricado pela Boehringer-Mannheim) e exposto a filme e raios X (Lumifilm, fabricado pela Boehringer-Mannheim). A exposição foi realizada com o processador de películas médicas Fuji FPM 800A (fabricado pela Fuji Film).
Os passos 1) e 2) atrás são referidos como
Rastreio.
As colónias na placa em que foi detectado o sinal 69 PE1149919 positivo no primeiro rastreio foram raspadas e as células recuperadas ressuspensas em meio LB. Em seguida, as células foram diluídas e espalhadas numa placa adequada. Subsequentemente, um segundo rastreio foi efectuado para purificar o clone positivo. 0 clone positivo obtido no presente exemplo, nomeadamente de Escherichia coli transformada, Escherichia coli estirpepML48 SANK71199 foi depositado no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 7 de Julho de 1999, com o número de depósito FERM BP-6 780 de acordo com o Tratado de Budapeste sobre depósito de microrganismos.
Exemplo 7: Análise da sequência inserida de um vector de DNA recombinante pML48 (1) A cultura de Escherichia coli estirpe pML48 SANK7119 obtida no Exemplo 6 e a preparação de um vector de DNA recombinante a partir da cultura foram realizadas de forma semelhante ao descrito no Exemplo 4. 0 vector de DNA obtido foi designado como pML48. 0 inserto do pML48, que é um DNA genómico relacionado com a biossíntese de ML-236B, foi digerido com várias enzimas de restrição e os fragmentos resultantes subclonados em pUC119 (fabricado por Takara Shuzo Co., Ltd. Japão). Usando os subclones resultantes como sondas, a transferência para membrana e hibridação Southern foi realizada por um método semelhante ao descrito no Exemplo 5. Nomeadamente, os 70 PE1149919 produtos obtidos por digestão de pML48 com várias enzimas de restrição foram sujeitos a electroforese e os DNAs foram transferidos para uma membrana e sujeitos a hibridação. Como resultado, foi construído um mapa de locais de restrição da sequência inserida no pML48 usando técnicas conhecidas na área. A sequência nucleotídica da sequência inserida de cada um dos subclones foi determinada usando o sequenciador de DNA modelo 377 (fabricado pela Perkin Elmer Japan Co. Ltd.), seguido da determinação da totalidade da sequência nucleotídica de pML48. A sequência inserida do pML48 consistiu num total de 34203 bases. A sequência nucleotídica da sequência inserida do pML48 está descrita em SEQ ID NOS: 1 e 2 da Listagem de Sequências. A sequência descrita em SEQ ID NOS: 1 e 2 da Listagem de Sequências são totalmente complementares uma da outra. A presença de genes estruturais, na sequência do inserto de pML48, foi analisada usando um programa de pesquisa de genes GRAIL (ApoCom GRAIL Toolkit: produzido pela Apocom) e um programa de pesquisa de homologia BLAST (Gapped-BLAST (BLAST2): instalado no pacote WISCONSIN GCG ver.10.0).
Como resultado, foi prevista a existência de seis 71 ΡΕ1149919 genes estruturais diferentes na sequência inserida de pML48 e foram designados mlcA, mlcB, mlcC, mlcD, mlcE e mlcR, respectivamente. Ainda, foi previsto que mlcA, mlcB, mlcE e mlcR possuem uma região codificadora na sequência nucleotidica de SEQ ID NO: 2 da Listagem de Sequências e mlcC e mlcD possuem uma região codificadora na sequência nucleotidica de SEQ ID NO: 1 da Listagem de Sequências. Foram igualmente previstos a posição relativa e o comprimento de cada um dos genes estruturais deduzidos da sequência inserida.
Os resultados do presente invento estão apresentados na Figura 2. Cada uma das setas indica a localização, direcção e tamanho relativo de cada um dos genes estruturais no inserto de pML48. Uma seta que aponta para a esquerda indica a existência de uma região codificadora de um gene estrutural (mlcA, B, E ou R) em SEQ ID NO: 2. Uma seta que aponta para a direita indica a existência de uma região codificadora de um gene estrutural (mlcC ou D) em SEQ ID NO: 1.
Exemplo 8: Análise da sequência inserida de um vector de DNA recombinante pML48 (2) A análise da expressão dos genes estruturais, cuja existência foi prevista no Exemplo 7, foi realizada por transferência para membrana e hibridação Northern e RACE. Foi realizada a análise das regiões dos extremos 5' e 72 PE1149919 1) Preparação de RNA total de Penicillium citrinum SANK13380
As células de um quadrado de 5 mm na cultura em agar inclinado de Penicillium citrinum SANK13380 (descrita no Exemplo 2) foram inoculadas em 10 ml de meio MGB3-8 num erlenmeyer de 100 ml e incubadas a 26°C durante 3 dias com agitação. A preparação de RNA total a partir da cultura foi realizada com o kit "Rneasy Plant Mini Kit" (fabricado pela Qiagen AG) que usa o método de isotiocianato de guanidina. Nomeadamente, a cultura foi centrifugada à temperatura ambiente a 5000 xg durante 10 minutos para recuperar as células. Subsequentemente, 2 g (peso molhado) das células foram congeladas em azoto liquido e depois trituradas num almofariz para formar um pó. As células trituradas foram suspensas em 4 ml de tampão de lise (incluso no kit) . 450 μΐ da suspensão foram vertidos sobre 10 colunas de centrifugação QIAshredder contidas no kit e depois centrifugados à temperatura ambiente, a 1000 xg, durante 10 minutos. Cada um dos eluatos resultantes foi recuperado e adicionou-se 225 μΐ de etanol, sendo em seguida aplicado numa coluna "RNA mini spin" também inclusa no kit. A coluna foi lavada com tampão de lavagem contido no kit, seguido de eluição do material adsorvido em cada coluna com 50 μΐ de água destilada sem ribonucleases. O eluato foi usado como fracção de RNA total. 2) Transferência para membrana e hibridação
Northern 73 ΡΕ1149919
Uma amostra de RNA foi produzida adicionando 2,25 μΐ de uma solução aquosa contendo 20 μ9 de RNA total de Penicillium citrinum SANK13380 a um μΐ de MOPS 10X (composição: ácido 3-morfolinopropanossulfónico 200 mM, acetato de sódio 50 mM, EDTA.2Na 10 mM; pH 7,0; usado após esterilização a 121°C durante 20 minutos num autoclave; fabricado pela Dojinkagaku Laboratory Co. Ltd.), 1,75 μΐ de formaldeido, seguido de mistura. A amostra de RNA foi mantida a 65°C durante 10 minutos, depois rapidamente arrefecida em água com gelo e sujeita a electroforese em gel de agarose. O gel para a electroforese foi preparado misturando 10 ml de MOPS 10X e um grama de Agarose L03 "TAKARA" (fabricado por Takara Shuzo Co., Ltd. Japão) com 72 ml de água tratada com éster dietilico do ácido pirocarbónico (produzido pela Sigma Corporation), aquecido para dissolver a agarose e depois arrefecido, seguido da adição de 18 ml de formaldeido. Como tampão de amostra usou-se MOPS IX (preparado diluindo MOPS 10X com 10 volumes de água) . O RNA no gel foi transferido para Hybond™-N+ (produzido pela Amersham Corporation) em SSC 10X.
Os fragmentos de DNA a, b, c, d e e, obtidos por digestão da sequência do inserto de pML48 com as enzimas de restrição 1 e 2 apresentadas na Tabela 1 que se segue, foram usados como sondas. A localização de cada sonda no inserto de pML48 está apresentada no painel superior da Figura 3.
Tabela 1 74 ΡΕ1149919
Sonda para hibridação de transferências Northern
Sonda Enzima de restrição 1 N° do nucleótido do local da enzima de restrição* Enzima de restrição 2 N° do nucleótido do local da enzima de restrição* a EcoRI 6319 a 6324 EcoRI 15799 a 15804 b BamHI 16793 a 16798 PstI 18164 a 18169 c Kpnl 26025 a 26030 BamHI 27413 a 27418 d Sall 28691 a 28696 Sall 29551 a 29556 e HindIII 33050 a 33055 Saci 34039 a 34044 * Cada n° de nucleótido existe em SEQ ID NO: 1 da Listagem de Sequências A marcação das sondas, hibridação e detecção do sinal foram realizadas de acordo com a transferência para membranas e hibridação Southern descrita no Exemplo 5.
Os resultados do Exemplo estão apresentados no painel inferior da Figura 3.
Cada um dos sinais mostra a existência de um produto de transcrição homólogo da sequência nucleotidica de cada sonda.
Os resultados sugerem que os genes estruturais deduzidos na sequência do inserto de pML48 no presente exemplo, nomeadamente mlcA, mlcB, mlcC, mlcD, mlcE e mlcR, foram transcritos em Penicillium citrinum SANK13380. A posição de cada sinal não mostra o tamanho 75 ΡΕ1149919 relativo do produto de transcrição.
3) Determinação do extremo 5' da sequência de acordo com 5'RACE 0 cDNA contendo a região do extremo 5' de cada gene estrutural foi obtido usando o sistema 5'RACE para amplificação rápida de extremos de cDNA ("5' RACE System for Rapid Amplification of cDNA ends", Versão 2.0) (fabricado pela GIBCO).
Foram produzidos dois tipos de DNAs oligonucleotidicos complementares da cadeia codificadora. A projecção baseou-se na sequência nucleotidica deduzida para a região codificadora e perto do extremo 5' de cada gene estrutural no inserto de pML48, conforme previsto pelos resultados do Exemplo 7 e no ponto 2) do presente exemplo. A sequência nucleotidica do DNA oligonucleotidico complementar da cadeia codificadora (1) desenhado com base na sequência nucleotidica do extremo 3' de cada gene estrutural está apresentada na Tabela 2. A sequência nucleotidica do DNA oligonucleotidico complementar da cadeia codificadora (2), projectado com base na sequência nucleotidica do extremo 5' de cada gene estrutural está apresentada na Tabela 3. 76 ΡΕ1149919
Tabela 2: DNA oligonucleotídico (1) usado para determinação da sequência do extremo 5' de acordo com 5'RACE
Gene SEQ id NO: Da Listagem de Sequências Sequência nucleotidica mlcA SEQ ID NO:5 gcatgttcaatttgctctc mlcB SEQ ID NO:6 ctggatcagacttttctgc mlcC SEQ ID NO:7 gtcgcagtagcatgggcc mlcD SEQ ID NO:8 gtcagagtgatgctcttctc mlcE SEQ ID NO:9 gttgagaggattgtgagggc mlcR SEQ ID NO:10 ttgcttgtgttggattgtc
Tabela 3: DNA oligonucleotidico (2) usado para determinação da sequência do extremo 5' de acordo com 5'RACE
Gene SEQ ID NO: Da Listagem de Sequências Sequência nucleotidica mlcA SEQ ID NO:11 catggtactctcgcccgttc mlcB SEQ ID NO:12 ctccccagtacgtaagctc mlcC SEQ ID NO:13 ccataatgagtgtgactgttc mlcD SEQ ID NO:14 gaacatctgcatccccgtc mlcE SEQ ID NO:15 ggaaggcaaagaaagtgtac mlcR SEQ ID NO:16 agattcattgctgttggcatc A primeira cadeia de cDNA foi sintetizada de acordo com uma reacção de transcrição reversa usando o DNA oligonucleotidico (1) como sonda, e RNA total de Penicillium citrinum SANK13380 como matriz. Nomeadamente, 24 μΐ da mistura de reacção compreendendo um pg de RNA total, 2,5 pmoles de DNA oligonucleotidico (1) e um μΐ de 77 ΡΕ1149919 transcriptase reversa SUPER SCRIPT™II (incluída no kit) foram incubados a 16°C durante uma hora e o produto de reacção foi adicionado a uma cassete de centrifugação GLASSMAX contida no kit, para purificar a primeira cadeia de cDNA.
Uma cadeia poli C foi adicionada ao extremo 3' da primeira cadeia de cDNA usando transferase terminal de desoxirribonucleotidilo inclusa no kit. 50 μΐ da mistura de reacção compreendendo a primeira cadeia de cDNA à qual foi adicionada a cadeia poli C do extremo 3', foram misturados com 40 pmoles de DNA oligonucleotídico (2) e 40 pmoles de "Abriged Anchor Primer" (contido no kit), seguido de incubação a 94°C durante dois minutos. O ciclo de incubação de 30 segundos a 94°C, 30 segundos a 55°C e dois minutos a 72°C, foi então repetido 35 vezes, seguido de incubação a 72°C durante 5 minutos e 4°C durante 18 horas. O produto resultante foi sujeito a electroforese em gel de agarose e o DNA foi recuperado do gel. O produto foi purificado por extracção com fenol-clorofórmio e precipitação com etanol e clonado de forma semelhante ao método descrito no Exemplo 4 usando pCR2.1. A operação descrita atrás é 5'-RACE. A sequência nucleotídica do fragmento de cDNA contendo o extremo 5' foi determinada e a posição do ponto de iniciação da transcrição e o codão de iniciação da 78 ΡΕ1149919 tradução foram previstos. A Tabela 4 mostra a "SEQ ID NO:" em que a sequência nucleotidica do fragmento de cDNA do extremo 5' correspondendo a cada gene estrutural obtido por 5'RACE está descrita. A Tabela 5 mostra a "SEQ ID NO:" em que existem o ponto de iniciação da transcrição e o ponto de iniciação da tradução de cada gene estrutural e a posição do ponto de iniciação da transcrição e ponto de iniciação da tradução.
Tabela 4: "SEQ ID NOS:" em que está apresentada a sequência nucleotidica do extremo 5' do fragmento de cDNA
Gene SEQ ID NO: da Listagem de Sequências mlcA SEQ ID NO: 17 mlcB SEQ ID NO: 18 mlcC SEQ ID NO: 19 mlcD SEQ ID NO: 20 mlcE SEQ ID NO: 21 mlcR SEQ ID NO: 22 79 PE1149919
Tabela 5: Posição do ponto de iniciação da transcrição e do ponto de iniciação da tradução de cade gene
Gene N°. SEQ ID NO: em que existe o codão de iniciação da tradução Número do nucleótido em SEQ ID NO:1 ou SEQ ID NO:2 Ponto de iniciação da transcrição Codão de iniciação da tradução mlcA SEQ ID NO:2 22913 23045 a 23047 mlcB SEQ ID NO:2 11689 11748 a 11750 mlcC SEQ ID NO:1 111631 11796 a 11798 mlcD SEQ ID NO:1 24066 24321 a 24323 mlcE SEQ ID NO:2 3399 3545 a 3547 mlcR SEQ ID NO:2 365 400 a 402 * As sequências nucleotidicas mostradas em SEQ ID NO: 1 e 2 da Listagem de Sequências são totalmente complementares uma da outra.
4) Determinação da sequência do extremo 3' de acordo com 3'RACE cDNA contendo a região do extremo 3' de cada gene estrutural foi obtido usando o kit "Ready To Go: T-Primed First-Strand kit" (fabricado pela Pharmacia).
Foi produzido um tipo de DNA oligonucleotidico codificador (3) presumido como estando na região 80 PE1149919 codificadora e perto do extremo 3' em cada gene estrutural na sequência do inserto de pML48, previsto dos resultados do Exemplo 7 e do item 2) do presente exemplo. A sequência nucleotidica do DNA oligonucleotídico (3) produzido para cada gene estrutural está apresentada na Tabela 6.
Tabela 6: DNA oligonucleotídico (3) usado para determinação da sequência do extremo 3' de acordo com 3'-RACE
Gene SEQ ID NO: Da Listagem de Sequências Sequência nucleotidica mlcA SEQ ID NO:23 atcataccatcttcaacaac mlcB SEQ ID NO:24 gctagaataggttacaagcc mlcC SEQ ID NO:25 acattgccaggcacccagac mlcD SEQ ID NO:26 caacgccaagctgccaatc mlcE SEQ ID NO:2 7 gtcttttcctactatctacc mlcR SEQ ID NO:28 ctttcccagctgctactatc A primeira cadeia de cDNA foi sintetizada através de reacção de transcrição reversa usando a sequência iniciadora NotI-d(T)18 (contida no kit) e RNA total de Penicillium citrinum SANK13380 (um pg) como matriz. 100 μΐ da mistura de reacção compreendendo a primeira cadeia de cDNA, 40 pmoles de DNA oligonucleotídico (3) e a sequência iniciadora Noti-d(T)18 (inclusa no kit) foram mantidos a 94°C durante dois minutos. Um ciclo de incubação de 30 segundos a 94°C, 30 segundos a 55°C e dois 81 ΡΕ1149919 minutos a 72°C foi repetido 35 vezes, seguido de incubação a 72°C durante cinco minutos e a 4°C durante 18 horas. 0 produto resultante foi sujeito a electroforese em gel de agarose e o DNA foi então recuperado do gel. 0 produto foi purificado por extracção com fenol-clorofórmio e precipitação com etanol e clonado de forma semelhante ao método descrito no Exemplo 4 usando pCR2.1. A operação descrita atrás é 3'-RACE. A sequência nucleotidica do cDNA no extremo 3' foi determinada e a posição do codão de iniciação da tradução foi prevista. A Tabela 7 mostra a "SEQ ID NO:" da Listagem de Sequências em que é descrita a sequência nucleotidica do extremo 3' do fragmento de cDNA correspondendo a cada gene estrutural obtido por 3'-RACE. A Tabela 8 mostra o codão de terminação da tradução e a posição do codão baseada em SEQ ID NOS: 1 e 2 da Listagem de Sequências. 82 PE1149919
Tabela 7: SEQ ID NOS: em que está apresentada a sequência nucleotídica do extremo 3' do fragmento de cDNA
Gene SEQ ID NO: da Listagem de Sequências mlcA SEQ ID NO: 29 mlcB SEQ ID NO: 30 mlcC SEQ ID NO: 31 mlcD SEQ ID NO: 32 mlcE SEQ ID NO: 33 mlcR SEQ ID NO: 34
Tabela 8: Codão de terminação da tradução e posição do codão de terminação de cada gene estrutural
Gene Codão de terminação da tradução SEQ ID NO: em que existe o codão de terminação da tradução N° de nucleótido do codão de terminação da tradução em SEQ ID NO: 1 ou SEQ ID NO: 2 mlcA tag SEQ ID NO:2 32723 a 32725 mlcB taa SEQ ID NO:2 19840 a 19842 mlcC taa SEQ ID NO:1 13840 a 13481 mlcD tga SEQ ID NO:1 27890 a 27892 mlcE tga SEQ ID NO:2 5730 a 5732 mlcR tag SEQ ID NO:2 1915 a 1971 * As sequências nucleotidicas mostradas em SEQ ID NO: 1 e 2 da Listagem de Sequências são totalmente complementares uma da outra. 83 ΡΕ1149919 A Tabela 9 mostra o resíduo de aminoácido exterminai do polipeptídeo previsto como sendo codificado por cada gene estrutural, a sequência nucleotídica do trinucleótido codificador do resíduo de aminoácido e a posição do trinucleótido.
Tabela 9: Resíduo de aminoácido C-terminal do polipeptídeo codificado por cada gene estrutural
Gene Resíduo de aminoácido C-terminal Sequência nucleotídia do trinucleótido codificador do aminoácido SEQ ID em que existe o trinucleótido N° de Nucleótido do trinucleótido em SEQ ID 1 ou 2 mlcA Alanina gee SEQ ID NO:2 32720 a 32722 mlcB Serina agt SEQ ID NO:2 19837 a 19839 mlcC Cisteína tgc SEQ ID NO:1 13476 a 13478 mlcD Arginina ege SEQ ID NO:1 27887 a 27889 mlcE Alanina gct SEQ ID NO:2 5727 a 5729 mlcR alanina gct SEQ ID NO:2 1912 a 1914 * As sequências nucleotídicas mostradas em SEQ ID NO: 1 e 2 da Listagem de Sequências são totalmente complementares uma da outra. A Tabela 10 resume a sequência complementar do codão de terminação da tradução mostrado na Tabela 8, a SEQ ID em que a sequência complementar existe e a posição da sequência complementar. 84 ΡΕ1149919
Tabela 10: Sequência complementar do codão de iniciação da tradução de cada gene estrutural
Gene Sequência complementar do codão de terminação da tradução SEQ ID NO: em que existe a sequência complementar No. do Nucleótido da sequência complementar em SEQ ID NO:1 OU SEQ ID NO:2 mlcA Cta SEQ ID NO:1 1479 a 1481 mlcB Tta SEQ ID NO:1 14362 a 14364 mlcC Tta SEQ ID NO:2 20723 a 20725 mlcD Tca SEQ ID NO:2 6312 a 6314 mlcE Tca SEQ ID NO:1 28472 a 28474 mlcR cta SEQ ID NO:1 32287 a 32289 * As sequências nucleotidicas mostradas em SEQ ID NO: 1 e 2 da Listagem de Sequências são totalmente complementares uma da outra.
Como descrito atrás, a posição de cada gene estrutural, a sua direcção e a sua posição foram determinadas. Baseado na informação dada, pode ser obtido o produto de transcrição e o produto de tradução de cada gene estrutural.
Exemplo 9: Obtenção de cDNA correspondendo ao gene estrutural mlcE 1) Preparação de RNA total RNA total de Penicillium citrinum foi preparado 85 ΡΕ1149919 de acordo com o método do Exemplo 8. 2) Projecção da sequência iniciadora
Para obter um cDNA de tamanho completo correspondendo ao gene estrutural mlcE determinado no Exemplo 8, foram projectadas e sintetizadas as seguintes sequências iniciadoras:
Sequência iniciadora codificadora 5'- gttaacatgtcagaacctctaccccc-3' (Ver SEQ id 35 da Listagem de
Sequências) e
Sequência iniciadora complementar da sequência codificadora 5'-aatatttcaagcatcagtctcaggcac-3' (Ver SEQ ID 36 da
Listagem de Sequências).
As sequências iniciadoras são derivadas, respectivamente, da sequência na região a montante do extremo 5' do gene estrutural mlcE e da sequência da região a jusante do extremo 3'. A síntese foi realizada de acordo com o método de fosforamideto. 3) RT -PCR Para obter um cDNA de codificador do produto do gene mlcE "Takara RNA LA PCR kit" (AMV) Ver. 1.1. tamanho completo foi usado o kit
Especificamente, 20 μΐ de uma mistura de reacção 86 ΡΕ1149919 compreendendo um μρ de RNA total, 2,5 pmoles de sequência iniciadora 9meros ao acaso (incluído no kit) foi incubado a 42°C, durante 30 minutos, para produzir a primeira cadeia de cDNA. A enzima de transcrição reversa foi então desactivada por aquecimento a 99°C durante cinco minutos. 100 μΐ de uma segunda mistura de reacção compreendendo a quantidade total da mistura de reacção da primeira cadeia de cDNA (atrás), 40 pmoles de sequência iniciadora codificadora e 40 pmoles de sequência iniciadora complementar da sequência codificadora foram incubados a 94°C durante dois minutos. Um ciclo de incubação de 30 segundos a 94°C, 30 segundos a 60°C e dois minutos a 72°C foi repetido 30 vezes, seguido de incubação a 72°C durante cinco minutos e a 4°C durante 18 horas. O produto resultante foi sujeito a electroforese em gel de agarose e o DNA recuperado do gel. O produto foi purificado por extracção com fenol-clorofórmio e precipitação com etanol e usado para transformar células competentes de Escherichia coli estirpe JM109 (fabricado por Takara Shuzo Co., Japão) de forma semelhante ao método descrito no Exemplo 4 usando pCR2.1. Um transformante portador de um plasmídeo tendo o fragmento de DNA foi seleccionado a partir de Escherichia coli transformada e o plasmídeo do transformante foi designado pCRexpE. A sequência nucleotídica do DNA inserido no vector de DNA recombinante resultante pCRexpE foi determinada. O DNA inserido continha cDNA de tamanho completo correspondendo ao gene estrutural mlcE. A sua 87 ΡΕ1149919 sequência nucleotídica e uma sequência de aminoácidos do peptídeo deduzida da sequência nucleotídica estão apresentados em SEQ ID NO: 37 e/ou SEQ ID NO: 38 da Listagem de Sequências. A sequência conhecida mais próxima para mlcE (polipeptideo) foi a ORFIO no grupo de genes relacionado com a biossíntese de lovastatina, com 70% de identidade.
Exemplo 10: Construção do vector de expressão pSAK700 O vector de expressão de cDNA pSAK700 foi construído usando os vectores pSAK333 e pSAK360 descrito no Exemplo 1. pSAK333 foi digerido com as enzimas de restrição BamHI e Hindlll (fabricadas por Takara Shuzo Co., Ltd, Japão) e depois sujeito a electroforese em gel de agarose. Um fragmento de 4,1 Kb foi recuperado do gel e os extremos do fragmento de DNA foram tornados cerses com polimerase do DNA de T4 (produzida por Takara Shuzo Co., Ltd., Japão).
Um adaptador EcoRI-NotI-BamHI (produzido por Takara Shuzo Co., Ltd., Japão) foi ligado ao fragmento de DNA atrás referido usando o kit de ligação de DNA (fabricado por Takara Shuzo Co., Ltd., Japão). Células competentes de Escherichia coli estirpe JM109 (produzidas por Takara Shuzo Co., Ltd., Japão) foram transformadas com o DNA ligado. Um transformante portador do plasmídeo tendo 88 ΡΕ1149919 o adaptador foi seleccionado a partir da Escherichia coli transformada e o plasmídeo do transformante foi designado pSAK410. pSAK360 foi digerido com as enzimas de restrição PvuII e SspI e sujeito a electroforese. Um fragmento de DNA (cerca de 2,9 Kb) contendo o promotor e o terminador do gene da 3-fosfoglicerato cinase (daqui em diante referido como "pgk") e HPT derivado de Escherichia coli foi recuperado do gel. 0 fragmento de DNA recuperado atrás referido foi ligado ao local PvuII de pSAK410 usando o kit de ligação de DNA ("DNA ligation kit" Ver.2, fabricado por Takara Shuzo Co., Ltd. Japão). Células competentes de Escherichia coli estirpe JM109 foram transformadas com o DNA ligado. Um transformante portador do plasmideo tendo o fragmento de DNA foi seleccionado a partir de Escherichia coli transformada e o plasmídeo do transformante foi designado pSAK700. A construção de pSAK700 está apresentada na
Figura 4. pSAK700 tem um local de restrição para cada uma das enzimas BamHI e NotI. pSAK700 também tem um gene de resistência à ampicilina (daqui em diante referido como "Amp") e o gene de resistência à higromicina http como marcas de de selecção. Nos exemplos que se seguem, quando Escherichia coli é usada como hospedeiro, a selecção das 89 ΡΕ1149919 células transformadas por pSAK700 ou por pSAK700 compreendendo um inserto de DNA estranho, foi realizada pela adição de 40 pg/ml de ampiclina ao meio em questão. Quando Penicillium citrinum SANK13380 foi usado como hospedeiro, a selecção das células transformadas por pSAK700 ou por pSAK700 compreendendo um inserto de DNA estranho, foi realizada através da adição de 200 pg/ml de higromicina ao meio em questão.
Exemplo 11: Construção do vector de expressão de cDNA pSAKexpE O vector de DNA recombinante pCRexpE obtido no Exemplo 9 reagiu a 37°C durante 2 horas na presença das enzimas de restrição Hpal e SspI (produzidas por Takara Shuzo Co., Ltd., Japão) e o produto de reacção foi sujeito a electroforese em gel de agarose. Uma banda contendo um cDNA de tamanho completo de mlcE com cerca de 1,7 Kb foi recuperada do gel.
Após reacção de pSAK700 com a enzima de restrição Notl (produzida por Takara Shuzo Co., Ltd. Japão) a 37°C durante uma hora, os extremos do vector foram tornados cerses com polimerase do DNA de T4 (Takara Shuzo Co., Ltd., Japão) a 37°C durante 5 minutos. Em seguida, o vector foi sujeito a extracção com fenol-clorofórmio e precipitação com etanol. O DNA precipitado foi dissolvido numa pequena quantidade de TE. A fosfatase alcalina foi adicionada e a mistura incubada a 65°C, durante 30 minutos. pSAK700, preparado como descrito atrás, foi ligado ao fragmento de 90 PE1149919 DNA de 1,7 Kb obtido no passo 1) usando o kit de ligação de DNA8"DNA ligation kit" Ver.2, fabricado por Takara Shuzo Co., Ltd. Japão). Células competentes de Escherichia coli estirpe JM109 foram transformadas com o DNA ligado. Foi obtido um transformante de Escherichia coli transformado pelo vector de expressão de cDNA.
Escherichia coli transformada, desiganda Escherichia coli pSAKexpE SANK 72499, obtida no presente exemplo foi depositada no Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology, em 25 de Janeiro, 2000 com o depósito N° FERM BP-7005, de acordo com o Tratado de Budapeste sobre Depósito de Microrganismos.
Exemplo 12: Obtenção de cDNA correspondendo ao gene estrutural mlcR 1) Preparação de RNA total RNA total de Penicillium citrinum foi preparado de acordo com o método do Exemplo 8. 2) Projecção de sequências iniciadoras
Para obter um cDNA de tamanho completo correspondendo ao gene estrutural mlcR determinado no Exemplo 8, foram projectadas e sintetizadas as seguintes sequências iniciadoras: 91 ΡΕ1149919
Sequência iniciadora codificadora: 5'- ggatccatgtccctgccgcatgcaacgattc-3': (Ver SEQ ID 39 da Listagem de Sequências); e
Sequência iniciadora complementar da cadeia codificadora: 5'-ggatccctaagcaatattgtgtttcttcgc-3': (Ver SEQ ID 40 da Listagem de Sequências).
As sequências iniciadoras foram projectadas a partir da sequência da região a montante do extremo 5' do gene estrutural mlcR e a partir da sequência da região a jusante do extremo 3'. A síntese foi realizada de acordo com o método de fosforamideto.
3) RT-PCR
Para obter um CDNA de tamanho completo codificador do produto do gene mlcR, foi usado o kit "Takara RNA LA PCR kit" (AMV) Ver. 1.1.
Especificamente, 20 μΐ de uma mistura de reacção compreendendo um μρ de RNA total, 2,5 pmoles de sequência iniciadora 9meros ao acaso (incluída no kit) foram incubados a 42°C durante 30 minutos para produzir a primeira cadeia de cDNA. A enzima de transcrição reversa foi então desactivada por aquecimento a 99°C durante cinco minutos. 100 μΐ de uma segunda mistura de reacção compreendendo a quantidade total da mistura de reacção da primeira cadeia de cDNA (atrás), 40 pmoles de sequência 92 ΡΕ1149919 iniciadora codificadora e 40 pmoles de sequência iniciadora complementar da sequência codificadora foram incubados a 94°C durante dois minutos. Um ciclo de incubação de 30 segundos a 94°C, 30 segundos a 60°C e dois minutos a 72°C foi repetido 30 vezes, seguido de incubação a 72°C durante cinco minutos e a 4°C durante 18 horas. O produto resultante foi sujeito a electroforese em gel de agarose e o DNA recuperado do gel. O produto foi purifiado por extracção com fenol-clorofórmio e precipitação com etanol e usado para transformar células competentes de Escherichia coli estirpe JM109 (produzidas por Takara Shuzo Co., Japão) de forma semelhante ao método descrito no Exemplo 4 usando pCR2.1. Um transformante portador de um plasmideo tendo o fragmento de DNA foi seleccionado a partir de Escherichia coli transformada e o plasmideo do transformante foi designado pCRexpR. A sequência nucleotidica do DNA inserido no vector de DNA recombinante resultante pCRexpR foi determinada. O DNA inserido continha cDNA de tamanho completo correspondendo ao gene estrutural mlcR. A sua sequência nucleotidica e uma sequência de aminoácidos do peptideo deduzida da sequência nucleotidica estão apresentadas em SEQ ID NO: 41 e/ou SEQ ID NO: 42 da Listagem de Sequências. A sequência conhecida mais próxima para mlcR (polipeptídeo) foi lovE no grupo de genes relacionado com a biossintese de lovastatina, com 34% de identidade. 93 PE1149919
Exemplo 13: Construção do vector de expressão de cDNA pSAKexpR 0 vector de DNA recombinante pCRexpE obtido no Exemplo 12 reagiu a 37°C, durante 2 horas, na presença da enzima de restrição BamHI (produzida por Takara Shuzo Co., Ltd., Japão) e o produto de reacção foi sujeito a electroforese em gel de agarose. Uma banda contendo um cDNA de tamanho completo de mlcR com cerca de 1,4 Kb foi recuperada do gel.
Após reacção de pSAK700 com a enzima de restrição BamHI (produzido por Takara Shuzo Co., Ltd. Japão) a 37°C durante uma hora, adicionou-se fosfatase alcalina (Takara Shuzo Co., Ltd., Japão) e a reacção decorreu a 65°C durante 30 minutos. pSAK700, digerido com BamHI como descrito atrás, foi ligado ao fragmento de DNA de 1,4 Kb obtido no passo 1) usando um kit de ligação de DNA ("DNA ligation kit Ver.2, fabricado por Takara Shuzo Co., Ltd. Japão). Células competentes de Escherichia coli estirpe JM109 foram transformadas com o DNA ligado. Foi obtido um transformante de Escherichia coli transformado pelo vector de expressão de cDNA.
Escherichia coli transformada, designada Escherichia coli pSAKexpE SANK 72599, obtida no presente exemplo foi depositada no "Research Institute of Life Science and Technology of the Agency of Industrial Science and Technology", em 25 de Janeiro de 2000, com o depósito N° FERM BP-7006, de acordo com o Tratado de Budapeste sobre 94 ΡΕ1149919
Depósito de Microrganismos.
Exemplo 14: Transformação de microrganismos produtores de ML-236B 1) Preparação de protoplastos
Esporos de uma cultura em agar inclinado de Penicillium citrinum estirpe SANK 13380 foram inoculados em meio de agar PGA, depois foram incubados a 26°C durante 14 dias. Os esporos de Penicillium citrinum estirpe SANK 13380 foram então recuperados da cultura e 1 x 108 dos esporos foram inoculados em 80 ml de meio de cultura YPL-20, incubados a 26 °C durante um dia. Após confirmação da germinação dos esporos através da observação ao microscópio, os esporos germinados foram centrifugados à temperatura ambiente a 5000 xg durante dez minutos e recuperados como um precipitado.
Os esporos foram lavados com água esterilizada três vezes e usados para formar protoplastos. Nomeadamente, 200 mg de zimoliase 20T (produzida por Seikagaku Kogyo) e 100 mg de quitinase (produzida por Sigma) foram dissolvidas em 10 ml de solução de cloreto de magnésio 0,55 M, e centrifugadas à temperatura ambiente, a 5000 xg, durante 10 minutos. O sobrenadante resultante foi usado como uma solução enzimática. 20 ml da solução enzimática e 0,5 g (peso molhado) de esporos germinados foram colocados num erlenmeyer de 100 ml e incubados, com agitação suave, a 30°C durante 60 minutos. Após confirmação de que os esporos 95 PE1149919 germinados se tornaram protoplastos usando um microscópio, a solução de reacção foi filtrada através de um filtro de vidro 3G-2 (fabricado pela HARIO) . 0 filtrado foi centrifugado à temperatura ambiente, a 1000 xg, durante 10 minutos e depois os protoplastos foram recuperados como um precipitado. 2) Transformação
Os protoplastos obtidos no passo 1) foram lavados duas vezes com 30 ml de cloreto de magnésio 0,55M e uma vez com 30 ml de uma solução consistindo em cloreto de magnésio 0,55M, cloreto de cálcio 50 mM e 3-morfolinoproprano-sulfonato 10 mM (pH 6,3 ou menos, daqui em diante referido como uma solução MCM). Os protoplastos foram então suspensos em 100 μΐ de uma solução de 4% (p/v) de polietilenoglicol 8000, 3-morfolinopropano-sulfonato 10 mM, 0,0025% (p/v) de heparina (produzida pela Sigma), cloreto de magnésio 50 mM (pH 6,3 ou menos, daqui em diante referido como "solução de transformação"). 96 μΐ de solução de transformação contendo cerca de 5 x 107 protoplastos e 10 μΐ de TE contendo 120 pg de pSAKexpE ou pSAKexpR, foram misturados e deixados em gelo durante 30 minutos. Adicionou-se 1,2 ml de uma solução de 20% (p/v) de polietilenoglicol, cloreto de magnésio 50 mM, ácido 3-morfolinopropranossulfónico 10 mM (pH 6,3). O liquido foi então suavemente pipetado e depois deixado à temperatura ambiente durante 20 minutos. Em seguida adicionou-se 10 ml de solução de MCM, seguido de mistura 96 ΡΕ1149919 suave, e centrifugação à temperatura ambiente a 1000 xg durante 10 minutos. Os protoplastos transformados foram recuperados do precipitado. 3) Regeneração da parede celular dos protoplastos transformados
Os protoplastos transformados obtidos no passo 2) foram suspensos em 5 ml de meio de agar VGS liquido da camada média e semeados em 10 ml de meio de agar VGS solidificado da camada inferior da placa. A placa foi incubada a 26°C durante um dia, após o que foi coberta com 10 ml de meio de agar VGS liquido da camada superior contendo 5 mg de higromicina B por placa (concentração final de higromicina de 200 pg/ml) . Após incubação a 26°C durante 14 dias, ambas as estirpes (i.e. as estirpes derivadas dos protoplastos transformados com pSAKexpE ou pSAKexpR) foram subcultivados em meio de agar PGA contendo 200 pg/ml de higromicina B, e subcultivado em agar inclinado preparado com meio de agar PGA, incubado a 26°C durante 14 dias.
As culturas em agar inclinado foram mantidas a 4°C.
Teste do Exemplo 1: Comparação da capacidade de biossíntese de ML-236B em estirpes transformadas e originais
As estirpes transformadas obtidas no Exemplo 14 e 97 ΡΕ1149919
Penicillium citrinum SANK 13380 foram cultivadas e medida a quantidade de ML-236B em cada cultura.
Um inoculo, consistindo num quadrado de 5 mm de esporos, foi crescido a partir das culturas de agar inclinado em que as estirpes transformadas foram cultivadas, como descrito no Exemplo 14 e a partir do agar inclinado descrito no Exemplo 2, relativo a Penicillium citrinum SANK 13380. As células foram inoculadas em 10 ml de meio MBG3-8 num erlenmeyer de 100 ml, depois incubadas a 24°C durante dois dias com agitação, seguido da adição de 3,5 ml de solução de glicerina a 50% (p/v) . Em seguida, a cultura foi continuada a 24°C durante 10 dias com agitação. A 10 ml da cultura adicionou-se 50 ml de hidróxido de sódio 0,2N, seguido de incubação a 26 °C durante uma hora com agitação. A cultura foi centrifugada à temperatura ambiente a 3000 xg durante dois minutos. Um ml do sobrenadante foi recuperado, misturado com 9 ml de metanol a 75% e submetido a HPLC. SSC-ODS-262 (tendo um diâmetro de 6 mm, 100 mmm de comprimento, fabricado por Senshu Kagaku Co., Ltd.) foi usado como coluna de HPLC e 75% (v/v) metabol - 0,1% (v/v) trietilamina - 0,1% (v/v) de ácido acético foi usado como fase móvel. A eluição foi realizada à temperatura ambiente a um fluxo de 2 ml/minuto. Nestas condições, ML-236B foi eluído 4 minutos após adição à coluna. A detecção foi realizada com um detector de UV a um comprimento de onda de absorção de 236 nm. 98 ΡΕ1149919 A capacidade de biossíntese de ML-236B foi aumentada em três estirpes entre as oito estirpes transformadas com pSAKexpE. A capacidade de biosintese de ML-236B destas estirpes foi 10% superior em média comparativamente com a estirpe original. A capacidade de biossíntese ML-236B destas três estirpes foi igualmente mantida estavelmente após subcultura, como seja tratamento de monosporos ou similares. Estes resultados indicam que o inserto de pSAKexpE é um cDNA acelerador da biossíntese de ML-236B. A capacidade de biossíntese de ML-236B foi aumentada em cinco estirpes entre as estirpes transformadas com pSAKexpR. A capacidade de biosintese de ML-236B destas estirpes foi 15% superior em média comparativamente com a estirpe original. A capacidade de biossíntese ML-236B destas cinco estirpes foi igualmente mantida estavelmente após subcultura, como seja tratamento de monosporos ou similares. Estes resultados indicam que o inserto de pSAKexpR é um cDNA acelerador da biossíntese de ML-236B.
Assim, o cDNA acelerador da biossíntese de ML-236B obtido a partir de microrganismos produtores de ML-236B de acordo com o presente invento, acelera a biossíntese de ML-236B em microrganismos produtores de ML-236B quando introduzido no microrganismo produtor de ML-236B.
Exemplo 15: Determinação da sequência de cDNAs correspondendo aos genes estruturais mlc A-D. 99 ΡΕ1149919
Determinou-se a sequência do cDNA correspondente ao gene estrutural mlcA. A primeira cadeia de cDNA foi sintetizada com o kit "TAKARA LA PCR kit verl.l" (Takara Shuzo Co., Ltd.). Foram realizados vários PCRs para amplificação da região completa ou parcial do cDNA usando a primeira cadeia de cDNA como matriz e vários pares distintos de oligonucleótidos como sequências iniciadoras. 0 ciclo de 30 segundos a 94°C, 30 segundos a 60°C e cinco minutos a 72°C foi repetido 30 vezes usando o kit "Big Dye Primer/Terminator Cycle Sequencing kit" e o sequenciador ABI Prism 377 (PE Applied Biosystems). O produto de cada reacção foi inserido individualmente no plasmideo pCR2.1.
Obtiveram-se transformantes de Escherichia coli para cada plasmideo recombinante.
As sequências nucleotidicas de cada inserto dos plasmideos recombinantes derivados dos referidos transformantes foram determinadas.
As sequências de exões e intrões foram determinadas com base numa comparação da sequência nucleotidica de vários produtos de RT-PCR referidos atrás com a do gene estrutural mlcA. 100 ΡΕ1149919
Em seguida, a sequência do cDNA correspondendo ao gene estrutural mlcA foi determinada (SEQ ID NO: 43). A correspondente sequência de aminoácidos do polipeptideo codificado pelo referido cDNA foi deduzida (SEQ ID NO: 44) e uma função do polipeptideo foi assumida com base na pesquisa de homologia usando a sequência de aminoácidos. A sequência conhecida mais próxima para mlcA (polipeptideo) foi LNKS (ΙονB) no grupo de genes relacionado com a biossintese de lovastatina, com 60% de identidade.
De forma semelhante, determinou-se a sequência de cDNA correspondendo ao gene estrutural mlcB (SEQ ID NO: 45). A sequência de aminoácido correspondente ao polipeptideo codificado pelo referido cDNA foi deduzida (SEQ ID NO: 46) e uma função do polipeptideo foi assumida com base numa pesquisa de homologia usando a sequência de aminoácidos. A sequência conhecida mais próxima para mlcB (polipeptideo) foi LDKS (lovF) no grupo de genes relacionado com a biossintese de lovastatina, com 61% de identidade.
De forma semelhante, determinou-se a sequência de cDNA correspondendo ao gene estrutural mlcC (SEQ ID NO: 47). A sequência de aminoácido correspondente ao polipeptideo codificado pelo referido cDNA foi deduzida (SEQ ID NO: 48) e uma função do polipeptideo foi assumida 101 PE1149919 com base numa pesquisa de homologia usando a sequência de aminoácidos.
A sequência conhecida mais próxima para mlcC (polipeptideo) foi lovA no grupo de genes relacionado com a biossintese de lovastatina, com 72% de identidade.
Ainda, determinou-se a sequência de cDNA correspondendo ao gene estrutural mlcD (SEQ ID NO: 49). A sequência de aminoácido correspondente ao polipeptideo codificado pelo referido cDNA foi deduzida (SEQ ID NO: 50) e uma função do polipeptideo foi assumida com base numa pesquisa de homologia usando a sequência de aminoácidos.
A sequência conhecida mais próxima para mlcD (polipeptideo) foi a ORF8 no grupo de genes relacionado com a biossintese de lovastatina, com 63% de identidade.
As posições dos exões de cada um dos genes estruturais em SEQ ID NO: 1 ou SEQ ID NO: 2 foram determinadas, como se segue:
Tabela 11: Posições dos exões de mlcA-D em insertos de pML48 SEQ ID onde existe SEQ ID Número do exão Número de nucleótido de SEQ ID NO: 1 ou SEQ ID NO: 2 mlcA 2 1 22913 a 22945 2 23003 a 23846 102 ΡΕ1149919 3 23634 a 23846 4 23918 a 24143 5 24221 a 24562 6 24627 a 27420 7 27479 a 27699 8 27761 a 30041 9 30112 a 30454 10 30514 a 30916 11 30972 a 32910 mlcB 2 1 11689 a 12002 2 12106 a 12192 3 12247 a 12304 4 12359 a 12692 5 12761 a 13271 6 13330 a 13918 7 13995 a 20052 MlcC 1 1 11631 a 12140 2 12207 a 12378 3 12442 a 13606 mlcD 1 1 24066 a 24185 2 24270 a 27463 3 27514 a 28130 A posição do local de terminação da transcrição para cada gene estrutural em SEQ ID NO:l ou SEQ ID NO:2 foi determinada como se segue:
Tabela 12: Posição dos locais de terminação da transcrição dos genes estruturais mlcA-E e R nos insertos de pML48 103 PE1149919
Gene SEQ ID NO: onde existe o local de terminação da transcrição Número de nucleótido do local de terminação da transcrição em SEQ ID NO:1 ou SEQ ID NO:2 mlcA SEQ ID NO: 2 32910 mlcB SEQ ID NO: 2 20052 mlcC SEQ ID NO: 1 13606 mlcD SEQ ID NO: 1 28130 mlcE SEQ ID NO: 2 5814 mlcR SEQ ID NO: 2 1918
Exemplo 16: Estudos de destruição de genes
Os genes estruturais mlc A, B ou D de P. citrinum foram interrompidos através de mutagénese dirigida usando recombinação homóloga. O plasmideo recombinante para obtenção do mutante tendo o gene estrutural mlcA de P. citrinum destruído foi construído usando o plasmideo pSAK333.
Um fragmento interno Kpnl de 4,1 Kb do locus mlcA no inserto de pML48 foi recuperado, purificado, dotado de extremos cerses com o "DNA blunting Kit" (Takara Shuzo Co., Ltd.) e foi ligado a pSAK333 digerido com Pvull. O plasmideo resultante foi designado pdismlcA. P. citrinum SANK13380 foi transformado com pdismlcA. 104 ΡΕ1149919 A transferência para membranas e a hibridação Southern de DNA genómico do transformante pdismlcA foram realizadas para confirmar a disrupção do gene estrutural mlcA. O mutante resultante com mlcA destruído não produziu ML-236B ou o seu precursor. O plasmídeo recombinante para obtenção do mutante tendo o gene estrutural mlcB de P. citrinum destruído foi construído usando o plasmídeo pSAK333.
Um fragmento PstI-BamHI de 1,4 Kb do locus mlcB no inserto de pML48 foi recuperado, purificado, dotado de extremos cerses com o "DNA blunting Kit" (Takara Shuzo Co., Ltd.) e foi ligado a pSAK333 digerido com PvuII. O plasmídeo resultante foi designado pdismlcB. P. citrinum SANK13380 foi transformado com pdismlcB. A transferência para membranas e a hibridação
Southern de DNA genómico do transformante pdismlcB foram realizadas para confirmar a disrupção do gene estrutural mlcB. O mutante resultante com mlcB destruído não produziu ML-236B, mas sim ML-236A, o precursor de ML-236B. O plasmídeo recombinante para obtenção do mutante tendo o gene estrutural mlcD de P. citrinum destruído foi 105 ΡΕ1149919 construído usando o plasmídeo pSAK333.
Um fragmento Kpnl-BamHI de 1,4 Kb do locus mlcD no inserto de pML48 foi recuperado, purificado, dotado de extremos cerses com o "DNA blunting Kit" (Takara Shuzo Co., Ltd.) e foi ligado a pSAK333 digerido com PvuII. O plasmídeo resultante foi designado pdismlcD. P. citrinum SANK13380 foi transformado com pdismlcD. A transferência para membranas e a hibridação Southern de DNA genómico do transformante pdismlcD foram realizadas para confirmar a disrupção do gene estrutural mlcD. A quantidade de ML-236B produzida pelo mutante resultante com mlcD destruído foi cerca de 30% da produzida pelo hospedeiro controlo não transformado.
Exemplo 17: Análise funcional de mlcR nos transformantes pSAKexpR
Dois dos transformantes com pSAKexpR que foram obtidos no Exemplo 12, designados TRl e TR2 respectivamente e células hospedeiras não transformadas, Penicillium citrinum SANK13380, foram inoculados em meio MBG3-8 e incubado individualmente como descrito no Exemplo 8. RNA total foi extraído a partir de cada uma das 106 PE1149919 culturas descritas no Exemplo 8.
Realizou-se RT-PCR usando RNA total como matriz e e como sequências iniciadoras um par de oligonucleótidos projectados com base na sequência nucleotidica dos genes estruturais mlc A, B, C, D, E ou R.
Tabela 13: Sequências nucleotidicas de pares de sequências iniciadoras para RT-PCR.
Alvo de RT-PCR Sequência iniciadora 1 SEQ ID NO: Sequência iniciadora 2 SEQ ID NO: ml cA 5 ' - gcaagctctgctaccagcac-3 ' 51 5'- ctaggccaacttcagagccg- 3' 52 mlcB 5 ' - agtcatgcaggatctgggtc-3' 53 5'- gcagacacatcggtgaagtc- 3' 54 mlcC 5'aaaccgcacctgtctattcc-3 ' 55 5'- ctttgtggttggatgcatac- 3' 56 mlcD 5 ' - cgctctatcatttcgaggac-3' 57 5'- tcaatagacggcatggagac- 3' 58 mlcE 5 ' - atgtcagaacctctaccccc-3 ' 59 5'- tcaagcatcagtctcaggca- 3' 60 mlcR 5 ' - atgtccctgccgcatgcaac-3 ' 61 5'- ctaagcaatattgtgtttct- 3' 62 107 ΡΕ1149919
Os resultados da análise RT-PCR estão apresentados na Figura 5 para Penicillium citrinum 13380 não transformado e para os dois transformantes designados TRl e TR2.
Os genes estruturais mlc A, B, C, D e R foram expressos no primeiro, segundo e terceiro dia de cultura dos transformantes pSAKexpR.
Pelo contrário, todos estes genes estruturais foram expressos apenas no terceiro dia de cultura nas células hospedeiras não transformadas. Não houve diferença na expressão do gene estrutural mlcE entre transformantes pSAKexpR e células hospedeiras não transformadas.
Os resultados sugerem que uma proteína codificada pelo cDNA correspondendo a um gene estrutural mlcR induza transcrições de alguns dos outros genes estruturais (por exemplo, mlc A, B, C, D) situados no grupo de genes relacionados com a biossíntese de ML-236B.
Exemplo 18: Análise funcional de mlcE nos transformantes pSAKexpE
Um transformante pSAKexpE designado TEl que foi obtido no Exemplo 12, e células hospedeiras não transformadas, Penicillium citrinum SANK13380, foram 108 ΡΕ1149919 inoculados em meio MBG3-8 e incubados individualmente como descrito no Exemplo 8. RNA total foi extraído de cada uma das culturas descritas no Exemplo 8. RT-PCR foi realizado usando o referido RNA total como matriz e como sequências iniciadoras um par de oligonucleótidos projectados com base na sequência nucleotídica dos genes estruturais mlc A, B, C, D, E ou R. As sequências iniciadoras usadas no presente exemplo foram idênticas às da tabela do Exemplo anterior.
Os resultados de RT-PCR estão apresentados na Figura 6 para Penicillium citrinum não transformado e para um transformante designado TEl. O gene estrutural mlc E foi expresso no primeiro, segundo e terceiro dia de cultura nos transformantes pSAKexpE.
Pelo contrário, o gene estrutural mlc E foi expresso apenas no terceiro dia de cultura das células hospedeiras não transformadas.
Por outro lado, não houve diferença na expressão dos genes estruturais mlc A, B, C, D e R entre o transformante pSAKexpE e células hospedeiras não transformadas (dados não apresentados).
Os resultados sugerem que uma proteína codificada 109 ΡΕ1149919 E acelera a dos genes pelo cDNA correspondente ao gene estrutural mlc biossíntese de ML-236B independentemente estruturais mlc A, B, C, D e R. <110> Sankyo Company Limited <120> Genes derivados de um agrupamento de genes <130> EPP83481 <150> JP 2000-116591 <151> 2000-04-18 <150> JP 2000-117458 <151> 2000-04-19 <160> 62 <170> Patentln versão 3.0
<210> 1 <211> 34203 <212> DNA <213> Penicillium citrinum <400> 1 110 PE1149919 gatcaatact acftcfttgt tatctccttg tcaeftaacga cfca&caaatt ceccagâasa &o gacgaagtca cagetcacac caeaagagaa «atgagtcea gcgaggatea cagattfcctc ISO gçcaggeaaa ecgagaaaag ctctcttatgr catccacfgt gcegggtgct cagcageeac 19o attccgcftc eagatetcta aaetgegregt ggcfttgaaa aacgagtttg aattegtatã 240 tgegâcegeg ecgtttagcfc ccãgeecegg acecggcgcg cttccCgtct fcccáãggcat 10© ggfteeacac tacaeefcggfc cccaaaagca teatgacçcc gtcaeaaaeâ cgaeaaceee 36© eacggfcgggc gatagagtag cggctgtgat cgggcefcgtg caaaagaecg tceaagsttg 420 gtet&fcaaet aaeceacaggf escecafctgfc eggestagtg geettetdtg «ggg*gcatt 480 ggfccgeeact tfcgcfcgctcc atcaacagc# aatgggaaaa efcgecatggfc tfcecgaaaat 540 gageactgcfc ffctttgactt gecgttcçca tagçgatgaa gecagagafet aeacgsgafc 600 çgaggcgo&a gacgaçgaegf açsagetaat satçsaçgt.g çcgaesaçtgc acoçtçaçgg ç$© tcgfccaagat fctfcgctcfc.ee aagggtcgag acagatggtt ga&aç&cafct acct.gcct.ea 720 gaãfegcãgafc gtaetcgagt ttcsgggása geataafctfct eecaacagae cgágtgatgfc 7ÃO ccaggagacc gtcaagcgct tecsseagct atateaaaag f&eaáfatgt caggttcat.t 840 tgtctaggfcg agaçaacagg gtatatagca aggetefcggc tetc&tgcct agtccatacc 300 aeãfcfcttfcac tga.â.caaafct tgaâtagfctc taatcttaea eggtfctgaat. geceacetce SCO eáãgggtgat ttagtfcafcag fcggfcegegac eafceteataa afcatfctcgtg aaeetatttt 1020 ggatagatea tgfaaggcte fttctgaasa ggcatgaeag acatctaaaa ccaetegace 1080 aecacaaeaa ggeactsaae eagtMetafc ggaaetactt gcaatggegt çgaattKsfcâ 11*0 çaçaggatgg at tgaaatca ac.tcca.agcc ttggaggttt caccttcctc acagagt.çt.t lio o tcgaaacgeg ctaccgaggt atatttatea cegttacggt actctgaacc gegctafceta 1200 aettgatftt ãefsttgctg ca&taaagsâ gageaaegaa ggtagamgca attctgaeaa 1220 âgrataeaaga cgaattcgct atttgtagat gaatatgcgt gtgtcaattg acgccgaatt 1180 45 111 ΡΕ1149919 3480 caggatágst fctgc-estcfcg ctçMttgCC «afctOCti&tt ccatctttat catgaacaac 1440 astcaaacça eaeatefcgae. tfccseggcgc tgaacgafc«t aggccãactfc. cagagccggg 1500 fctcatcgaga acafcagtgag gattgaagaa «agfcgstcta CMUtggcetg «gcgfcgcBea 1S60 gggeeataea gegftgotctg aagettgaca *gaats.g*gtg ggfceefctggt «gggfeesttcc 163:0 càcàtetcfa gaaegatgtç afcsukggagtg cgctceeggfr aagcgagaac *etegfc«saftt ISíSO fctggcafctgc caatfcgagcc acfcctccget tgaecetget tftaatcaaa gec*f<xtgg 1740 àacaaggggg cgtgtftetg agoçtfcggíffc tcctcgcetg aggtagggag atfcceggeçfc 1800 agaoagtoga ggefcgacgce sç«çgfea«c egegegtgrtt gcatggeefec acgcacacfcg 1160 tecttggtgg cfcacaaggfcg ctcfcogaat gtctfcgctgc cgaegaacte afcca&ãgcgc 1020 aggggftâgea cgçtagcgas aaagcccafcc gecgaaattt otteeatggt ggateggttg iàsó gtfcteggeg* ggeegafcggt tatgtcfcttg ctgccggtaa gacgegccaa caaaacgtgg 2040 fcaggçggce* ggtagaactg catgggggtt gcettgtfBt sgeggcfcccg ctetttgatt 2100 cggeeffega ecatgggatc ta&aegagea atfcgefctcat açfcgeBgec# cgtgastggc 2XS0 tgtatttget getgctctg* afctggeagc* gggfccatfcga tcagatteat: gatgggaage 2330 aeggttggcg cagatgacga gacfcfctgcta. fegçaEggaçt tçcegaacgc gatatçgtee 2280 eceattegee cafctttccag gtttfceesge tgctggaogg etagatcaga gaatfegggtç 2340 gafcggtcgct gcatttteac ccegctgEàs atctgccega tefcã&tfcgast ç&ggLfctfcet 2408 g&tgt€gage câteaecâàc taatctg&gg tagtscgatta ecaeeaggtg gteafcetgfcg 2460 ccecagtaga a*tca*«gag tetf&gagcg teacetgtgg agatgctàea gfettgtcttc 2520 tcgagtttcc ggtactctte etetgcctcc geagcgttgt tcaccfcfaacs aaagtgeaet 2580 efcgccccecg ggttctçgsg aaccactcgg aegggaccat tfcaaatcgct gctatagtea 264ô tcgecagtaa osaageaegt aeggaagatx fccgtgaoggc gcaafcgaggc fcttcagagcc 2?8C cgcctcaacc ggfccgaggrcc aatggtacce tteatgaaca tgccaatagt gttgttgaag 2260 at^tacgafe etfcttaccafc ttgttgctge etccaggaat aetcctggco «agggtcaae 2020 etewgegae gaagaatcfcfc ãeggoctcce tgeteattat egfccefcettg etctteatee 2W$ tetteggçBg aegaçgcate tgtgctggta gcagagcttg çefceafceaotj gctgtctgtt 2940 ggtgfc®ggag aagccecgct gteegaggts; cccgtggaat caccaatttg caacagcage 3000 ggaafcfg&fcg tagctgggagr tegggtggcc gcgtcgtegg caagatcagc gaeãgaãgeã 3060 ôíigçGãagtã eeetcaágsg fcgggaggtca aggtagagfct gctfctgagaa ecatg&geçg 3120 acagfccsctg eaeçeaagga gfeegacacct fcgatcaatge gaggaatggt tgggtccaeg 3160 eteteeeegt eegaaaettíg gagggtaaca eggagttfcet eagatagacc atctgcaact 3240 ttgttagttfc gaactegats t.çaggaaacg catgagagafc aaettaecaá. tcacgattçg 3300 Gcgaact-tgg f ctaaagttg ttgcttgttt gagccggceg gcãatggage sfc£t.agaeec 336® tgatcc&ttf tcfccaccgt ctccgegttg aecsfggaatt ttgaagfcttç cgaaacgsgg 3420 gtçgfctg&sg tasatasecç gatcçtgaag egeagggBea agat.etgggá taecogtggt 112 fo*a«a«tg§' »®gí«a»ac#t a&eegtteat goaganogog ta9tgft«c& sgtsxttcag ffeg feaaetSísak tt§f<M(aeak oeefcaassjaa. g*tftf»0«fc çaafccaae&t $t*§£eptfca ««mggsat §0000^0889 M-çatcèagc çatgeagoag tep^egeot fegctcofctffc âeefcEfgfet eatg&eatee tgçagsaçc* atcgsçaogo fctgeeaaggc agfcasEfcgfa fcáafft&44©g aeattgacag «acggtgtatg «a&gfeagagg ffceeeggtcta gscagagafô fegascaagg castpçaea. fagtgetsga ggattggaat agetgtagÊE çggataag&t ο$£«»θ£&«£ ggeeaaasff fctfgttatee ©ggcageagt mtgsttgte ggeaggcfcft «fctocAfsejjf çç&aggagçe ggsiitagr.trt sgscg^êffs ftsfpfcttf gccgacteea gssêtgcifct aMtg&tgc» tcagsgccaá aggacfeg&ge £gsap*ftf peâsss&f» âfgsáctáfcc atfoatgfcag tfctctcggt» satgooftafc aggeaeefcoa caogEatJtét ©éag&áfcaot gçoeasgega atfcgcctggg gasagagogta aego§e§t«t tctããcgaat caesKgtefcç tgcteeeçtc; goctofctfce* ftgsMtggc ftgfasfasgo gaegagttca tssggtegto osaggeaega cecsfcgcaee agtaooette aagsE§at<íâ k^getetcet cgaa$e$@&a; gttstecaça p-atcsacst cgaafaeigSf ttyzmatsmti· Attccgaçgg tgetffíí^tg ΡΕ1149919 fc««goc8.tgft ggttpsfcsee· ggpaop&g gt«4g*e*«f ocogsçtegg «ga**a§©§t gfcps»®efee* t§etctfce«* <ft$a§t«*&3 çatfOá«<sg$ «oogõstsoo agfôeetcefce ostíítegfse etçftfssaá #eeotừòç gtààOOggcs oeaai&tegs: tgffctgofcOO Wg«gg«p gsgttagtas etof&opog afcfeafc#»o& «Meofgggt agaaaatae» foeasfceste tggcgcaec$ ttfc*ggsce agragcçfcsrfea f§ffc*ggc*fcfc cgeagcgcw» tufcgfcfcgg&st. ggccaggatt fççsst&seç tfetgccífp ctgtKefgaf fecaacaceat gtccaéeate aâffCGcgaa «gogatgccg esfeategac tgaateétxa aggatgfcggt agea&gpgE. tçsccacc*» ftgçs teeas gfegagisaç** «afcggqgggc teeccggtaa gocoaaeosg caaataefte fc*mg«tgsf aaaakaagtst aoeagagtcg «tgfggc&ae teetofcfga cacefceattt fcoctfcocsgt cgatgacggt gfoeagattQ safçgttggt çafcfcgtgftt gacsg&fafO tfaeo&ffea âfsgââfite&f KgtfgctgRa ataactetçt cagtftegte gas&gscga© ψΜ&*&**>Μ tattsttfegs *fce««e&*ea fcgaekaaet:* fcgtasgtgga gtas&tg&og cáactgg§tg gtsgca&ctt eo§§t«gg«* faG&affc©aa sg&açgcca*;. agsgfc«ggtO fcçOfttggsc&fc gt&atcggafc eagagtfcgtfc feeaaatgaa cccgaaeaee gacgeagaag ptgfggget eottsoooag SCt*Sf*9*g* *ttgtttcgg eaagssggse oOefesfcKO© gaeatgteOat egggeagost afâsee«tfee toekeageea gggef&etao geecsgeaeg «mgfsagfc *tccg&g»tg geg&ao&ogo açagttgcE-t tfcccagcatg gfttgactcâ agatogfcaça tcgatgagga egtèttfgfàc gaatfcaaâgt taeegaaaâfc ectageaoca fcoofcgoofcea saogagsgae ggtôteatga ffceeoogt-fea ttgaofceeaa âãgttge-feea acgaagaatt t-sgtgtet&g egfetssmag Eeafggtt.et j^agcfetfat 3S4& 3δ«δ 3720 3780 3$a& 3300 3380 um um 4540 4200 4260 4320 4380 4440 4500 4S80 4620 4680 4740 4800 4860 4020 49SS 5S40 S200 0180 mm S2#0 8340 MOO ssso S580 PE1149919 113 gtggggstga tcaatceagg ísagagacttg acígectcas ttccgagagg atgacasaag cagccgcttg acggagtgga gogttoggtt tttgtegatt tggaefcagaa agtggAtcat gaçagacggg atcwieteat aaet: ctcfetg «gggfcatgct ttcgtcCtci ccagtccate cte$c$atggi gfeg.ace«aga gtgagçcaat ctttcetega atcgtággãg tgafgcttga a*ac$gc*çg agaccgtcga egagafegfeca gtgcaagtgt cgtggcgatg cefcgtaceca acttacattt esgatecgac Cáátttfgct ^accagateç tatagtaetc ggtgaacasc gaacasttga sattaattct agttgcttca sgtaaaaggt tacstttcac açãtttgetc cactgatggt ggceageeeg fegggaatgga ggecggcafet átgÊagaagt aasegattcg aao^tcgcag ggtcctccag aagattcggt ggteggtcga acttggaaaa gegttgtett çecttgtcgt gtgtgetgat gatataesga gegratggaat cgtsggcgae gatctcctgg aggggcgetg ggtggagcaa gccaaggtg« çgctagcttt ttgetgtagt eataccçaag tteatctggg ggtaetestçe ccaagggcta tgãcgatttg cattefcetgt càgecasatc aetxgfceste tEcaaggfctg tcgâCEtagg ctgcaaggcc tgtgtctatg eggtagggfca c§eeâceg«ç aaceactaat acasaegete ãaefgtggEa ectefccgate aagtgtcega cscattggte a*efgaecree gatcagcgaa aagcccagag aagtaaccaa gtgseeacscc «gfetssssst fgcãtggssg atccttgcte tgetgggctt afctcggaaag ttgtteaegg aaetgstgaa sacaagttejs agectaaaâá gcgaacgacá ttarcgatçt cAaggatate tgaacgaagt gtafcEgetga eaascgaggt, teatg&tatc Etgcct.acce tttggatcag toacatcaaa gaatfâaaaa aatgtgaaca gaagcgtecc ageatcggcc tgaaeeEggt ttgacggtcg tegggggfeta «tcgatggfcc agsátgfceet eagtltttcrg §$$$£§ά§§§ sgcagtcggg ggagagaaag ggtcgaatcg taeaecgtga tgcgteaaac gcaagcfccgg eagagtcacÊ ctgEcaacgt agaggaatac gctccaatga gaggggetca ttgcgeaatr ggagtcggcc ettetcatgg gaggtcaagt teecgaraga eteaiftggc ggca»s*gC£ gcctttggef gatgtsgaaa atgegtecgg eg:tagaagag eaaaaeaett cateatesag gggtcgtcgs gaacactttc gcEtfcé&tgt egotesaaac gfcgfgtatg agtectfcc** teoacagcst gtftastgaa ctatcgafflge eagagaaeec gaggeaeftca aaacasgsgt âtgaaggega ggçgagcagg ggcttgagca aggaccctat açatcfgatg caateateag CEgttgatgt ctãgtgçcfcç gcetsgecaa taaeatsege ggtgaEgs&a gaacgegstt gáfceãgeaas etgeçtagOt Ãatfgattgg tagegafcgsg gecaaaggeg agectgttgg caaaggetíc ecgtlcccgc gçgcaastgt: gggcgggacg JMSS«g9»M» fçfettgggtg ccecceaass ctcctggfcáe aacaecattc aatgtacttç tctgggetag gaafgatttg cssttgtcccg agctatgaec ftccces§se eesi£fcfct;f<?g gcttaaagac aôtgtEãECa tgtcgccgst caggsaaté* ttceaccag» attaceegcc gâgtaggoaç gtacaatgag cagtetggaa cgcgatgtrç catccEtaag tggaaggaaa tçtgeáâáeg acggaagEct agaaaEcgat gttgscattg gegatgaegg tgacgçcEcg gctçisetctc ctttgccaga s«4a 5705 576« 5820 5380 5MS €ÓS0 6Õ6Ó' 6120 6.180 £240 6300 6363 6420 6480 6540 «600 6660 6720 «760 £840 6300 £960 7020 7080 7140 7200 7260 7320 7380 7440 7&W 7560 7620 7680 PE1149919 114 ca@g«»tcaa taáeaaattfc tcfgefcgtca egrttcagctç atgeteatgt cesagpatttc atggcagcfct ceatggccat sgGgeatgae cgtegagsea gfccgstgetf tgetgtaa§a agatgcfcgfc ffgtggagcg gtgggcaafcg aetttg.&cag eeçe.eggegt. egatactceg aaagegtets c&tegfceâae geaagageai ccEcgafcggt tqgatggeg» cgrcejatta® aagaeiefgsf afa*gííf«.tt tgettgetgg tetegtggae gea&eagcs.ç sgtcge&cte cgatgegaat ggtaggcfett aagac8.ccEE eaaeftgct# gaattget.ag Gggcgacgea gegtcatcgt scf&çat&eç geatgetecg eggseacsae 0f.gaat.cct9 cegeaaagge aaetcgatâí: eãecteeaçe ggctgggaga agctggcgas taeagt.gtee .aeftaggeeg cogagaatgc eteccaeaaa tf tf eacçt S. g @cçagt.aa« aagteggtga cgacctcacc ttgtfcgfcgtg ctfcaatege tafcfegafcst cacgeaEgtc agcgttgect tfiaEggagef tctgcatetg afftcaccte tcfctegsata* tagçatggge aacttcactt tcgttctcaa tetgegaffg: tgcecgfgcg gtgegtatag aaeggagcga gaceftgact tggecatceg caefgafsfcg ttttcatctt eaggragctga asttgggegg aattatftac ccagfi&gaag ttccagatcc «MJjgggcgtgA agâaagettt scaafsafáã agactctgee cá.gtaet§ae gttttgaacgt gcaegatsgg aactccgsaa egctcccaaa gtttegtgee aafcacccgg gsctagaeac fga.ceet.tga acfatgagtf at§mgci'fc gfcctfet.cgaa taagcgfgaa ggsaHsgaac caageascac eagcaatace ttgacatatf gtcaactctc aagattctgg gatageatec atgtcgccgg gaceegaccc tcaaaggeEt fcgçcgçtagc atagcgçctg tceacgeaga tgcgeaatac aeaggcaiate teacctgaas gaga&gtcgg accagaacg» tctgacgttt gaggcatcsc atactfcttca ggcagt.gttfc tggcat-eccc aceatgagcrt. g8.caceta.gt acgcgaggg£ gfccegofatf gçagceteeâ aegaeggaag ggaaagatag eacgtcãtea tgegtttcea ctfcgacttc fatfaaa.gea tgttascaefe gctgtcggei, atttgtaeea eeaaatectg gasgtgeagt tgaatçcçta caa.caategg çcatvetgtg eacfgggaet. gatcttctca eatcst tf te .aetggfcfaet eaaaeaçgat, ggctttgttg cacgctcaet agccaccttc ggaacacagt ctggesstgt. tgààgttt.gt ccactggasg gatgfgfcge aectcrcaefâ fagtâtgat.ç eeaègâftat gceggacttg fctgtacfaa® tgtaccceag acccccagca tataefgcag efcceaeacqjr g.age.agggtg fgegççaatt tctgcacage etgcfagaac tçae&tcetg tacagteatt tafccgtt.acc tfcggecatcg gagctgcfca tgggtgcatg caaaagtgga fctcátcctcc agaaggtcac «cfcafcecfgt egagetsgca t&ftteettt tetggecgct tggagaágag ggatagettg agtggeáctg tgtggcGgaç aattgcaetg tttgtacggc gcagcataga cttcaa-gcàt gagçt.ggtc« gcagtgáãtt ateeagctet tcttcagcat gecc^gccac tgteattcgc gtcggtgsff gtgeegegcg gfetaettee aasgttfcefec aagtaagfta caaattggag eatattctct caaggggeaa gstgsatgca f9tftggagg agccatàtac atgtgtttat. atctttaget çcaaatgaat taacgctgac gçetecgttg «aafettttas aaeageaggt tfcggegggat nm 732® «040 815 a uso 822.0 12 65 BMS 8400 S4«0 SS2© 9810 8S40 8700 8710 8820 8880 9940 8000 90SO 9120 5260 9240 8300 8310 8420 94S0 9540 9S00 9S8Ô 9720 9780 ΡΕ1149919 115 cãcgçcrattt. egtacagcaa cg£gtg«es3 âgsaetgtet gtogattgtt eeafcçefctgt gfceaccggct ggtgtaccag àaçttocatâ aggetgâ.tac cagcfttcct gggggttggt gctfcçttgtg Cgctatgsffct ccsggtotste ggafcsaaaea ite&ggeçaa tag*ge&aiiç gctfcttfcttg eaaggftstfcg çagcatcçca eattegagiat caaaggtcat ggggcceaet «egttetàag etfttgfaeg «gafccgteot ctgc*g*afcc eaatgagtgg ««eteaceet gecâcaetg* eagc&aaecc scgatsgfcefc catagfteafcg aggcettgga fcçegfcaggeç ettfcfctgfcg ggteaotcgt «aaccgcgta gatcctcctg gtgc&atçgg ffctgffcaaaa aeatcecggg grctctttgag áãQçgãcaae cgetteoçaeftetge&gatc ccgtttttgs tcttçtcact gcatgccggg gagcgaacaa gccggccttg çtcatctag» ttcrggecãat gcaatgcaag ctcggcscct tcc&cxatae ggcgttãfctç ggetgfcatea aggtgaaacc ctgctcctas aggaaâcaac ttfctttcttt ttcaaggt.tg agfcgeEgfcta fctegattatea ceactggtgt gçataggfccc tcgaatcgta çeaafcgggfca aegatgecitt- sattaageee tgatgctget gacaaaâagc gtecgaagaa ggecgtfcgça ttcctgggac cttegtgtca ttccagggaa fcfieeacttac aatateaâfa ccagccttgg tggcattstg átacctgtcg ctegatactg tecccgtíjgc a.çet tcctaa âa&$cag&£# atgçattgtc aactfcaetcc Ctaccattgg gggacagcst atcagsttçg eaceggctge geeag&tgca tggeagetaa ag-tcaggaat efegfceagçaç:cggcccacge cagtcgaa.ga çgtggcagag tatgtaggaã cg·: caceais cegaegtaca tgpegfctggafc açagçfcfcEafc tfcçggeetet ceagefctgga cagcaagtat geaaagggtg tgfcategacg teaaafcetefc cagctcccaa agttetgscg taccaea&t ggetçgtt&g gcgataggat tggçattaaa cacaacat.tt gttcfcfcãcag caacogatae ©gtegfeçata fctcaagátcc ãttcfcagtac agcaaaecct eecfgcgtca ggteacacga ggetgaatga gagtttttca ctcggattgt egaactgcec catceaggta aetggaagag tgetetcgge aaçsgtcgça gçgctçtcat tstetgfcsts acgeaatgct tcgaçccctc aagccettgt gcaataccag easEgçattc ttstctxtet egcegtcget atagectcag çÈfcççtgtgg gggãgagaga gaeçttetgc catgggettç ãaagaaçfcgg catatgvggc ccgaatgagg fctcggecafcç ttggfctgata gcagtgccfcg gct.csgcgtt, ciaggaggtca gtgeeatctt tctggcatat ccatcggeag gtccaatttg ctctecatta aaccgecafcg gtactcécge ggatgaacta eaggctgtgt fctgaegsagt. cgggetcsfct agtatgatac acggttggag taefcafcccaa ttcaegogtc csgcagtaga ggatcettga sgacçgtçte ç&gE&gcatfç tgttgaagaa agaggcatca cgttçgtgçg eseggggtga eetfcagggat cttggfcetgt. gtgtgttgae aecacctgga gatagttggç ftftgãtseats ccfcfcgtcttg egteagfcaga aátegcãgág t.Egaátcfcct tstaectgca egtateagta e.£áaàtg£ee eeáéttooc* ttcggtg&se gaatagscat atcaaacgtg aatateââtt. tcttgtgetf ctcggtgaag aae^fcefats mggggsRM eacaaaatcc eagaageatt tcEtçgctet ttçttçtttft cggccasfftt ettetgaeegr ggcggtcgca gtgefctctta 9S40 9W& 1W2Q 100SC 10140 10200 10200 10320 Ϊ038Θ 10440 10500 10500 10020 10680 10240 10800 10850 10920 10080 1:1040 1110 Θ 1116 & 11:226 11286 11346 iuoa 11466 11 $20 11586 11046 11100 11760 11820 11080 PE1149919 116 gfcctcafccgc cftâcggtfctg aatggtggga gttfa*yface ggatctfaagc ttggfctGtegr attgeaceat ecteceateg fcgfcâGaasrtí fcttggcggat tctetáãgfât fccfegãtfáat tea.aggaasl etgceaggat ceeaãgcccc eaagtaeaca tgtteggtaa aagçgagggc gacataecgc gaatátãcts ttgtcscaeg aacagtesca ggçfcggafcat igea&agãôc tatggcccafc getaetgega gtgaceaagt gcgccgcgea aaaaggcegc atgtgtageg ggc.M:gaafa eascgccgae a ç tc çgçcgf ca tçtacgce ggca.eecsgs egtfcaittçag gçtggacgcc tgcctctetg àgegãatcaa ggçggtçgag ts.tccaa.tgg ectcttcatt acB,4c£xt.gS tgtgtgggaá S®9f*gg*t«e sgaeaãgfeç fetteggçtg g&aeeeacgc ttetcefcegc tcatataetg· aataetaceg tcaegctttft ggcgcaagga. ggàeát.cccg a-açaaataig çafccogtçcc gctgtáEtag tegagtaggt tttgtaatcg aaegtggtgt agaagggaga gãftgegtat cfcecaeegcc aegtagggaa tetceeeatt efcetcaggcg agtetfcgatg tteetactea tggacaeaag tactccctee O9M9903S* agtecgáaet atgagggeta ggcaggactt aaaaacgasa ageceetgeg tccatfgccg acgagtttcg gttâtgacetx tgsafctfctec gtãtaggaet. ttcáCtctca gcaeatettg tc&ac&aagt asgcesttgf etáeet&gge sagtgteaat ttfctcfcgtcfc gagtggeaaa cege&ectgt etcattatgg tcggcgacaa catgecgtga gfcgtggcggt ccgetcgete actggtttca cgaaagatca ttgatcctgs aagggcgtge agccgccecs ggccgctggt acgatgtggc tcgacggatc ttttegtcgg cctçtecgcç ââgagafcçeg ttcaagctga agctcetega tgcgcçaçta fcgegçagtaç cceaagggcgf agtfcggcegc aaccccgaae attaKgaitGC çtesêçgcte aattggagaa gctCgtoecg ggcggttctt atteagtatg atgtgaagcrc agcgttcgta tfeat«e»»c etécctetttg sçeggtgetâ eaggctfcstt ccaatagttt tagtaaaatá àaaegcattt agaçtttggç tatgtgcgag tcctgctacg eagageggcc gtcggcagta atg&agettt ttgaetggcf cttacgatga aeatceccga ctaggegaaa cgcectecg* çtaeafcatçe gcaãgtctat aatcccaaaa egat&cgtat ggtccgagct cttcattgtr. gattc-eggct gaaaatcaaa gatstgsg.es att.gttgtaa cteaatgaeg teteectgga fctegsegggt tgttttgaae cagttacaaa çgacgctãct sttgccaagt tgagcattga gcctctgget eestscesãt ggsfetggaee aater.gecac aatguggagt aesagctegcr cascttcgcg aecfeaagigà egcaaattgc gattcagcga egaegtgctg gtacgtegat aecatgcaat gggfcgetç&g çtcgctatgg tgcecctgtg gacattgcca c&ctgtsate ggagaagggg eagetgeafcg aaagagaegç ogçtctcaga gaca^cactç tgfeggctgca gacegcstga ctaccgatfct atgcgcatgc taeeaãèggi gateacatcg efcetogasg gaaatcaaga tftsccagg* gacgafcgft-cs eaessagetc a«fgta«®ec agatataaça eg<s*»*«t*a cçgtcccaga gaaaetaggt tattcgatfcg tgstgaefcte agaeagaaac acagagagag atctgcttet ataccgccag tctcccggta eaatcacega cgagggctta ggcíretgtta gagaggacgg egcaacgaeg acasíetgta ççcaçtgcçc aiS4Q l2Ô0fi 12130 i2i.eo 13240 12300 12300 12420 12490 13540 12000 12600 12720 12700 12040 12900 12950 13020 13000 13140 13200 13300 13320 1330o 13440 13500 13S0S 13S20 13680 13740 13000 13800 139:20 13900 PE1149919 ftg&oMiesre ççfcçcgaccg tteasísfSfe f»g«»c«tfct; $ae*9&®**$
Wg&V&S&m» $C»fcfcCSfS&C tfcCqfííCtS.&í ««66$****$ gt«ttt£«s§g gc*ftt***s* $«ο*§3ο*ε* $oisc*f9ct« gfccfçtatf «s.<sçtt«sffc* et*6«ee*«* ggciEtcsct.g ««ecrttsrea ctteacíge* g«fcggtgtt8 ccettestf* geteasagas. ee*gfctfceg* &$*fceastig$ egaegagçfâ eg.&gf»<satg tcgtctçetg ccagacsaaa ^8eff«efa.tát xâs.atggeet *gts$tg&fs xtctggtect ttEttàtgSf: ãágàgae&aa tttsagtçc?' ise&áaesgct §t£eet§tat ggafcgt-gtt-g átte-ctftaâ ccacagcfcgc eaggafcEgee tfcetccaaca cateeatg&c fcctagegage eggfccg$cc« eaccacggcc cat$eec«a$ se*#t$9ts* eafeogâc** gtcets^aat $e«csagcag «tgegfcaafct »a$$$at$ag «gsatettega &gaagt«a»s; e<smç$t#$t &sfc$ggçftg tsçgç&gcaçt cgcgtcetfcf &g&s,se*tgg mcefcfcgtxft t&egeacaae «sfs»fea«ci: tgffcfaeétf atsgraeageg eaetjjfttgat tfc6§e**$ee cgatággata tf5g«$e«*te$
iâtfe06«e«e «5£«eaeça$ caaet&ifU ®ceS;e©»S«f ccsgttíífttf «tgctgaos* tMetgmtetf tàeggasgfe 9*ftttg*«e* «tésagscas fccgetfcttgt tteggafcect tefctcaew* tggetctttf gacgteeegg gfegs&tggea gcxtgteaÃg aatetssoe* antcggcoat tgcau&ptg tttagaacfa eatfaaeges gaegaeeaeg &«&**«ε*$ε tcgagaagat: g«c«a»$*c* «9«t69$sst; g*gt*«e»fe sgacmaatg atcgcígctt gsccfaSfcc· 117 x&ltae&agg ettgcgfgas tcataxtgga CCte^ag-gt getaagacag Ct^çetfgt fcasatgtegfc «cttagtts» ***$*«6*.«*. tactfçs.at« sapus$«e*g gatteag*** ggatsongfe fcfccsgaçc&ç ffe«$»$efc»fc aesegcfctff ee&gaeaaaa tfctsgccaç* SiStaaçtcg» ígaggeeejfc «g««*«am »«r«6$g*ttt «*$**$«9** §tefe4eg<*gf aeafistgccg ggttfefcfcfg* 60**«$«**$ «fcttfctccg te«tfe§«fct gfsgascssg <&ta$t&g$g eeegeaegae fpÈtfgfeçí: $ea6g&*$$» ««K$$e$f*a «esfSttfec teggsecap gâgexsesfg $$$«$$»£$** $gaa»fc*g*g gagaafaaeãí $t«ettt*«* tfcatagget *$*»»«?<?*«* &gtt*s»gee acgc*fceeaa sagas&tfsç fôeaSffgst «&csgft§§t ^gôsagtgc ffcetfgesá geeceascc* sg&çess&as atectttsfsf «s.«ttfSfas gataecaasE ««fcfScatSc g£$4£3gxs§-gaES.ççEega «£«99039*$ ç*fc9*f«*t«· atettfâset fagacgte.se atgegtgtag ggetsEfsât f3««*9$e⣠tegeaefctct atÈsasaâfç eâstsg&eags tefc$»m«e agaactgtoa g$e«tca$** t;8»g<rpfas ©««agaçaca «tgaecr*«aa «6*fc$ôa*»K ««tewggçg s&cgacaagg aftgçstgçtf ctcgaggagt ttfcftfaeat ffttcaaofií ce«cf»$afs agatcaattg atgtgsaaga *e*$et$m «gctccaggt «etmtta* fçxfteaaag ctcgcctgga ggagttsfaaj a»$*ce$eec $*ft»gget*. *p®$çç$««r a«$*t<s«g$R ««satgcçga a&çt»Eç>gçe acitcggcac eei«safetg teeaf£«£C» etgt^atea *$ad«st.£*« J4 MS u.xm Í42S0 M2â© 'MUO 14MÇ 14406 144 ÍO HS20 14St$ 1444« !*?$& 14766 14B20 14960 14640 1S6&0 1S06Ó 2Si20 1S28& 1$246 1δ.ϊ66 XS366 1S4S0 ÍUU 1SS40 1SS06 XSS66 16220 %mm 1S640 imw 1S660 16626 1S066 ΡΕ1149919 gcçrtcgtegt agctstgccg tggtataaag gaçÊgaagcg gefcfcetggga ageceatttc ogtetgtgtt etggtegccc aatggsetfct gaggccttgg ctagcogcag cagcfcccaec geees-fceaea aggttggcct ecaattgacc aecgasaget fctgggttega ttfcctaceea ttcgtcgtct cgaaattgça gggagtcta.a acgacgçççg· ggtfcgefccgs açggçtgçag gtgogfgSftca ttgsaãagfce gegftasgeg cfcgcfcfcgtet: tcggãáaggt cgçegafgcg· gspetsgr.gg gtgtistgcgí. ttcgãgáãgg gttatttteg tfcgeggatfg fc*cg«agc»g ggagcecatg gefcg<rt.sst,s tagacãesea ggtgatggat tcgaaggfieE egetteee&e aagaaaaatg catgtcctte eagtggfcitEe agaacfcggte tfctfccaeeaa ttgctgecfcg g&gfífffitecg tgcagsa&aa, gcaeefeeega ttttcEãgce gtcgatagca ttgtgetgafc ascctrccaat teçacaccgt fcgaaaecgcfc agtgagcgat ggegtegaet tçegcte&gg tccgaaggta aagaacaaat- cgagetgatc eccaggcttg sgcaatttfcc gaacgtfcact caggacctgg caagccacgs ceaeatcgta ãtegeEttca atatocaatt ttttgaaagc acgcgèegae tcgaaaaace çggcagaeac ggtgtttc«c aatgcattga caafcaagctt caaaatgcga gaàcgegggt tcfctgtggge gtctgatogg ctccatttga ttgegttfac catcaaetea agfcggçfcçfcg tttcgcggcg agaaafceatc tcgdftáttgã eefetttçtcç ctcagcâteg tç«s8tagc<? agtcgcaact gtccaattgg aeatteatcc aategaaata gtcagaattt gtcaaateag fegacageçte gteeatcatg afttccgttt çtfcfcegtctc agtfgagtca cecaagetga tgtcaggggc 118 sgçaauatai geggtagtga aagejçagggg gtccggáãta cggsegáêãí: £agtgtae§g cagtagtgca eataçgçggt ccectaatçt gagctttgtg atcSCtccgg cgcattcgaa catggcaace atgacatccc gaaaactgag atcatccgga agaeccttge ettsacgtcs g*gttcctggc gtctcaecet ecatccgcag tgtgaeetca aecgcfctett ggtcctfccca gatgacgçcg tttctctçtg ça.aattC3aa gc-cáfctgaag acattgcags tageatacaf .at.egaga;£.çe a»«g«tacAt astçcçtíisçç aacaafcatgt agagetítee átggateçtç gãgaagfcgcg ttfeagttat tcaf«atcge cEcccffaagg agcgaggaeE. ecatttcccc tâcctcgcee agagcgteg» tegatgggct gagacfcttcc afscaagatg aaggaggtcg ttctgeeaet gtatesgggg ctgtattetc cstgtaaaae ccatcgtctt: eacaateaeg íTgtgtccaac acggegctcc aaagatcggt cteetEacfcg agccaccaac et«jge*aeag cetggfeagtc t.caaocaaaa teaagttgec C-agtgfctcgt ttcafcgcátc gàgfítgcáfcg ggtggoacat tcaaaccctt gttgcftcggg caEcacgtct t-gccaarccg caaactgctc atcggtgaag c.cataacgat cgatcggett tgtgeageeg cesgfcgectc cgccsatefcc gcaaagtogfg atcagetíge tggçítgtge gs-agtatetg çfctagcagct gafcçfcfcgeat fcageafefcgeí actaaetgag gteetagacg agcgactctg gcctgtaggc attfcetfcetg ggetgggetg agcccgEttc gtctcgcaag sttctgaagg tggccatcca gaegttggat: etgtataas.g ttgafcegtge atcttçggag agcetcãgtg eteaaettEt cttfcgagsea ceaaacccag gagctgcagg çattttctgfc I«140 56200 16260 16320 16380 16440 16S00 1SS60 16620 16680 16740 16800 16060 168:20 169Θ0 17040 17100 17100 17220 17280 17340 17400 17460 17520 17580 17640 17700 17700 17820 17880 17848 18088 18060 18120 18188 119 cçfctggfcaee atggeegttfc tcatacgtgt ctggatçaçç gagtceagag tagfcàgrgafeg catagecgag geaefcgtcag esatggasaa aattcgctga atgttètgaa a*ât§fifg£«re ccag$g:atcg ttgggatcaa cgcteeggtt ttceacagtt gaaeagtcas ggtfjcttct gtgttçtgtc caggtãttafc tfctcgeec-gs etttgtgccg «gggscctíÍfc estcaçafega ttOtgcsíttC» gegggSatta tgag&gqctg g&tgcfcisgcc cccgcaactg gtgggeagac gâagecaget eecegaaaga tgatgctoga atctgaeaga cggagaaeat gttcccattt tg*gçç&«*e aasgtgtgag geggatgggt etctefcccaa taacgfgfcfct ggtfatteea çaetetggge tettttettc tíatgaggaaa ettgcttats âáçttcgtsg cageaegata aaggcaactg agatagttt* tatctgfcfcee gttttgjpeea ceaagcgctc cgtgaggecc tttggtgttg fgatcaaagç se&tetegcg gafeacltatçc atccegfcgftg tgggatecaS ãft^ttaggfc g&tgÃàtãtâ ataeaeeett gttatccgag ttgaaesgàt ocetcagtga gtggcttgá& tggaaggctt cagtfacttt t.*®eaa.cfctt tcaagtttct cgattgçacc actgttgaía catecaacea ccacacagcc attggtctca etgcgaecaa gacccaccgc cttfggcfct» gtggtcaata caccgegoat taaagcccca gctgcgtagg cagcagcage tggccgasfet ececafcgacc aaaggâgacg tggtagactg tattcggeat catttaeeeg tgtgeaãfctg aafcgtfcagta esteaagett ΡΕ1149919 gtcgctggag fcoxgaetttt ggtcagagaâ gctgçfctcca accgactggs aaacaaggce ctcaatxtce atgaotggga ttccgtecgs gggagaagaa ccgc«*fccafc agtcatcaaa eactgrccaag teggtagaga aggattgaga gttgcgatce ©EgatgeEfg cctgtgcgtc cagagcatca ccagectoca agtcôgecag gctagaggat attttgseat tt*t**giçe£ teccgegcag ggtaàcaccg tgtatgccgc gacgatgtgt cgátxetcgt. acgagtgagg tetgcaaaac gagccctgcc eatcgtcçtg gtggeatatç ccattcgcgt gtaaggactc atetgãgçat agactoasçc tgegtgaggc ttCfCtetCC gsaçgfcatca atecggtgç» aatfcgagtge aeagaasatt gafcgçcagtt acggafccgtt «fgegcaggt caacctctgc cgegagttea aegtcacgca «gfcfcgtagfct ttgcgaaaac ccctcgatgg eçatgçtgat aeeaaegaeg cgatwfccgfc* fcccsfcggaat aggcgcgaaa egaggagaga gagatteçcg tctetgtttg gaetcacgac tgèegfcgagg egggtàègee ggeaaafcçgc tcagtacett gfcttatageg tccafctttga gcccataacc eattgtçtfie aseg&gette tgccgcgaga fttteagaeee agatcctgea tgacttggtt t#tc.tcaatà ateacatega cggctttete fagtfaggaé· fc.cgaacteo« eçggetgfcag tãgesattta agstcggtca figogactaec tgággtgtca fctttgggat tgtegttgtt egccccaaag gcaM&goca ttggtegcat ©agtttcctg g&sa&gatge eateggegt? caeatetcec gscaecgtca cactaeattf gWçteçtgg ttgagacgcg aaatgtsaac catcattcct cctttggctg ccaatgçggg ataagtgatc çrcsatggccg accgcgcgga ctctecactt gagtgsctgg ttatecccgt eàCàãgxgm atfttggatag cggttgseag aerfcsgtcagt tcãtcâ«ggfi: grgagetectc gstacagtat taetfcetcec gggctcgcaa 1834¾ 16360 18368 18439 18480 18S4G 18609 18669 18750 1B7Ô0 1Õ840 18 SCO· 18960 1SC36 19880 19140 19300 18260 19330 19380 194*0 1SSOO 19560 19430 X36S0 1S740 19800 19860 1992© 15980 30040 20100 20160 20220 20280 ΡΕ1149919 120 ettâeeeaS:» #a«*ticea*c tGfefcee&ff etftatofàô <x*)<S£$&&s$ ftfAaosea* atoegafce® fpoboatog «bf&ftpsg *&ac«a§§g« emcggss&gs; «fc.gp,acggc fsgsscctsf cocgte«*S$ ««agcgacgg «tttâetffc* afçt«ffi*«gí feoefeoggoste geacaaegwi cçpeeafcgo MwpgtKac eatfcgaeafcg gcg&fc-catat pefteeaÃ*!* tfaefKfafe aptsi-égep: «§*pce©st£ *&c»tt&staf fcftfcpaacafc ataactgaat aag«á£K«gs ttgeKgt.ts* *§ccet*efc« β«*98β©ί«8 g^acettgs tafcgf<soa*R M-,*fegç*ttç ae&pgocaa aasctfctga gátttcsiagg f^gtcaççag âegagf Êe»M* ef&eaositiBt agecGageet «jcgeeapte «stcpcgca gtaattgegg ctcg*#t®a« gfstçgf&ica fggtetfcggK. ccs®8®«g®S 8«0iestts« «oepcpoe#* <ffg§p:s?a»a »**«*$&«** OOtettette gga«.a»efee« gggafcfeg&gçr Sjpk»ga*fcfcg çaccgataac gcfestgp&e fçs&agtgc» gtgcggtcast gçtgggíjgca eg-fesuagtcígt: agaagtgtgá gosapesig Mataaofçf gaaetgtete gtgpaestg aeaeescea* acacqpcgt «segfstgg» tptffftesf tgaegtttp; &ete*«:e&§« f&ttoffcsg® ecac«ç**g fccceafc*tt» fstetetfqj fceefigggtt® ctçtgfcçffs.® *£$$*£*«§* aâgefg^gte tee»e«efctts aegtfSgtct atceagtcat gsteaaatet. bsfcgteaaat attc«M*ea eggesecfâo «eftOfceseo* tfccggsfcggt 33»««!t;fta§ã secaggçAçsg açtccssstrtf. tfegeáfcotee ogçsaatega <»*««0»**® ttgctfcf&tg tagecatcac attcaageas: «agstetes.® ec®stt$e*fc geeaetgegç o&smete* ttepteget 6«sg*fc$a*fc §«®**tg®*S fc®*$etae*t aeactf#^ Kgtatsgpf «.pcfcggcgs fgaagggtte SKeSeieágg «ttgctatcg *t®sec$f®c* ««Kgegfete egtttggaac eaccescaas C*«*fcp0«q ictggeagg® ssaafcgAfcp #fct:sg*.«.«e* ê®*®.agçegs ®§®ΐ3**§?ι« èOá§t®t£,§ã geagacatp gfatetttg* eçpgaatge paaagsçtt ossttptgi tfttg«a$ps ssgçgcàtt® gggggaetce ttatáctggc eafgceacfcg gcggctt,®*® fgtgcagap atgfceeçtt# aaagetgotg
Otptgttxffi aptççgtfg geçte^içgç tátegtàáe* ««etggat® *f«e£*bfc«fc ftfbbbbfeç «tCíWSStCC ãgçgctitá c<t«§eíaacgc gttagggsgg gcefcfc&att* otegsKtçg® *®pggssxa asafafta®® tfagcaaeaa gpgtgctt* ptcaaptet seeeaptfeK. gacatsgtaa esaasasasg getgpkfcsi fcetgacteee cagtacgt&a tgtcgtcgaa eaggccgt.gt caacsgtcac tâtscgftfce gaaágcafct® fctccKfãgtt ggfgt«a®p ttgsgegast seiptafOs attagspct gocafcaccet cgatgafegat tt&esgtfag gatsãcsEss acsae®ftaee eatasgeep çacfcfegefat ccatfcactg gafce&attga aatsatcsta cgctggcfac ggatcetcgt cfatgaa.ftg çettff*gte agtaãecáaf ctteagtígat agat&ftsaaft ge&tgcatgt tafs*®etea atactgetçt eaçatbgaat cgcpgpâf eaaceabiÍSc ccaaagctte tgtggacteg caísctatggc aatgggcffcf gstgbgfcbaf aasíç í-PC>6 'Msm sssís 2fl?0S 2i3?«0 3θ920 20880 20846 23080 2i8«0 21120 S12J0 34240 2238« 22388 22428 21480 24S48 25080 22860 amo mn$ 22840 2,4880 228SS 22080 33000 82440 22200 28240 22320 22.380 ΡΕ1149919 agcaagccg* gectgccatt gcggttgegg· «gggggtatfc gttcattcea aegttgttte aaaaccgtcg atagtcfcfccc aacagtctac ctgccçccga cáçgtgaEte atagttegfgg fetcgctctgt goccatgggs asçee-cggac aggtaccggt tc^ggaggtía ttgtetgtcg ggaaaccgtc gaaeaaga«g aaacstfgtca aggctgtcag aafceegatac teegtacacs caascgaste caaasgcctt ggtaaaagçtt. ggtttgtfcga gggcctgage gfeagfgtggsf acaatacaça atcecc«m*« tfctgcattat tgcaggaagc geaattcate gegagcaaac tttt,tçc.açt ceggaaggcf fcsfcgaKçafc a£acefcta.cg gcaceccact cagacecatg «gocfcfcgse» aeaaageeee gtgtaactcc fctgagagae* egfcaeggagg tcoacscaaa açtgacfctcfc tgtçtaccfcg ggfcatcttgt ««93393989 gggggggggg gggggttgsc tâcHtccetg cgtaasftagt cgtttcgag* ggcaeaatat atttecatte eteaega&gt gççgeeççae caaa&aagga csaçaatscg fcafcgrt&ag&g gacgcfccctt fcgtatgfccgg gtagtgtteE gtee.tattgg tcatttggee teefcaggrfcaíi csggge&att gattggfcgtc: aaatttotge am*a»ect tggaaaetga ágtgcãsttf gtCétáét-ãt, cctttgcttg agtfcgacsoe ggfccatgaat eeatteataa aa&etttccg etgectcagc etsaggggeg tôccgtsect. agga,a*tgtt eagttgtccc ccaatctacg acggçagatt afeacçt&ggc tggaggtatg eactttatet caageeetaa tfcgcagagçt gactagattc ttttctçaga tgfcagcasag acctttcage atggtcgctt &a.tçaatg«a tcagcagoaç ccstctaegct ààtttccatc caâa&eggcg' cftct&e&cc 121 fctgeggfctfc ggttgeggtt gcggttacgg attgaçtgát átateagEçg pectggtgst aggfcccctgg catsgstata gatgeataag gttcgtttte atettgg.a.eg· tga.ca.egata eaccatgcta tgefccggggc aataccttag tcácgataat cçcgagtcaa aacgcçgatg ggccggccag gtagtttt.cg ggtataatgg gstgogs&at acgcatacga gctafcca&ae ggasaggçtt agtgggtaat çetgtcççaa tectftaagè âgttggtaat tcaattteca cggttgaeta agacaageaa acaasatata gatcateatg ageatgtg&e ectfcfcectct çtftsagaac tceçaatcgf gageaata.çe cacaaagaaa acccatgcge egaafcaefcga gaaggtatcc aaagaecgag agaeqccgítt atgfctccega ftctatacae tataetecaa tcaggfctgct gtttactgag atasaEgatã aetggctttt cgtggacaga ataatâeee» agaatgtgtt têgKggtgca fctsefcsegfc& fgcctcffccc §ggegtgat« getgeagfefct: agtcagatta gsaaegteta acaggaegfcc atcfcaggcat gaeaaaafeaa cfcataeetag taetttcgga acaafccttgg asgtteacat eccagaattc ttttfc&ct-eg aataaaggat geatagtm gogeaeam aetagfcttt* gtácecctEà ceaâttatãe cct-aggcagc aggtggacea gatgeaggga taaggaagcg eçfcgeeatst gttaçtttet ftet&et&afct tcceâacccc ttgggccgaa CAaercttcet gcctaacega. ttaggttgct cattçg&tEt tteecaafctg aagtgetttt cegtccecat gaçtaçetag qtataggtac cactccsagc cgttgctacc ctctcgettt cgcggtaggg cgggaaatçg ggcattga.cc tcçaçaçtçç egatccatae cgtttfcaee atagetatte 33440 33500 22540 22420 22 480 32740 22500 22800 32020 2 2580 23040 23100 23140 23220 23250 23340 23400 23440 23520 23580 23540 23700 23750 23820 23880 23040 24000 24050 24128 24100 24240 24300 24300 24430 24488 ΡΕ1149919 122 tsgçtagt&e eacafcacgfcfc fitga&aijagc agaacggggc agaafeg-gcfcf gãáftggeag át-çaageaçS. aatgaccttg caccafctcct tgcteeeetc gçsettfe&ac çgçcfcattçg cgseggaaEt «ftssctsrct ágfâgâsgoa ofcfegafcegfag a&sc&aaaqg! cagçcttgct tsaagafcgc tcáàácgctc tgaotsotegt cEcacoettc çaagcgtcçt tttgEcgtea taôsSSIt tcc gatgaffiftt g ttgaetttg». gaâgagsats: gaaagceeea gaagatacag tesattàege egtàegsage fcggtcgagat ectgçfccofc* acttcEgtgt tcíagctgcs. acácfegsgáfc fccfcgfcçfcate ggtacgegtt ggaagatgag «fcgotgeeeo agãestgtgea fetcjçgaagtt caasttetgg gcfcceâcçjct tstccaagcc aaagfcetgsg cggatoggcc gaetagat.ga aetactttte tegccceeat caagtaegaa asgagtatgg agtcggcgga tectctecaa áfegfgtgttc tcaaggiEcgc èagãêtsjggã ttgagctfcga ccaggccgasi caagtcteca agçtcctcag «fcgeefe«*ct agtettaatfc eagccactag tgaacttccc ágáaaãcáát eãgegagfetg ttcçcgggta tgsccí.«gag ggactactca asgacaget-t tccctggr.cg aaggaagtxg agettefãcg gggatgfeagã gtattEsrcgg ggtcafcatgg cctgtgaacc tstctgtjjat: aaagataaag tttfcçgçctE gttcaagaaa tesccascaa ar.ggaaegcc âfâfegfcggat caafcgggtgç aegaEacefcg gàegtfgtttg fccatggfcget ctcageatga áãaa&fctífgg aeattfcgeet ctcEesfccgg aggttgetat ççgfaafge^E actctgacca gfgctgttct t.etgãceãgg gtagcgtgae gccafctcggg agaagggEts gttatçfgtg çtgtettàgg ttgatcccgc. tctttgaec-g asgefcegagg t^aascgcet ggtctcagtc agcgg&eggç cgEacataEc tgtttggfCOâ atggtçgfctg gttteetfcat tcttctagsg gatcgttgtc at toascccc cgcítgagcc eaggsasgag ggegcggtea cfcagagtatc çttccatfcc». aaâatggtog gtagcetget gtfgeaettg eeet&âgtft atéãâãgàté etáátctése àgct.tcàacg ct.gcccágáà accagagrtgt tcactectac aãafcãtctc taaaggtcac gsgtctcgea eacaaatcga aaogafegâgg atgfeegttgc aagsgtctca aãgactgeac ctsçe&tfge e<rcgee«asg aafcttgatc aceggeceâÈ tgttctogga gatttc&açc ggtogeatct casgeâgÉct. tgaeettccc tcaacgtega Stctgfcggaa tacagcagcg sagtgeegac ctgaaattgc èstgaagget geca-gggete gacegagcct ettgatctta agcffctafcata tcaatgcact stegaaggçs tggefcggetá tcccgacgtg gccataagae eeeefcfccttf gtggEgáteg gtcctaEfsE gtgeagcacc ágccactrgct gaaagtacca caatategtg tgceacÉaeg oateca.aggt gggctacagc EEtgctfGEg «teacas-tct eãaacgtcat. atssaacatgc ggagagtgte gegaGcagea tgaoatfl»*.* ggcagcágtg çgftGSâcetc gtcaacatcg cagtatatca Gcttggaccg cttcaaggca gctggaagtg afcsg.snEtaeg gt«*etgfc«0 ccgtggtacc tcgcagcfcsc eaecagcctg gaagateeeg egetetfaae agctatetfS gàgtceecca gttgatc&àg ccagaccect c-àgáEEcãat eaçcaccgac agtgacagtg tâagcgâgtíà gaaggaaaga acsggacaat ttgetgaagc ettgtetttg ôggggâaagg tegtgcegtc aaggttGfcc £4540 24630 24f.«0 24720 24780 24840 24800 249«0 25020 25080 25U0 25200 252Ê0 25320 25380 25440 25500 25560 25820 25600 25740 25800 25880 .25920 35:980 26040 25100 361SÓ 2S220 36380 34340 26400 26460 26520 26560 ΡΕ1149919 123 gctctatcat iteegsggaea agct.gccft.a cga*aa.«fcao ttggçtatat, geeaftcccfc afcttsat&ee EaGggcaaçc aggceatcaa cefccggtgge gccBgÇjjrtgt gaagtttfat cggacgtcgg ccag&acgrta tae&asgtat gcggacaact etggqjraefB tafcgggsate tggcgôcags ggcsggt.ttc ogge&aagas aecfctcagct aafce&teat acegfffifs&c Etcagctcaà çafcstfccgaaa fcçaacgtjçcã agetgcçaaç. cgcôagttgt gçagagcgct gcttacttgg aaacacteac ctscat$ccg tctattga.gg' egçaatgett gâeafcgCtfcg acgtcasctt gcgcgcatca tgccctagcc gecggtcacc stcttcagcc ccttcfccgaa fcaacaatgea etgaggeçga gaatcttagg agcattccaa tafcfcfcfcttct cattggttgt caggtggtag agtgaacgge efâtgeaagta gtãfgfãagà ggtcfcgatcc ctcataâfcta gtaggttgaa tgttgatctg accatccatt gtcagatgcc ccaatctagc caçggtga.ct caatgacata fcagaatcÈxt. «gcaoggtsà tgtgtetatí? fcgtcgttttt ggttgcaafcc eegfcagctec eaetgct&ag cceetggaag gtr.tattcfctg
CcgfCfcaeeg e&f&gstfcsc gectgsçfcac gcgtgctegg gtEggagtçg çeggÈeçtat acefagggíjg tsetcgtsgç ggtgcCgtg» crsgtSçtgae gtccfitgaac gagccggcgc atgsaag&ag cscttcaattc atcgccggt* ctcacfefcafca aatafcgattfc eeaagggcgt agegatatga atattattac ttgaafcfcgga rcgstggacg gttgtcaggg atgtcttaaa aatctgsttg ggtecgctat sttg«fgeag ccattttteat aactgcatea ctctçatgaa taatcctgtt fcagtcfctcgc fctggaacgtt fggcggtggt gfegtçcgegg «tcacacccg tcggaagegc tgttttggcfc tggiçaaggç geàfiàtggcg gtgfcctcccc gtsaggcgga gtgctgcagc taccgatcgg gctefígtace eçetccagtg tattgteata atEtteaaaa cagaããgggt «tctcatgct sgãaíãfcãEã aagagatggt tttsatgagt. gaaagctttg attcaEtcct gaggtatsag gtasctaact aactatgaat aga.accttga gatggactta gaASfccgaca ttasttaagt tâgeàacgcg gtéaagcatc fctcegccatc ccatfcceaaa tsaassgt&t gateaaoggc Ctgáccacat ctetgaagcc aagtatgctg gagcactcga fcgcatfttgc gagaaegtta tgtfcafcegae ggçaagragtt tegtgctage cgtggcagta fcggçgacggt atgacacgag tgetá&gate tggefcegatt sacçageag» tfctgogegct tatfccgattt aagsctacta ggageatgca ctgaatgtta çctateagga e&t£-&çtgta Sf9C«»SS9C sttgtgfceg gagcgatçtg gat&gaatgg «gctggctea gttggcggcfc fcgceacsggfc eaggateegcf çasgtaagtt gaaagcggcc ggatcgcttc aaatctetgt aagatttatgg «gccceággg «ccactcsccg gtgagmtgc ggggagctct cgctafcgtgc <ráe««ccgtt cfcgecccggc aceaggacag t<rç:cí:gt£cc gctcgacgct gatfcaggtcg ga&tcfttcge agg&gg&tes geaeaatgea atgagacagg tatatgçtft- tgaaafcttae ccttttecag ogagtgtfcfea tteaagctefc aaettaesga gaEtgatgcc tgaaseatea etcaatatag ttatatgttg gactagacat gggtcgeggg atgtggagat tctttgtgga ágtctcaggc acagcccggg çgcaaacaça aacgtgEacg fagactgtaa gcttttacaa agtcgeecet getfcegtea 2€S4& 2.67(50 267€0 26820 26960 26340 37000 27060 27130 27160 27240 27300 27260 27420 27480 27S40 27600 276S0 27720 27780 27640 27980 27960 28020 28080 28140 28200 28260 2SJ28 28388 28440 38500 28S6S 28620 28680 PE1149919 124 gfccgacagcg agaeaaggtt afeaaagtcc gagasafcfcce gagggeacct ggceatfegag tatfcg&cgte gccgaâageg cgagssptg-a .gaççgaagcc cgcg&tâs&fc âggtggatsiS cagâccfcgçg aat&gtaEce tgtetçtçça gatgtçagse ggttgfcggc* gtaege§agt ttcactetaet actççaggça acatgtacae tatfàtcggta gatagtâggà eaagafeaec acaettgtcg ççaacasgas geteceatag esgsfcgâtega çggaacfcfccg afccâtggfctg egaaggetge gattfctatgt tgg.ecat.fcgg fccgggtatgg tgatgaagag té&ãngcctg aattceasgfc atacaccatc gec&sgfcgge atggcaafcct gactaaefcga C.cagatcttg agatgaeatà cágcgt.ft.ae acggeaccea gcttaggagc agetgtfcgag tfcçcagcasc ggcéGgdesa ccf»geet«g ttcaaaaata tataeaafcfct ascggeeagg tcgtaeaatg saeaaggtca egtaccaecc tacategtte gctggsgtcâ attgactgfeg ataa.fcggaca tatcaaggag eegagcfcfcga ggcetgtgat tgaetfctett cettetgfcgg gegwauetfccc ttfrcgesítfct etafcagtaee tgtgfctfcfegg ggcgeatact tgcteaggee aggasgageg atectccaa.a tgt.tcgggcg aaagcgtgct agegtctags: ggttgeãtge tcaaaggttt. cstagctfcac &g$t*OX6g& çeca.ttt.çae «ctatggnga egagase-agc actggtgcgfc catatgtcag agaaaggagc eatagaa&tg tgegaagçe» gaaaeeatag aceaetcagt gtfggagaaa aaagacaags ãâggagscag tttacCfcgcC actgágeeag saegaacgcà ateagageaa ccaggtgfcag gtegaeeete saafâccaça aagcctacaa tttgtegfte gagagttcgc aaggaggaat gcagcgacag gagaaeatgg acaacaatca gcgttgagcg aaagçacctc aaacafcattg teagscsjaeg egaeçeafcca tcactecaat geagacfcfctc aaaaatçggt aggattgtga gggcteegtt ásà&tesaea tgftggaagâ cafaffaagg caaagaaagt gg<*tggagàg oacagctaaá aggagaacag agceat&ctt agagagtgga actcgcfctgt etgcgct-çtç ttctg&ggta cstcaaaaat gctacgaaag gtgetgggae ttgstaetcag cettgftfeee tgettcaagg ggeggtftga tgtatgaafcg afcctegretet agttctcaaa ccggaeeeaa çgrtctgecca aacacggega tíggacggeg atgafiagget tetcctfegct ttgatacaaa egtttgçafcg çmeaaç&aç agStgatgfca fcggggetggs gctfectagg geeeaãgge* t»taeaegat atecaagscc gaeggggf gs' agBáaaafcgrfc ec&taatgac ttgfcccaaga catcefcteac agcetggaag *$ft**«a$ec cataaataaa gaatcafcgge aaeagcatcg aeactnegcc acagascagg cccattctaf tgegagtjg&a ggtec&gttt gsgaagtgtg tgtccgtgga sgaaatxegg egíegafcggg gagactgata taaaaaggec aaaggfccaae cgagcagtgg tceaçagaça aaçcgtfccgt ttggggfcaca caaaacttca tatgegaggfc feeccttaccfc ggttgcttgt gaoaagácct gagecfceeca tettfesgea eegeafcagcá gtacttcaag ccCãâgãgtf fcafcgàfcgttâ gctaatctgt agccagaaga t&ageactgc gatatgcggg attgcctgíg gecaccafcct taccgt.gacg t.sactgaagç aaccaccage tagctfccgag çsgtgtcattt fgpgtagagg ttctfaeafcc ateteis&stf egegg^ett egttfttteg tfcaaggteeg 28740 28800 28886 2892Ô 28500 2:8040 28.108 281S6 2S226 2S2SG 3f340 2S4Ô6· 2.94K0nm$ 2SSB6 29S40 30700 29760 29920 209BO 20040 30000 30080 30120 .Ι0Ϊ80 30240 30300 3C3SO 30420 30480 36540 36000 30440 3072« 30780 PE1149919 125 etagecfefas ftxafsttps gtoaçcggaa csâgstgg.iví·. gg&<$«ggc£ tet&çtcmt assfísçtffg tagfcfcfctsca fcafcttfcccfcg e**tgsr*g«f $$fcaacfeaat tatatfatga a&go-sagsgjg tgggcaaafcf eaaataaaaa taeetaacas ceicfateec gaaefcafcaae afcaagasgea· «caaoggsot c&sa&aas&s· »fceg«g«g*a gaaaop&aa agaatatteo fassgtgaate «aattaaeefc eget&taote taaefftfsg a&etecfcfccs ccgtctís.tcg «gaeoçast» aaacgcc&ag fgaaaafcget ateaefcggft* »fS.é&a©ffg *ge««m«« eacgggfee© eegceagsg* 8#fc«*«aegfc tgatgatcíc ãaa&egâf&t tagaaatsgSA aftfe&f&af atetagttoc t?<?aat«ug ftegeagsm «outagagtg S/tcaafcfcfcce &£ agaggggg aeggfea.<ítaa f çaamtgfc çaA«ÃC:â«.t aSttgWíOfteiK gtcacfeeea* a§«*eegat« aagfafcftfcge «*8$a$gfcge gegcattgct £*«$$»ΐ$ΰ» acgsatagat geçgeageee e&atagtega aggcfctacac gfcegagaeg* gaaaefafet. ggíítoKfefe^fi» ttgt:í?attfec ctfcttfcfcffe ssaaaaggtfc tgg*«fgfgs« t««ggsp** ftgtt^ófp àte&ppp em<?fi.f«tag «fcefeeassag caggttttga aoa.c»«eccs ggggeeaaaa aaaeeeea&a fctggfseeaffia etsofgtggt gggeaggag* UcgKtm* gaca&âcaac cagççggaag aaca*t$tge «tffct&âte» g-eeafctcátf *«a&*aa*«* sKãí. at: tft* «çaaçtaecc gagcafccggt cataoeggfcç cateogtoag tg&tc^acgt egtagaatae asgaccttac gttgçggstçg çcaçgfceggfc geettggeea tfctfctggegt agccaecaat fcçtat*««t:t fe&cafegfcas «a*tgett*& asoaeteaa* aatgcefccaa eagcetga^ ggegagesset ggstetfsfa cgctgggtst aaaaaaasgç feg«e«sacfcg asagggaoag g&tgsiscfcfc gfcfcfccfcfccgc taatgsgoaí; ctfagf»set£ &£&«$*«££§mcmmjtt ttggeafcate ç§&fcag§«ee «gggaâgaáâ *$*«£§$tm cgfcgctcetg tgetsfcegse gcaatgtegt gcatgsagaa e§eefatáSf a«fa«*agg$ fcagtggfcfcfa gec&gasçag gggctfctcat ea«et€ff8t tçggeigaogt csttaaUtí; e«fggcttsfc ttaefaegea fc*«fcgtggt« gtá&SftSáSEO cáccsececa g&oçao&c&t ofgcfcteaat ststtgígtjê atcaatefga tcteactfsa attggctfMS tfegegaago «•WSggsfac aaaesfcggKfc afcftfetccf tgggpftot jutssaggega ãsf§§£30«f gtgagaíftgS agag&aç®g« esteteggtc &aag&tsa*g ctccaagtaa tseafceattt t sgcgcaaac áãftffggfc í.ccagcegta âtacgacgac tacaffcaaagt etttfgagag âctcttcaea tgç»g©t;*gt «ecttcft«âft a»*ssfcS«o* agacg&gaa» aace ?.$£&»$ gçgagccatc atatgetgfet aattggtagfc gggstfcggfca S8*«et«tS «t**f$f«ees aggggçtttç tç&gggtaaE gagagcgggg etaçgetaeg sçsfiagttas 8ç*«*«*ggç atttecttêt êg«aâeffe.«g fgeKetttsgg efcceggçtac stggtçttat fctt«agçg« t.attccecct cceceggtea ttatcggtcc ca«&txá<?taf aaagçagtct cãatçteãct gataaggcft geatfasfcgi «gaaaq^^g gaagtegçtefeie tacesafeceà tfeegtffegçt; •ffcageage* S«84® Ϊ3·30® 3K-2C 'í:0êC< 1H«Snm e n.2$& 302?·;u»e 3i«s sjsaó 33SfiS 3ͧ30 3080 3040 31800 31880 3020 33^80 3204« 323·®« 32180 3222« 322»® 32340 32400 32440 32520 32580 32540 32?«S Ϊ2740 32828 32840 PE1149919 tgfceatgafct ttgacagaca acatgtagea eagacaeeea tstaaeafegc tgctattgct tageaafecta ccaaaggcat tcaaaaagtc acaatcráága ggcagtaaac aggcagaaet gggccattcc acagtcacce egtggagtat açfcttegaaa aggtctcffct gegfcgfctget ctcfcactwsg aggteaaac» gegatggcga aaagtcgtag cctagatctg gfcatceccg» tgtatfcfcgge tgaagceagc cgeeggfaaa ataatagaat tgcagggttg ecfctgáfcgg fceaafcafcgç gtaggtggtg agcagtaagg egfca.fa.âgat gtegscggtca tcggttgts» ggettcttta tgtaaattgc gettgggtag tfcgfcfcgaçaa egtt.gac.act gafésKfgac .cttttgtgca tgacaecggfc cacatgagcg aatcgttgca cgcqgcsggg acstaattât etttgeatft tcctggatct ttatgtsfcfcg agtttaggtc gtcttgçtgg aagacttact gaeaccaaãa geeaafcagtc ttacrtatgâa tagcctetgc tçttátgega geteatcaas gçattaeact agaaagãgtt etaaaagaaa atgccagatg aeatacçfcgt aacgtgggge ate
<210> 2 <211> 34203 <212> DNA <213> Penicillium citrinum <400> 2 gátetgctgg tagactagag eetgeetm eatatatgat agecagatgg ggggccgaat tacgt^fcgc fcggatfggffc atftatfece ctaagagtat fctetesfggt gacfcgaa&ag gtçcgttega aaacaettgt ttgcatataa actfcafccfcpç fegc<segagéfc tactcfeecaa aagt-etcacc tcaeattatt tgafcettaat attecg&cga aeetassgecg eegcgcgttt aafç««***t· gtaccggtag caatgccaat 126 atgcaccgcc atgaacaâft tcfctggt.ttg gctcgtgatc acaegttctt: gságatgtag ccetateggg tctaggaaga agetttageg gaaaatctca çgfettaaas. tttt-ttgctt taççtçtacg fceetgtgaça catccgacag tgtgttggat tftccgfafcg ãçgagttrcce gaeaggegee gttgcatcca sagggcettè agattcattg çtgttggc&t cgtegcgaaa cgaetcggga tçafce®s«gt tgattgatgt ttstgataat gtttscttga gtgecgsaggt tggaggagte tetgccaatg etgagaagac ggtfctctgfcg gctcttgtag ttccagcfcgc cetttegctg tacâcacaec ttaateeggc taaattggea ttgetaccgg tacatttgag tegaaacgeg cgacggcgfca ggttcgfccgg tfgattaags tesaataatf tgaggtgaga gaattggags gçsagrtcgt gçaggagata aafttaistgr eaaaeaagtg ttttcfageg tgtçttttcã ftcaeeegga gaaafcaetct gctgggcafca cataccccat ccagcgceae tagafctcggc cceccatctg gctatcátãt ataãaaagge sggctctftgt ctaccagcag 32540 33000 33000 33120 13300' 13340 33300 333S0 33420 33400 33S40 33600 336SO 33720 33710 33840 33300 33300 34020 34080 34140 34200 34203 mgceeeac gttacaggtá tttcátetgg etotttcttt tagaactctt tctactgtaa agetfctgatg. agetegcata agagcagafs aeatteatag taagacfcatt ggçttttggt cttaftaaffc cfcteeageaa gaegsçetgs tteçaataça casagatcea ggaaçatgca çcaata&tta tgtcectgeegcatgcaseg «gjâefctcefc gtgaeeggtg fceatgcacaa Ktagtccgtf cfce*gtgte& «cfttgteaa 60 120 180 248 303 3S3 420 4®0 540 127 PE1149919 cas$p5SISPt taagftgtft g&afiagfigsa agg«fc*ec«a sgcgçaa&tt «eotaaaga» ($00 §©çgçagcfcg gaaetacsag ágcÈãcágá* ãccícaeããe cgatgãccgc gãcâfccttct SCO acfgtcttcfc eafccafctgge agagactcct eesccttaet getcãesiàcc tàcgeãEãE-t 72© ggeaestegg caetcaagga aacattatca gaaccateag cegcaeccet ge&attct&t 7B0 gafcacacc** tcaaecttg» tgatecegag tegtttceeg geggetggee tcagceaaas βϋ& aeatfctcgcg aegatgecas cagcaaEfaa tcetsgggga taecagatet «ggccacgac 950 tttgaaggcc etttffafcfe aaegfegcefc gtefccgccat egefcgfcttgs cetegaagta 969 gagfggaaet cgtoatdegg acaatccaac aeaagcaaea egeaacgaga cettttcgaa 1025 «ffceEgtçgg atgfcgfc«*.C* ggaccfe^jag gtaataçtcc aeggggtgae tgtggaatgg 108« cccsagcaaa aa&ttttaag cfcgtgagatt ttcaattctg cctgtttact gcctettgaí. 1140 tgtegctaaa gett«tt«et agaeecgata ggggaetttt tgaatgcctt tggtagattg 1250 etactacafcc ttceagaacg tgtgatcasg ageageaata geagcatgfct agatgggtgt 1269 ctgicsaaaeea agaaetEgtfc caEggcggtg cafcfcgetaea tgitgEctgt eaaaatcatg 1330 acâfccácfctt cccegeEget sctatecgag gtgatgaaag eeeaaeefcfeg feggaeaaaag 1380 caaagcacac gaátggafctg gtaetggtct ggctcsaeca ccagaaatga caatggaaga 144« gccgaagcae tEccetegtfc fccsictctaat cttcs&afccg gcgagçtcat ttcacafcefce 1500 gacccattea tgcacgcctfc atettcfegc* fcgcacgacat tgcgtgtaaf esttsgaeta 1560 ttgagtgagá fcfcgagaetge tttggggata geaeaggagc aeggggeEgc ggcatctafct 1620 cgfcctagfca» gtgggacçga taaccaccag tefctfcfccfcfcc ccttgeãta? etcagcaetg 1680 cgctg&ccgg gagagggggs afcaggtccta tcagatatgc caageseate gtggcaaatc 1740 eEftggegstg aaastaaaae çata&egeeg geetetegte fccetateégt gctctggagt 1800 gacgaagccg gagacgaaga gcccaagtca acaaaggcct eagggsagae gatãaãtgtg 1860 ttfcgaegtt got-ataagga aatattcgca ttagsgaaga aacadaatat t.gcc.tágtae is20 egtacefcgtt tgagtaacfca tagattgtcg gagátggrtgc ateeeseete tatggaaaEt x»m gaaggtagca EageccegcE cgccfctfcecc tgtcagtgga cgccaetegt fcgtagsctge 2040 gaeattatsffe tgaeaaagec eefcgettfcfct ttfcataooe*. gegctatatfc gaagaaacta 2160 gatcgggeeã teacatage© tçcatatgEa ctEattaeat ggtcfctstgç sçtCacgsts 2260 Cfcafcaçeaat eccâctácea ãttteecãga tccagcgctc gocOtctca* tttg*§*í«a 2220 tcaascãgea tataatggct <^gsãtcagg ctffetgsgge aEtaegtgtg «tatxactgg 2380 eggctfcgeag gtttttcacg tçEtttgagt attEt&agd* tKggggç©çç gtgg&aaaga 2349 Mttffàisãf âtttsttagaa sgtaataaaa attttaeafcf tgeceegtag aettsceagt 2430 gatactaget geatftgasg agceatEtOE agaattggtg gçtagcsttt. tcccttggcg 2460 tttctctcca aâgetttact gtaacgccaa aaatggceaa ggctaggggg tegegatage 2S20 Ggggt-cgEcf tastácggdt ggaaecgagg tggcgg©çgç aafiggaagga gateaçaceg 2680 ícageccce* crEtgtttgeg et^tEaaggE sttgtactct acggagtaaa gesagggtM 2640 128 PE1149919 fctgà&atgat gaafctacfctg fàgáSâttgã tcãeftgacgg afcggatfcfceae gteggáãfeat 27QS fcçtçãtacac tcag&COÇpg afcggaççgat atgaççgatg efc^tatçgt titettegege J?«5 gagáCtgtM t-Ctccâ^ftCt eaegggtsgfc tagtacaata éagtaçttat: gtgaaâçcgç 2820 tgacgacgec cafetogcefeg gttttfcfcttfc fcgacafcgaat ggctgcfctçg tafcgfefcatag 2685 tteatactce çeacggagea eattgattaa catgeaeatt gttgggateg âgggtgttag 2640 gtaaasca&g tfcfcgt.cgece ggtcfctccag ctggttgfctt gfcefctfcfctafc tfcgcafcfcfcgc 3550 oçagottegç gcagacagcc aatasagagc gtatctcet.g eececfcctfcg cfcfctcatcat 3580 atatgcsgtg agatccgatt gataccaççg gagtgtgggc: caaattagtt ácacfcctcca 3120 tfcggecgcaa aatattg&ag ccttttgggg tttttfctggs eceeaggaaã âtatgcaaaa 3166 ctaatgfcgta. gtatfggggg gtgtgggttg cgttcaaaac <*secea9Êe aatatggagt 324© ataggtaaat tacaaoeaea atactagtga gatetageag tggggeeagí: tcaatgcatc 3306 ttgtgcgteg çaaafca&gçc cagacacgct aafcacogcaa caetfceçggÇ aac.aa.agaAa 3360 agea-aaatta asgacgtcgc caatttcecc fcgatccccat ceatcaatct gacttcaggc 3426 tageggaect taaegaaaea acgagagffif® gateattoat açaccaaaae aea^ytacta 348© ts.gâã.gcgÈc gÈge-sgtaga g$tt090acc gççeçttga* gçastaagttsj gaaggaattg 3.S4S cgegatgtea gaaeetetac ceectaaaga aggggaaeca aggc«asaga aggaagaaag 3800 tcaaaatçac aegetcgaag cgactgagtc csâgtcseag cacateaeag gectcaagct 3666 cgggcfcggtg SfCtgefct«ag tfcaefctfcegt ageatttfcfcg atgctcettg at.ãtgt:ceat 3725 tategfteacg gssagafcggt ggetaec&ea gaaeagagfâg eagcaeagte àacc.gA«tce 3780 agceacagge aafccecacafc ateaeaagfeg agttceacte tetg&aegat gtagggfggt 3840 aeggcagígc: ttafcettofcg gctaagtstg gctcfcgttct ccttgacctt gttoattgta 3960 cgaacagatt agcteacatc afcatttagcfc gtgctctcca feccctggcc ggtasatfcgt 3980 at&câccett 9§§etegas$ taaeaettttet fetgeeteeet etgrtattttt gàãecãggct 4020 cggtgctatg «ggfegccgea agatcStoo# coatgtfcgat· cgtfcgggígg gecgttgctg 40$0: gaatfggagg otcaggtett fte«&eg§as «ectcacaat eotcteaaca getgeteeta 4140 ageacuagea aee&ggtaag ggaaeegatfc ttxggaagte tgctgggtgc egfcgfcaeaeg 4205 ctgacctcgc atatgaâgtft tfcgafctggag sgstgãtggg tcgtatgtea fectcáãgatc 4260 tgatgtaoeç eaaaegaaeg gçfccgtcgtc ígscastatg ttttcagtfca gceagattgc 4320 cattgtotgt ggaooacsfcsfe teggaggtgc ttfceacfceiia caegceactt ggcgacggtg 4380 fcafcgttgaec tttggcettt fctstgafctgt tgfcecsfcgtt éfccacttggja att&aggctt 4440 ttatateããfc cteeccateg gefetgtcgc tgestècotc cttçtegtca tcsceataeç 4Sôô cgaccga.att tcatccacgg acagcgaact ctegaecgsc sâaceaatgg ccaacataaa 4S60 atccacactt egcaaaetgg acettgtagg etttgtggtc tttgcagcet tcgcaaecat 4620 gatfcSc««:tç gcactafaat tjggcjAgçjgtc gaccfcae«Oc tggcgaagfct;. ccgfccatcste 4400 cggecrfegfetç tgtggcggag ggtttgctct gattgqgttc gtfctatggg agçgtçatgt 4740 129 PE1149919 tggcgatget gttgecatga. tteefcggetc agtggçtggt àaâíjgaeaag fcgtggtgctç 4100 tEgttcâttfc atgggctíttft tetcfcggafce «tfeget*fte tttfcoctact atefeaecfet <sse ctacttccog gctgegaogfg atfftsteftee eosaasgiigit ggtssgtees «gttgcctgg «520 aattcttggã caafteatta tgget&tggt tfccteeettc gçsagtaagt gaaactcgcg «580 tacacatt&t tefceeaeeee gteeaÊfctefc afcggetectt teí-fcgceaça aeegtctgae 5545 atcsBfô«tcg gatatesffcgt ataetgaeat afcgaegcaee agtçggaaâg acagfa&acE §165 atetgccfctg ggEectaggc ãgfigçEgt-ÇC tegtçgçcat agfegçaggt çtggtatcCá 5165 ccttecagcs ccaiacatca acfcgfcgaaat gggfccatgia ccaatfctatc gcgggcttcg $220 gtogtggtfcg tggeatgeaa acggtaagct. atgaaacetfc tgafceatcfcc teaegcfctte 4280 ggetttgtat eaa.agca.aga aga.gcatgea aoegetagac gctgaeatca »t*ct«aatg 5340 gceageetat catcgceatc easagcaafc tttcgccega aeaaggtgec Etcggaatfct 5405 çtíctcgccgt. gttfcggaçag aegtfctggag gatçgetctfc eefcggactfct gctaaeetíig 4465 tctxfcgggte cggttfcgsga. aetggecfcga gcaagtatgc gceeactgtc gacacgcagg 5820 eegrfcgaeggc ageaggggtfg aetggettea gagãfcgfcggt eagcaagaat aaeettecag S580 gg$ttgta&& agcfctacagt ctqjgcgttg atcatacEtfc ttacEtagca gtgçfgagcfca S640 cgrgcgtgese ffcttftgtet grectfcfcgg*» tgggatggcg faegattgea aceaaaaacg S766 acacccgggc tgEgeetgag aetgafcgctt gseegcgttg cfcegatagac acatt#ccgt 5760 gsetccacaa agaafceteea cetoettoftt taátgeefat fcfcçaaajjâtt ctatatgftca 5SÈ0 ttg«®fif©g« cecatgte&a gtgtaagwse ateteafcggt* cetagteace gtggoEagst 5880 tgpgcaacata fcaaetatgtt gagattcata gitsgttagt- tacggeatct gaçastggat 5440 g»fcfcg»fcgtfc tcaggcatcà aEsefcgstae cteagga.*tg »a.tfiagBfce» acattcaaec. 6505 taafccagtsa gttatagcKt gassaasgiat: feteaeteatE aaa.taatí.ae gagggateag 6060 aeetaaaeae tctetggraaa sggaceatet stttafcafcat tcttetfccec tactaettgc 6X2S atcgtaaáEfe &c*ecaâc«$ «t**ac#fcg* gatacccttE ctggccgttc actctaccae «ιβο cfegectetet cs&tgcattg tgctt&tgaa aa.tfcatga.ea ataacaaeea atgagaaaaa «24G atatgateet· eetgcaatga âtecaCtgga gggggtacgg ggctfcggaafc gcteeta-sga «São aeeegaecta atcagcgtcg agcceg&tea gtagctgcag caceeggeet e&g&gcatfcg 636® tteggaacag ggactgtcct ggttccgcct gacggggaga cacttcgaga aggggctgaa 6420 gafcgcegggg eagaacggfct gtgftgccatç tgcgcettga ceaggtgacc ggcggctagg 6450 geagcaeafc*. gegsgagcfce cecageeaaa aeagegette egafcgáfcgcg egeaagttg* 6546 cgtfcattct caccgiisgt fftcggftgt gatccgcgga c&ecaagcat ftcsagcatt 6606 fcgecetggg gcteeagaat egtaccaccg cccaacgttc caacctcaat agaçggeatf 6666 gagacagags ttfcgaagega tccgcgaaga ctaaacagga ttagtgaatg ttfcecaagta «720 *9<^egocget ttco*ctt»4í ttfttcatga gagteatgca gttogcgcte tccaeaa<stt «700 gcgccggatc cEgaçctgtg gcaatgaaaa tggctgccgc aagattggca gçttgggcgt 6640 PE1149919 130 tgaageegce aaet-gãgcea atççaeaccg cttcggeoac a&tgrceefctg ecgta&ágta attteetgat ccatsacai; t. çagtgçatgc eagtagtagfc cttaaatcga gtaagçgcgc «aa&cstgstg cegaatsgag ceagatetta ggcetcgtgt cafcaecgtcg cctfcactgec «eggetagcs aatãaetçtt geçgtcgats caataacgtt etcgeaacat gsjfctegsgtg ctcesgeata agcggcgaac cttgaeggca gaaccttfccc esgca&ãgaç tcfcgefcfceag eaasfcfcgtce etgfccttfccc ctc&gctcgc catcactgte aetgteggtg fctgafctgaafc etgaggggtc caacfcggafcc aafltgggtga tgãacagata gçtgttçag» ggacgggate ttccaggctg cgtfEagcfct cg&ggtacc* cgaggscagt gaccàtagte gteaaetfcce aget.secttg fcfctcggfccca ag&fcgafcâta agçeg&tgtt gacgaggttg gaâcSCtget geetiteata eatfcgefeggt egcgacaefcc accfcatftt fatacgaegc. tgtagaatat .aaaea§eafS agtgeftftag eccaeífteggr ecacgtagtg geacaegat* tgatggtact fcfce.sgca.atf fcfceggfcgefcg çaç.agca.taf gccafcagcgg aeccaateag çKçtttasga çatççetgac ceccg&ccat egstccaatt. agggtaat*a tatteatsfce fccçacgesefc fcs.gaa3.tcat afcafcáttaagt gagtaecggc gfctgaattga aggcttefctt gcagc&cesg ctegtsçàag «csgtcsgga ctgfcç«cggc cfcagegaçga ggaegeeetç aeaafc.sggae cggcgacgcç gcaesgagea egegtfcecea cfcfcgtaagct ctfcfgfcãgfc agagtgcagt ctttg&gact aaggc&acga catcctcstc agfctegr&ttfc gtgtgcgaga fctagfcgaect ttagagatge gtggtaggag tgaacactct tggfcfcetga» eagcgttgaa ctegggagafc taggatctfct fcgacactta fggcsagfcge gtgsfcagge taeegaecat «ggtgaatgg aaggafeaefce gattgaccge gccctcttgc aagggetcaa, gcgggggttfc CtggêC«*cg atccattega aegataaggs aaeeaaegae teatígccaa acagatatgt tcegeegtcc gctgaefegag ttfaggcggt:, tfcaecfcegag oggeâgfceas agaaêâggât atgeGtaagâ. e&fcaecgat ttgtaaeeet tctcccgaafc ge£gteaege taeecfcggte gaeaasaesg ccctggccag attfcfctcgât atgtfcgagct eaçgttcgcc ggcatgafcgg eaaagctgaa ggtttcctafc gctgaaaííCE gcctcfcgtcg attcattccc atagegtcgc gatagttgtc cgcatsefcfct cattacggtc tggccgaegt gsçateaaac tteacscaçg «eegccaccg aggttgattg SStfgttgcc âfcaggaatga «•eagggact ggçstatsge ggcgtagttt tcgtacggea eggfcgteetc gaaatgatag cttctetagg gcataceegg gfctcaaeteg efcgatfcftgfc cacgggaagt tcactagtgg tttaafctaag aetaatgagg ggtctgagga gcttggagae gcttfccagcc fcggfceasgct gafcfccceagfc ctggcggccfc eacaaacacc cmtttggãga fctttecacca actccatact tagttegtae fcfcgãfcgjfgfg ctggaaaagt âgttcatcta aafcggeegrafc cegctcagac agsggctfcgg âaaagigtgg cafceeagaat trgaaetr.og âegtgcaetg tettgggcat acceCcatct teeaacgegfc cttgatag&e agastcgeag ésafcefCafCt agaacâeagá aactaggagc aggatctcga ggegefctcft acfgcgtaat afactfEate tsietgggget agtgatfçtcr ttctcsaagc §^0 Ç3S0 ?02Ô 7β0Ο 'Fi^Ó 72 ÓC 72SG 13M 72S0 744« 7SCK5 ?$60 ?e 2 e 7680 7740 7800 7860 7520 7880 8040 8ΪΟΟe*eo 8220 8280 8240 8400 8460 9520 8680 8640 87 δδ 6700 8820 8680 8540 131 PE1149919
eaae9»«ea& saéeaagasg gggaggecstfc <s$g*t«§tsea «çteatgcfce atcggaaaeé WM etagrectim gg«ea^EGí| sgaccgãgg» gaasggçaaa tgttfãega® asaãgptegc 9Φ6Φ fct3t*8««*g «c«*wsdít!C g«t«ec*»t;* fctfcfccafcgot g*$$*«e«9t $*$&&&***$ 912* t*ããg«g«*t tfafcasacaa cstageacea lga«a*e«ac gtcgagegtt *$*fegefcc« »tm tgataagate a&s&fsetet gteeaggtat egtgeaeeoa ttgageaagg etgegtttfcg 9240 tgtgagecet ggtageette aogatftoaoa feefcggogOfce oatetegafee *atfc9«8t«tt 9M0 çc:tgcaa«fc cafgteggea çtgrfctgctfg gg*tt*efe*g aaeageageo *çg*ftfcc«g $**« gofcgetget gíattccaoa gggaeggogf» aaoottoate tttcgaatag geggcKaaag 9420 ggctsegaog* fcgagggaagg £ea*tcfte*ff aoaggtte&ç asgsaggggta &*»*W**P9 *♦*$ gtgaggeofo «tgagaígc» «ececataosr acoccggga» tmcmmzz «fctagfegm 9U* gaogftKf&a »ftçt«og«.g» aca&ctgcat ccccgoçgra» gçççfcgçcaç Uceagecat 9*0« seEgsgfgee efctegastfco s&«$p®ea« agagéccêàt tc«gem«£ 95$§ cáacfttfciíí ggggecafcgg aaga*go*g® o%igagfc«g teeaaegéafc gfcggtaetag 9720 ctagaafcôg® tàtgftfcaà asggtatfp, «sggfÉfiag acacfccgtt ttggafcagaa $?#« atfcgfOgfcgt ggaggtc&at: gceegmfctoe ééfagagtag agggtgetfe egae*.c*«g 9090 *tcccc«aec gsgasagcg* gastggtagaa a^aafegsc catgctgaa* ggtctgtgot 9900 aeagctfcgfá f&gftscctà tagctagfSã fgctetgáfà aàagaatcta gtcagetctg 5950 c*aa«$g§§* egpaaaagsr® «*««*»*#§ g«#fct»s®g« togagatasa gfcgcssaoct 20020 cca&aatega aEgagçaaçc taatogsfcfca ggagsotagg fcMssatetfe- egoogtagat 2000« tgg&gg&agf ttftísfseo e»ggggOt-f fg&ggfaoa» eigaaeaffet eotagffeasf 2«M© ggaaatgagt sg&ag&aaaE aae&aâtffc fegegceeet gaggctgagg cagegg&aaf lasoo attogcEtos tt«&e«a£gc sfcefcgjgfcéc» efcfcSfcafcgaa tggattcatg aeeggEffce* 5.0200 astgetgee® agggoataat tggtaagggcf ftaeeaageaa aggatagtag gaat&4acrvgç 20220 astgaosíoot: agtafctftgtg çtçataaeoa tg«eeãgs.te «caaggfc«tt Eatgosta&& 20380 tft0*s«6t«£ àeocgafaaã «àagàat.teí. ggfgàcaéca ate»attg«e çt$atá«««a 3.0940 ®8&a«gfcg&* «oe^ooiat tgttesga&a §£&g§$3*s* ogaeea&fca*. fãsafaacac lôSOO taeetaasfta tnngmmttxt gteetgeet* fátccgaeat: gtootottao I09S0 aEagae^too tfòoogaogt ttetaaoctf aetegoasif fcggtccfcm ttfgtfgggs 2M20 ggeaagcfcgc *«sg»&«»C8 «©oggácgaf gccaçfeçogt &&gpatogm aatomifõ 2«$»® gcecaeggag fcaafcgeace* egaaaeaeafc tcttetegas se§açE»etfe aegeagggat 10240 gutsggm íotcctgtcc acgaaaagce agCftcMcc «sjeeceeGee ^cescceee llMOO cs^tatcatt tafcsfceaffca aaçageaaçe tfaaéaagat aeceaggtag acaagaagte SÕ06S agtttggsgt afcagcgtata gactcgggaa catEtfcgtgt ggaeeOcHft açftgoetst 1092« «ataa&egg^F ççõoooggfec tetspttâce *««fgasíòa umegggg&t tgtigeoáag 10900 g«tl<r3.atat tcfg*gcatg gattfcçofett gtgeatgggt ««gagtgfgg tgasfoaagg 21040 PE1149919 132 tettggtsets etcce§«ttg gfagttetga ****§*99«* «gggte«c*t gofcoatgatg ge&tatatfct tgtttgcttg tcttagtcsa tgttggaaafc tgaetfcacca actgçtUai accttgggâe sgg&fctssec açtaagecfcfc ttggtttgat agctcg&atg sgtatttcge cctccattflit açççgaaaac taectggccg teecatcggc gtttcgacte gggettatcg «Ctétáãggt áttgccccga gcafcagcatg ga&tategtg fcoacgLccaa. gatfaaaaca eagçttatgç atetataget atgecaggga çctaseacca gggcgractga tatateagtc eeg<rogf«a«c cgcaaccgc* acegcaaeeg gctctaacae atecaegeoc attgeeatag cããGgã.gfceç acagaafctfc tgggaaatgg tcecefccctc geeafctcaat gtgetge$gag ccgtgagtat ctaaeatgca tgcatttat» agcafceacfcg aagsttggtt acfegactcea ggaeaettea tcgacgagg» tcctgctt&a gaggtcgcca fegtatgattt attteaatfcg ggseagtgea tgg&tecgc* gtatcggccfc agtggtatgfc agt.gtgggtc ateeteaetg ggtateaeaa tcgatggtat gfcaggctct eaôgaetate agfatteget caatcgfcgae ggeascteaf gaas&âtget ttegaacegg «gsgtgmcgg ttgacacggc ctgmgacg awsettaegfc» «tggggaptc ag atacagec ecegafcgttt ttgfetacfat gfc.caaa.cctg gagagfccfctg aacfcaagcsa teettfttfcse tctcgascfee ttfcfcgatect egageg&atg tgftãá£ãM ggccctçQGt ââcgcgttgc gagagacage gccgaaccag gatggcaasa ogesgàãáág fcetgafcccsigj gagfcgttaeg cgfcacgfegga ggcceacgga actggaaeac fctteagcagc ttfctaaagga catectefegc ç«g®tgstca tgccgcctte cga&gtagaa a.fccgfcfctgct egcg&tgaat tgsgctfcc&fe ccgataafcge aa&ttttggg gattgtgtat ggacccatcc cgcgcteagg çcstsaaeaa tccaagefctt fcccaaggefct tfcggattftgt âtcfcgtgtac ggagtatçgg attctgaeag fcctgacetg tfcfccgtefctg fcEcgaaggtfc fcgacgaeaga caatgcet.ce çgaaceggta gfcggfceeggg gfcfctceeatg ggcaeagage aaeecGgaac t-acgeatcac gtgteggggg setgtagaefc gfctggaagaç fcatc««cggt aatgaaaeas cgttggaatg aacasfcaeec caacegeaac cgcaatggca ggctcggctt ttggaatggg· .afcgtcgatfcfc gcfcggagacg ttgaaagagg aggeagfcgec tggtctaagg Sataccaec© gaatggçgaa agggfcegggt tcttgtttftg asttatfctga© acaagatttg aggatgactg gstag&ceca cgfcaaagggfc fititgacgrceg cgttcttcaa «afcg*cc»ca ateçaacecg ggwcgcagag atefcaaçsfct atgcttgagg tggtctaBga atcgetggag taageaaaeg tcaetgacca tcsfcccageç aofcaegtcgg tgtttgtSfifff tgtcatgtac cocgagacag ttecgegttá tttcataact atatcaeaet tctacgactt açgtggteec acattgaecg cactgcaett ggcgtgccag ategttatcg gtgcaaatct tctgctcaat gggtgagtfct teegaa§aag attccagatc tcaãtgacag atttttgtcc ceggâfcggt* gata&ggtcg cgggga&gga atfcgecgefce gagaccaaga ceçtstecga gccgfccatte cacccgcaat tactgegccg agtgetgtgg ataaggctgg getagatatg tcgttgaect caaetggtga ccccettgaà atetcagcaa accttggfctç tgtgaaagça aatattggec ιιιοΰ mso U230 112 βΰ 11340 11400 U46Ò 11520 iisee Xl«40 moo mso 11826 iióec 11946 12066 12056 22126 12180 12246 12300 12360 13436 12466 1254» 12606 126S6 12720 12786 12646 12966 13S€6 23620 23680 22146 133 gtsfccaaags fcçeecsfegtc tgctea&gaç tctgteaata actEcggétt tggtggttcg cgogeateat tggccetgec agsggatças agggttfágg âtggtfceeaa acagsgcegc gcfctgfccgge gaaegafcegc aageetgfega ggggaaccefc tccEegeeag ectegcetat tggacgtcag tgtaEíftage agacãgeett *«ea*teaae eaaaacgagç gaatgagaaa ggggegcagt ggcatgcaat gggcagagag gegattcfcfcg aatgtgatgg ctacateaag aagttgcgag cccgggaaaa gtaatactgt açagsggagc teeaeegtga tgsgetgacg ecactgtcaa eegcr-aseea aaçtgçactt «eaâegggg* taaecaftca ctcaagtggã ttatcegegc ggtcggccat tgggâteaet aagcccgcat tggcagccaa. aggacgaatg .aatgtttac» tttcgcgtct csâcesggag agí.caes.gtá gtgtgscggt gtcgggâgat ttaeaegeeg asggcatctt taccaggasa cacatgegac castggcag» fcgeetttggg aac&aca&eg «caaíícccaa tgctgacacc Aefeggtagfee geatgaeegm fcefct&aafctg stgctãcãgc cgg-t.agagfct. ísgegtcetea aaagagaaag ccgtcgafegt gafctatfcgaa stesacesag tcatgeagga cetgggtctg etttetegcg gcagaagetc gttggagaca aagggttatg ggetcaaaat ggscgetats gtgaagftac tpgegatti geeggcgtac gagcctcgcg geageegtga gteeaaacag teacggrgãaft ctçtctatsc Eéaèfctegeg gatattccat ggatacgaga tcaegtegtt ttcatcagca tggceatega ggggttttca ΡΕ1149919 atacagoagc cgccagtag-e stggiccagfts fcaatcaaggt ggeettggce tfcggagaags gcttgattec çcctaatgcf cgg&tçcsgc ««aagawwwg ««.^acenoa agâaeatcaa ggtâaggofct tgcgcatteg cagatteagfc tatatftttc aaaggttaat tggcetgcga aâgmtgggac tcgtcgcgca «atgctcacgr teattttgga ateatatgat gtgcatgtea atggtaaece Egagcatggt atatsegttg tgcgfegccaa ggtacgagcaa gactacatta áãteegtcge tgacattgac acactaggct; çtçgçegttç cattctgcca ggaggccttg çttctgccct cagcgatgag gtâcggctcg gstttgttstt caccggteag etggtcaata catteeesgE atteaaaçag gâãetgfgcg cgagttggãã ttttaEffgfc atGaagcttg aggt&efcaae sttesattge aetcgggtas atgatgecga afeaesgECta gtgcgtetcc tttggt.éãtg gggaattcgg gagiesgetg ctscct«cgc agçtggggct tatatacgeg gtgtáttgac eaetaagccc atggcggtgg gteçtggtcg çagfcgagsec gaeggctgEg tggtggttgg atg&atcaae ttgggtgeaa tsgagaaact tgaaaagtcg ctgasagtca çfcgaageet-t ççatfcea&gÊ gçgíieaetg» gagstctgtt caa«tçggafc Ecaaagggtg tatE&tatte atcaeccaag «Eãttggâtç ceacacactg gãtggatagt eteegegaga tgtgctttga teceaacacc àtagggcctc acggagegct tggtggtcca aaággãacãg siètããacta tcccagttge atgtatcgtg etgctacggra gttgstaage asetttecte atggaagaaa afâgeccaga ccgtggaatc accaascccg ttattggaga agâacccàtc cgectcacac ttEgataggc eçtaaatfga aacatgttCE ccgtctgtea ggttcgagca ecatctetcc gggagçfcggc Câagtctfcc caeeagttgc gggggctôge 13200 13200 13320 11380 11440 USOO 11500 11520 13080 13740 13080 11050 11020 13980 14040 14180 14150 14220 14280 1434« 1440« 1445« 1452« 14500 14840 34000 1470« 1482« 14 808 14840 15000 15000 15120 15180 1524« ΡΕ1149919 134 atc&actaca ãctfcgegtga egttgaact-e gaagcagagg ttgíicçEgcg set&segatc aagaaetgge atcaet&ttc tgtgsactca çaetgcaeeg gattaataog ttcggaaiagc gããgactcft« gcaggttgaa tEtaggstca tggfgagfccct tacãegégãa tgggatatsre atteaaaac» atggãèafgg ctcgttttge atgççÉ©aet çgtâccfísgaa tegaeâsate csfgeggeat seaeggfcgtt acoctacgçg aggaggetáá gaastf5“ça& aatateetefc ítggfaegeac «ggeeâgsat caeg£r«£Cf« gtgtttgatg «ctatgatag eggttcttct gaaggcettg ttfcteoagtc ggttgga&gc gaçaeagsaa argoctfeag ctcctgggtx acttggctca aagsa*«ft« gagçaçtgsf gacete-ega»: gatgçacgst csactttat* gi«*teesae aoetggatgg scaeettcag gâésttgega gaçs&sâess getcagece* gageagaag* aatgcctACS ggecsg&gfcc tetegteug gaíctcagtfc aafcagcaatg atgatgeaag afceagctgct aagcagatac aftegeaesag ceagsgaget gatcegaett ttgg«g*ttf gtsgtagge*e gggeggetfe Açç&ã$çç$ã tçgatcgtts tgaçtfcisacr cgfcgagçaat ttgeggafctg gcaagaçgtg gatcccgagc tracaagggfct tgaaogtgoe atgcatgçaa cccgátgçat gaaácgaacs gggggcaast tgattesggE tgÃgaçtáec ggactgttgc caggttggtg gctcagrtgag ãcfcAeegatje ççtggaaeae çscgtfcggae gfcicgfcfáfcfc gtgaàgácga tg᧣tttac asagagaats caaccccgga tacagtggca eteegaeçtc ctteafcettg getggaaagt tetageecat egatcaacfe fcctgggegag ettggggaaa tggagteeto getcettgga gçgçaggete teâtaâtaçc ogefcgatgça cgEteacgtg aggãaãggEc cctcggeaca atttcgggcg áaaãtãatac ctggacsgaa gaaagaagcc âscttgactg ttxaactgtg gat.aaccgga geattgafccc eaacgatctç caeggA«ç«* Etteteagaíi eatteagcsr» agáEttEcea ttgefcgaeae tgoetcggst gtccâtccta ctaetctgga etcggtgate ggaaçaegta tgaaaacggç çatggta^ça ageafcggetg açtfeggaggç tggEgafcg«c aactçteaat eews«*eM« egaççtgges ecetcggàcg gaatccEagt çatagagatt agcttetctg accaaaagtc «gâ*tccaâc Egggcccctg acateagctfc gggtgactcc getgagacga aagaaaãgga aeteatgatg caggaggcEg tcectgattt. gaeaaattet asgesttteg atcggatgaa tgtccaattg Sfceãgttgeg aetggetsag tgacgatgct gctggagaaa gsgtcaatgg cgagatgatt ctasgcegcg aaseagagcc acttgagttg tacgtEaac-g «»aateasatg g<tgcc$atça tgcgeccaca agaaeçegeg ttctegeatt aca.aagctta fctgte&afcge attgggasae gatgtgfcçtg cçgggtttfct egagtcggcg atgaatttca aaaaattggA tattgaaagc acctaígSEg E.ggtçgtgge ttgeçaggtc etg»{ft**cef ttegmaaatfc gete&agcet agggafcsagc tcgatctgtt ctttacette gagectgagc ggaagEcgae gceatogcte aegAgçggfct Eeaacggtgt ggaattggag à&ã4tè»gea s&aogefcso« gâeggctaga gaatcggagg tgcUífct.get gcãeggageg efceeagfcag caatttgtga aaagaceagt gtagatacea etggaaggac atgcstttEt gaggtgggaa gegagâcett caaacccatc XS3S& 1.53 s 9 154 SO 154 §0 1S540· 15« 00 15« 60 15720 15750 1S546 15500 15560 16020 16080 16140 16200 16260 16320 16380 16440 16SS0 16 560 16520 1S6S0 16740 16800 16660 16620· 16S80 17Q4G: 17100 27160 17220 27860 17340 ΡΕ1149919 135 accgcgatgc tccgaggate aacgggaagg tceet.gtatg gagcttgaat cactggaãgg eytct.gcgga gaãggãcftg ggç.dteafitt gycttcgaat ctcagattag acgCCgtaca gtccecctgy ygsgaaayag fcfiseâyçtty afceSScgata gte-gaeggCíi gc-aggt rsac attfgasaaa gtctetfctca gaagegttga acccageagc eafcgttyyca gggttetege attfgaaege K-sgàgsagtg Cât-Ctacàeg gâagaagcae ycgcttetat ggtagfctgffc e«St&3S3S gsscgcacttg afeggtcaagc agaataggt.E. etyfcgttefct tgaafcaaety eatgyaaage aatatgtate ctatctgcaá ttgcagagag ãecaágaãgc tgfâSlttga aaggeaagga ttcgggatgt yegeeygagt gggaecgcgt etaatgtcgt etfctcactac fceEfcyateea ^Sftfccga aaEt.egycafc fceeaay&eta tçctccáagc sggaectgga catcaattga aseatgtcac accccttgcc aagttgtygt tgáãgefcgãa ag*tetgç.ca eaaaggeeag eatgtgaest atgeaccgee eycgaatgae atettçaeaa to&tg§§t§§ egcaccaccg ctgfctggafca acaagcetat ccectcaatt eaacgcactt tetacatatt gttggatctc tatetteaot: asaçygeyEe ggtfcgãggfcs gseyçcaggg tcntccggat eafcggt.fcgcc gatcacaaag atgíigcscta cegtacteeg cgcatatstt eagtgg&get ggtcfctcgtç caatocggat e&egggcsygsi a&getttgac gaaa.aacagc tettesetcg aaaaçtcctc a&acafcogay caatgfeáfcct geetgaeagt. gtggetfcgtfe teeattcata eteagatcaa aattcgsygt attggaegaa gátçfcâç^gggeafgeeaf gagagcCcat cgtggctgaa gçatgaaaag teo&tcaçct ctefcgggtgt ggtctgctge gateettcte ggcegcetcg atccacgtôc acacEfcage cí-çttagaçt gsttggftag atggytcast ctGggtggay ctgaaaggcc gacgaaatgg gcgctttata ygagyegfceg acagcgggaa cáfcatcttet efctgfgegfcí* tgcatggscg agacttgsca tggc&aagag g.agacaa.&ag eaggccttce fgggaegas.c tettaçctagi g&tGafcygeg aeeagict.tge gar.e.aggtea sEGâêacaag tttaatfeaf gatgttgaeftfeeaattacf fycatycçgg actggocgtg gaegfccatgy cccycagctg ctagaggagc gcaccatccg yaaacgcata gcgaeettte egeyasotEt çgfEtGgagea ccctgcaatt aastcgaacc tgyaygccea ctgctgccgc atEgygcgac getteeeaya ccacggcaaa gtcaageíiys ctcaagccâa egãgGaggaa atgtegEtGE aáttcygcag tgsEgeçatt cs&a&agtga. egsttggett gfcscgatgcss. ífíftçccayt t&fct.ggtgg cgaagcecfct saaatoaACi» acaaggfcgefc ftgeeatggfc caaeaegcee tefctegtgafceagetgetggctgtesecat ytgtggccga Atyegttggia tygttscayg agccatgage esaegaaaat eaeecacgag egasgacaas caatgacccg aeccgggçgt tçgagacgac eaaagctttc ccgtgtgaty fcagccaagge càfaacsEag agecgetteg gctacgacga gateatttfcg gcgtgsettt í.gacfctãttc aa&eteatfcg Sfcfctgttgay caccegggac agaagtaccc gattggtcça gagtygtcag 0S9«Sf«.t$9* gstfgfggga gattateeta gtgcgctgte ecsgcfttgfcge tct.Gaaggae aaaagtaeag gefcçteatce e§e«tteeag çgacítgggc ccggçtcgct gaâggçaatc aatcaacâca ϊ740ί> 17460 17520 1.7580 17640 17790 I77gó 17520 17580 17040 10080 18068 1S120 isieo 18240 1820Θ 15360 18420 18480 18540 18600 18 660 18720 18780 18840 18900 18960 19020 19080 19140 19280 28260 11320 18380 1.9440 ΡΕ1149919 136 teceegggfcg eteactggâe aaataetfeè áagtcettea gatggcgtgc gggcecaact ctcsaagcaa tgaefgsaa» tcgteeaaas ««OtfgCâgg tagatcscat etfaaatccs atcgccggcc tqgecgágtt geettttgtc tgfeeaaecs gecatggtçt gaagcetgaa tgeetgaetfc etggatagca f*agesaçaa agtacaeatg acfcawcaggg aagetgtctt etfifcee&fcfca tgatt«e«®e caçgggcâgt gggt&capt ee&cgtcgtt fcgeegteet acfcfcaâcap fcefcaafccc agateggtga ttft&eefgg tagctggegg tatagaagca tctctctctC tgtgtttctg a&agaôggea tcacaatcga ãgeaastagt ttctctgggâ gtttfcagttfc gegtgfetata geeggcgtac catgãfefcfct. atttgtcatc gtcteetggt faascfctgst ttccltcgag agcegãtgtg atcaecffcfcf cgggeatgcg cataastcgg tgtteaEgcf gtctgcagce atagagfcgat gtetetfaga gctfcgtcte litfceatgeag ageeeeçtte teepttaea gfietggcaat gfcccac-aagg aatccatage fagctgagea eeeattgcat ggtatcgaeg ttteagcacg tegtcgctga cfàggcàãae tggatacagg tgcsgaGçaa teetctftct aagcagggtc acctctcacg gctgaçgcga atgtttggrcc tgtcggcgta gactcacteg tftfcfatgtg tcgatçtfcfcg agtfcgtggqj aaa&gcftgtt ggtatagetc pcggagãfta tccaatetp atcgageetg gtaaatagag ataectgasa tgeactcgrtt ctcgaaçccg agcacçccgg aggçttgaet aagcettft,a aatgegcgrtt tgtggstatg tagtcggaag ctcttt.cgce tagccgggga tegfccatcgt aagcgceagt agaaaagctt cattactgcc gatgfccgct. ctgcgtagca tctctcgcac atagecaaag ataaaatgcg tttsactita eggaaaetat tggaataagc tettageaec ggccatgagg Stegttgeat «catscgaae acaggcttca cafccataetâ gcgáagaacc geeçggpça gtattetcca attgagcggt tagggatcafc aattttcggg açagqggcca actçgeectt geggtactgc fcatsgtggc ctgtcgagga get-teagett gtgcggatet cttggcggag gçaeegacga aaagatcegt: cccfccacae cgtaccagcg taetggggeg gctgeacgcc ateteagpt vmg»tett aacãgqggtt. tftfggactt ettegcataa aaaaggacca aegasggífcat ttctategfce tggc^fjaaga çgaçatgtCC tegceatega aettcg».aas ageteatgaa tggtaacasc sagttpafg «ttcagtgaa tagtacgaag gsgeâtageg ggcfcg&gect gact.átt.t.âà fcaceáttáCâ gtegccctgs gaagagtgaa tgctttttat gtcaaaagtt ct et ct fctfefc gaacfgtcga asggcgfctgg &mm9* Sfcscttgtgt tgttgs®t*g gaafíatçaag eaaegectga gsgaatgggg gacttèetta egtggeggtg gfiaatacaca. otctctccet tetaesccaé gctcfattae eçaacetact; cgact*«t*« ceggggaegg sfcgeafcattt gagcgggatg teetcgttgc gctasaa-geg tgaeggtagt astesgfcata fcgagçgagga agcgcgtggg ttccagcega gaaggeettg tctggatcet gctttceeaç seatcagggi: gggaatgaag aggccattgg gsaetegacc ^cttgãtte gaaeagagag gcaggcgtçe aggctgasta aggtxtgggt ogaggcgtãg atgceggcfa gccgtcggcg gtgtcttcaa ettcgctaca catgeggcet tcgtgegcgg çgcaçfetggt 1»5«0i»(sao 1SS80 119740 2.9800 198SÍS 1.&S20 1&S80 20040 201SÍ3 20169 20229 30260 2034 9 30490 20469 30530 30580 29$4Ú .20700 2O7S0 20820 20880 20940 21000 21060 21120 21180 21240 21300 21360 21420 21480 21540 PE1149919 137 cacgcaattt gegfceettgc atacgegaag ttggegagefe gçcaetccte sfctgtgge&g eaaggtceaa fceçattggaa gtcagççaga ggctcaatgc áe&aeEtggc áaEagt&gsg gggttEgtaa ctggtt.c-aãa tgaãeçcgtç gáãcecãfgg agacgfccafct gagttaçs.aç! aeafcgeaeat atetfcfcgefct aatagccgga atcsacaatg tecagctegg accatacgca ae«tfc*ggg «ttatagaeç gactaagaag' cactgcfacc cgacggtcag sagaatíctgg vggaaaagaa gaaagagega aetaatcrcSt cfcfggatfett aaaeccccec cceaatcgaa eagcttcacc gsgcágcaca geeaattgat atic-rscgttt ggaaitejgfisiiâ: Etegt,g«:.&efi tgcfcgggaag fcgggggestt gagtactgafc «rgtgeaagt cteagagatt eaaeletgcg agatctactg aefeaag&ca agttatgg&t caagccaact: gtttccaggt ggtgtcaaea tgtacagaei' aagatcccta çaetcaccce gggcgcacga ttfcfcgatgec tçt£,fcet.fcea aaggctgefcg írtggagaegg cctte&agga. tcctctactg cgtgaegegt gaâttggata ggecEcesac sgfcgtatcat t Egagcgagc ccgactfcegt ggttgaaaeç agtgagçgsg tgtaçcgcca caçceacggc attttgtcgc cgaccataat fcagscaggtg çggfcttgccâ Ecaagacag* aaaaEtgaca teggecaagg tagccaatgg acaaetctgt tgaeaagatg agstgagagt gaaagtccta aatkggaaaat Ççag&ggtça tteegàaact- cgtcggccat aagçgçaggg gcctgccgtt tcgaagtcct. gcctagccct tgcagttcgg actggcgcec gccacaaggg cttgaggggt «jcgagcattg cgtgagacag agaatgagag egefcgcgaeg gtggccgaga gcactcttcc gtttacctgg atggggcagt agaacaatcc gagtg&aaaa gatteattea fcetegtgtg gaatg&egfie gggãgggfctt tgagtaetag aafcggatcfct aaatataacf aeggtatcgs attefcgfcaag aacaaatgtt aggtttaacc çeaatectat atçcaaacga gcç&sttgtg caecatcaaa actttgggag agfagagafct tgacgtcgat acgcascctt tgcatacttg acatcc&agc tggagaggcc £ctátgá.a.fc tgtatecãae etftgtacgt egftatgatf gfeatfccetae ataetetgec aettcttega c&ggcatggg eaagtgctga eagstfcccfcg cggtcgcagt agcatgggcc atggttctEt gcaatatcca gágtftgact gttcgtgtga ctctagtafca tccgcggtat CEtaecctcg ctíxfcaccga ccttgtgçac Etgggggcst tgcatcctgg cagatttcçt tacattcate agaatcttag tacatccgíc aaaaasfcfcgE ggàcgatggg aggatggtgc ttícgagaec ceagcttcge catggtcftc aactcccacc sçgeaaaogg t:aggçgat.ga cgatacccat tggtaefatt atsggaceta tgcaeaçeag gtttataatc gaataacagc sgtcaacctt gaaaaaaaaa tcggttgttt ectttaggag ctog^tttca ccttgataça aecgaataac gccgEatgga gçfc.aggtgeç gsggtfcgcat gaaattgtce gaatctagat ttgcaaggcc ggcttgttcg gtgcceggca t.gcagtgag« çgecc<iaaaa caggatcagc gtagtgggaa geggtEgteg ctgctcaaag agecccggga acattEtaca «eecsgatgg ctgcaggagg stctacgcgg gaaactpttg aeccacagea fcaggeetáe ggâteeaagg acgcaCfect atfag-aetaK aegggfgtãg ctgtesgtgt ccgagtgtga gtfeeae&es actgatfcçtg eagatgacga 2J««0 21660 2Ϊ726 21760 216^0 21509 21569 22029 22069 22140 22290 22260 22520 22300 22440 22 soa 22560 22620 22660 23740 22SOO 32660 22920 22980 23040 2310:0 23160 23220 21289 23340 2MÍ5D 23460 23520 23589 23649 ΡΕ1149919 138 tcgac&eage ctgtagttca tccttagctg cçgtgcàfcct ggcegtccas sagcitagaa çngfgegagaf ttccatfgcg fttgcagccg gtgcfââcet gasattggge eccatgacct ttgtaetgga gageaa&ttg ctgetgeega tggatstgcc agcáafátgg «açtfaeefcc gaa&acfctç agccaggcet· cggtateaso caagatggea agcccteact egggceacst efcgccagttc tttgfâageea gtçgçagaaa gtetctcfcct gaccEHcagg aagctgagge facagcgãcf gcgagaoags aefgaaggtca ctgctggtat gtgatccçgc ca.aacet.get caettgaaaa ttgcaaegga âgagteageg' ttaafcfeeatt gtt»gctaáá cáEàtaôaca agaftatatg gçfcççteeec agatgcatgc agcttgçecc getagaaaat atgçtecaat atatacet.ta estgagaaac eaaggaagta gécefegegg ettcegeaec: gacgcgaatg acagtgéccg ggcatfçtga cgaagagctg gstaattcse gtatgaccag ctcaEgectf geetetatgc tgegccgtac gttcágtgca âttgteggce aateagtgec aetsaagcta tgeetettet ççaafcggee c§eaaaggM ctatgcgagc ttcaecgfat agtgtgsffiet ctttgasfst gaatccactt teaeatôeae eeatgegeag tgcegatgge eaaggtaaçg aacatgctgt cceecaatgg· agaggagtaa gttgacaatg etgtaactge tttttaggaa tgcgegacgg ggacagtatc gaàcgacagg t.ateacaatg afcgceaagge cggcettgat. atggfcaagtg gt&ttcC£tg ceetaaeaeg aagafceeeag tattgcaaca gccttcttcg tgagcttttt gtcggcagcs tgegggetta atgaaggeat gtttgagaag atcagteees fgccacagaa tggccgattg tgft.aaggat tcaactgoac catcaggatt tggtggtsc» acaagocgae ageagbggta ttgtgctttç atcgaagfccg ctccfgaaac gcatgatgac ggtefcacctt gecetfcoegt; eactggagfc tgceategeg a«*ftcctttes cgtaeta.ggt aga&getcát ggtggãt-Sfcg tfcaaacact gectgaaaag aaggggatgc Erccaaaogtc asátegttet ggteegaett acagttcsgg tgaf.ãttgse tcegtattfC gcetctgcgt agaeaggege tatgetsgcg tctfRSfcctt tsfagggtcgg teteefgaga eatggatgct tt$ec«pt«6 ettgagagtt ctccatatgt caaggeatfeg atagtgttge etggttetet tagátct«aã atftgggatg cateaattcc ttfccstaa&aa ggtgtttgct etattgtcct gagtgtgtta tcegagagac ccaaaeeata gcgcacaaga ãttâceâaec çecaggaacg gaagtatçag cettatggaã gaaetggt-áC aeeagecggt gãeaeaagga tggaacaatc teaagaqâgt tctcggtcsc egtttgctgt aegaâatgge gfegfcègeeee gttetatacg ttgcgcecgg gcagcctcgc ttettgagû egaaagtgaa aatgeeeatg efcattatcga seagaggtga cctcagatge cagcgctcca tetaaggeãác gcggaçatge «tgfafcatcgc egtgegsfcr.g cstgcaeacaa gacggtgagg tagtcacags gtctttactg gçç-aaggtgc eeatttgtga gaggcatxct ta.teggecta egtggaeact agaetegeca gcfctctccca ctcgetgeag stggtatcga tgtftsettftf sggcaggat.t ggagfctgfcgt eegcggagea gcaggfcàfcgt cgtáegâtgâ gtcÉfCftecg ctiGlÍaçcaa ateeaieaeg eegaagecgt gaeaaggçet aceattcgea Btggagtgcg actgtgetgt gcEftceacg agaccagcaa 2ÍT0Ç 2Ϊ760 23S26 2M6(l· 23S40 24® ífO 240Ç® 2412S 24190 24240 24300 24360 2442® 2449® 24540 24600 24660 2472© 3478© 24840 34900 24.960 29020 25060 2514® 25200 29260 ΪΒΜ 25389 25440 SSSC0 25560 2562® 25600 25740 ΡΕ1149919 139 gcaa$t$aet gtãcagfatf ettgtcefceg caggctgfcgc sgaaattgge geçcâeectf tgeeggtgtg gagetgccgfc ttttgctgga ggtetgggst ggfettegta eaacasgfcce eocstaetcfc tgggafceata tefeçcgfcggí* ggtgcgecce g*cçtt«oag fcggasjaiact gctasjáàggc cagastgtgE cmtgaaggt® gotggtgago catcaacaaa gcoatogtgt ogaagtcítcc agtgac&àtg etgtctggea asggag&gtg fcggçgoggc* fccâcegteafc gaacaafcgtc aaeatcgsít casagactte egtcgtttgc fgettteett ccacteaagg cctggacatc; gcrgtteçaga acgctcattg tacgtgccta atcfgcgggt; aáttctggtg gggtgatt.tc cfcgsgcggcg rsgttgat.aac actgtcttta cttcgeaaag tgggtctggg fttgstcata gotGgggaoe catca&atce ttcctogcce eeagaagtac attgaatggt gtggt&ecag gagtcttggg gtacacceaa agetgttecg aetcgtccca cccaoa.tgtg ttcgcgggaa eggggateet ataccaacaa getcgccttt ttgçtcatçg çtaccaatcc agtaactagf esgot&geftk aegaagegcg ttcttgcatc tgsktgeeefc ttattggaaa agaeageagt catcactcat «fectcaaggg tccgtgsct* afcaecgggt-g ettgg-eaçgá açatfctggg» gegtttcgga ggscegatcg tgccgfctcaa "tcgtcaata etgggc&gaa «.fcefcteftgefe tggaàâfçtt tcatcaggcc ccgggatctgtccecgetgc tgfgtacata gcgccgcces agttcagctc fctgaagâtgâ aàaeacGr.Ec atgeggatgg ccaagtCáeg agcfctcegac atcogccaas cgcágctttt gecfceaeet tcttctatcg ggaactcgac agaeeatgag oagggesfae atgaat.tgcg caatgagccc «tgtcaUgg agçgfci&tçee cxcacgttga cagagfegact aasccgagct tgegtcfcgãc acatcacggt gtaegattcg agc€t£fc,ct.c tceccega.ctfaccecteac gccegaaaaa sg®s.fgasat tGtgaeçste Sfatãâeeec egacgacçgt gtgaeeaggt tcaggcCgãr. Sffagfaeae ttetgfcfceae tgtfcfctetca ttetttfeafca cgccfegatsc aasgggtegg fcfeggatatca tgaaccgcg* ggcfcçageaa tacacgtcgt attfafcatçc ttgagatcgg atc&srtcgfct «9«fctttft*s acctcaact.t ggttte&aca g&çaâtcteg «stefcççggt egfectaatcg asg-tcgceat gccscçátes acgaígçtçl aaçfttgãeg afcgtggaege fttcggagfca tsgacgccg» ãacsEgtéas 3gt.eat.Cgea tctegcfceca ccegecagca t«tEcSEac& gcacagcatc gaatggctcg acggt.caf.gc attatggcca tggaagetgc ctggaaatct fcggãcstgãg gEggàgetga acttgaeagc gtCâaãtttg ttmtgãttc ggceaaafceg tcat.aaecet gagfàagagt aeecceagat ctecttgggt atgaetacag tcc&ãagetã gcggcaectt etet.fcget.ee aeecagcgce tctccaggag aççgtegcct ctgattccat cgcfccxgtat aeaatcaaca cacacgaeaa «ccaagaeaa cgcttttcc* gcftcgaccg aeca.ccga.at ctgecggagf ãccetfcgãc gagcgaatcg tfcfcsefcfcefca caaaatgccg acctesatte gCtcgggetg gCCaecatcs atcgagcaaa tgtgtgaaag tteecctttfc acttgaagca eaaagaetts atttcasttg tgggttgttç accfagit&Gt tesgpgafcetg gt.tagcca.aa taagtcgaat ctgaaatgta gettggguac sggeae.egcegt««.eaGttg caetgasafcc 25800 2SS60asm 2£9S02$oaoasioG s«iáO K22Ô 2€280 25340 2540S 25450 .25520 25580 26540 2S700 26760 2S820 26880 26840 27000 27060 27120 27180 27240 27300 37360 27420' 27400 27540mm 27560 27720 27780 2784Ó ΡΕ1149919 140 scggcggatg ttattggcss ggeeceftg&â tttgaggcac tacaca tcas caga agccea gatctgattK ttgeafcçega 6gt<?ctcc*t c&cstt&aggt eettfetcaa gasgggtfgt gagccfcgctc gcctcgcctt catctcfcggg gaaactcgtg Ctttgagtgc etcgfggtec çttgggtt-ct cfcggcgfccg* tagt«fg*c* gtettcagoa ««.catfçtgc ggatgeçaee ccafcfcg&agsf actcataccc geeattagtg qjeatfcfcfcg* acgacatgaa agetgeects ct.gg*«s.gtg ttefccfacg* eççggççtfcg gaactfcgatg atgasiftgtt ttgea»eetí. cttcvcfc-tct aegceggacg cacgatgtgg caccaggceâ geaccAcegt· aatgttgaag aegeaegtefc tcg&fcgtega tacSgtggag «ctttgcfct tegaggagag! cgatgatcag gçegãágtgt &çtggígesLa gggtegtgçc aggaacgasc gtatgaacfcc gfcctcgtcgt aeggeeafceg eaetgAsaga ggegaggggs aeeg&gaegt gfcgafciegfct agaagaoget cgctacgctc tKccccaggc aatícgcgtg ggcagtatrc fcggagaatac afcgtgsggfcg fcetasaçtgc atgtaecgag aaactaçaEg gaggat&gtt ecttcttgfct gfecc&cagct agegetçagi cettfcggcte tgatgcatea gtcaaagcaa trçtggagfcc! ggccaaaacc ctgteegaeg teaaaaetat tccggctcct: gefceggefcgs aaeaeagect gccgaeaaac· cggactgetg ccgggetaac caaecgtttg tscagtggtg açtatettac ecgaagtacsa gatmceaa tmsgafea cictfegfca fEe§aeg.aea ctgagaaagÈ tãttacagcc gtcaaeesca. atgaccaacg ettírastctg gtgtscgcta.ggafcfctgecc çatcgacscfc ttgett-gttf gtettaeegsf ggaeettggt caactttccg aafcteaaegçr tetcatgeag gcagageaag gattsaagcc tsaeteetac
Kfççegiitcca actticgagga aaaattggcs çaçttfgtta ctfefceggggt cacccatcgc ceettcgttg «tag&tggae tggagaagae gttgaccaafc gggageatae cc&caafaga cítgategag aggafcgattc gatcccgfcct gctgagçgtt tgtatgaocc actttcfcget getafccggtg gegaateg.ae aaaaaeegaa cegeatagac acatceaete egtcaagcgg éagcçt-aagt çgacttttgt eatcctctcg g&agaggaca agtttgaggc agtcaagfccs ctgacagags atgcetggat fcgatcatecc aeaatcaagfc tcgagaacçc tgaettggga ajacctagaca ccaaafcfccfct csgftgagesa ctttfcggaas ca&taacatg gaetcatgag fcgggfcçecfce gtttgragea ggàÊátfcgcc. ceaâttfetegí grtaactttaa tfcegfcceaag gcafceet.fiat eg&tgtacta tctsgagtca cgtca&gctg gasaagcaaç ígttcgtgfct ggecacetDg gatactfceca tgtcgtgcag cctgçagtcg ecctggctgs gaaga&tgga catagtctgc cegataaeat ggcgga&ggs gêãgccctèc tfcgícgaaac aattctctct atfcefcgatta tggagccCce aatctfeetgc ftacrggRgttc aggttxafcfcfc ggcaacaact tggatcçgac. tacatgccaa ggaaacegac atgatggcat tctttgactt gtctaeegae gccaagttgc taceaeecag fctgett.catg gcetccacat acaaagttag tca.tgLtgag atggsaaaaa asaecstets tgcgtcgact acacaasttfi tctegcctgg ecagetctct gccâccgtca tcgactggaa ggaaaatgag ggtaacttat cttccaacaa gaagaegtafc egotctctct gtegetgsat satettgeat 279&0 2796Ô 28020 2«8fl 2S140 2I30Q 262f.O 283aa 383&0 28440 28§ΰΟ 28560 2Õ6SO 28680 38740 2SÍ00 28860 28820 28080 25040 25100 25260 2522Ô 29280 29340 29400 29460 29530 29580 29540 29708 3 5780 25820 29880 29960 ΡΕ1149919 141 ggcgccegec atgttgtget: aacatggagg oaçttggigg atcacacctt gctaçaaçat caatgagget tcsgtpgatçs tgocggcafcc gcgotcgggo ccagsfcgstg gasstggtgt. gttcfcccgaa cágacgggcà tgcagttstt ggeaaceg&g tetggeeeag caaeggtgeg catcgâcgtc aagttâctàa tacggtgtag ggtttgtcac atgtfctgact cagttgsaga fpccâgegtíg cceggcsgça ett&cc&cgg gtatecesga gaecetcgtt tcggaaaett aaggetce«t· eggeaaatcg t-gattggtsa caaagttgcs fatggtcfcat gagcgtggac ccaeccattc tgfccggctca tggtfcctcaa cggtgcttct gtegéfcgáté tcíffetgetg fetgcasattg aceaaeagaç ageeatgatg agaggafcgaa gagsaagagg gaggttgtee ettggcSàgf eatctxeaae aaeactattg fcgggctccg aaageetçat çgatgactat agcagçgatt cagagtgc&c ttxgtteagg cgagaagaca aactatagcra gggcacagat. gaeeacctgt a.sçagaaa«<? etgtteaatg afcegaeeeaa «te-tetgatc gggggacgat ategegtfeet cgtgetfcces atcatgaatc cactageeig aaccctogac tfftCSfccaec gttefcgt csa cefcçsgçtoac otatccaatt çtggecttgg eaagctcgte «tttggtgct gcaggatgte tgaaçcccaa ggtacasgga gca&ggcgct cgacfcfcííê.ftc gscagtecaa etatggçgçt esagaggâtt ggcggsattt cgcacaacca cagggatcaa gagggesgag atggaggagg gcatgsgctg cacacgcttt àccacagcgc aagacggtca tottgaecofc gegett*»âg a&ãmtteae ggteaaegeg tgecgacçag ctcaaaeaag gttacçEcte atgçgEEçae ctgagaaact ccgtgctacc ctGteafcfcga tcaaggtgfcc agcaaeEeta Gcttgacéfcc ttgcégacga cgcggccacc gtgattseac gggaacctcg aageaãgcte tgetaeeage aegsfcsatgs gcagggaggc âgtafcteetg gaggcagcaa. geatgEtcat gaagggtaec tgcgcegtca cgagatcttc taaatggtee cgtccaagtg tgaacaacge tgcggaggca fcctccacagg tgacactctc tfftaatcgg etaeeaeaga agstegggea gatttaeage tagccgtcca aeagegggaa ggaagtccat gcatageaaa tgatcaatga ccctgctgcc ttgatcccaa afcfgatcgcc tgtaagctga ttg&fcáteaé ggg&tgttge gatefcgaags tgesacctgt atgcKgaaga acatggaccá gcacgcactc ttcatgaacg átcátgfcfctit cgtccftttgt gegaatgcst Moetueagge tct&ccectg aattatcatg ccetespotat tggtgccgtt aetttgatgc tatecgtftc tcgccgaage ggtcgtgtet ttgacatggc ggaccEtgag átçgOáfctãt tftacttCasc: gagacggtgg cgacaatgga OMKSMMJttt agaecaagt.t: tgatategag tccasaçtaa çxccaagttc cggacgggga gaetCiettgg gtgeagtgaç wcacrfccfctga gggtactEgg cgactcccág etac&teeafc gacagegggg çttctecgac seafafegegrfc cgteagscga cgfcaagattc tfccgtcgcga caaâtgçrtaa aagateatac attfaecteg aeqjgttgag cgtacgtgtít ttgctacEgg gttctçaaga acceggagaa gaggaagagt eccggaa.acfe agactccft.feg etttctactg ttagttggtg atggçtcaac ggggtgaaaa tgeagegaee aacctggaaa atgggcgaat gfccscgte&t ctgcgccaacr aattcagagc agcagcaast 310006 306Í6 3012.6 30 ISO 3024 0 30300 30300 .30420 30400 36540 30600 30660 30720 30786 300*6 30900 30966 31020 31080 31140 31200 31360 .31320 313 ao 31440 31SD0 31560 32620 32600 31740 31000 31860 31020 31380 32040 PE1149919 açagceattC âcgfcgrgcagc sgfcatgáagc: ecgaatcaaa gagcggagcc gcaagcacaa ctaccacgtt ttgttggcge gtcttaccgg aaccaaeega. tecsccafcgg aagaàâtttc ectgegettfc gatgagttcf fccggc»gc«« fgseagtgts cgftgággcea tgç&acsogc tcfcaggccfcg aafcetcccta GCtcaggefa gtttçaggçt gtemfatt ac&ageafgf oaasatgacg agtgttctcg ctteecgtga gfcgggatgaç: ©ct«CC«agg «ceeaeteat eeçtgagcae gctçaggcet tvgtsgacca gaacesgfst etgaagttgg cetsgatcgt agtgfcfcgfcfcc etgataaaga fcggafctagaia cteaattcgg cgtcaattga caeacgeata tcttfcgtcaa aatt&efctçt ¢¢¢£¢¢:¾¾¾¾ agttagatag: cgcggtc.cag agtacegtaa cgaaag&cte Cgtgsggaagi gtgaaacçtc gtatstaaatt tegacgccat tgeaaatagt ggfcgstcgaej tggCfcfctaga tgçetgtçafc tcca&âatat gtfccacg&sa taott&tgag ttggasggtg agnafcfceaaa ecgtgtaaga fcftggt.atgg aetaggcatg agagccagag acasatgaac s-fcgaeatett gacetttfcga tgg&catçae tcggtctgtt ggfããâattã ttctgaggca ggtaatgtgt ttcaaeç&tc cgaccgtga» gatgcagfcgt eggcacgttg tcggctctca tgtaatctct ggettcateg ctea&Cfcfceg gaaaccacgg cagttttecc accaatgcgc cctcagagsa ggeeactsfcg gaccaatctt ggacggoctt ttgc«eãggc ^tgggggttg tcgtgtèfcgfc aacggogtca crecatgcctt ggaagacagg aàgeacgeeg geatatacga attcaaactc gtttfctcaac aafcatggetg ççgggsaeee ggcac«gtgg ggegagaaat ctgtaatcct cgetggaete 142 «attgçtcgt ttsgatceca tggtcgoett ggcaaccGec atgeãgttet acetgfccgg çagcaaagac «tadccatcg gcctcgecga ggegasggge ttfetfccgets aegtgctt.cc gacat&cggc gagcaccfctg tageeaccaa gcgggtgeicg tstggegtca t.cctcrgactg ggaaesreaag actçagacaç açgçççççtt tcaagcffag agçegeteaa ttggcaatge gcggactççfc tatgacafccg ctçtcgagãt tSátftcáaa cttcagafet cgctgtatgg etttt-cttca «fccctcacta t-gstctcgat tcsgegccgt gaattcsgat gtgtggtttg attggcaat* gagcagatgg caaatctatc tteatctaea aatagcgaat tcgtcttgta çtcttettts fctgcagcaat cgtaaçates cggtgataaa tataectcgg eagcgcgtct caaggcttgg âattgattfcc «atccatcct feccatagtEa etfgtttaft gecfctgttgt geçtgçtcãg aaçgágectt ccatgateta atggtcgcga cçacfcataac t.aaatcacec t.tagaactat tcaaatfctgt tcftgtáááaa ecttgcfcata eacectgttg tctsacctag tãtagctgtt ggaagcgcte gacegteEcc tgctttecct fàaactcfag cacstctgcs tgtctcgacc ettggagagc aaaatcttga ãttattãgct cgtcgtcgtç gtcttgegçc ctatagaaac agcaaateaa aacagcaatg afettgctftt gatggageag caasgt.ggeg cegacaafcgg gtgoctgtgg gttagfcfesta ccgatcácag ccgctactct atcgçccaeç tgatgofefcfct ggaaccaggt gtagtatgga gsftce^gge tggagctaaa cfgtgeggfec gccacgcgca gtttagagat ctggacgcgg acgcacaafa gagcttttet cggtttgcct afctttetett gfcggtgtgag etgtgi*çttc 32ÀOÔ 321$0 32220 32280 32340 32400 32460 32523 32SSO 32640 32700 32760 32020 32880 32040 33000 33060 33120 33280 33240 33300 33360 3Ϊ420 33480 33540 33606 31660 33726 31786 3384© 3386© 33860 34020 3408© 34140 143 ΡΕ1149919 gtetgfcfccsfcg gggaatttgt tagfceatfcac tqscaaaçfaa atâacaacga çgtagtsfctg 34200 ate 34203
<210> 3 <211> 17 <212> DNA <213> Sequência artifical <220> <221> misc_feature <222> Descrição da sequência artificial: uma sequência iniciadora mista que tem uma sequência de DNA deduzida a partir da sequência de aminoácidos de PKS de Aspergillus flavus. <220> <221> base modificada <222> (6)..(6) <223> i <220> <221> base modificada <222> (9)..(9) <223> i <400> 3 gayacngcnt gyasttc 17
<210> 4 <211> 17 <212> DNA <213> Sequência artifical <220> <221> misc_feature <222> Descrição da sequência artificial: uma sequência iniciadora mista que tem uma sequência de DNA deduzida a partir da sequência de aminoácidos de PKS de Aspergillus flavus. <220> <221> base modificada <222> (3)..(3) <223> i <220> <221> base modificada <222> (6)..(6) <223> i <220> <221> base modificada <222> (8) .. (8) <223> i <220> <221> base modificada <222> (15)..(15) ΡΕ1149919 <223> i <400> 4 tcnccnknrc wgtgncc
<210> 5 <211> 19 <212> DNA <213> Penicillium citrinum <400> 5 gcatgttcaa tttgctctc
<210> 6 <211> 19 <212> DNA <213> Penicillium citrinum <400> 6 ctggatcaga cttttctgc
<210> 7 <211> 18 <212> DNA <213> Penicillium citrinum <400> 7 gtcgcagtag catgggcc
<210> 8 <211> 20 <212> DNA <213> Penicillium citrinum <400> 8 gtcagagtga tgctcttctc
<210> 9 <211> 20 <212> DNA <213> Penicillium citrinum <400> 9 gttgagagga ttgtgagggc
<210> 10 <211> 19 <212> DNA <213> Penicillium citrinum <400> 10 ttgcttgtgt tggattgtc
<210> 11 <211> 20 <212> DNA <213> Penicillium citrinum ΡΕ1149919 <400> 11 catggtactc tcgcccgttc <210> <211> 12 19 <212> DNA <213> Penicillium citrinum <400> 12 ctccccagtta cgtaagctc <210> 13 <211> 21 <212> DNA <213> Penicillium citrinum <400> 13 ccataatgag tgtgactgtt c <210> 14 <211> 19 <212> DNA <213> Penicillium citrinum <400> 14 gaacatctgc atccccgtc <210> 15 <211> 20 <212> DNA <213> Penicillium citrinum <400> 15 ggaaggcaaa gaaagtgtac <210> <211> 16 21 <212> DNA <213> Penicillium citrinum <400> 16 agattcattg ctgttggcat c <210> 17 <211> 722 <212> DNA <213> Penicillium citrinum <400> 17 146 ΡΕ1149919 ggcc&cgegt egeetàftac fgpggfggfg gggggggggg gcttgfctqgc tcegagattc <10 aaefcctgcga tfeeÈgttfca» teccaatcct ategcceaaa aacaggatca gcagttatgg 120
âtesagecaa etafcceaaao gagceaattg tggtagtgw áágcggtfcgt cggtttecag ISO gfcggtgteaa eacaccatca aaactttggg agctgctcaa ajjageeecgg gatgtacaga 240
ccakagarfeccc taagfagaga tttfaegteg atacatttfca cagscecgát ggeaetcãçç 3âS ccgrggcgcae gaacgcacec tttgcat&ct tgcfcgeagg* ggrafcctaege ggttttgatg 340 cctctttctt caacatccaa getggagãgg ccgaaacgat tgacccacag caaaggeegc 420 tgctggagac ggtctatgaa gctgtstcca acgcaggect Ãcggatceaâ ggccttcàag 400 gatcctctac tgctgtgtac gtcggfcatga tgacgcafcga etatgagace attgtgacgc 540 gtgaatfegga tagtattçct açatactctg ccaçgggggt agetgtcagfc gÇggecteea 600 aeçgfcgtatc atactlcttc gactggsatg ggcçgagtat gaçgategaç ac.agsccgta 666 gtfceateett agetgccgtf cafcétgsccg tec&àsofct tagaácgggc gagágtácca 720 1$ rm
<210> 18 <211> 760 <212> DNA <213> Penicillium citrinum <400> 18 ggfecaegcffc egactagtac ssss^gggg gsggggssss gaeEatcaac ggíLtetatKS 60 ecagggegac tgatatatca gtcaátgaaa caacgttggs atgaacaata ccceergccgt 12C aaeeg-câaçe gcaaccgcaa Ccgcaaccgc aaccgcaatg geaggetegg cEtgfctcEaa 180 cacatccacg cccattgcca tagE-tggâst gggatftcga tttgetagag atccaacgag 340 tccacagaag etttgggaaa tggttgaaag aggaggeagfe gcctggfecta aggtcccctc 300 ctogegattG aafcgtgagag gagtataçca ceegaatggc gaaagggtcg ggtccaecea 3$0 cgtaaagggt ggaeacttca tegacgagga tccfcgcttta ttfcçacgecg çgKtcttcaa 430 eatgaccaca gaggtcgeea gctgcat.ggs tccgcagtat cggcr.tatgc ttgaggtggt 480 ctacgaatcg ítt.ggsgagtg eeggt.aEcac catcgatggc açggeagfct ctaãtaeftc 540 ggtgtttggg ggegtcatgt aec&cgaeta teaggra&tcg etcaatcgog aeceegagác SOO agttecgcgt tafcttcataa çtggcaactc aggaaçaatf ofcttcgaacc ggatatcaca 660 cttctacgac ttacgtggtc ecagégtgas ggttgaeacg gcctgttcga cgacattgac 720 cgcactgcac ttggegtgee agagret tacg tactggggag 7S0
<210> 19 <211> 773 <212> DNA <213> Penicillium citrinum <400> 19 147 PE1149919 ggççacgçgt cgaetagcae gggggggggg ggttttfcttt ttttcaaggt tgacrtggaag 60 agtgctctcg gccacaaaat cccagaagca ttagtgctgt tattcgatta ta&aecgtcg 120 cagcgctctc atfccfctcgcfc ctttcttctt fcfcccsCtggt gtgcataggt cctatctgtc 180 tçacgcaatg ctcggccagg ttcttctgác cgtcgaateg Eacrçaatggg tatcgacccc 240 teaagceeEt gEggcggccg cagçgctoct tagtctcatc gcctaecgtt tgegggggeg .300 ccagtcegaa etgeaagtot afcaateeeaa aaaatggtgg gagttgaega ccatgagggc 360 taggcaggae ttcgatacgt atggtcegag ctggatcgaa gcttggttct ogaaaaacga 420 caagcocctg çgcfctcattg ttgatOcegg etattgeaeç atectcceat cgtccatggc 480 cgacgagctt cggaaaatca aagatacjtg catgtacaag tttttggcfg atgactEtca S40 etctcatcec cctggãttcf ãcgggtteaa ggãaateEgc eaggaEgeae atcttgccaa 600 caaagttgtt ttgaaccagt tacaaaocca agecccoaag tacâeaaagc cattggctas 669 cttggccgac getactattg ccaagttgtt cggtaaaagc g&ggagcggc aaaeegcaee 720 tgtetattce aatggattgg accttgteac âegaacagfcc acaetestta t$g 773
<210> 20 <211> 527 <212> DNA <213> Penicillium citrinum <400> 20 ggcca.cfcgfc cgactsgtae gggggggggg gtacefcagga aetgttcagt tgteeeteee 6 0 aacccefctgg gccgaácaae cttectccaa tçfcacgacfg cagafctatac ctaggcgcefc 120 aaccgattag gttgctcatt egactttgga gagactacot agetataggt accactecaa 180 gctgtagcae ggacctttca geatggtcgc ttcgttgeta ccctctcget ttcgcggtag 240 ggaatcaatg aateagcago aecctctaeg etcgggaaat egggeattga ectecacact 300 ecaafcttcta tccaaaacgg cgtft.ct.aea eccgatccai accgtttgca ccatagetat 360 tccagctagt accaeratacg ttggasfeaefc caaagacagc ttcfctecatg gececgcaaa 420 cgttgataaa geagaatggg gefcgfcttggt cgaaggaagt cgaagcttga fcçaccggeec 4Β·β acagaatggc tggaagtggc agagcttega eggggatgea gatgttc S27
<210> 21 <211> 522 <212> DNA <213> Penicillium citrinum <400> 21 148 PE1149919 ggco&egcsft cgaetagtae gggggggggg «999939933 ggatccate* aectgacttc SO aggetagcgg aeettsaega à&ca&cga$a gcfagatcat tcafcasacc» aa&çaçafgt J.20 actatagaag egeegegcag tagagatfcea eaccgcccefc tgaageaaaa gtçggaagga 180 attgegcgafc gtcageacct ctaccccct* eagftagggge aceoagacea çagaaggaag 24 O aaagtcaa&a tgasaefctc gaagcgactg «gtccaagtc ecagcacafcc acaggcctca 300 agctegggct ggtggttget tcagttactt tegtagcatt tttgatgrtc cttgat&tgt 3€0 eeafctafcegt oa«ggcaate ecacatatca caagcgagtt ecacfcctctg aacgatgftag 420 ggrtggtaegg cagfcgottafe gutetfgcta aetgtgctct ccagçeectg gosggtaaafc 480 tgtartacaofc cfcfcgggsfcfeg asgtacacfct tctttgeett ce $22
<210> 22 <211> 541 <212> DNA <213> Penicillium citrinum <400> 22 ggeeaegegc cgactagtac fgfggggggg ggetcacetc aoafcfcafcttg âtetfeaatce $0 aataattatg tcectgccgc atgc&ãegat ccegacgaac ctacgccgtc gcgcgtttcg 12Õ
«cgcfceatgt gaceggtgtc atgcacaaaa getca&atgfc accgartagca mfcgeeaatto ISO agtccgtget «^ctw ffctgtcagea agccggatta aggtgtgtgt aeagegaaag 240 fctacccaag egcaatttac ataaagaagc cgesgcfcgga ãctaeããgag cçaíagaaac 300 eteâÊaaecg.atgaccgcga eatettetac ggtettctca tcaCtggcag agastectce âsó accttaetgs tcaccaccta pgeatattgg caeefcoggea efccaagga.®» çattateaga 420 «esafceageg geaaeoefc§rc «afcmatga fcseafceaato a*«*t&g**;g *fc««eg*8*e 4Só ffcfeesíceggc ggctggcetg ageçaasfcaç? afcfcsogcgae gaçfscsas* geaaegaate S46 t S41
<210> 23 <211> 20 <212> DNA <213> Penicillium citrinum <400> 23 20 atcataccat cttcaacaac ΡΕ1149919
<210> 24 <211> 20 <212> DNA <213> Penicillium citrinum <400> 24 gctagaatag gttacaagcc <210> 25 <211> 20 <212> DNA <213> Penicillium citrinum <400> 25 acattgccag gcacccagac <210> 26 <211> 20 <212> DNA <213> Penicillium citrinum <400> 26 caacgcccaa gctgccaatc <210> 27 <211> 20 <212> DNA <213> Penicillium citrinum <400> 27 gtcttttcct actatctacc <210> 28 <211> 20 <212> DNA <213> Penicillium citrinum <400> 28 ctttcccagc tgctactac <210> <211> 29 1524 <212> DNA <213> Penicillium citrinum <400> 29 150 ΡΕ1149919 attcgcgfec geaggaatct ctttecttcç ttcttteeaa cgaaggt&ga «o agtaattttg acaaagatac aagacgaatt cgetatttgt agfttgaatat gcgtgtgtea 1:20 attgaagecg aattcaggafc âgatttgcca tetgccctat tgccaattfcc taaceeatct ieo ttstcatgaa eaaçaeteaã aecacaeate tgaattcaeg gegçtgaacg atetaggcca 240 actfccsgagc cigggtteat.fi gagaacatag cfiaggatEga agaaaagtgg tctacaaagg 300 cxtgagcgtg fitçagggfiea tecagõgagc tcfcgwngttt gacatgaatg agtgggfceot 360· fcggfcagggfcc atcccacatc tegâgaacga tgtcataagg agtfcgetca cggg«.»geg» 420 gaacactegt cattttggca ttgcca&ttg agccactetc cgcttgaccc tgcttgtaat 4®0 caaagacagc çfcggsaca*g ggggcgfcgtg tctgagtett fggtteotegf çetgaggtag S40 ggagatteag gcctáfáêag tfigeggatfa cgecatacgfg eaeecgcgcg tgttgeatgg 600 ccccacgcec actfteettf gtggctaeaa ggcgetcgce gastgtcfctg ctgccfacga 660 âfitcatcâas gegcagggga agcacgctag cgaaaaagec caçegcefaa atttcttcca 720 t^tggatcg gttggtfcteg gqgafgcega tggtfcafcgtc fcttgcfcgccg gtaagaegeg 780 ccaeeaaaec gtggtaggog gccaggfcafa açtgeatggg ggttgcfittf fegfettgcgge 840 tcegctcttt g&ttcggaeg gcgaccatfg fatctaaacf ageôsttgct teatactgct 000 gçfsacgtgaa tggetgtatt tgçtgfitgefc cfcgaatfcggrc agcegggtc» ttgafccagat 060 tcatgafcggg aagcacggtt ggsgcafatg acgagacttfc gctatgcatf gacttceaga 1020 aegegatàtc gteecccátfe cgcecatttt ceaggttfcte cegetgttgg acgfetâgafc 1080 eagagaattg ggtcgatggt cgct.gcat.tt tcacceeget gtaaatctgc ccgatcteat 1146 tgaacaggtt çtctgttgtt gagccatcac caactaatct gfcggtagceg attaccaac» 1200 ggtggtcatfi tgtgeeccag tagaastcaa cgagtetgag agtgtcacct gtggsgatge 1260 tatagtttgt cttctcgagt ttccggftacfc cttcctctgc ctccge*geg ttgttcacct 1320 gaaeaaagtg cactcfcgttc teegggttct tgagaaccac ttgfacggga ecatttasat 1380 egctgctata gtcatcgcca gtascAaagc acgtacggaa gatctcgtga cggcgcaatg 1440
aggettEcag agcccgcctc «accggtcge ggrtcaatggt «cccttca.tg aacatgceaa 1S0O tagtgttgtt gmagatffta tgat 1S24
<210> 30 <211> 784 <212> DNA <213> Penicillium citrinum <400> 30 151 PE1149919 aactggaaga atfcegoggcc srcaggáattt rttttttttt tttfctfcttfcc ttfcgttgctt M Ctcagggçoa ctgtsâtggt atifceaggta tçtçtatttã etget&fccea gaagtcaggc 120 at&aaatagt caggctcagc ccaggeterga ttcàgattgg attcaçgctt càgaeeafcgg 110 ecgetatgefc eetfccgfcaet atacetecgfc egagefeatsc cegcttggec agaca&aagg ,240 títfccãefcgaa cccttcãsçt taactgeatt tegeeaeaac taaete§acg aggceggcga 300 tggtgt.tace atteaeg&ge fccaaa-gatcg «caesteaeç atgsjacttça gaiigtgaE.cc aso agtttcgaag ttcaatggcg â«ga.gtga«yt CfeacgTCgae ácctgecagg ttfcttggaçg 420 aggaeatjgte gçcttOtSCC agaecaaae· ttegcáteag cttttccgte attgetttga 400 ggaogatag» aatggectcg tcgtgagagg tgaeectgct tagttgggçe cgcaegeeat 540 etggceettt Ettatgegaa gagacaaagg attggtctgc atgaaggaefc tgfcfgtratc 600 taagfcç<7ClC aaaccgctgt fecctgtltcc «gttfcggçtc ggfeçcagtga gcaCCcgggg ¢$0 atgtgtcgat tcctgt«*cc acagetgcsgg gaggtgatgg aaattgaggg gaagaacae* 720 ggaetgeett etccaasaca tccatgacgt csfcfctteatg çataggeEtg taaectatte ?so tage 764
<210> 31 <211> 764 <212> DNA <213> Penicillium citrinum <400> 31 ã㣱ggaaga atfccfeggee geaggaattfc tttttttttt ttttttttte gâátaaaatg $0 egttttattt taetaaeçta çtcgaçtaat acagçaeeta gtttetçtgg epcggaaaee 120 attggaataa gestgggg&c ggâtgcatat ttgtfcttagt ttgcgtgtta tatefctagca 160 ecggtcatga gggagcggga tgteetegtt gegeeggegt aecatgagct ttgtggttgg 240 acgeatacga acgctaaaag cgegaegg&a gtattcgtca tcgtctcecgi gtacaggct-t 300 caeateatac tgaaccagta tatgagcgag gagaatottg atttectteg aggogaagaa 360 ccgcectggga caagcgogtg ggttccagcc gaagccgatg tgateaccgt tggtattctc 420 caaetgagcg gtgsaggcct. tgtetggatc ctcgcgca-tg cgcaiasatc ggtagggatç 480 ataattfctcg gggtfcttece *<?*c*te*gg gtfcgfcfcçafcg çggfcctgcag eaacageggc 540 caactcgcec ttgggaatga agaggecatt ggatagagt.g atgtctctga gagcggtact 600 gegeatagtg gageaetega eeggettgat tcgetgegtc tctttcatgc agctgtçgag 560 fagctteags ttgaacagag aggeaggegt ccagcecect tctecgatta cagtgeggat 720 ctctcggcgg agaggctgaa taaggtçtgg gtgcçtggca atgt 764 152 ΡΕ1149919
<210> 32 <211> 765 <212> DNA <213> Penicillium citrinum <400> 32 âaetggaaga actcgcggcc tcaggaattt tttttttttt ttttttcctgg aaaaggseca 60 tctnttfcatA tattcttefefc ccctactaot tgcstogtaa afetteaaeââ eatat-aasea Ϊ.Ϊ0 t0Sf3t.ãffi'CC trtctfgcsg ttca.etet.ac eaeetgectg teteattgca t.tgtgctttt 180 gaaaa&tatg acaatascaa ceaàtgagaa aaaatatgat ccteçtgcaa tgaatccãçt 240 9sasrs3sgí:a eggaggttgg aafegctecta agattcegae ctaateagcg tegafcccfa 300 tcagtagcfcg cagcactcgg ccfccaftgca ttgttaggaa caffgactft cctggttccg 360 cetgaeggSIS agacacttcg «gaaggaset fifaejratgceg gggcâgâacg gttgtgcgcc 420 átgtgcgcct tgaecaggtg aceffcgget agtgeagcac atagcgagag ctececagec 480 âsaaosgcge ttccgatgat gcgegcaagt tgacgfegcat tetcaceggg agtggtcggg '340 tgtptecge fçf*etcc«af catftcaagc sttgcjceet ggggctccag aatcgtacca 600 ecgcccaacg ttccaacctc aafcegaegge afcggsgacagf âfatttfãaf egatcefcga 660 agattgttca tgagagrgat geagttafeg ctctccacaa cfctgrcgeegg ateefcgacet 720 gtggsaatga aaatggetgc «sgseaagafcfcg gesgetfcggg cgttg ?65
<210> 33 <211> 802 <212> DNA <213> Penicillium citrinum <400> 33 aaetggaaga attcgcggtc gcaggaatct tfctfctttfcfct tfctfctataga atefcfctgaaa «0 tcgacattaa ttaagf.ar.gr. ggagattctt tgtggaggca eggtaatgtg tctacctagc X2C aacgcggtca agcatçagfce tcaçgcaeag cecgggtgtc gtttrtggtt gcaatcttcc 180 geesteceat tceaaaggea aacacaaacg tgeaegecgt agctcccsct. gètãagtaaã 240 aagtatgatc aaeggcgagâ ctgftaafctt ttacaacccc tggaaggtta ttcttgctga 3ÒO ccacatetst gaagccagtc geeeetgeeg eegteacggc ctgegcgteg acagtgggcg 360 cataçttgse eaggocagtt ctcaaaccgg acccaaagac aaggt tagça aagteçagga 420 agagcgatccr tccaaacgtc tgtecaâACâ cggcgagagâ aattecgagg gcacettgct 480 çgggcgaaag cgtgctttgg aefgçgãtcfã tãggeftttg catgceacaa ceacgaecga 540 agcccgisgat aaattggtac atgaeceatt tcacagfctga tsfratggggc tggaaggtgg ««0 ataccagsec tgegeetatg gogaegagaa cagsgefcgco tagggcccaa ggcaaatagt 660 atcctgtctt. teeaafctgcg aagceagaaa ccatagccat aatgaettgt ccaagaafetc 720 eaggeaaeat gtaeacacca ctçagtgfcfg gagaaaeate ottcaeagcc cggaagtaga 78« ccggtagsta gtaggaaaag ac 002 153 PE1149919
<210> 34 <211> 562 <212> DNA <213> Penicillium citrinum <400> 34 aaâçijgaaga attegeggec geaggaáttt tttttttttt tttttttfcac taagcaatat £4 fcgtgfctfcctfc cgctaatgeg aat&tfctect tatagea&e§ tcgcaacac* tttatogtct li®
teeçtgaggc ctttgttgac ttgggctett cgtetcegge ttegteaete e&aagcacag IS-D '.ataffsgacg agagçjecgge gttatggttt tafctfctcagc gceaaggatt tgeeaegatg 24 0 tgcttggCât atctgatagg aetagacgaa tagatgccgc âgccccgtgc tcctgtgccs 30-0 teeceaaage agfeçtcaatc ecactcaata gtcgaaggct tscacgç&ât gtsgtgcãtg 3(5-0 eagaagataa ggeftgeatg aatgggtcg& gatgtgaeat fagctcgceg afcetgãsgat; 420 tagagtgaaa cgãffgâagt gcttcggctc tfcccattgte atttetagtg gttgagecag 4t0 aeeagrtacea -eteeattcgt gtgECttgct tttftocaca aggrfcfcfgfct ttcateaect 5*0 cggatagtag eâ-gctgfgaa ag 562
<210> 35 <211> 26 <212> DNA <213> Penicillium citrinum <400> 35 gttaacatgt cagaacctct accccc 26
<210> 36 <211> 27 <212> DNA <213> Penicillium citrinum <400> 36 aatatttcaa gcatcagtct caggcac 27
<210> 37 <211> 1662 <212> DNA <213> Penicillium citrinum <220> <221> CDS <222> (1) . . (1662) 154 PE1149919 <400> 37 atg tca gaa CSC cta ecc «et tiâãÍ gaa gsB gaa cea egg cca cag aag 4S Met Sex Glu l Sxo Leu 5 Pró Pr o Lye Glu -Gly 10 Giu pro tog Prc Glft 15 Lys gaa agt eaa aae gae acf cte gaa geg set gag tcc aag tCC cag 96 Glu Glu Ser Sln 20 toa top Thr Leu gi.u 25 Ma Thr 01 u Ser Lys 30 ser Gltl eae ate aca gge etc aag etc ggg etg gtg gtt gct tca gtt aet tte 144 His 11* Thr 35 Gly líBli Lys Leu Sly 40 Leu Vai vai Ala Ser 45 Vai Thr The gta gea ttt. ttg atg CÊ.C Ctt gat atg tce att ato gte acg ges ate 1S2 Vai Ma Phe 50 Leu ffet :Le« Leu 55 Asp >Set Ser n« n« êô Vai Thr Ala lie cca cat .ate ata age gag tte eac tet etg aas gat gta ggg tgg tac 240 Pro His Jle «'5 Th* $er Glu Phe 70 Hís Ser Leu Asr 75 Asp Vsl Sly frp Tyr SO S3C a<ft get tat ett ctg gct aac t.gt gct etc cag ccc ctg gee ggt 200 Gly Ser Ma Tyr Leu 05 Leu Ma ton Cys Ala 50 Leu 61r Pro Leu Ala OS Gly asa ttg tat a ca etc ttg ggc ttg aag tac aet tte ttt gee v tc çtC 33« Lys Lfiu Tyr Thr 100 Léu Léu Gly Leu Lys ies Tyr Thr Phe St» Ala 1X0 PhÈ Leu tgfc atfc ttt eta ggc teg gtg ctá tge fft fee gea aga cet tce 304 cym He Phe 115 çiu Leu Gly Ser Vai 120 Leu Cye Gly Ala Ala 125 Arg âer Ser aee atg ttg att gtt ggg egg gee gftt fCt. gga atg «gc tca ggt 432 Thr Mst Leu 130 Ile vai Gly Arg 13 S Ma Vai Ma Gly Het 140 Gly Gly Ser Sly Ctt gtc sac ggá gee ctc aca ate ctc tca aca gct get cct aag cac 490 Leu Vai As» Oly Ma Leu Thr ne Leu Ser Thr Ala Ala Prú Lye His 155 PE1149919 145 ISO ISi 1«0 ít&0 CCS gtt ttg att Sfle gtg ãtW Msi lys Gin Pro Vai Lea ile eiy Vai 165 ate ffte tft sm ecra cég cte gga s?t ile Vai Cys Gly Pro teu teu Gly Gly 280 185 tos cm tgc ttt tat ate aat ofcç Trp Arg Trp Cye Phe Tyr Ile Asn teu 195· 200 ttc etc ctt ctc gte Vai ate acc ata C£C Phe Léu Lê». 2«u 2 te TM Ile Pro 210 315 àfC etc tog ace gac aaa CCS atg Ser mu Leu Ser Tbr tep tes Prc Mat 235 Ϊ30 ege çtg teu g»e ctt gta ggc ttt gtg Arg .Lyo Asp teu Vai Gly ?be Vai 24S atg att tcc cte gea cte gaa tgg %m Mét Xl« set .teu Ala teu Glu Trp Giy 260 255 age Ser tee gtc ate ate ggc ctg ttc tgt Sor Vai lie lie Gly teu Phe Cys 275 260 g«s ttc ftg cta tgg 3*3 cgr Cát gtt Ala Phe Vat teu Trp Glw **» Eie Vai 2S0 29S tet gge tes gfcs gct get aaa ego cisa Pro Gly S*r Vá.2 Àlà Gly Lys Arg eln 305 3XÓ «tg ssr* ttt tte tet ggc tcc ttg ctt mt Gly Pbe Pbe Ser Gly Ser teu Leu 325 ate £»C t.te cag gct 9tg aag gat gtt 21a Tyt Pfte Gls Ma Vai Lys Aísp vsi 340 MS tsc atg ttg ççt gga att ctt gg* eaa Tyr Met teu Pro Gly Ile teu Gly Gin 355 uo ggc tte gea att gga oag ata gga tae Gly Phe Ma Ile âiy tee TM Giy Tyr 370 375 age fct. stt etc 8tc gee ata ggc gee S-er Ala vai teu Vai Ala Ile Gly Al.á 385 390 ccc cat aea fec-a *«t 9tS aaa *ββ gtc Pro Bi» TM ser Tbr Vai te® Trp Val 405 tte ffft egt ggt fcgt srgt atg eaa acg Pbe Gly Λ*» Gly cys sly Ket Gin TM 420 425 *tg ggt att agt cag att gec 538
ítot Gly Leu. Ser 51 n lie Ala 17S5 1W
gctt ttc aet csé esc gce aet §76' Ala Pb* TM Gto Bis Ala Tbr ISO
ccc ate gge gefc gtt jfet gea 624 Pttí II* Gly Ala Vai Ala .Ala 2ÔS gae cga att tea tcc «cg gat 6'? 2
Asp Arç Ile Sei Sei Tbr Asp 220 $CC MC ata aaa tçç aça ctt 720
Ala ASfi: ile hye set TM teu 235 240 qic ttt gea gst tfce gea aec 768 Vai Phe Ais Ala PM Ala Thr 250 255
ggg teg ecc tas acc tgg ega 6x6 Gly Ser Thr Tyr Tbr frp Arg 2?C ggc gga ggg etc gee ctg att 864
Gly Gi.y 5Íy Ptu* Ais teu Ile 2SS gge gat gefc gtt gee atg mfcfc 912
Gly Asp Ma Vai Ala «et Ile 300 gtg tgg tgc tet tgfc tta ttt §60
Vai Trp Cy» Ser Cys teu Mn 3ÍS 330
gte tet tcc tae tat cta ecg 1008 Vai Phe Ser Tyr Tyr teu Pro 330 33S tet ccc aca ctg agfc ggt gtg 1.056 Ser Pro Tbr teu Ser Sly Vai 350
gte att stg gct atg gtfc tet 1X04 Vai Xle Met Ala Met Vai Ser MS tat ttf ect tgg gee eta §gc 1152 Tyr Leu Pro Trp Me teu Gly 380 ggt etg gta tee aee ttc cág 1200 ffiy .Leu Vai Ser TM ptie Çl» 395 400 *tg tae eaa ttt ate geg g*jc 224&
Hat Tyr Sis Phe jj* .Ala Gly 410 4X5 ctt ate· ate gee ate eaa age Pm 21® II* Ala Ile aís £** 430 1298 156 ΡΕ1149919 aeg etfc tog çcc gaa caa ggt cfce ÇtÇ 33* att tçt etc gee gfcs ttt 1944 Thr Leu Ser Pro Glu Gin Gly Ala Leu. Gly Ile Ser Léu Ala val PM 435 44® 445 33* cag aeg ttt. §9* 99* teg etc tfcc efcg g*c ttt fCt aac cfct gtc 13S2 Gly Glrs. Thr Phe Gly Gly Ser Leu Phe Leu Mp Phe Ale Aso Leu Val 45® 455 40® ttt 339 fcee Sfft ttf aga act 99« etg *9« **9 tat 9«9 ccc act gtc 1440 Phe Gly Ser Gly Léu Arf Thr Gly L&Ú Ser hys Tyr Ale Pro Thr ¥al 4S5 470 47S 400 9«* acg Çâ-.j gírc gt& ácS gcá gea 999 9«9 act 93« ttc aga gat 9 «9 1488 Asp Thr Gl:i Alá Val Thr Ala Ala Gly Ala Thr Gly phe Arg Asp Val 405 480 495 gtc age asg aat aae ett «ca 333 gtfc gta aee gefc tac agt Ct-C gee 1535 Vai Ser Lys Mo te Leu Pro Gly Val Vái Lys Ala. Tyr Ser Leu Ara 500 505 510 ftt gat cat act ttt tac tta 9«a gtg gga gct acg 9C9 tfC acg ttt 1584 Vai Asp ííis Thr Phe Tyr Leu. Me Vai Gly Ala Thr Ala Cys Thr Phe 515 520 525 gtg txt cce ttt ggs «tg 99* *33 í3® ãàg att gea acc aaa aac gee 1532 Vai Phe Ala Phe Gly Mt Gly Trp Ars Lys Xlê Ala Thr Lys Asn Asp S3Q 535 S4Q acc gct 3*9 cet 3*9 aet gafc fCfc tga 1052 Thr Arg Ala Val Pro Glu Thr Asp &lâ 505 sso
<210> 38 <211> 553 <212> PRT <213> Penicillium citrinum <400> 38 «et Ser Qlu Pro Lee tre Pro Ly* Glu Gly Glu Pro Arg Pro fila Lye ϊ, s io is
Glu Cia Ser Gin Asn Asp Thr Leu âlu Ala Thr Glu Ser Lys Ser Cia 30 25 30
Ri* lie Thr Gly Leu Lye Leu Gly Leu vai Vai Alá Ser Vai Thr Pise 35 40 4S vai Ala Mie Leu Mee Leu Leu Asp «eu ser lie Jle val Thr Ala Ile 50 55 60
Pr* His He Thr Ser Glu Pbe Eis Ser Leu As* Aap Vai Gly Ttp Tyr 55 70 75 SO
Gly Ser Ala Tyx Leu Leu Ala Asm Cys Ala Leu Gin Pro Leu Ale Gly 85 90 95
Lye Leu Tyx Thr Leu Leu Gly Leu hys Tyr Thr Phe Phe Ala Phe Leu 100 10S 110
Cys Xle Phe Glu Leu Cly Ser Vai Leu Cye Gly Âla Ala Arg Ser Ser lis ião 125 157 ΡΕ1149919
Tfcr Mefc Leu Ile Vai Giy A*g Ma Vai Ma 6ly Httt Sly 6ly Ser 61y 110 115 140
Leu Vai M <3Iy Ala hm Itor U« L«u Se* Thr Ma Ala Wro lys Eia 145 ISO 155 150
Lys Gla P*e Vai Leu Ile Giy Vai «et Met Gly Lee ser 61» 11« Ala 165 m 175 lie Vai Cys 62y Pm Lm hm Sly 62y Ala Phe Thr Gin Ris Ala Thr
ISO ' 185 ISO
Trp Arg Trp Cys Phe Tyr 11« Asn Leu Pro Ile Gly Ala Vai Ala Ala 1S5 700 205 ffee Leu Leu. Léu Vai II® Tíir Ile Pr© Aep Arg lie Ser Ser Thr Aep 210 215 220
Ser Glu Leu Ser Thr Afip Lys Pro «et Ala. Ase Xle Lys Ser Thr Leu 225 230 215 240
Arg Lys Leu Asp Leu Vai Gly Phe Vai vai Phe Ala Ala Phe Ala Thr 245 2,50 2SS M«t II® Ser L®U Ala Leu Glu Trp Giy Gly Ser Thr Tyr Thr Trp Arg 260 2€5 270
Ser Ser vai Ile Xle Gly Leu Phe Cys Gly Gly Gly Phe Ala Leu Ile 275 280 285
Ala Phe Vai Léu Ttp Glu Arg Hi# Vai Gly Asp Ala Vai Ala Met Xle 250 255 3Q0
Pro Giy Ser Vai Ala Gly Lys Arg Gin Vai Trp Cys Ser Cys Leu Phe 305 310 315 370
Wat Gly Phe Phe Ser Gly Ser Leu Leu Vai Pb® Ser Tyr Tyr Leu Pra 335 330 335
Ile Tyr Phe Gin Ala Vai Lye Asp Vai Ser Pro Thr Leu Ser Gly Vai 340 345 350
Tyr Met Leu Pro Gly Ile Leu Gly Gia Vai Ilè Met Ala Met Vâl Ser 355 360 36S
Gly Phe Ala II® Gly Lys Thr Gly Tyr Tyr Leu Pro Trp Ala Leu Gly 37fi 375 380
Ser Ala Vai Leu Vai Ala Ile Gly Ala Sly Leu Vai Set Thr Phe Glh 365 3S0 335 408 158 ΡΕ1149919
»ro Hie Thr Ser Thr Vai Lye Trp Vai Met Tyr Qla Phe Xle Ala Gly 405 410 41S
Pl'e Giy Ar9 Gly Cys Gly Ket Gin Thr Ρτο Πί Ile Ma 11« Gin Ser T 42C 42S 430 fhr Leu Ser Pro Gla Slft Sly Ala leu Gly He Ser leu Ala Vai Phe 435 440 445
Gly ala Thr Phe Sly Gly Ser leu Vhe leu Asp P&e Ala ΑΒΠ leu Vai 4S0 4S5 4«a
Pfee Gly Ser Gly leu Arg 465 470
Thr Gly leu Ser lyé Tyr Ala Pxo Thr Vai 4Í5 W
Asd T&sr Gltt Ala Vai Thr Ala Ala Gly Ala Thr Gly í>he teg Asp Vai * 485 420 455
Vai Ser lye Asa Aeu leu Pro Gly Vai Vai lys Ma Tyr Ser Leu Ala '503 505 510
V*1 ASP Uis Thr The Tyr Leu Ala Vai Gly Ala Thr Ala Cys TAe Phe 515 520 S2S V«1 pfce Ala The Gly Met Gly Τηρ Arg Lys lie Ala Thr Lys Ase Asp 5SC S3S 5*8
Thr Airc Ala Vai Pro Glu Thr A»p Ala 54S 520
<210> 39 <211> 31 <212> DNA <213> Penicillium citrinum <400> 39 ggatccatgt ccctgccgca tgcaacgatt c 31
<210> 40 <211> 30 <212> DNA <213> Penicillium citrinum <400> 40 ggatccctaa gcaatattgt gtttcttcgc
<210> 41 <211> 1380 <212> DNA <213> Penicillium citrinum <220< <221> CDS <222> (1) . . (1380) <400> 41 159 PE1149919 atg tec ctg eeg cat gca acg atfc ceg acg aac eta cgc egt cfc gcg Met Ser keu *>ro Hie Ala "Thr 11« ίτ« Thr fte» Leu Arg Aíg Arg AI*
1 $ 10 IS ttt- ega ege tea tgt gar çgg tgc sat gee caa aag cfcc asa tgt aec 9$
Kte *.rg **g «e* Cye Asp Arg cy* ais Ala gir Lys ua Lys Cys *fcr
20 as 3S ggt age aat gee aat tta gtc egt gct eag tge caa egt rgt raa tas 144 •Siy Ser Ar>n Ala Asa teu Vai Arg Ala Cln Cytt Gin Arg ííya Sln G3n 55 45 45 gee gg» tsa agg tgs gtg tae age gaa agg eta cce aag ege aat tta jgj
Ala èiy Uu Arg Cys Vai Tyr Ser 01« teg J*u 9*0 tys Are; As« leu ao 55 $0 eat aaa gse gee gn get srga set sca sga §ec aea ga» aee tea ca* 246
Mis Lya Slu Ala Àia Ala 31 y Thr Thr Arg Ala Thr Glut Thr Ser Gin 55 23 75 SO ceg atg aee geg aca tet tet aeg çjts ctc toa tea ttg gea gag aet 388
Pro Met Thr Ma Thr .Ser Ser Thr Vai pfce ser Ser teu Ala elu. Thr 95 SC SS ect cea eer. fcac tgc tea rca ect acg cet .set gee aee teg ges etc 336
Prc Pro Vxo Tyr Cy» Ser Pro (ro Thr Hie lie Gly Thr Ser Ala Leu 105 155 110 aag gaa aca tta toa gaa tea tea acg gea aee ctg cas ttc tat gat 334
Lys filu Thr teu. Ssr Slu. Oro Ser Ala Ala Thr Leu íJla phe Tur Âap ilS 120 125 aça tea «te aae ttt gat gat cec gag trçr ttt cce ggo ggc tgg ect 432
Thr Ssr Xle Asn eha Asp k&p Pro (Slu Ser Phe Prs Gly Siy Trp Pro 130 125 146 esg eca aat aea ttt ege eae gat gee aac age aat gaa teí. teg ggg 480
Sln Pro Aen Thr Pho Arg Aap Asp Ala Ακη Ser Ao# Slu Ser Ser Gly 145 ISO 155 160
ata oca g&t tta ggc tee gae ttt gaa gge ect ttg gat goa aeg geo S2B
Ile ΡΓΟ Aap Leu Sly Tyr Ásp Phs Glu. Sly Pro Leu Aap A! a The Ala 16$ 110 175 eer. gto tçg oca teg ccg ttt gac etc gaa gta gag ggg aac teg tea 55$
Pro Vai Eer Pro Ser Leu Phe Aap Leu Glu Vai Slu Gly An Ser Ssr 180 135 ISO tcc gga eas tcc aae aea age aae a.eg ea.a cgs gac ctt ttç gaa agt $3$
Ser Gly Gla Ser M# Thr ser .Asn Thr Gin Arg Aap L*u Pha (Slu Ser 155 355 255 ccg ceg gat gtg tea cag gae tta gag gta ats «te eae g|g gtg act $71 haú Ser Aap Vai Ser Gin tep te# 31# vai tla léu Biã Gly Vai Thr 210 215 256 gtg gAA tffg sce aag caa asa etc tta «gc tao ccg ata ggg gac ttt 725
Vai 3111 Ttp Pr# Lyo 01a Lya lie Lôu èêr Tyr Pro Ile Sly Asp The 225 530 23$ 246 6tg aat gee ttt ggt sga ccg cta eta «ac ctt eaa gaa cgt gtg ate ?$8
Leu AStt Ala Phe Sly Ai« Leu Leu Leu His Lau 61a. Slu Arg Vai Ile
24$ - 3$0 25S aeg age age aat age age atg tta gat ggg tge ctg ca» acc aag aac 816
Thr Ser Ser în Ser Ser (tet Leu Aap Gly Cye Um Gi# Thr Lys Aa» 260 26$ 270
Ctg tcc acg gcg gtg eát tge tae atg ttg tet gtc «a» ate atg aea 364
Leu Pte Bat. Ala Vai Bia Cya Tyr H«c Leu Ser Vai Lye Ile Ket Thr 27S 280 28$ 912 912 160 PE1149919 tca cfct tcc cag etg cta cta tcC gag gtg atg aaa gce caa cct tgt Sçr Leu Ser Gin Leu Leu L«« ser Gly Vai mt Lys Ale Qlxt J?ro Cys 290 295 300 f§ã çaa aag ca* age aea. cgf* atf gat tgg tae tgg tet gge tea aeç <51y Gin Lva Gin Ssr Thr Arg Mae fcep Trp Tyr Trp Sair Gly Ser Thr 30S * 3.1S “ 315 320 aet agra aat gac aat gge aga §se gaa gca e£t ccc teg ttt cac cct Thr ftrg Aati Aap Asn Gly Arg Ala. Glu Ala Leu ?r© Ser Pbe His Ser 32S 330 335 aat et.t. cat ate gge gag efcc att tca e*t cte gac· CG* ttc «tg «ae
Abu Leu His XI® Gly Glu L«u Xis Ser Hia Lau Asp Ero Phe Met His 340 34S 35.0 gcc fcfca tet tet gca tgc acg acs ttg egt gta age ctfe cga cta ttg Ala Leu Ser Ser Ala Cye thr Thr Leu Arg Vai Ser Leu Arg Leu Leu 3SS 360 3S5 agt gag att gag aet gct ttg ggg ata gca cag gag cac ggg gct gcg Ser Glu 11b 0.1» Thr AU Léu Gly Ue Ala GU Glu His SÍy Àla Ala 370 33S 380 gca tet att egt cta gfcc cta tca gat atg cca age aea teg tgg caa Ala Ser Ue Arg Leu Vai Leu Ser Asp Met Pr© Ser Thr Ser Trp Gin 385 390 395 4ÔÔ ate cct ggc gct gaa aat aaa acc ata acg cçg gee tct egt etc cta Ue Leu Gly Ale Glu Aíhq Lys Thr 11« Thr Pro ÀIs Ser Arg Leu Leu 405 410 415 tct gtgr ctfc tgg agt gac gaa gee gga gac gaa gag ccc aag tca aea
Ser Vai Leu Trp Ser Asp Gly Ala Gly Asp G.lu Glu Hro Lys Ser Thr 420 415 430 aag gee ftC» ggg eag acg ata aat gtg ttg cga cgt tgc tet aag g*a
Lys Ala Ser Gly Lyo Thr Xle As» Vai Leu Arg Arg Cye Tyr Lys GIu 435 440 445 ata ttc gee tta gcg **§ *a* cac aat att §ct tag
Xle Phe Ala Leu Ala Lys Lya His Asn Ue Ala 4S0 455
<210> 42 <211> 459 <212> PRT <213> Penicillium citrinum <400> 42
Met Ser Leu Pr© Hia Ala Thr Ue Pr© Thr As© Leu Arg Arg Arg Ala 1 5 10 15
Phe Arg Arg Ser Cya Asp Arg Cys His Ala Gin Sys Leu Lya O/s Thr 20 2S 30
Gly Ser Aferi Ala Aso Lau Vai Ara Ala Gin Cye Gla Arg Cys Gin Gin 35 40 45
Ala Gly Leu Arg cys Vai Tyr Ser Giu Arg Leu Sr© Lye Arg Aen Leu 50 55 €0
Kis Lys Glu Ala Ala Ala Gly Thr Thr Arg Ala Thr* Slu Thr Ser Gin' 65 70 75 80 960 1098 1SSS 1104 1152 1200 1248 1296 1344 1380 161 ΡΕ1149919
Pr© Met Thr Ala Thr Ser Ser Thr Vai Mis Ser Ser Leu Ala Glu Tht 85 50 95 pro Pr© Pro Tyr Cye Ser Pro Sr© Thr fii* lie Gly thr Ser Ala Leu 100 105 110
Lya ôltt Thr Leu Ser Siu Pr© Ser Ala Ma Thr Le« Gl» She Tyr Asp 115 12C 125
Thr Ser lie Aen Ph« Asp Asp Pro Glu Ser Pb® Pr© Gly Gly Xrp Pro 130 135 140
Gla Pr© Mn Thr Fhe Arg Αβρ Αβρ Ala Αβη. Ser Aes Slu Ser Ser Qly 145 ISO 155 150 lie Pr© Mo Leu Gly Tyr Aep Pbe Glu Gly Pr© Leu Mp AXa Thr AXa 165 nò 175
Pro Vai Ser Pr© Ser Leu ?he Aep Leu 61« Vai Glu Qly Asn Ser Ser ISO " 185 ISO
Ser Qly Sis Ser Asa Thr Ser Asn Thr Gin Arg ftsp Leu Pite Gla Ser 135 200 205
Leu Ser Αερ Vai ser Gla Aep Leu Glu Vai He Leu Ris Gly vai Thr 210 215 220
Vai Glu 7rp Pr© Lya Gin Lya He laa Ser Tyr Fr© 11« Gly Aep Phe 225 230 235 240
Leu Aan Al a Fhe Gly Arg Leu Leu Lkm lie Leu Gin Qlu Arg Vai Ilê 245 250 2S5 -
Thr Sê*· Ser As® Ser Ôer Met Leu Asp Gly Cye Leu Gin Thr Lyss As» 260 265 270
Leu Phe Met Ala Vai Bis Cye Tyr Met Leu ser Vai Lys Ile Met Thr 27S 2SÔ 285
Ser Leu Ser sln Leu. Leu Leu Ser Glu vai Met Lys Ala Gin Pro Cye 2SÔ 205 300
Gly Glu Lys Glu Ser Thr Arg Met Asp Trp Tyr xrp Ser Gly Ser Thr 305 310 325 320
Thr Arg km. Aap Ase Gly Arg Ala Glu Ala Leu Pro Ser Phe Kis Ser 325 330 335
Asa Leu Ris xle Gly Glu Leu He Ser Hie Leu Aep Pro Phe Met Hie 340 345 350 162 ΡΕ1149919
Ala Leu Ser Ser Ms Cy* Thx Thr Leu Arg WI Mx Leu Arg Leu Leu 3S5 360 365 .Ser Glu He Glu TÁr Ala Lee Gly lie Me. Gin Glu Sis Gly Ala Ala 370 375 380
Ala Set Ile Arg Lee Vai Leu Ser Assp Mét Pto Set Thr Set Τηρ Sln 3S5 390 395 400
He Leu Gly Ala Glu Mn lys Thr lie Tiftt Pto Ala ser Arg Leu Leu 4OS 410 415
Ser Vul Leu Trp Ser Mp Glu Ala Gly Asp Mu Mu Pro Lys Set Thr 420 425 410
Lyg Alá Set Gly Lye Thr Xle As» Vai Leu Arg ftrg Cys Tyr Lys «Jlv 43S 440 445 lie Phe Ala Leu Ala Lys Lys Mis Aes ile Ala 450 <210> 43 <211> 9099 <212> DNA <213> Penicillium citrinum <220< <221> CDS <222> (1) . . (9099) Λ O O V 43 sttj gat. C&& gce aap çat cea aaç gag qca ãtt gtg gte gtg age 48 Mftt Asp si.» Ala Asb Tyr Pro As» Glu Pro Ile Val Val Val Gly Ser 1 5 ie 15 ggt tgt cgg tct CC» ggt ggt gtc a ac ata eea tea ctt tgg gag S6 Gly cy» Arg Phfi PfO Gly Gly v«l Áert TUr Pro Ser Lys Lôu. Trp Glu 20 35 30 ctg etc ââà gag ccc cgg gae gta cag scc aag etc cet aag gag ega 144 leu Leu uys Cltl Pro Arg Abo Vai Gin Thr Lys Ile Pro Lys Slu Ãrg 35 40 45 ttt gac gtç gat aca tae age cce gat gge set cac c<?e 033 ege 192 Phe ftsp Vai Aftí> Tftr Phe Tyr Ser Pro Asp Gly Thr H1S Prô Gly Arg SO S5 60 àcg aas gca êcc ttt gea tae ttg ctg eag gag gat ct® ege ggt ttc 240 Thr Asa Ala Pro Pbe Ala Tyr Leu Leu Gin Slo Aap h&n ats Gly phe €S 70 75 00 gcc cet ttc tte aat ate caà get gga gag $cc gaa aeç gae 23S Áep Ala Ser »be Mae Aei» 11« Gin Ala Gly Slu Ala 61a Thr 11« Ãsp 55 30 35 eca cag eaa »39 etg ctg etg gsg acg gçç tat gaa gct gta tcc 8âC 336 Pra Sln Gin Ar? leu leu L*v Glu Tbr Val Tyr Glu Ala Val Ser Asn 100 ιΰδ ue gca age CCík egs ate c<aa gge ett cáâ gga tee tet set got gtg t*e 334 Ala Sly Lèii Ai# 11« Gin Gly Leu Gin Gly Ser Thr ax& Val Tyr us 120 125 432 432 163 PE1149919 ate ggt «tg atg aeg cafc gac tat gsg act ate gcg aeg egfc gs.a ttg Vai Sly Mat Met Thr :H.is Aep Tyr Giu thr 21« Vai thr Arg 81» I*eu 13® 135 140· git agt #«t ect «ca tac fcct gee aeçr gtg gta §et gte «gt gtg gee kap set He Pro Thr Tyr’ Ser Ala Thr Gly vai Ala vai. Ser Vai Ala 145 ISO 1SS ISO; toe &ae cgfc gta tea tas ttc ttc gae fcgg cat ggg cog agt atg aeg ser Atm Air? Vai Ser Tyr jfhe Mhe Asp Trp Sís siy ft» s*r mt thr .1.65 230 17'5 ate gac acra gee fcgt agt tea fcee tta gefc gee gtg cat etf gee fte
He Aap Thr Ala Cya Ser Sar Ser Ιλη Ála Ála vai Bl# 3tóu Ala Vai ISO 18S ISO çaa eag ett &g» açg ggc gag «gfc acç afcg gcg gtfc gc« gee ggt gcg gin Qln wu A»g thr sly siu ser Thr Net Ala vai Ala ai& 6ly Ala 195 100 205 aat etg ata ttg gge cec atg aee ttt gta atg gag age aaa ttg aac Asa leu Ii« Lsá ôly 0r© W*fc Thr Pfee Vai Ket Giu Ser Lys 1.«« A»n
Sio 215 220 erg etf tce cec aat ggt aga tet ega atg tgg gsfc gee gct gee gat L#u Ser Pro Aeo Gly Arg S«r Arf Mht Trp Aap Ala Ala Ala Aep 225 230 235 240 gga tãt gee aga gga gaa ggt gtt tge tet ett gte ctg aaa acg ctg sly Tyr Ala Jtirg Sly Glu Gly Vai Cy® Ser 11* Vai leu Lye Thr Leu 245 250 255 age cag gea ctg ege gac ggg gae agt ate gag tgt gtt ate ega gag S«r Gin Ais Leu Arg Asp Sly Mp Ser 11« Glu Cys Vai 11« Arg Glu 260 265 270 aee ggt ate aae eaa gat gge cga acg aca ggt ate aea at.g cca aae Thr <Jly u« Asn ΰΐη Asp Sly A.rg Thr Thr % Ik Thr mt Pxo Asa 22S 28» 205 cat age gea caa gaa gee etc att cgg gee aca tat. gee «ag get ggt Si® ser Alã 6l.h Glu Ala Leu ile Arg Ala Thr Tyr Ala íys Ãla 6!y 2S0 255 300 ett gat att ace aac ece cag gaa ege tge eag ttc ttt gaa gee eat L«« Asp lie Thr Aaa ftw> Gin Qlu Atg ^0 61b She Ahe 61b Ala Mis 306 310 315 320 gga aat ggt «ca cca gee ggt gac cca eag gaa get gag gct att gea
Sly Thr Gly Thr Tro Ala Gly Asp Pro Gle Glu Ala Glu Àlã ílò Ala 325 330 335 aea gee ttc ttc ggâ cae eag gat gga aca ate gac age gae ggc gag
Thr Ala Vhe Ah® Sly His Lys Aap Gly Thr Ile Àsp Ser Asp- Gly Glu 340 34S 350 aaa gat gag ett ttt gte gge sge ate «ag aea gtt ttc ggt cac açg
Lye Aap Slu Leu ?h« Vai Gly Ser He Lye Thr vai Leu Sly Mis Thr 355 360 365 gaa gge aet gct ggt att gcg gge tta atg aag gea teg ttt get gt*
Glu Sly Th* Ala Sly lie Ala Giy Leu Met JLys Ala Ser Kae Ála Vai 370 375 300 cga aat gge gtg ate ceg cca aae ctg etf ttt gag aag ate agt ece
Arg Asn Gly Vai lie Pro Pr® Abe Leu Leu Fhe Glu Lys 11« Ser Prc 3SS 300 395 400 «9t gte get eeg tte tat aeg ea® ttg aaa att gea aeg gag gee aea
Axg Vai Ala. Pr® Phe Tyr Thr His Leu Lya Ile Ala Thr Glu Ala Thr 480; 520 576 624 672 720 766 616 864 612 660 1006 1056 1204 1152 1200 1248 164 ΡΕ1149919 405 410 415 ga& tgg ceg »«t gtt gcg cec ggg cag eet eg« aga gto age gtt mt 1296 C4u Trp Pr» lie Vai Ala Pro sly ¢1¾ Pr o Atg Arg Vai Ser Vai As®
420 415 4IV tç* ttt gg* ttt ggt ggt aça aat gc« cat gct att ate gaa gag tat 1544
Ser Phe 8ly Fh* Sly Gly Thf A®& Alá Sis Ala He He Gi® Glu Tvr 435 440 445 atg gat cet cca cae aag «cg aca ge* gfcg gts asa gag gtg aec tea 1352 tt*t Ala Fro Fna Hl» Ly# Pro Títr Ala vai vai Thr Glu Vai th* Ser 450 4,55 Αίθριο gc& gat gea tge age ttg ccc ett gtg ett feea teg aag teg cag 14,40 Àsp Ala Asp Ala Cys Ser Leu Pr» Leu. Vai Leu Ser Ser Lys Ser Gin 4S5 470 475 480 ege fcce afeg aag gea aeg cfca gaa aat atg etc eaa ttt ctg gaa acg 148®
Arg Ser iíet Lys Ala, Ihr Lee Sly. Asn Hat La® Gltt Fhe Leu 31® thr 48S 4SÓ 4,85 cat gat gae gtg gae atg «At gae ate gea tat aec m ett gag aaa 153«
Hl* top ABp Vai, Âsp fíet Ria Asp lie Ala tyt Ttor leu Leu &I« Lys
SOO SOS SIS cgg tet ate ttg ccc ttc cgt egt gcg att gea gea cae aac «ag $aa 1584
Arg Ser Oa Leu Pr® Fhe Arg Arg Ala Xie Ala Ala Jfie Aa® feya Glu 515 510 525 gta gee ege geg gea ctg gag gct gee ate geg gae ggt gag gtc gtc 1832
Vai Ala Arg Àia Ãla Leu Glu Ma Ala n« Ma Áap Gly Gl®. Vai vai $30 535 $40 aec gae ttc ege aec gac gcg aat gae aae «et ege gta cta ggt gtc 1880
Th* Asp Ffc.e Arg Tfer jUp Ãl» As® Aap A#n Fr© Arg Vai Leu Gly Vai S4S 550 S$5 550 ttt act ggc eaa ggt gea cag tgg ecg ggc afeg ctg aag aag etc atg 1728
Phe Thr Sly Sis Sly Ala Sis Trp Pro Sly Met l«u Pys Lye Leu Met S8S 570 5?S gtg ggt atg cea ttt gtg aga ggc ate cte gaa gag ctg gat aat tea 1770
Vai §ly Mèt F*o Fhe Vai Arg My lie Leu 31u Slu Leu Ase Aas Ser 580 .585 $50 ctg caa aca ctg ect gaa aag tat cgg ect acg tgg ac« ctg tat gae 2824
Leu Gis Thr 2·«® Fre èlu Lye Tyr Arg Fro Thr Trp Tfer te» Tyr Asp 585 SOS $05 cag çtc atg ctt gaa gss 9** 9«« tea aae gtc aga «tc g©c age ttc 1®7ϊ GIk Leu Met Leu GXu Gly A®p Ala Ser Asn Vai Arg Leu Ala Ser Phe' 010 €15 S20 tec cag eet eta tgç t«c gtc fta caa ate gvt ctg gtc cga ett etc 1020
Ser 31a Pro Leu Cya Cys Ma Vai Gla He vai Leu vai Arg Leu Leu S2S €30 €35 €40 gct gea gct fgt ate gag ttc agt gea att gtc ggc esc agt tea ggt x»ea
Ala Ala Ala 01 y llc :Glu Fhè Ser Ala He Vai Giy Kis Ser Ser Gly €4S 8S0 €55 g«g Stt gee tgt gee ttt geg gea gga ttc »tc agt gee act. caa gct 201$
Siu 11« Ãla C>'S -Ala Ffcá AI.» Ms. Gly Phe He ser Ma Tfer Gin Ala 6€c ees €?o ate egt *tt gcg «afc ctg agt gga. gttt gtg toe gcg 9¾¾ cae gee çct 2044
He Arg :lle Ala Mie Leu Arg Gly Vai Vai Ser Ala Slu Hís Ala Ssr 165 PE1149919 tet «ca t&C $9? *8® 9SC 9°ε atg cia gcg gca ggt atg tcg tao 2113
Ser ftro Ser Gly <5Í» Thr Gly Ala Mat L&tt Ma Ala Siy Met Ser Tyr $9(9 $95 700 gat ga« gcsa aag gaa cta tgc gag cfcc gaa gee ttt gãg ggt Cfg gtír 31 $9 Αβρ Asp Ala Lys 61» Leu Cys Glu Leu Giu Ala Phe sis Gly Arg vai 709 TU 715 720 cgc gt« gee gefc age aat tc* ecg gat agt gtg &ac fctc toe gge gsc 2206
Cye Vai Ala Ala Ser Asa Ser Pto Aap Ser Vai Thr Fhe ser Gly Asp 725 7:50 73 5 itg gát gei #te «ag eae gtt $aa ggt gtc ttg gag gat gaa toe aefc 2256
Met Ãsp Ala 11« Gi» Mi» Vai Sis Gly Vai La» Si» Ακρ GXu Ser Thr 740 74$ 750 ttt gee aga ate ttg aga gtfc gac aag gee tsc eat teg cat cac atg 2364
Ptoe Ala Arg ils Leu Arg Vai Asp Ly» Ala Tyr Mis ser Bia ais Met 75$ 766 765 eae eca tge gea get cea tat gfcc aag gea ttg etg gag tgc gac tgt 2352
Sie Sro Cys Ma Ala Prc Tyr Vai Lye Ala leu Leu Slu Cys Acp Cys 770 175 760 gct gtt- gee gat gge caa ggt aac gat agt gtt gct tgg tte tet gee 24oo
Ala Vai Ai« Asp Gly Gin Gly A&ít Aap Ser Vai Ala Trp Pfee Ser Ala 765 796 735 S00 gfcc cae gag acc age aag caa aig act gc* ca§ gat gtg atg ece gçt 2448
Vai Hi» Síu Tkr Ser Lys Gin Met thr Vai ei» Ásp Vai Het Pro Ala $0$ 816 SIS tat tgg aaa gac aat etc gtc tet eeg gtc ttg ttc teg cag gct gtg 2495
Tyr Trp Ly» Áep Ass l>eu Vai Ser 6r© Vai leu Phe Ser Gia Ala Vai S2Ô 62$ 636 cág aaa gea gte ate act eat cgt cta ate gac gte gee ate gaa atx 2644
Gis Lye Ala Vai íla tfcr Mia Arg l*u 71® Àep Vai Ala Ua βΐ» 11« 835 346 “ 845 gge gee cac CCt gct «tc aag ggt ccg tgt cta gee acc ate aag gat 2592
Sly Ala Ki» Sto Al» tas lys Gly Pro Cy» Le» Ala Hwr íla lye Asp 950 855 060 gct ctt gee ggfc gt.g gag etg ccg tat acc ggg tge ttg gea cg* aec 2640
Ala i«u Ala Gly Vai 61« $eu Pr* Tyr The Gly Cya leu Àla Aég Aan 385 87» 87$ 880 gtt gac gat gtg gac gct ttt fet gga ggfc etg gga tac att tgg gag 3698
Vai Mqp .Asp vai Mp Al.a Pfe® Ais Gly Gly ]<e» Gly Ty*· Uft T«p Gltó 885 990 865 cgfc ttc gga gtt cgg agt ate gae gee gag ggc tfec gfca eaa caa gtc 2734 >\rg 6he Gly vai Arg Ser lie Asp Ala Qlu Gly PAe Vai al.:a Gào vai SOO 305 61 a cgg cec gat <gt· gee gtt eaa aae efcg tea aag tea ttg ece aca tac 2794
Arg ?ro Asp Arg Ala Vai ela Aéeei Lea Ser 'uy» Ser Leu Fro Wc Tyr 91.5 ' 920 92S tet tfg gat cat aet egt caa tac tgg gea gaa tet ege tee acc ege 2832
Ser ftp .Àap His Thr Arg Gin Tyr Trp Àia siu Ser A tf ser thx Arg S30 935 640 eag aat ctt cgt gga ggt geg cec eafc ctt etg ctt gga aag ctt tet 2886
Gin Híb &«» Arg Gly Gly Ala Pro Hi» Leu Le» Leu Giy Lya :L««. Ser 945 956 955 646 tet tac age «ca gea teg acc ttc eag tgg ãca aae tte afee agg cce 2926
Ser Tyr Ser Thr Ala Ser Thr PW Gin Trp Thr Aro Phe 11c Arg Pró 166 ΡΕ1149919 965 976 9'? 6
cgf mt- ctg gaa tgg etç gac ggt cafc 9C9 1 sts. çaa gge ceg açt 9*3 297« Aísjí Leu Glu trp Leu Aísp Gil Hie Ala Leu Gin Gly Gin TAr vai 88S 999 ttc çc<r qét SOS tas Ata ete atg gCc atg gua gct gcc ais aag 3024 Phé Ai a AÍS Gly Tyr He tl& Met Aje Met Gin Ala Ãiâ »et Lyê 505 1000 IMS gtg gct ggt gag egt gee gee caa gtt cag etc ctg gaa ate ttg 3063 Vai Ala Giy SJw ftrg Ala Alá Gin Vai Gin Leu Lc« Glu llé Leu líue L01S 1020 çác atsj age ate aac ssa fCc ate gtg ttt gaa gat gas âac 3114 A.ap mt Ser H a Asn Lve Ala He vai Fbe Glu teç Glu Aan Thr 1025 1030 1035 tee gtet çag ctg ttg aea gtce eaa trte acc agt gac aat gat 3159 Ser Vai Glu Leu Aa« Leu Thr Ala Glu Vai Thr Ser hSp ABIJ ASp 1040 1045 1050 qcg gat gge eaa gte aes gtc &*« ttt gtt att gat tcc tgt ctg 3204 Ala As® Gly Gin Vai Thr Vai Lya Phe Vai He Aap Ser Cys Leu íess 10S0 106Ξ «i&q gsg aqt gag ctfc tçg acá tee gee asa gge caã ate gtc 3240 Ala Lys Glxs Ser Glu Leu Ser Thr Ser Ala Lya Gly Gin íle Vai 1070 1075 1006 ata açc efet ggc g«g gcít tea seg etra teg cag etc ttg cc^ cca 3294 Ilé Tht Lee Gly Glti Ala Ser Pro Ser Ser Gin Leu Leu Pro Ptô 1085 :109Ó 1095 cct gag qm paç efiç esg atg «*c aat ftc aae ate gat ttc 333» Pi o Gl« Giu Glu TVT Pro Gin Kct Asn Ann Vai Asis He Asp Phe 1100 nss 1.110 ttc tat CtfíT Cffiâ ctt gac crte ett ggg tat gac tac age aaa gac 3304 Pfce Tyr Ãrg Glu Leu Aítp Leu Leu Gly Tyt Asp Tyr Ser Lya Aap 1115 1120 1125 tfcc cgt cgt ttg eaf âec stf ag* agg g-es g«c tee aaa get age 3429 Phe Arç Ãrg Lau Glu Tru M«t Arg Axg Ala Ãsp Ser Lys Àla Ser 1130 1135 1140 gge ase tfcg gcfc tfcc etfe cea ett sag gat gaa tfeg ege aat gag 3 4 24 Giy thr Leu Ala Pbé Leu Pro Léu Lvs Aap Glu Leu Arg Asa Glu 1145 1153 115 S ccc cte ttg etc cae eua gog cce ctg gae ate geg ttc cãg act 3519 Fro Leu Leu Lau HiS ?r« Ala Pre Leu Asp He Aja Phe Gin Thr ueo 1165 1170 gtc ate Sfa atsg tat tee tet eca §g« gat ege ege cta ege tea 3564 Vai lie Gly .Ala Tyr Ser Ser Pro Gly Ãvp Arg Ai^ Leu àixsf Ser 1175 1186 118 S txç tac gtg cct act cac gtt gac aga gtg act ctg att cca teg 3605 Leu Tyt Vai Sro thr ais Vai Aap Arg Vai Thr Leu lie Pro Ser U90 1195 1200 etc tgt ata tm geg ggt aat tet ggt gaa ace ga§ ett gcg ttt 3664 Leu Cya Jle Ser Ãlà <SÍy Asii Ser Gly Glu Thr Glu Leu Ala Phe 1205 1210 1ÍB 9»£ϋ acra ate aãé SCJL cac g*c sag ggt gat fcfcc ctg age ggc gac 3655 ASp Thx lie Aeit Ttuf fila Aep Lye Gly Asp Ph« Leu Ser Gly A«p 1220 1225 1230 ΡΕ1149919 167 ate acf ftg tac gst fceg acc lie Thr Val Tyr Âsp Ser Thr i23» 1240 aae att gte ttt a*f CCt ttc Aen 3’ie Val Phe Lys Pr© »h« 12S0 12S5 çae ega ate ttc gea aag tgg Ris Arg Xl« Phe Ala Lye Trp 12$:$ 1270 *«* «tg etg geg gae ecfc gcg Lys teu leu Glu Asp Fn> Ala 1380 128$ gag g*c afct «tg ace ate gag Slu Asp Ue Lee Thr lie 61» ms isôts tfle ttc cta gee ea§ ata acc Set Phe Leu Ala Gin tle Thr 23X0 131$ etc cat tee c«$ a*f tac att Leu His Ser Gira lys Tyr 11« 1325 2130 gãt get cgg Sfct ggc eae cafc ftsp Ala Arg Ala C-2y His híb 2340 045 gsg gae «ct tet gtt cac att èiu Asp Thr Ser Vai Bis 11« 1355 1350 tcc cac cca c*st gtg ege ctg Ser His Prõ Eis Val Arg Lati 1370 ms «tfc tea att gtt ege ggg asc lis Ser 11» Val Arf Sly Asn 1385 139« ege gat gggr ttg ttc aee gsg Arg Asp Sly Leu Ptoe Thr Glu 1460 1405 §3« tc* gea ata cac gfeç gtt Sly Ser Ala lie Ris Val Val 1415 1436 sat ege tac ca.a tce att gst His .Arg Tyr Gin Ser lie Àsp 1430 1.43$ ggn ate gee acg aag ege gtt SÍy He Alá Tire Lys Ãrg Val 144$ 145» aac «gt tae aet tge «et gae Asm Set' Tyr Thr Cys Thr ftsp 2450 2455 gee egt gaa eaa ctt tee gaa. ala Are Glu Gin Leu S«r Giw 1475 2480 gea cta gac ate aac aga age Ala Leu Aep He Aee ftrg Ser aag asa acg ett ttc ©&« gtt gat
Lys Th.r Thr Leu Pfee Gin Val Aap
IMS tet cce ceg aet get teg aoc gae
Ser Pro Pro Thr ftla Set Thr Asp 12«0 gtc tgg gga cce etc aeg ttc gaa
Val frp Sly Pua Leu Thr Prs Glu 1278 acg fctf ate ata gct egg gae aag
Thr Leu lie X2e Ala Arg Asp Lys 1290 ega atç gtt tae ttc tae ate asa krg He Val Tyr Phe Tyr 11« Lys 1305 cec gac gae egt csa aat gee gac hro Asp Aap Arg Gin Assis Ala ftsp 1320 gaa tgg tgt gae cag gtt «ag gee Glu Trp Cys Âap Gin Val Gin Ala 1335 eag tgg tae cag gag tet tfg gag Gin Trp Tyr Gin Glu Ser Trp Giu 2350 gag caa atg tgt ga.a age aâc tég Glu Gin «et Cys Glu Ser Asn S«r 13$$ ate caa agg gta ggc aaa gaa tta 11a Gii-i Arg Val Giy Lye Glu Leu 1380 ggg gãt CCC ttg §4t ate atg ase Sly Aap Fr* Leu Asp Xle Wet Asa 1395 cae txt aec aae aag otc gee ttt Tyr Tyr Thr Asú Lys Leu Alá Phê 1410 ceg gat ctg gtt age eaa att get Gin Mp Leu val ser Gin Xis Ala 142$ ate ctt gag ate ggc ttg ggt aca He Leu Glu He Sly Leu Sly Thr 1440 ctt gçâ tea cet eaa ctt ggt ttc 3.«u Ais Ser Aro Gira Leu Giy Phe 145:5 ate teg geg fat ftt att ggc aag He Ser Ala Aap Val He Sly Lys 2470 tte g»c ggt etc atg eag ttt gag Phe As» Sly Leu «et Gin Phe Glu 148$ eca gea gag e*a gga ttc aag cet Pr© Ala Glu Gira Sly fhe Lye Pr« 3744 3783 38 3 4 3879 3324 396.% 4014 405% 4104 4149 4194 4239 4384 4329 4374 44 IS 4484 4509 168 ΡΕ1149919 1493 1495 1500 çse tcc tac gat ctg atr ate gea tcc gat gtç çtc çat gee age 4554 líís Ser Tyr ftap leu Ile íle Ala fiar Asp Vai L®« Hífi Ala ser 1505 1510 ISIS tec aae ttc gag g*a áaa ttg get eac ata agg %«e ttg ctc aag 4509 Ser Asti Phe Glu Glu Lye Leu Ãla Hie 11a Ara Ser Leu Leu Lys 1520 152$ " 1530 eeg ggt câç ttg gtt aet ttc ggg gte aec cat efe gag ect 4444 Pi'o Gly Gly His Leu Vai Thr Phe Gly Vai Thr Hie Arg Glu Pr» 1535 1540 1545 gct egç Ctç gee ttc átc tet ggg efct ttt gCt gát cga tgg: ect 4509 Ai* Atg Leu Alá Fhé llé Ser Gly Leu Pfeé Ala Asp Arg Trp Thr 1550 1555 iseo S3» fãá ç«c gaa aet egfc get ttg agt gee teg ggg tcc gtt gae 4734 Gly Glu Asp Glu Thr Arg Ala Leu Ser Ala Ser Gly Ser Vai Asp i$«& 1570 1575 caa tgg 9*9 cat sec cte aag aga gtfc ggg ttc tet gge gtc gat 4779 Gin Trp Glu Bis Thr Leu Lya Arg Vai Gly Phe Ser Gly VaX Asp 1580 1585 1590 agt cgg eCá ctt gat cgá gag gat gat ttg *tc ccg tet gfcc ttc 4024 Ser Arg Thr Leu Asp Arg Glu Asp Asp l*u Ile Pro Ser Vai Phe 15.95 1000 1505 agt «Cá cat get gtg gat gee aee gtt gag egt ttg tat gat eca 4859 S-é¥ Tiiir His Ala Vai Aep Ala Thr Vai Glu Arg Leu Tyr Asp Pr© 15.10 1515 ' .1423 ett tet get eca t tg aag gaç fccs tác ceg ece tta gfcg gtt átc 4914 Leu Ser Ála 9rt> Leu Lys Aep Ser Tyr Pré Pxc Leu Vai Vai He 1525 1S30 1535 Gft Gft gaa teg aça aaa aee gsa ege att ttg a-áe gac atg aaa 4959 61y Gly filw Ser Thr Lys Thr Glu Ar« Ile Leu A»n Aep Het Lys 1540 1545 1650 gçt g«e et a eçg cat aga eac ate cat tet gtç aag egg etg gs« 5004 Ale Ala teu Vro Sis Arg Hie lie His ser Vai Lys Arg Leu Glu 1055 .1543 1.SS5 agfc gtt cte g»e gac ccg gee ttg eag ect aag teg act ttt. gtc 5045 Ser Vai leu Asp Asp Pro Ala Leu Glú Pré Lys Sér Thr Phe Vai 1670 1675 ISSO ate cte teg gaa ctt gat gat gsa ftg ttt tg« *me ctt gaa gag 5094 íle Leu Ser Glu Leu Asç Ãep Glu Vai Phô Cya Ahu Léu Glu Gly 1535 1490 i«S5 gáC áag ttt gag gea gt« aaf tet cftt ct« ttc tae geu gg* ege SUS Asp Lye ?he QlU Alá Vál hy* Set Léu Leti Phé Tyr Ma Gly Arg nm 1705 1710 atg sfcg tgg etg aea gsg aat gee tgg att gat cat eee esc esg 5184 «et Kefc Trp Leu Thr Glu Âsn Ala Trp llé Asp Hie Pro Bis Gin 1715 1720 1725 gee age ace ate gga *fcg ttg agg aca ate aag etc gag «ee eefc $229 Alá Ser Thr 11« Gly ttet Leu Arg Thr He Lys Leu Glu Mn Pra 1730 1735 1740 g»e ttg S9« acg eae gte ttc gat gtc gat sst, gtg gsg ase eta $274 Aáp Leu Gly Thr sis Vai The Asp Vai A&p Thr Vai Glu ft»n Leu 1745 1753 Í?S5 169 PE1149919
gac aee aa* **« ttç gtt gsg «aa «fct ttgr cg© fctc gag gag age &HS
Rjtp Thr Lys Phe Phê Vai Qlu Sin Leu Leu. Arg Pbe SI» Slu Ser 17«a 1765 177© grat gat eag efct ttg fM tea *fc* aca fcgg act cat gag «ec gsa SA«*
Aep Asp Qiít Leu Leu Slw Ser Ile Thr Trp Thr Ria Sl» Pr© Glu ,1775 1786 1785
gtg tae tgg tge «ag ggt egt gee tgg gto ©et «gt ttg «*g cag $*0S
Vaí Tff Τηρ Cy« Lys Gly Arg Ala tirp Vai Pr© Arg Leu Lys 0.1» 1750 17SS 1800 gat ate get agg ase gae cgfc afcg «a© teg tet «gfc egt cc* ate S4S4
Aag lia Ala Arg Asa Aap Arg Mefc Aaa Ser Sér Arg Arg Pma He
1.8 85 1810 ISIS ttç ggt *ae ttt a«t fceg fccc a*g a«g gee att gea çtg aaa gag 5453
Fba Oly Aa» Ru As» Ser Ser Lys Tfer Ais lie Ma Lê© Ly» Olo 1820 ÍS2S 1838 geg a.gg gga gea tee fcea fceff atg fcas tat ett gag Eca ace gag 5544
Ala Arg siy Ala Ser Ser Ser Hat Tyr Tyr Leu Slu ter Thr Glu 1835 1940 1845 «cg fcgt gst teg tta gaa gac get egt cat get gga aaa gea act 5589
Thr cys Àsp Ser teu 01« Aap Ma Arg Mie Ma Gly Lys Ala Thr 18 S0 1955 ima ffct egt gtfc ege tae get ett ecc cag gea att ege gtg gge cat S634
Vai Arg Vai Arg Tyr Ala Leu Pto 01c Ala lie Arg Vai sly Hie 1B6S 1870 1875 cte gga tac ttc cat gtc gfcg cag ggc agt att ttg gag aat ata 5S7.9
Leu Oiy Tyr PI» Sis v&l Vai Ola Qly Ser XI* Leu Ólu Aa» tftf 188Ô 1685 1850 tgfc gag g«g eet gta gte gee ctg get gag aag «at gga tet ata S724
Cys 01» vai Pre Vai Vai Ala Leu Ala Olu Lye Aa» oiy ser xl« 18S5 1900 1985 estg <sat gt« eeg aga asc tac atg «st sgt etg «ec sat ase atg 5766
Leu Sis Vai Pra Arg Aan Tyr Mfet 81* S*t teu Bta Asp Aon Met 1910 1®15 1926 geg gaa gge gag gat agt tte ttc ttg ttg tee aca get gea gee 5834
Ala Gltt Òiy ÔIk Â*p $èr Se* Pt® Leu Leu Ser Thr Ala Ala Ala 1915 193Q 3335 etc ett get gaa sea att «te tet age get eag tcc ttt ggc tet 5859
Leu Leu Ala Slu fte Ita Leu 8«* Ser Ala Gl» §®r Phé Gly S*r 1948 1945 19SÔ gafe gea tea att ttg att atg gag ccs cea ate ttc tgc gte aaa 5994 A$p Ala ser Xle Leu Ϊ1® Hat 01» Pro Pro XI# Pfce Cy# vai Lye 1955 198« 3985 <je» att stg gag t«^ gee aaa see tac ggfc gtt eag gfet est ttg 5949
Ala íle La» Sl« Ser Ala Lye Tkr Tyr Oly Vãl Gl» vai Hia Leu 1970 1975 1988 ge# «ca aet etg tee gaç gtc asa act att ceg get ect tgg ate 5994
Ma Tfer Thr Leu Ser Aap Vai Lys Thr He Pr© Ma Pr© Ttp Ile 3985 1390 1995
ega tta sat gee aag gaa acc gac get egg etg aaa cac age ctg: S03S
Arg Leu Híe Ala Lye §1« Thr Aap Ala Arg Leu Lye His Ser Leu 2000 2805 2010 ecg aea aac atg atg gea ttc ttt gae ttg tet ase gae egg aet S0S4
Pr© Thr Asa «et Met Ma Phe The Aap Leu ssr Thr Αβρ Arg Thr 170 ΡΕ1149919 2015 2020 2025 get gee ggg ata *cc aae cgt ctg gc« aag fctg cta cca ccc agt ¢125 Âl» Ala Gly li« Thr Aen Arg Zm Ala Lys lati teu Aro pttt $«t 2030 2035 2040 tge cte atg tac *f£ ggt gac tat ctt ate cga agt aca gct tec 6174
Cvs Phe «et Tyr ser èly Asp Κγχ Leu Ile Arg Ser thr Ma Ser 204S 2050 2ÔS5 aea tae aaa gt-t agt cai gtfe gag g»t «tt cea ate fite gag esc €219
Thr Tyr Lys Yai Ser Si® Vai OXw Aep lie ?ro lie Leu Glu ai a 2060 2065 3070 tet gtg gea atg gea aa» sat *cc gt« tet gsg teg act gte gse €264
Ser Vai Ãla «et Ala Ly# As» Thr V*1 Ser Alá Ser Thr Vai Aap
207S 2080 2GSS gac aet gag asa §tt att sca gee ata eaa *tt etc ttg &ct ggt 6309 Àsp Thr &l« Lys Vai Xis «to Ala fto Glc 21$ Leu Leu s>re Qly 2000 2005 2100 eag «te tet gfce aae esc aat gac «aa «gc ttc aat etg gee acc 6354 ç:ln Leu ser ν*χ Ae» Sis hm Asp <&n Arg Vhe hm i*u Ala Thr
2105 2U0 2 MS gtc ate gac tgg a&g gaa aat g»g gttg tce gct agg att tgc ccc 6309
Vai 2Xe Asp Trp Lys SI» Am Glu Vai Ser Ala Arg He cy» Pro 2120 2125 313» ate gac tet ggt «ae fcfca ttt fcee asc sag a*g aeg tet ttg ctt 5409 llê Aep Ser Í3Íy Asa Leu Sfce Ser Aan Lys Lys Thr Tyr Leu Leu 2155 2140- 2145 gtt ggt çfct acc ggg gae ctt ggt cg« tet «te tgt ege tgg atg {|i9
Vai Gly Leu Thr Gly Asp Leu Gly At» $ei' Leu Çys Arg Trt> Met 2150 2155 2160 ate ttg est gge gee ege cat gtt gtg «te set age egg aae cet 5534 lia Leu Hi® ®ly Ala Arg Hia Vai VAX Leu thr Ser Arg Asn Rro 2165 2MO 2175 cga ctt gat ccc aaa tgg ate gee aac atg gag gea ctt ggt ggt 6579
Arg Leu Asp Pro Lys Trg lie Ala Aàn Met Glu Ala Leu Giy Giy 3380 2185 2190 gsc ate aac gtt. ctg tea atg gat gtt gct aat gag gat tea ftc 6624 Ásp 11« Thr VftX Leu Ser Mèt Asp Vai Alá .ASft Glu A8p Ser Vai 3135 2200 2205 gat §cfc ggc ctt ggc &ag ctt gtc gat atg aag ttg ec* ccfc gtt 8669
Aap Ale Giy Leu Qly Lye Leu Vai Asp M»t Lys Leu Pra Pro Vai 3310 3215 3220 gee ggc ate geg ttc ggg cct ttg gtg stg cag gat gte atg ctg 6714
Ma Gly 21« Ala fehe õíy ftt> t«eu Vai Leu SJn Asp Vai K$t Lev 223S 3330 2335 aag aac atg gac cac eag atg atg gac atg gt-g ttg aag cee aag 6750
Lye Aars Mst Asp Hie Gin Met M»t Asp Het Vai Leu Lys Prn Lys 224Ô 2245 2250 gta cas gga gça ege att ctt cat gea egg ttc tec gas eag acg €804
Vai Gin GÍy Ma Arg Me Leu His GIu Arg Éfce Ser GIu Gin Thr 22SS 3360 3265 ggc age aag gçg cfcc gac ttc tfcc ate afcg ttfc teg tec att gtt 4849
Sly Ser Lys Ma Leu Aap Phs Hte Ile «et Pfce Ser ser ile vai 2270 2275 2288 171 PE1149919 oce gtt »ct fgs aat «eo ggc. Ala vai ile sly Ass Pre sly 226S 223Ô
gcc títç cta eag gct ctg gee Alá Tyr Leu Glu Ala Leu Ala 230® 230.S
geg $g» tca. aee ata gat ate Ãla ôly Ser Tto Oe ÃMp XI# 21IS 232C gtc acg agf gee 3*3 atg gag Vai Tto A.rg Ala GÍW Hat Gia Í330 3335 atg tfct gac tea gtt gaat gag Mat Phe Ajsfp Set Vai Slu Glu 2345 2350 gaa ge$ gte gt;g tot gac cag èlw Ala Vai Vai Set Asp Glft USO 2365 aag acg gte stt gae atg gcg Lys Tto vai lia Aap tf et Ma 2375 2360 eea gat ctt gae eet geg ctt Pr© Âap leu Ãep ptP Ma Lais 2390 2395 gac cct qyt ttc gga aae tto Àep pra Ar§ Phe Sly As» Pta 2435 2410 cigt ff® gae aat gga tea gfg Sly Sly Âap Asm Gly Ser Sly 2430 2425 cte aaa eaa gea aca act tu
Leu Lys Gl» Ala Tto Tto Leu 2435 2440 gat ggfc cta tet gag «a* cfce Àsp Sly Leu Ser Slu Lys Leu 24SÔ 2455 ggg gag age gtg gac cca acc Sly Cia S#r Vai Mp Pro Thr 2455 2470 gac tee teg ggt gea gtg aet &ap Set Leu Sly Ala Vai Tto 2480 2485 etc tae ctt gae ctc eea etc Leu Tyr Leu Aep Leu Pisa Leu 249$ 2500 gtc gct gat «tt gee §ae §u Vai Ala Aap Leu Ma Asp Aep 2510 2515
Lee att ccg ctg erg ttg caa Ser 11® Pro Leu Leu Leu SI» 253$ 2530 g*e age ggg ψet tet eeg aea Aap Ser Sly Ma Ser Pr» Tto cag tee a&c cac ggc gee gcg ek ser As» Tyr Sly Ala Ala As» 22η cag caa cgg tgc gee aga gga ttg ttln. fila Arg Cys Ala Arg Sly Leu 2310 ggt gee got cae ggt gt& ggg ttt
Sly Àia V*1 Tyr aiy VaX Giy PUe
232 S gag gac ttt g*t gct st® cgt ftte
Slu Âup Phe Astp Ma íla Arg Pbe 2340 eat gag etg cae aeg ctt ttc gee
Eia Glu Leu Ris Tbr Leu Phé Ala 2355 çgfc geç egg çsg çae cea eag ege
Ai-g Ala Atsg Glu Mh Pí?ô Oltt Arg 2370 gac ctt gag ctt scc acg fft ate
Aon Leu Slu Leu Tto Tfer Sly Xle 2385 eaa gafe ega att afct tac ttc aac si» ksp tog Ilê lie fyr Pto As» 2400 aaa att ccc ggt caa ege gga gac Lys Ile Pro Sly Glu Arg Gly Aap 2415 t«fc aaa ggc tcc «t gee gac cag Sér Lys Sly Ser lie Ala Aeg Glu 3430
gac caa gtt cgf eaa ate gtg att Asp Glu Vai ftrf Gi» Πί Vai íle 24 4 S cgt gtt aee etc eaa gtt teg gac Arg Vai Tto Leu Gla Vai Ser Âep 2460 att cet ctc att. gat «h ggt gtc He Pto Leu Ile Asp Sln Sly Vai 2475 gtc <pe tea tgg ttc te* *a$ e*&
Vai Sly Ser Trp Phe Sér Lys Gin 24 SO ttg agg gta ctt ggc ggt get tet Leu Ara Vai Leu Sly Giy Ala Ser 2505 fcg gee acc cga etc eea get aea Ala Ala Tto' Ar§ Leu Pro Ala Thr 2530 att ggt gat tcc acg gga esc teg Ile Gly Asp Ser ΊΜ Gly Tto Ser 2535 eea aea gac age eat gxt gaa gea
Sto Tto Aap Ser ais &ap Glu Ala 6004 6339 S9S4 7029 7074 7119 7164 720» 7254 7209 7344 7389 7434 7473 7524 7569 7614 7689 172 ΡΕ1149919 2540 2545 2550
age tct gct *cc age aça gat geg t«g feca gee gaa gag g*t gaa Sé*· Ser Ala Thr Se* Thr A$p Ala Ssr Ser Alá Slu élu Mp 01«. 2555 2560 256S f‘?d4 gag ca* §*g gac gat *at gag cag gga ^c <gt **g *tfc efct cgt Glu Sln GTu tep Aep Jt*a âlu Siti Gly èlv ftrg Lys lie Leu AK3 2570 2576 2580 7745 ege gag agg tfcg te© efet gge cag gag fcafc tees tgg agg e»g esa. Arq Glu ftrg Seu Ser Leu Ôly Gin Gia Ty* Ser Tip Arg Gin Gin. 2.3 S 5 2350 2555 7154 çaa atg gta aaa g*t «s*t *ce ate ttc sae «a© act att ggc atg Gin Met Vai hys Asp His Thx 12« She Asa Aan Th* lie tsiy ttet 2500 3601 2610 7839 fcte atg aag ggt ase att gac ete gac cgg titg *gg egg gct etg Ph® Met Lya Giy Thr He Aep teu Aso Arg Leu Arg Ãry Alá Leu 261$ 2620 2625 7804 aaa gee tea ttg ege cgt cac gag ate ttc egt acg tge ttt get Lys Ala Ser Lay Arg Atg Ui» 01«. He P.fee A.rq Thr Cys Phe Vai 2630 36 S5 2640 7925 act ggc gat gac çafc age age gat tts ast qgt cce gtc caa gtg Th* Óíjf Asp Ακρ Tyr Ser Se* Ásp L*v Aon Gly Fto Vai Gin Vai 2545 2650 2655 7974 ftt etc aag *«© ©cg g*g *ac aga gtg cac fct± gtt cag gtg aac Vai Leu hye Asa Pr© Gin Asm Arg Vai Sis Fha vai Gin Vai Ass 2SS0 2665 2870 8019
«ac g«g gsg gea gag gae gsg ta© egg a*a etc gsg aag aea Asn. Ala Ala Gla Ala «lu 01« GXu tyjr A*g Lya Leu Gin Lys Thr 2675 26m 26SS 8064 ase tat age ate tcc aca ggfe g*c sec etc ag* etc gtt gat ttc ftHã ty* Ser 11« Ser Thr Gly Asp 3*ur Leu Arg 1*« Vai Asp m» 2690 2635 2700 8109 fcac tgg gge aca gat gac cac ctg ttg gta ate gg© tas eae aga Tyr Trp Sly Thr Asp Aep 8is Lea Lsu Vai lie Giv Tyr Sis Atg 2765 2710 2?Í5 8154 tta gtt ggt gat ggc tea aca aea gaa aae çtg ttc aat gag ate Leu vai Óly Asp Gl.y Ser Thr Thr Gin Aes Leu Phe as® eiu lie 2720 2725 2730 8199 ggg cag att tac age ggg gtg aaa atg cag cg* cca teg acc csa s244 Giy Gin lie Ty.r Ser Óly Vai Ly* Me£ Gin Arg Pr© Ser Thr Gin 273S 2740 374S ttc tefe gat ©t* gee gtc ©it ceg çgg gâ* aac ©tg ga* ast ggg 8289 Phe Se* Asp tóu Aiã Vai S1k Gla Arg Gin Asa Leu Gtu Ana Giy 2750 27SS 2760 ©g* *tg ggg g*c g*t *te geg ttc tgg eag tcc atg ©»t age a** Axg Ket Gly hep Aep He Ala Lhe Trp Lys Se* Met His Ser Lye 2745 2770 2776 8334 gtc teg tça tet geg cea acc geg ctt cce ate atg aat ctg ate vai ser Se* Ser Ala P*o Thr vai Leu Pro lie Met Asn Leu He 2780 278S 3790 ast gac set gct gee aat tea gag eag cag caa ata cag cca ttc Mt% ftep ?W Ma Ma Mn Ser Gla 60» Gin Gl» H« Sl» Pro Phs 2795 2800 280$ 8379 8424 173 PE1149919 *cs tgg tag cag tat g»B gea att get ege tta gat çcc atg gtc 8469 Thr Trp OIs Glii Tyr 61u Ala lie Ala Arg Leu Àsp Pro Met Vai pâiO 2815 2820 gcc ttc ega ate aaa gag cgg age ege aag cac aeg gea acc ecc 8514 Ma Phe Arg lie Lys Slu Arg Ser Arg Lys Mis Lys Ala Thr Pro 2825 2830 2835 ata ca® tfcç tae ctg gee gee t*ç esc gfct. ttg fctg fcg cgt ctt 8559 Met ffln Phe iyr Leu Ala Ala Tvr His vai Leu Leu Àlà Arg Leu 2840 3845 2850 acc gge age asa gac ata acc ate ggc efce gee ga* acc **e cga 8604 Thr Gly Ser :¾¾ Aep Ile Thr lie Gly Leu Ale Glu Thr Astí Arg 2855 me 2865 tCC 3.CS ate aaa ©aa att teg geg atg ggc ttt ttc gct aas gtg ΘΜ9 Ser Thr Met Glu Giu ile Ser Ale Met Gly Phe Phe Ala Aan V*1 2 670 2875 2880 ctt ccc etg ege ttt. gat g«g ttc gfec gge age aag aça ttc ggc 86 94 Leu Pro Leu Arg Phe Asp Glu Phe Vai Gly Ser Ly& Thr Phe Gly 2685 2690 2895 gag írâc ctt gta gee acc &ag gac age gtg cgt gag gee atg caa 873» slu His Leu Vai Ala Thr Lys A*|> Ser Vai Arg GXu Ala Met Gin 2 900 2905 2910 CáC g-gg cg© fiftg ccf tat ggc gtc ate etc g«e fcgt et* ggc et.g 87S4 His Ala Arg Vai Pr© Tyr Gly Vai lie Leu Âsp Cys Leu Gly Leu 2 915 2920 2:925 aafc etc cet acc tea ggc gag gea ccc aag act cag aca c.3c gee S929 Asn Leu Pro thr .Ser <3iy 31a GXu Pr© Lys Thr Gin Thr His Ale .2 930 2935 2940 cce ttg ttc cag gct gtc ttt gafe tac aag cag ggt caa gcg «ag 8874 Pro Leu Phe siis Ala vai Phe Asp Tyr Lys Gin Gly Gin Ala Glu 2S4S 2955 age gge tea atfc ggc aat gee aaa atg acg agt gtt ctc gtrt tcc 8913 Ser Gly ser lie siy acu Ma Lys Met Thr Ser Vai Leu Ala Ser 2350 2585 2370 ogt gag age act: ccfc tat gãc atç gtt etc gag atg tgg gat gac 8954 Arg Glu Arg Thr Pr© Tyr Aep lie vai Leu Giu «et Trp Asp Asp 2375 2980 2985 eçt acc aag gae eea etc att cat gtc asa ctt cag age te§ ctg 3009 Pro Thr Lya Aap Pro Leu ile Hie Vai Lys Leu Gin Ser Ser Leu 2990 2395 3000 tat gge cet «aa cac get esg gee ttt gta gac eae ttt tet tea 9054 Tyr Gly Pr© Glu His Ala Gltí AXa Phe V&l Asp His Pfee Ser Ser 3003 30:13 3815 ate cfcc act atg ttc teg atg aac eeg gct ctg aag ttg gee tag 9039 lis Leu Thr Met Phe Ser Met Aan Pro Ala Leu Lye Leu Ma 3020 3025 3830
<210> 44 <211> 3032 <212> PRT <213> Penicillium citrinum <400> 44
Met &sp Gla Ai* Asn tyr Pr© A*a Glu Prt» lie vai vai Vai fily Ser i S 10 is 174 ΡΕ1149919
Gly êys Arg Phe f» Gly Gly Vai Mn 'Thr Pro Ser Lye Leu Trp Glu 2ú as io
Leu Leu Lye Glu Pro Arg Asp Vàl Glis Thr Lys Ile Pro Lys Glu Arg 35 " 46 4§
Phe Aep Vai Aep Thr Phê Tyr Ser Pr© Asp Gly Thr Ki* Pro Gly Arg SO SS '60
Thr hm Ala Pro lhe Ala Tyr Leu Leu Gin Qiu Mp Leu Arg Gly p&g SS 70 75 80
Asp Ala Ser The Phe As» lie Sln Ala Gly Glu Ala. Glu Thr lie Asp SS §0 SS
Pr* Gin <31* Arg Leu Leu Léu Glu Thr Vai Tyr Glu Ala Vai Ser Asa 100 10$ 110
Ais Gly LSU Arg Xle Gin Gly L*u Gl« Gly Ser Ser Thr Ala Vai Tyr 115 120 125
Vai Glv Itefc Met Thr Hift Asp Tvr Glu Thr Xle Vai Thr Arg Glu Leu 130 135 140
Asp Ser Xle Fro Thr Tyr Ser Ala Thr Sly Vil Ala Vai Ser Vai Ala 145 ISO ' 155 ISO
Ser As» Arg Vai Ser Tyr B» Phe Asp Trp 8it Gly Ptt> Ser Mel Thr 165 170 175
Xle Aap Thr Ma Cya Ser Ser Ser Leu Ala Ala Vai Kia Leu Ala Vai 180 185 150
Gl» Gls Leu Arg Thr Gly Siu Ser Thr Wet Ala V«l Ma Ale Gly Ala 195 200 205
Ano Leu Xle Leu Gly Pro Met Thr Phe Vai Hat Glu Ser Lys Leu As» 210 2X5 220
Met Leu Ser la> As» Gly Arg Ser Arg iMefc Trp Asp Ala Ais Ala Asp 22$ 230 £3$ 340
Gly Tyr Ala Arg Gly Glu Gly Vai Cys Ser lie Vai Leu Lys Thr Leu 245 250 255
Ser Gin Ala Leu Arg Afip Gly Âep Ser He Glu Cys Vai Xle Arg Glu 2€S 265 270
Thr Gly He ah» si» a»p Gly Arg Thr Thr Gly Xle Thr Met Pro hsn 275 280 285 175 ΡΕ1149919
Kie Ala 81« 81« Ala Leu Jl« Arg ftl.s Thr Tyr Ala Lys Ala Gly 29C 2*5 3CS
Leu Asp He Thr A&» fro 85» Gl» A*g Cy» 31» Phe 8&e 61« Ala Sia 305 310 3ÍS 320 «ly Thr Qly Thr Pr© Ala Gly Asp Pr© 61» Oiu Ala 6iu Ala lie Ala 325 330 335
Thr Ala Phe PLe Gly Kis Ay* A*P Gly Thr 11« Asp Sar Asp Glv 61« 34Θ MS 355
Lys Asp Glsí Leu Ske Vai Gly Ser II» Lye Thr Vai Leu G3y His Thr 3S5 360 .365 61u C-lv Thr Ala Gly 3te Ala Gly Leu Met Lys Ala Ser PM Ala Vai 376 375 389
Arg Asa Gly Vai lie »xo Pr<* Asm Leu Leu ftw» 61« Lys lie Ser' Pva 36S 39Θ 385 400
Arg vai Ala Pr© PM Tyr Th* «is Leu Lye He Ala Thr Glu Ala Thr 40S 410 41S 6lu Trp Pre Ile Vai Ala Pro 01 y Gin Pro Arg Aro Vai Ser Vai As» 420 425 430
Ser pfce 61y Ph.e 6iy 6iy Thr Mn Ala His Ala ile Ue ôlu Glu Tyr *3S 440 445
Met Ala Pro Pr© gíe Lye Pro Thr Ala vai Vai Thr Glu vai Thr ser 450 45S 4é0
Asp Ala Ase Ala Cys Ser Lsu Pro Leu vai Leu Ser Ser Lys Ser Gin 45:5· ....... 470 475 400
Arg Ser Met LyS Ala Thr Leu Glu Asn mt Leu 61» Ph« Leu Glu Thr ' «g 490 495
Hi· Am Am Vai Asp Met Mis MJ) U# Ala Tyr Thr Leu, Leu Glu Lys 500 SOS 51®
Are Ser He Leu Pr» S4» Arg Arg Ala lie Ata Ala Bis Am I*ys Glu 51S S3-Ó S25
Vai Ala Arg Ala Ala Léu Glu Ala Ala 11© Ala Asp Gly Glu Vai Vai 53ç 535 54®
Thr âb« Phe Ara Tbr Asp Ala as» Asp Asa Pro Axg Vai Lee Gly v*l 54S SSO 55S SS0
Phe Thr Gly Gla 61y Ala 61» Trp Pró Gly ftet Leú Lyé Lya Leu Ptefc Sé$ STO :s?5 176 ΡΕ1149919
Vai Giy Mèt P*o M» Vai Arg Gly Ile teu 61a 81« teu Asp Asn Ser 580 $85 590 teu Gin Ifer teu jftco «Xu Lys Tyr Arg Pru to T*p to 1«« Tyr Asp sás eoo ses
Glft tea Hat teu Glu GXy Aap Mâ Ser &m Vai Arg Leu Ala Ser Pbe 610 £15 620
Ser Glr> Pr© Leu Cya Cye Alâ Vai Gin II© Vai Leis Vsl Arg Leu Leu £25 £30 £15 S40
Ala Ala Ala Gly Ile Glu Phe Ser Ala Ik Vai Gly His Ser Ser Gly 64$ £50 6:5S
Glu He Ala Cya Ma Pb· Ala Ala Sly PAe lie Ser Ala Tbr Gl» Ala 660 Ôfil fi?0 XX· Arg Hé Ala lis Leu Arg Sly Vai Vai Ser Ala Glu Me Ala Ser «75 «40 685
Ser Pro Ser Gly Glu liar Gly Ala Hat Leu Ala Ala Sly SteE Sb Tyr Ê30 SS5 ISO
Asp Agp Ala Lye Gitt teu CyS Glu teu Glu Ala Pte Glu Gly Arg Vai 785 710 715 720
Cys Vai Ala Ala Sar Asn Ser Pr© Asp Ser Vai Thr Pita Ser Gly Aap 725 730 73S
Met Aep Ala He Gla Mie vai eXu Gly Vai teu Glu Aep <&u Ser Ttir 740 745 7SÒ
Phe Aja Arg XI· teu Ar«r Vai Aap Ly* Ala Tyr Mis S*r Ris Mie Mfet
7S5 “ 760 ' 76S
81S Pr© Cy« Ala Ala Pr© Tyr Vai Lys Ala teu Leu Glu Cys Asp Cy» 770 ?75 7BC
Ala. Vai Ala Asp Gly Gin Gly .Ase Asj> Ser Vai Ma Trp Ph© Ser Ala 785 790 795 SOO
Vai Ria Glu Tfcr Ser Lye Gin Mefc Thr Vai Gin Asp Vai Hat Pr© Ala 405 810 SIS
Tyr Trp Lya Asp Asa teu vai Ser Pr© vai teu Phs Ser Glu Ma Vai 620 425 830
Glé Lyá Ala Vai He Thr Siô Arg teu He Asp Vai Ala He Glu Ha 035 840 845 177 PE1149919
Giy AJa His Pro Ala teu Lye Gly Pr© Cys teu Ala Thr 11« Lya Asp 850 855 S60
Ala teu Ala SXy Vai Siu teu Pr» Tyr Thr Sly Cy® teu Ala Arg Asa g«S 870 875 880
Vai Asp Asp Vai Ãsp Ala Phe Ala Qly Sly teu Sly Tyr lie Trp Siu 885 880 895 tog Ph® ©Xy Val Arg Ser He Aap Ais Oiu <31y Pfce Vsl Gla Gin Vai 900 $05 910
Arg p*© Asp Arg Ala VAI ©1» Asa te si Ser Lys Ser teu Oro Thr Tyr SIS " 820 S2S
Ser Trp Asp 8i« Thr Arg Sis Tyr Trp Até Siu Ser Afg Ser T&r Arg 710 935 848 ©la Bis teu Arg Sly GXy Al.ã Pro Bis te« teu Leu Sly Ly« teu Ser 745 $50 955 980
Sei Tyr Ser Th.r Ala Ser Thr «MS Gin T*p Thr Asn Phe Xle Arg Pro 905 970 975
Arg Âsp Leu Glu Trp teu Asp Sly His Ala teu Gis Gly ôlo Thr Vai 380 905 930 pise Pro Ale Ala ôly Tyr Xle Xle «et Ala Mefc Clu Ais Ala Met Lye 79S 1000 1005
Vai Ma <*ly Glu Arg Aís Ala Gin Vai Gltt teu teu Slu Xl® teu 101.O 1015 1030
Aap Met Ser Ile Mn Lya Alá. lie Vai Phe Glu Mp Õlu Aso Tfcr 1025 2030 1035 ser Vai filu teu Asn teu Thr Ala Glu Vai Thr Ser Aap Aen Aep 1040 1045 1050
Ma Asp Gly Gin Vai Thr Vai lys The Vsl He Mp Ser çye teu 1953 1060 1065
Ala Lye Slu Ser GXa teu Ser Thr Ser Ala bys Giy Gin Ils Vai 1070 1075 1000
He Thr teu Gly Glu Ala Ser Pro Ser Ser Gin teu teu Pro Pro 1085 1096 1095
Fr© Giu eiu Glu Tyr Pro ©In Met Ana Asa Vai hm 11« Aap Phe né& nos mo
Phe Tyr Arg SXu teu A$p teu teu Giy Tyr Asp Tyr Ser Ly® Asp 1115 U20 1125 178 PE1149919
Vbe teg Ar§ Leu 3ln. fhr Mefc Atrg Arg Aia Aap Ser l.ye Ala Ser U30 11,35 U-40
Gly Thr Leu Ala pis® La» Pro leu Lys Asp Glu L&y Arq Abts gíu 114$ USO I1SS
Pm Leu Leu Leu Kie *ro Ala. Pro Leu Xq» 11* Ala Phé Gin Tbr 1100 USS 1170
Vsi Π® Gly Ala Tyr Ser Ser Pro Gly Asp Apg Arg Leu Arg Ser 11?5 1180 USS
Lau Tyr Vai Vr» Th* Mis Vai As® Art Vai Thr Leu Tie iro Ser 1130 1195 .1390
Lea Cy« Xle Sftx Ala Gly jutp Ser Gly Glu ífer Slu Leu Ala PAe O0S 1310 3215 ft*p Títi' Ile Asa Thr Hi» As® Lys Gly As® Pite Lftu Ser Gly Aap 020 1225 123« 11« Xhr Vai Tyr Aap £*» ttor Lys Tfcr Thr Leu P&e Cl» Vai Asp 1235 13«« 1245 AS» 11« Vai Wh* Lye Pro Vise Ser Pxó Pró fhr Ala Ser Thr Αβρ 1250 1355 1269
Hl» Arg lis P&e Ala Lye Trp Vai Trt> Qly ®ra leu T»r ®r& Glu 1255 1270 * 127S
Lys Leu Leu Glu As® Pro Ala Tta Leu He He Ala, Arg Aap Lys 120« 1365 12:50
Glu to® II* Leu Thr 11« Glu .Arg 11« Vai Tyr i%e Tyr lie Lys 1295 1300 ' 130$
Ser sfee Leu .Ala Gin He Thr Aro· As® .As® Arg Gin Asis Ala Asp 131.0 1315 1320
Leu Hia Ser Gin Ly® tyr He Glu Trp Cys As® Gin vai Gin Ala 1325 1310 133S top Ma Arg Ma Gly Si® Si® Gin trp tyr Gin Gin Sor Tr® Glu 1340 134$ 13B0
Glu Asp TAr $er Vai Sia He Glu Gin Mefc Cy» Glu S»r As» ser 1355 1360 13S5 to» Ris Pró fiis Vai Arg Leu lie SXa Arg Vai Gly lys Glu Lew 1370 " 075 08« 179 ΡΕ1149919
Jle Ser 11« Vai Arg Gly Aen Gly Asp Pru Leu Asp 11« Mtefc Asn ues uso 1365
Arf Aap Giy Leu Sha Thr Glu tyr Tyr thr Asa Lyn leu Ala Phe 1,4 00 1405 1410
Gly Ser Ala lie His Vai Vai Gin Asp Leu Vai Ser Slrs lie Âla 1415 1420 1435 «is Arg Tyr Gla Ser II· Asp 11« Leu Giu II· Biy Leu Gly Thr 1430 " 1435 1440
Gly Jl« Ala Thr Lys Arg Vai Leu Ala. Ser PE© Via teu Gly iPhe 1445 14SO 1455
Asa ser tyr Thr Cye Thr· Aep 11« Ser Ala λβρ vai lie Gly Lys 1460 14ÕS 1470
Ala Arg Slu GIr .Leu ser Glu Pite Asp Gly Leu «et Gin Phe Glu 1475 1460 1485
Ala Leu Asp 11« Asa Arg Ser Pró Ala Glu Gin Sly Fhe Ly* Pto 1490 149S 1500
Bis Ser Tyr Asp ia»! 11« 21« Ala Set Asp V«1 L«* Ri* Ala Set 1505 1510 1515
Set Mn Ph« Gly Gi« Lys .Leu Ala His Ila Arg Ser Leu Leu Lys 1520 1S25 1530
Pr* Gly Giy His Leu Vai thr Phe 01y Vai Thr .aia Arg Glu Pro 1535 25*0 154S
Ala Arg Leu Ala Fhe Π« Ser Giy Leu Phe Ala Aap Arg Trp thr 1550 1S5S 15««
Gly Glu A*p Glu thr A*g Ala Leu Set Ala Ser Gly Ser Vai Asp i?65 mo im
Gin Trp 61« Eia thr Leu Lys Arg Vai Gly Fb» Ser Gly Vai Asp 1560 1585 1560
Ser Arg thr' Leu Aâp Arg Glu Aep Aap Leu lie Pro Ser Vai fhe 1555 1«00 1605
Sar thr Eis Ala vai Mp Ala thr Vai Glu Arg Leu Tyr A«p Fr© 1610 1615 1S20
Leu Ser Ala Pro Leu Lya ftsp âer Tyr Pr© Pro Leu V&X Vai lie 1625 163» 1635
Gly Gly Glu Ser Thr Lys Thr Glu Arg lie Leu Aen Aap Kefc Lys 1640 1645 1650 180 ΡΕ1149919
Ala Ala Leu Pro His Arg His 11« His Per Vai Lye Arg Leu al« 1€5S 1««G 1$€S
Ser V*1 Léu Mg Asp fcro Ala leu βϊπ Ptn Lye Ser Tfer Phe vai 1670 157$ 1880
Ile Leu S«r Gla Leu Mp A*p Glu Vai Pite Cye Ásh Leu Glu Sl« 108$ I«90 1585
Asp Lys Pbe Glu Alá Vai Lys Ser Leu Leu Phs Tyr Ala Gly Arg 1700 1785 1710
Met Mfit Trp Leu TlUir Glii Asa Ala Typ 11« Mp J8i* PM> Sis GIb 1715 1725 1755
Alâ Ser Tfer Ile Ôiy Met Leu Ar«f Tfer Ile Ly» Leu Slu As» Ptt> 1730 1735 1780
Asp Leu Gly Ttar Sis Vai Pfc.e Aap Vai ftsp Tbr Vai Glu Asa Leu 1785 1750 1755
Mp thx by» Pbe Phe Vai GIu GIís Leu Leu Arg Mie Glu Glu Ser 1760 1755 1770
Asp Aap Gl» Leu Leu GIu Ser Ué Thr Trp Thr His Glo. Pr o Giu 1775 1780 1781
Vai Τ'/r Trp Cys Lya Gly Are Ala Trp Vai Pro Arg Leu Lys Gin íim 1705 ΪΒ&0
Aep Ile Alá Arg As» Asp Arg: Met Ae» 5#r Mt Air? Arg Pr© He 1805 1810 181$ Ρ&β Gly Ma Pbé Mn B*t Ser Ly* Thr Ala Ile Ala Leu Lye <31u 1820 ISIS 1830
Ala Arg Gly Ala Ser Ser Ser Met Tyr Tyr Léu Glu Ser TLr Glu 1835 1848 1845
Tfer Cye Asp Ser Leu Glu Asp Ala Arg Sis Ala Gly Lye Ala T&r 1850 1855 l&SO
Vai Arg Vai Axg Tyr Ala Leu Vr<* Gin Ala Ils Arg Vai Gly Mi® 1885 1870 1875
Las. Gly Tyr fhs Hís Vai Vai Gin Gly Ser II® Leu Glu Asft TAr 1080 1385 10^0
Cye Glu Vai Pro V*X. Vai Ala Leu Ala «Lu Ly« Mn Gly Ser *1« 1BS5 1800 1905 181 ΡΕ1149919
Leu Mis vai Fro Arg Asa Tyr Met Hia ser Leu Pr© Asp Asn. Met 1910 1915 1929
Ala <íiu Gly fílu Aep Ser Ser Ph& Leu Leu Ser Thr Ala Ala Ala 1925 1930 ISIS
Leu Leu Ala Glu Thr Ile. Leu Ser Ser Alá GIú Sèí PfeV Gly Ser 1949 1945 1959 A&p Alá Ssx Ϊ1* Leu II© Mefc 91» Prs> Pró Jie Phe Cys Vai Lys 1955 1969 1965
Ala ila Leu Glu Ser Ala Ly» Thr Tyr Giy Vai Si» Vai Hís Leu 1970 1975 19S&
Ala Thr Thr Leu Ser Αήρ Vai Lys Thr Ile Pr® Ala. Pr© Trp Ile 1985 1990 1995
Arg usa kís Ma Ly® GIu Thr Avp Ala Arg Leu Lys Sís $©r Leu 2090 2905 2010
í»m Thr As» Met Met Ala Pi» Phs Asp Leu Ser Thr Asp Arg Thr 2015 2020 2<8S
Ala Ala Gly Ile Thr Aso Arg Leu Ala Ly® Leu Leu Pr© Pro Ser 203» 203$ 2040
Cys Ph© Met Tyr Ser Sly Asp Tyr Leu lie &t§ Ser Thr Ala Ser 2646 SOS» 2055
Thr Tyr Lys Vai Ser His vai Glti Asp 21» Fm Ile Leu Glu His 3068 20€S 2078
Ser Vai Ala Mèt Ale Lys Asn Thr Vái Ser Ala Ser Thr Vai Aep 2075 2086 208$
Aep Thr Gin Lys Vai lie Thr Alá Thr Gin lis Leu Leu Fro Gly 2098 209$ 2200
Gin Leu Ser Vai M» Ais Asa Aap Gin Àrg Phs Asn Leu Ala Thr 2105 2110 2US
Vai lie Aap Trp Lye Giu Asa Giu vai Ser Ala Arg Ile Cys Pro 2220 2125 2130 21a Asp Ser Gly Aan Leu Phe Ser Asn Lys Lys Thr Tyr Leu Leu 2li$ 2140 2145
Vai Gly Leu Thr Sly Asp Leu Gly Arg Ser Leu Cys Arg Trp Wet 2ISO 2I5S 2160 lie Leu Bis Gly Ais Arg Hl® Vai Vai Leu Thr Ser Arg Am Pto 226$ 2170 2275 PE1149919 182
Mg tritt) Asp Fm Ljri XX# Al# A#» «#t ¢3.11 Ala ' 2180 21.8S 21SC
Mp 11# TLr VAX Leu Ser H#t Asp Vai Ala &sa GXu 2195 2200 2305
Mj? Ala Gly Leu ©Xy Lys Lee Vai Aep Net Ay# Leu 2218 321$ 22¾¾
Ala Gly Πβ Ma Pfce Gly Pro leu Vai Leu Gin Asp 222 S 2230 2:235
Lva Aen Hat Asp Bi» ©1» «et Ksfc Asp «st Vai Leu 2340 2345 :2250
Vai Gin ©Xy .Ma Arg He Leu «e Glu Axg Fhe Ser 2 £55 22β0 22« S
Gly Ser Lya .Ma 3L&U Asp PSs Pfcté He Het Fíws Ser 22^0 2375 22:80
Ma Vai lie Glv Aan V» Gly Gin Ser Ase Vyr ©Xy 2285 ’ 2290 2.205
Ala Tyr Leu Sln Ala Lata Ala Gin Gin Axg Cys &1* 330Õ 2305 2310
Ala 81 y Ser Vhr Ile Aap He Gly Ala Vai Tyr Gly 2325 2320 23.25
Vai Thr Arg Ala Gin M*t ©Xu 6Xu Λβρ Phe Aap Ala 2330 2135 2340 «et ¥ha Asp Ser Vai Gin Glu Sis 81« Léu His Tfcr 234S 2350 2355
Gin Ala V«1 Vai Ser Mp Gl« Arg Ala Arg Gla Gla 23€0 2355 2370
Lys Thr V#X H# Asp «et Ma Mp Leu Glu Leu Tta 2375 3330 2»§
Pfo Aap Leu &sp Pro- Alã L<Su Gin Aap Arg Ile He 2350 2315 :2400
Mj? Pr® Arg Ffte Gly Aes Pfce Lys IX# Pre Gly Gin 24Q5 241© 2415
Gly Gly Asp Aan Gly Ser Gly Ser Lys Gly Ser lie 2420 2425 2430
Leu Gly Gly Asp Ser Vai Fm Pr® Vai Vai. «et Lay Lya Pr® Lys Glu Gin Thx Ser He Vai Ala Ala As® Arg Gly Leu Vai Gly Pbe Ile Arg Phe Leu Pte# Ala pro Gin Arg Tfcr Gly IXe tyr Phe Aan Arg Giy Asp Ma Mp Gin 183 PE1149919 L*t> Lys ela Ala S&r fhr Leu Asp Gin Vai Arg Gira Xle Vai Ile 243S 3448 2445
Asp Gly Leu Ser Glu Lys hm Arg Vai Thr Leu Gira Vai Ser Asp 3450 24S5 2460
Gly Glu Ser Vai Aap Prs Thr Ila Pre Leu íle Asp Gle Gly V*J 2465 2470 2475 Aísp S«r Léu Gly Ala Vai Ihr Vai Gly Ser Trp Sfce Ser Syá Gira 2480 24SS 34Sfl
Leu Tyr Leu ftep Leu Fro Lsu Leu Arg Vai Leu Gly Gly Ala Ser 249$ 2$$0 2%m
Vai Ala Asp Leu Ala Asp Asp Ai a Al e. Thr àrg Leu Fro Ala Thr 251Õ 2515 2520
Ser íle ?ra Leu Leu Leu Gin 11» Gly Aôp S*r Ttar Gly TA# Ser 2525 251» 2535
Asp Ser Gly Ala Ser Pró Tfcr Fre Tfer Aep Ser Bi* Asp Glu Ala 2540 2545 2550
Ser Ser Ala Tfrr Ser Tlíí Asp Ala Ser Ser Ala Sla Glu Asp Glu 25S5 2560 2565
Glu Gin Glu Asp Asp As» Glu Gla Gly Gly A*g Lye Ilé Leu Arg 2570 3575· 3580
Arg Slu Arg Leu Sei Mu Gly Glu Glu Tyr Ser Trp Arg Glu Gi» 258$ :2590 2595
Gin Vai Lys Asp His Thr zle She Asa Asa Thr íle Gly tíet 2600 2605 26XÔ
Phe Met Lya Gly Tihr íle Asp Leu Aap A*g Leu Arg Arg Ala Leu 3(IS 2Ê23 2«2S
Lya Ala Ser Leu Arg Aíf Sis Glu n* Ph* Ang Tfer Cys Fhe Vai 2530 2635 2640
Thr Gly Asp Asp Tyr Ser Ser Asp Leu Aaa Gly Pr© Vai Gira Vai 264 S 3550 2655
Vai Leu Lys As» Ptú Glu Asn Arg Vai ais Pbe Vai Gira vai .as» 2660 2665 2620 &CT Ala Ala Glu Ala Glu Glu Glu Tyr ktg &y« h»u Glu Lys Tfer 2675 2680 2685
Aan tyr $e.r Ile Ser Tbr Gly Aap Tfcr Lçu Arg Leu vai Asp Pite 2695 2695 2700 184 ΡΕ1149919
Tyr Trp Gly Thr Asp Asp Ms teu hem. Vai lie Sly Tyr fiis Arg 27OS ' 8710 2715 teu Vai Gly Aap GXy Ser 7&* Thr <Stla Aa» teu W» Aat» slu i.le 2720 2785 27.30
Gly Gin XI® fyr Ser Gly 'Vai Lys Met SX» Arç pr© Ser Thr Gin 8735 ' 2740 2745
Phe Ser Asp leu Ala Vai Gin Gin Arg Glu Asa Leu 61« Asn Gly 275« 27S$ 37«0
Arg Met Gly Asp Asp Ϊ1® Ala phe T*$> Lys Ser Met His Ser l»ya 27«$ 3770 277$ vai Ser Ser Ser Ala Pr© Thr Vai teu Pre Ile «et Asa teu lie 2780 2785 2790
Asn Asp Fr© Alá Ala As π Ser Glu Gin Gin Gin lie Gin Fro Phe 279$ 280« 2805
Thr Trp Gin si© iyr Glu Ala jle Ala Arg teu Asp Pro tftc vai 2610 281.5 ‘ 2820
Ala Phe A.rg 11« Lys eiy. Arg Ser Arg Lys Hi# Lys Ala Thr Fr© 2825 2830 2815
Met Gin Ρίϊ® Tyr teu Ala Ala Tyr Ma Vai teu teu RXa Arg teu 2840 2845 2650
Thr Gly Ser Lys Asp lie Tb* lie Gly leu Ala Glu tftr Asm Arg 2855 2860 28S5 ser Tixt Hat Glu giu n® ser Ale «et Gly j>te p&e Ala Asa V*1 2870 2875 2880
Leu Fr© teu Arg Phe Asp Glu Piie Vai Gly Ssr Lys Thr Ste Gly 2885 2890 2885
Glu His teu Vai Ala Thr Lys Asp Ser Vai Arg Glu Ala Met Glu 2700 3905 251«
Sis Ala Arg Vai Pr© Tyr Gly Vai 11® teu Asp Cys teu Gly teu 2715 2920 2925
Asa teu Pr© Thr Ser Gly Glu Glu Pr© Lys Thr Gin Thr His Ala 2930 2935 2340
Fro teu Fhe Gin Ala Vai Phe Asp Tyr Lys Gin Gly Gin Ale Glu 2945 2959 2955 185 PE1149919
Ser Gly Sér Tl* Gly As» Ala Lys Mèt Ttur Ser Vai Leu Ala Ser 29fi0 29S5 29?ú
Axg GIu Axgf Th* Fíó Tyr âap He Vai Leu Giu «et Yrp Asp Aep 2975 29&o ases fro Ifex l»y* Aep Pro Leu 11« His Val Lys Leu Gin ser Set Léu 2990 2995 3060
Tyx Gly Px» eiu Hie Ala oin Ale Phe Vai Aep Ris Phe Ser S«x 3605 .3010 3015 11« Leu Thr Mst Phe ffax «®t As» Lro Ala Leu Lys Ala 3020 302S 3030
<210> 45 <211> 7692 <212> DNA <213> Penicillium citrinum <220> <221> CDS <222> (1) . . (7692) <400> 45 atg aae «« «cc CISC gee gta acc <gca acc ges aee gea ace gea «ee 46 Kít Aen Asn Xirr Pro Ma Val Xhr ku Thr Ala X&r Ala Thr Ala Thr S 10 15 gca anc gea atg gea 33= tf.q gct tge tet aae aea tcc ecg eec att 96 Ala Thr Ala Met Ala Gly Ser Ala Cys 2S Ser Asa Thr Sér Thr Pro Ile 20 10 gere gtt gga atg 33» tgt cga ttt gtt gga gat gea acg agt cea 14* Ala Ile Val Sly Met Gly Cys Ar 3 Phí? Ala Gly Aep Ala Thr Ser Pro 15 4C 45 cag a»9 Ctt C3S ga« stg gtt gss Ά<£Ά asa ggc agt gee tgg ttt aag 192 (Sltt Lys 1-5(1 Trp Gltt Mel Val Õlu Arg Gly Sly Ser Ala Trp Ser Lys sa 55 $0 gtc CcC tet teg cg» ttc aat gtg aça 39* St» tac CàC ceg 33= 740 Vai Pro Ser Ser Arg Phe Aon val Gly Val Tyr Hie Pro Asn Bly *S 70 75 SC gaa »39 gtc 333 tcc aqe esc gta «ag 33t 33» cac ttc ate 9»9 28S Sla Arg Vai Õly Ser Bsr Ria Val Lye Sly Gly Kis Phe XI-& AS d Glu es 90 95 gat CCt Srct BCa ttt gae gee gcg ttc ttc aae «fcg acc gtc Aep Pro Ala Leu Phe Afip Ala Ala Phe Pfte Ase Met Thr Thr álu Val ISO IBS Ufl gee age tgc atg 9»* ceg cag tat <?99 ett atg ctt gae gtg gtc tas 384 Ala Ser Cys Mat Αβρ Pro Gin Tyr Arg i.eu (tet Leu S1B vel Val •Tyr US 128 12S gaa t*9 ctg 3*3 agt gee gqt ate «ce ate gãt 39* atg gea ggc fcct 427 Olu ser Leu Glu Ser Ala Õly lie Thr Ile Asp Sly Met Ala eiy Aer uo 13S 140 âÁt acg teg 3r-3 ttt 339 33= gtc at^ tae eac gae tat cag ^jat tej 4f0 Asn TUr Ser Vai Phe Sly Gly 'Val Tyr Híb Áap Tyr Gin Asp Ser *4 S ISO 155 1Ó0 186 ΡΕ1149919 çtç ast cgt gar çcÇ gag *«* gtt ecg «st tafc ttc ata act 93« aac .520 hmu Reli Asrg Aap Pro olu Tár Val 9r» Ans iyr Pisa U« Thr Gly Aeu US 170 17$ te a gsf iic,3 stg ctt t«g aac «39 ata tea eae tfce taç gac tta egt S75 S*.E siy Thl ?4ôt h&W Ser Asa Arg 11a Ser His Phe Tys" Aep Leu Arg lãc 195 ISO ggt qfvq acg gtt gac aeg gee tgt fcèg acg acâ ttg acc gea 424 G.ly Pr o Ssr Val. Vhr vai Ásp Thr Ala Cys Ser Thr TLr Leu Thr Ale 185 soe 205 «tf cae etg geg tge eag »3« tta cgt act 993 9*9 tcã gat gee 572 «is Leu Ala Cys Gin Ser Leu Atg thr Gly Glu Ser Asp TJar Ala 210 235 220 ate «set ate ss« gea aat Ctt «tg etc aat ecc gat gtt ttt gtt ãcg 720 He Vai Xis Gly ÃiôS Asa Leu Leu Leu AStt Pro Asp vai Phe Val TAr 225 23« 255 240 átf tea ctg gg» tfct ttg tce eeg gàt ggt ate teg tac tet ttt 760 Jfet Ser Ase Leu Gly Pfce Leu Ser Pro Asp 2S0 Gly lie Ser Tyr Ser Phe 245 2SS gafc cct «9» 3«« aafc ss* tat 95« fi^í? S99 gaa gga att gee gct etg 616 Aàp Pro Atf Ala AS» Gly Tyr Gly Arg Gly Giu Gly lie Ala Ala Leu 2S0 255 270 gtá ata gee etc CCS aac gcg ttg ega cj&ç çaã gac ect ate ceíâ 364 Vai lia Lys Ala Leu Pro Asa Ala Leu Arg Aep Gla Asp Pí® n* Arg 275 230 2BS gtç atfc çgâ §»3 aca sr«s etg ÔAÍ eag gat 9S« aca eee gea 312 Ala vai Ile Arg GIu Thr Ala Leu Asa Gla Aap Gly Lys Yhr Pxa Ala 280 295 300 Ãfcfc act geg ecg agfc gat gtg 3«9 «ag aaa agt ctg ate 3*3 tgt 050 .11« Tfer Ria Pro Ser Aep val Ala Gla Lys Ser Leu He Gin Giu Cys 3 OS 33.6 31$ 320 tac gat ^:¾ get 39S ata gat atg teg ttg acc teg tac g«g gag gee 1000 Tyr Asp Lys Ais Gly Leu Ã8p Jtet Sei Leu ϊ>ιι Sei fyr vai Gltt Ala 325 330· 335 gga aet 99» ãCã cca act 95« §ae ccc ctt gaií ate tea gea att 1050 ais Gly Gly Tbr «IC Thr Gly Asp Pr» Leu Glu Xle Ser n* 340 34$ 350 tes f«* gct ttt Phe asa gga Cát GfCt. ctg tac ett gge feet 9tg asa gea 1204 s«t Ala Lya Gly Sis Pro Leu KiB Leu Gly Ser Val Lys Ala .3¾¾ 350 365 a»t att Sfe eat ACa gaa gee gee agt 59* efcg gee agt ata ate aag 1152 Aun 11« Gly Sis tSir OIm Ala Ala 5er Gly Leu Ala Ser xle He Lye r>o 375 3 S0 gtg gcç ttg gee ttg gag aag gSé ttg Stt CCS cct a&t gcg «99 ttc 1200 Vai Ala Lee Ala Leu Glu Lya Gly Leu lie Oro Pro Aen Aia htg Phe 3SS aso 335 400 ctS ca& aag aae age aag ctg atg qtt gac eaa aag aae ate aag ate 1243 L«U eia Ly» Asa Ser Lyo Leu mt LS'U tep 430 Qlti Lya ASf» 11« Lys n« 40S 415 eee stg cet gct c«a gsc tgg gtg aaa gat 999 set egt ecrc 129« Pr& Met Ser aAs. Gin Asp Trp Pro Vai Lys Asp Gly íhr Arg Arg Ala 420 425 430 tet gtc aat aac ttc 99« ttt 95« ggt teg aat get CSC gte att ttg 1344 Ser Val Asa Asa phe Gly Pfee Gly Gly Ser Asa Ala Eis vai 11« Leu 1392PE1149919 187 435 445 g&a tca t*fc gat ogc gc.s tea ttg gce ççg «sea g*g gat cata gtg cafc 61« Ser Tyr Aap· Arg Ala Ser Leu Ma Leu Pre 61« iVep GÀ.r> Vai Eia 450 ' 455 46© g-t.c aat ggt aae fcet gagr «at ggt agg gtt gag fat ggt tcc *àa cag
Vai Asa Gly As» Ser Glu Eis «ly Ârg Vai 61« Asp Gly Ser Lys 61« 465 470 475 480 age ege ata tas gtt ftg egt fcc aag gac gag caa gct tgt cgg cga S*r Arg 11« Tyr Vai Vai Arg Alá Lys Âsp 01« 61» Ala Cys teg: Arg 485 490 4Sl aeg ata gea age ctg ega gac t*c âtt aaa tcc gtt gct gae *t* gae
Sir 11« Ala Ser Leu Arg Aep Tyr ϊΐβ Ly» Ser Vai Ala Asp ile Âsp SOO SOS 519 f33 §a» ccc tcc etc gee age etc gee tat soa eta §gc fcct ege egt
Gly Glu pre Phe Leu Ala Ser Leu Ala Tyr Thr Leu Gly Ser Arg Arg
515 63« S2S tcc att cfcg ce* tgg «cg tc» gfcg tat gta gea gac age ctt ggc ggc
Ser ll* Leu ín> Tr» Tht Ser Vai Tyr Vai Ala Aep Ser tas 61y 6ly 530 615 $46 ect gtt fcet fç« çtç age gat gag tet eafc ca» cca asa cga geg aafc
Leu Vai Ser Ala Leu Ser Asp fílu Ser Mn 61» Pr© Ay» Arg Ãl« Alt» 545 550 S55 " SSfl gag asa gta egg etc gg* fc&C gta fcte aoe ggt «ag ggg gtg oag tgg
Glu Lys Vai Arg Leu 6ly «** Vai Pfae Thr 6Íy 61« èly Alà «in Trp 5«5 S?0 515 cat ges *tg ggc aga gag ctg gte aat aca fetc ce* gt* tte aaa c«g
Hls Ala M*t eSy Arg 61« leu Vai Asa tíur PA® Pro Vai Pbe Lys Gin 530 585 596 gcg att ctt g«* tgt g»t ggc tac ate **g c«« esg ggc gsg agt. tgg
Ala II* Leu Glti cya Aap ely Tyr He Lys Gin Lee 8ly Àl« Ser tvp
595 606 SOS «st ttt acg gag gag ctç cac cgt g*t gitg ctg «cg aet ccg gta «at
Asm Ph® mt Glu 61« Leu Hia Arg Aap Glu Leu Tíir T{ir Arg V*I Aán 610' «IS 62:6 gat gae ga® taç agt «ta ee* «feg tea *cc gct ate caa att fO* ctt
Asp Ala Giu Tyr Ser Leu pre Leu Ser Thr Ala He Gin íle Àla L«u 625 610 SiS 649 gfcg egt cte ctt tgg tea tgg ggá *«t cgg ee& «cg ggg ata acc «gt
Vai Arg Leu Leu Trp ser rtp Sly lie Arg P*e Thr Giy Π® Thr Ser 645 6S& 655 esc tea agt gga g*$ gçt gct gct gee tae gea gct ggg gct tt« tcc
Mis Ser ser ©ly Glu Ma Ala Ala Ala Tyr Ma Ma Oly Ala Leu Ser 960 695 6?9 gcf «gg teg gee atfc ggg ate acst tat ata ege ggfc gtã ttg acc act
Ma Arg ser Ma Oe «ly lie Tter Tyr 11& Arg Sly Vai Leu Thr TAr 675 6»o §85 «ag eça aag ecc gea ttg gea gee aaa gg* gg* «tg atg geg gtg ggt
Lye luro Lys Jteo Ma seu AJa Ma Lya sly Sly Net Met Ala vai Sly «90 695 700 etfc ggt ege «gt gag ace aat gtt feãc «tt teg cgt etc aae eag g«g
Leu Sly Arg Ser Glu TLt A*» Vai Tyr Π* Ser Arg Leu Asa Gin Gla ÍÕ5 1M 715 720 1440 14SS 1536 1594 1632 1699 1.728 1776 1824 1872 192:0 19£i 3Ô1Í 2964 2112 2160 188 PE1149919 9«c gge tgfc gfeg fftg gtfc gg» fcgt «te aac *gt sas tgç *§t gtg aeg
Mp ®lv Cys vál vsl vai siy cy» 11¾ As» se» gi& cye $ex Vai fu* m m iu gfeg tcg ff* ga» fetg ggt ge* «Sc g«§ «aa «ftt gaá »ag fcfcg tt« ««« vai ser My Mp I-ee M.y Ma li* M« S>y* hm €1» hym hm &*« Mis 1*0 MS 750 gcc gas. fpe ate txx acc »gg «as etg aaa gte a**· gaa gm ttn «a* Ãl« Aep eiy 11« «Me 'Ifcr tog Xy* lau feys vai tfcr Sl« Ma 2M Sis 75$ ?m ?§s fcca age «ae â«g «g* cca atg gs» gafe gec t»fe ggg gçg tca «tg aga Ser sar Bis «et Arg Pxo «at Ma Ãgp Ma Pb» oly Ala se* hm. A*g 77« ?7S 780 gat etg t&e aae ««g gat a»e sac ase gac aefc cce aat ge» ga<? »m a«p tóu sptee As» Sm 'Mp a»« as» as» Mg Asa 9m M» aís Mg Tfer ?M 7SÔ 755 8«ft oca sag ggt f»« fets taç. t$s tm set mg set gg*· sft «te «tg set Sm &ys «ly vel feee tyr ser Se* Pm &ye ti»' «ay Set Jbxg Jfcsfc Ϊ&* ms mp sss g»t «*« «a» ctf «*« *«g gae «ee asa em tgg atg gat «gt «ig ata hsp hm hy» hm hm hm Mp Pm ffcr lis f *g **efe Mp Ser Met 'hm. 820 82S Ôia cag e*f ft* gag t.tc gag tee tea efce egç gag «tf tgç ttt gafc e«ç
Si» 9th V»i Sis Pha Slu Se* Sèt hm A*1 Sis M« Gya Vb» Mp Pm 63S 84!} 648 asc aee &«a gag aas pee fta gst grg afet st? ga» sta ggg e®* e»e km fhr ty» Siv iys Ala, Vai Mp Vai IXa Π« <llv lia Gly Vro «is SSV $58 s$$ gg» §eg «tt ggí ggt ««» «ta «ea asa gm ats sag g»t stg fft atf ®lv Àle fcea $ly fíly Iro 11« As» ©la V«l «et &» Mp im Sly hm m$ " wq ên &m aa« gga «ca fat stã aac tas «c ags tg« eat tet esc gge «ga *ge
Ly® fiiy tfer AS|s Π# &m tyr hm Sãr -Çy» ítów S«r Arg ily Arg «sr 8SS W® 826 te$ &*a g$s ««« «ti tat egt fet gea «eg f«s t«g ata age asg §gt Ser Law Sie Tfcr Me« ty* Arg Aís Ma th* Ma hm lia Set &y» My ao» sos ai» tas fSS ««« aaa asg gme get ata sa» tt.t eee m gga aga asa gaf tyr Siy i«tó tíf» rnt Mp AI a Π* Asa «As pfú Ki® «ly Arg «ya G:|y
61$ 020 VIS ««e «gs fSf a«g gfca «tg age S*fc «t$ oeg geg e«« «og «*fc «aé fy® aif vai ly» vai im s»t Mp hm Pm Má tyr fxó ttp m» «is SM PM 04$ ca® aee egt tat tgg aga gag ect ege ggc agt egt #ag tee aaa eag gl» t«r Arg tyr Tsp Rrg GIu fso A*g Sly Ser Mg siv Sm ly» SI» «4$ SSÔ 8S6 Sê» «ga scc ca.» ceg cct esc act ttg sfcs ggç tc« egg gaa tet etc tet
Arg fht Ris Prc Pr® Hls Thr L$u lie síy Ser Mg 61« sar i-ea Ser
sés ato MS <Xt c«t ttc gpg cçt m» tgg «*« <t»t g:ct CSC cgt çtg tça gafe afet «re gia «feô Ma tom tm fcys ii» Vai iim A*f hm Se* Mp lie 0S0 MS 080 cc* tg§. afee cga gafe um ste gtt gffe teg agç afec «tc fcit ceg gga .«re trp lie Arg Aajs Eis vai vai My Ser Set lie Ile Hm Pm Siy 2MP nss 2304 M53 3400 2440 24SS 2544 2552 2«40 ««Se 2236 2704 3012 2Si0 2020 2$?S 3024 189 PE1149919 $95 ICO® 1005 gct ggç ttc ate age atg gcc ate gag ggg ttt tca caa gtc tgc 1059 ma eíy Pfe* ϊίβ Set Mtot Ãlã Sle Slu Sly Pfae Ser 61» Vai Cys 1010 1C1S 1020 eea csa gtt ge§ ggg gct age ate aac tae aac ttg egt gac gtt 3119 P«j Pro Vai Ma Gly Ala Ser lie Asa Tyr Asa Leu ftsg tep Vai 102$ 1030 1035 gaã etc geg eag got etc ata ata eçe gct g«t gea gaa gca gag 3259
Glu leu Ala Gin Ala Leu n® Ile Pr o Ala Asp Ala <S2« Ala Glu 1040 204$ 105$ gtt gsc et§ cgc efca aeg ate egt tca tgt gag gaa agg fc«c ete 3304
Vai Aso Leu Arg Leu Th* li* A*g Ser Cy» 61» 6lu ftrg Ser Leu M'$$ 1360 ie«$ gge aea aag aac tgg cat eaa ttt iefc gfcg eac tca att teg ggc 3249 •Sly mr Lys Aen Tsp Mb Sle Phe Ser Vai Sie Ser Me Ser Sly 1070 1375 2080 g*a aat aat aec tgg ae« gaa eac tgc ace gga tta ata cgt tcg 3294
Slw Asa Asa Th* Trp Thx Giú Hil 0¾¾ fht Cly Leu X2,e Atg Ser 108$ 1090 1099 gag age gaa ag» age cae efct gac fcgt tca. «et gtg fsa gee tca 3339
Glu S*t 61» Arg Ser Hia Leu Asp Cys Ser «ir Vai Glu Ala Ser .1100 nos U10 cgç agg ttg aat cfca ggc tca gst aae egg age att gafe etc aac 3384
Arg Arg Leu Asa Leu SÍy Ser Mp As» Arg Ser Ile Asp Oro Asn 1115 1 2.120 1125 gat etc tgg gag tce tt* cac gcg ast ggg ata tge cac gga ecc 342$
Asp Leu Trj> Glu Ser Leu His Ma Asa 6ty 11« Cys Mis Sly Pro 113« ms 214* att ttt cag aac att cag ega att eaa aac «at gga c*g gge teg 3474 31 e Pt» Sln Asa 21® Gin .Arg 12* 61« Aen Aen Sly Glu Gly Se* 2245 USO 1155 ttt tgc ag» ttt tce att gct gac act gee t«g gct atg «et eac 3529
Fhe Gys Arg í%e Ser Ile Ala Aep Thr Ala s«r Ma Hat Pro Bis USO 1155 117« teg tac gag aac ega cae ate gtc cat ccfc act set ctg gaç fecg 3564
Ser Tyr íáu Asa Arg Mis 31a Vai fiis Pre i!Mr Thr Leu Asp Ser 1175 1180 1185 gtg ate çag gcg gc« tac &cg gtg tta cec tae gfig gga «CA cgt 3609
Vai lie GXn Ãla Àla Tyr Xhr Vai Leu Pro Tyr Ala Ãly Thr Arg 1190 1195 1300 atg a*a acg gee «tg gta cca agg agg eta *g* aat gt* aaa ata 3654
Mst Lys Thr Ala Met Vai Pr o Arg Arg Leu Arg aats Vai Lys Xle 2205 1.210 1225 toe tefc »ge ctg gct gae ttg gmg gct ggt $at gct etg gsetc gee 11»
Ser ser ser Leu Ala Asg Leu Glu Ala Gly Asp Ala L*v Asíjí Ala 1220 1225 1230 cag gee age a.tc aag ga« ®ge aac feet eaa tcc ttc tet acc gae 3744
Gla Ala Ser lie Lya Asp Arg Asn Ser Gin. Ser Phe Ser Thr Asp 1235 ' 1240 124$ ttg g«a gfeg ttt §at gac tat gat. age ggt tefe tet eec tc§ gae 3789 l<eu Ala Vai Pfoe Aejj Àap· Tyr Àbjj Ser Gly Ser Ser Iro Ser Asp 1250 1255 1260 190 PE1149919 £9* «te eçs gtc ata gag att g*s ggc ctt gtt ttc cag t«g gtt 3534 aiy II* Pm Val IX* 61u 11· Glu cly teu Vai ti* Gin S«r Vai I3ÊS 1276 1215 S9® agp egc ttc tet âác c*« aag tea gae tee ase pe aca gu 38?$
Gly Set Sat Pfcs S*r Ásp Gin tys Set Àsp Ser Aga Xg» Thr 61u USO 1255 1290 aat g*« tge age toe fcgg gafe fcgg gçc çct q«c ate atte ttg ggt 3924
Asn Ais Cjw Ser Ser Trp Vai T*p Ala Fro Xe* 11« si* teu Qlv
1250 IMS IMS gac toe set tgg etc Wl §Aâ g«g ttg age «et gag gct qag aeg 3949 Aâp Ser Thr Trp teu Lya el« Lyg Leu Ser Thr Glu Ala Gl« Hir 13!« m$ 1320 aaa g&® «cg gaa ctc atg *tg g»e eto cga aga toge acgp ate aae 4¢14
Lys Slu Thr GlU teu S4et Met Asp teu Arg Ârg Çyg Thr Ile Asa I33S 1330 1335 ttt ata cagf gag get gtc set gat ttg aca ®at ter gae ate caa 4059
Pb® Ué Gla 61 a Ala Vai Tta hâp Leu Thr Asn Ser Mp Π* G.ln 1340 1345 .1350 e*fe ctg gafe ggc eac ett eag ®ag tat ttç gat tgg sty aat gfcc 4104 8i» lato Aep 61 y Si* Leu 61a Lys Tyr m« Xap Trp Met Assa Vai 138$ 136õ xses ç:aa ttg gae ctt geg aga «a* aao aag etc age cca gee agt tgc 4149 61 e Leu àsp Lsu Ala Arg Gin As π Lys Leu Ser hre .fila Ser Cvs 1379 1315 1380 gae tgg cta sgt gac gat get gag c&g aag saa tgc et* cag gee 4194
Aep Tsp Leu ser Asp Asp Ala 61a 61« Lye Lye Cys Leu SXa Ala X3»S 1390 139$ aga gte get ££* £*a afe gte ast ggc gag atg atfc tet egt «ta 4239 A»g vai Ala Sty olu Ser vai Asb Oly 61u Met He s»r Arg Leu 1490 1495 1410 ggs cet cag tta ata gea atg et* ege ege gaa aca gag eca ctt 4284 61y $*» Sltt Leu Ile Ala mt Leu Aig Arg 6lv Thr 6.1u Aro Leu 1419 1420 1425 g*g ttg atg atg caa gat cag ct-g ct« age aga tac tac gtc ame 4329
Slu Leu Met M*t 61« Aap 61« Leu teu Ser Arg Tyr Tyr Vai Asa 1430 143S 1440 gem ate aaa tgg age cg* tea aac gea caa gee age gag ctg are 4314
Ma IX* Ly* fxp Ser Arg Ser Asb Ala Sln ÃXa Ser 6Xu teu II* 1445 1450 1455 cg* ctt tgc gee eac *ag aae ecg cft tet ege att ttg g*g att 4419
Arg Leu Çys Ala Mia Lya Aan. Pto Ang Ser A*g 11« tee 61« II* 1400 1445 ' Ϊ.470 ggc gga ggc seg gge gge tgc acu aag ctt att gxe aat fea ttg 4454
Gly ®l.y Gly Thr SXy Gly Cy* Thr hy& teu II* Vai. Asb Ala teu 1475 1480 1485 gga aac aec aag cesg ate gat egt tar gac tte aec gat gtg tet 486» ôly Asm Thr Lys Fco il« Asp Arg Tyr Mp lh® Thr Mp Vai Set 149® 1499 1500 qcc ggg ttt ttc gag teg geg egt g*g ca* tet gcg 6»t tgg ca* 4SS4
Ma Sly me Ph* 61u Set Ma ATS SI* 610 Ph* Aja Αβρ T*p 61« isos ias isis gac gtg atg aet ttc aaa asa ttg f*t att gaa age gat «ee gag 459» A*SP Vai mt Thr Pha Lye Ly» Leu Asp íle Slu èer Asp Ped 61« 191 PE1149919 iSâc ajis isso eaa csa ggg fctfc gaa tgt gcc acc tac gafc gtg gtc gtg gct tgc 4644
Gin Gin Gly Pfc« Glu Cy# Ala Mar Tyr Asp vsl Vai Vãl Ala Cys iSis i$40 a.$4s cag gfcc cfcg est gca act çga fcgc atg aaa ega aea çtg agt ase 46S9
Gin Vai Leu iiis Ala Thr Arg Cya Hst Lys teg Thr Leu êer Asa
1550 iSSS ’ iSéO 8jtt ega aaa ttg etc aag cct ggg gge aac ttg att ttg gtt gag 4734
Vai Arg Lys Leu Leu Lys í>ro SXy Gly Asn Leu XI# Leu Vai Glu 1565 1510 1575 #ct *ec agg gat eag çfcç gat ttg tfcç fctfc acc ttc gga cfcg fcfcg 477:3
Tfer Thr teg Asp Gin Lai Asp Leu The Pha Thr She Siy Leu Leu 1S80 1585 1530 cea ggt. tgg tgg etc age gag gag cct gag egg sag teg acg cca 4834
Pr© Sly Τερ Trp Leu Smt Clu Glu Pro Gl» Arg Lys Ser Thr Pro 1595 158® 1605 teg etc aet «sc gat cts tgg «ae acc atg fctg gae *eg age ggt *969
Ser Leu Thr Thr Asp Leu Ttp A«m Thr «tfc Leu »p Thr Ser Sty 1$10 1«Í5 1620 ttc esc ggt gtf gaa ttg gag gtt egt gat fegfc gaa g»c gafc gag 43:14
Pt» Mn Giy Vaí Glu Leu Glu vai Arg Àep eys GXu Asp Asp Glu i«2S 1630 1835 ctt. tac atg ate age aça atg ct® tçg *eg set aga sa® gag aat 4959
Ph« Tyr Mett lie Ser Thr Het Leu Ser Thr Ala Ãrg Lys Giu Mn
1640 1645 ISSO aca euc ccg gat acu. gtg gea gaa teg gag gtg ctt ttg clg cac 5004
Thr Thr Vtú Âip Thr V*J Ala Clu Ser dlu Vai Leu L«tó Leu HiS 1655 i«60 1865 gga geg <ste cg® eet cct te» tct tgg ctg gpa agt etc cag gea 504 9
Giy Ala Lau teg Sr© Pre Ser Ser Trp Leu Slu Ser Leu θΐκ Ala 1570 1675 168:0 gea att tgt gaa aag acc agt tct age cea teg ate aac gct ctg S034
Ala síe Cys Glu Lys Thr sar ser Ser pre ser IXe Mh Ala Leu 1685 1530 3.835 ggc gag gta g«t acc *ct gga agg ae« tgc att ttt ctt ggg gaa 51.39 GÍy èlu Vai Àsp Thr Thr G3y Arg Thr Cye ile Fhs Leu fily Glu 17ÕÔ 170S 17J0 a&g gag tcc teg etc ctt gga gag gtf gga age gag acc ttc aaa 5184 llefc Glw Ser Ser Leu Leu 61y Glu Vai ©ly Ser Glu Thr She Lys 1715 1730 1735 t«c Ãfeç acc gcg atg ctg ml ««c tgc aac gea Ctt çtc tgg gtg 5229
Set lie Thr Ala wet Leu Aen Asts cy» Aes Ala Leu Leu Trp Vai 173·® 1735 ‘ 1745 tct ags gfa gea gee at.g age tse gag fat cca tgg ' a»* fet cta. 5374
Set Arg Giy Ala Al® ttet Ser Set Glu Ásp Pro Trp Lys Ala Leu 1745 1750 1755 «at att ggt ctg ctg cgt acc ate ege aac gaa aat aac ggg aag 531.9
Hia lie Giy Leu Leu Arg Thr lie Arg Aeu Glu Aen Abb Sly Lya 1760 1755 1770 gaa tat gta teg ts.g gat etc gat cct tct ega aac psa fcae acc S364
Glu Tyr V®1 Ser Leu Asp Leu Aep Src Ser Arg Ae« Ma Tyr Thr 1775 ' 1780 1755 192 ΡΕ1149919 eae gag çec ctg tat gct ate tge aat ate ttc a-at ggc cge etc 5409
His Slu Ser Lesa Tyr feia 31« Cys fesrs He F'ks Asa Sly Arg Leu 1790 1?S5 I.&D0 SBC -gac chfc tec ga* gac sag ga.g ttt gaa ttt §e* ga§ âg* ase S454
Sly Asp Leu Ser Glu Asp Lys elti Pise Ola $ba Ala 02« Arg As» 180¾ 18IÇ 1815 fge gtc ate esc gts ecg cga ctt ttc aat gat ccg eac tgg aug 54 99
Gly vai lie His Vai too Asg Leu Phe Aan Ãep to» Hie Trp Lye 1820 1825 ISSO f»c cm VM geg gtt g-ag gtc aea etg qag «9 tfcc gag eaa ece SS44 A£p Gic Siu Ala vai Glu vai The tóu Gin pro Ph« Glu Gin Pru 1835 1840 1845 088 «ft «St ctg egg atg gag gtt gag acg eea ggg etc tta gac SS89
Sly Arg Arg Leu Ar§ Met Glu vai siu Thr too Gly Leu Leu Agb ISSO !$5S 18Ê0 tee erg eaa ttt cga gae gac gaa gga egt gsa ggc aag gat ctt $«34
Ser Leu GlB Ph« Arg Asp Asp G.lu Gly Arg Glu Giy Lys Asp Leu
1885 L$7fi 187S ceg gat gat tgg gta gaa ate gaa eee aaa get ttc fgfc etc aat 5579 too Asp Asp Itp Vai siu He Slu too Lys Ala Pfce Sly Leu asm 18S0 288S 1858 ttt cgg gat gte afcg gtt gcc atg ggt eaa ttg g*g 9CC aãe «8t 5124
The fetg Aap VaX Met vai Ala Met Gly Gin Leu GIu Ala Asb. Arg 1885 1800 1805 gtg atg ggc ttc gaa tge gcc gga gtg ate aea aag ete ggt gga S?S§
Vai Mtet Gly Phe ciu cya Ala Gly Vai ile Thr Lye Leu Gly Gly 1910 isas 1920 gct set gcc gct age eaa ggc ste aga tta ggg gac ege gta tgt 5814
Ala Ala Ala Ala Set G1b Gly Leu Atg Leu Gly Asp Arg Vai Cya ms 1930 1935 gea cta ctg aaa gge cat tgg geg acc aga aca cag aeg ceg tae 5859
Ala Leu Leu Lys Gly Hie Trp Ala Thr Arg Thr Gin Thr too Tyt 1940 1945 1950
aet aat gtc gte cgt att ccg gac gaa atg ®gc ttc eea gaa gee S9M
Thr Aon Vai Vai Arg lia Pro Asp Slu Met Gly Phe Pro Glu Ala 1.9.SS 19 S0- %M 5 gôt teg gt« eee ctg gct ttc act aee gea tat att gcg ctt tat 5949
Ala Ser Vai Aro Leu Àl« Ww* Thr Tlwr ÂJa Tyr lie Ala Leu Tyr 1970 1815 1989 aec asg gsa aag cta ega ega ggc gaa aga gte ttg ata cac agt 5994
Thr Thr Alá Lyã Leu Arf Ar§ Gly «lu Arg Vai Lau He Mis Ser 1.9BS 199« 1995
9f& gftt fgw fgc ftc ggt eaa gea ®eg ate att tfeg tcc cag ctt 503S
Gly Ala ály Gly Vai Sly Gin Ala ÃlA Π* Π* Lau Svr 01« Leu 2000 2005 2010 gcg ggt gcç gag gtc ttc gtc aca qcg gga aet· eaa gcc aag cgt 5084
Ala Gly Ala 01« Vai as Vai Thr Mi Gly Thr Gin Ala Lys ferg 201:5 2020 3025 gae ttt gee ggc gat saa ttc ggc ate aat acg gat eat ate ttc si29
Asp Pte Val Gly Asp Lys· Pfee Gly íla to Prc Ásp Hia He m& 2030 2035 2040 tfi| afe agg ãsfc §ae tta ttc ftc gcc «fgc ate aaa gcc t»c acg 5*74
Ser 8àr ferg Asn Asp Leu Phe Val Aap Sly 1,1« Lys Ala Tyr tt» ΡΕ1149919 193 2S4S 2050 .2055 age 33« ctt gge gt« «»fe gt« gtt cta a.ac tea ttg gea ggt caa Gly Gly Leu Gly vai Ria Vai Val Leu Asn Ser Leu AXa Gly Gin 20« a 2065 2073 etc etc çaa gea age ttt gãC tgc atg gçè g®á tte ggc aga ttt Leu Leu Qlss Ala Ser Phe Aap Cys Mftt Ala 0&u Phh Gly &rg Phe 2075 20 SQ 2085 gfct sfag att gga aas. aag gac stg gag caa aac age aga ctt Vai Glu Ilá Gly Lys Lys Asp Leu Glu Gin Asn Ser Ar>g Lsu Asp 2090 2355 2X00 sxg ctg cca tte aee cgg gae gtc tet tte ae& tes att gat ctt. Ket Leu Pro Phe Thr Arg Asp Val Ser Phe Thr Ser Xle Asp Leu 2X05 2110 2115 ctc teç tgg caa agis gee as® agt gaa gaa grea tcc gaa gcg ttg Lee Ser Trp Gin Arg Ala Lys Ser Glu Glu Val Ser Glu Ala Leu 2120 2X25 21J0 aae cat gtc ata aaa etc etc gag aça asa geg att. ggc ttg att Aen His Vai Thr Lys Leu Leu Glu Thr Lys Ala lie Gly Leu lU 213 S 214:0 2145 ggt eta ate esg cag cac tet ttg tea esc ate gag tte Giy Pro Ue Sis Gin Ki® Ser Leu Ser &s» lie Lys Alá |4x« 2i sa 2155 2.160 cgt a 03 atg ca# agt ggt cag cat gtt ggs aaa gtt 9tg gtc ãet Arg Thr Met Gla Ser Gly Glu His Val Gly Lys Val vai Val Ash 21,68 217« 2175 gta tet ggg gac gaa ctg gtc cea gtc ggc gat gga ggg tte teg Vai Ser Gly Áap Glu Leu Val fro Val Gly hep Gly Gly Phe Ser 2180 3X$$ 2199 ctg aag ctg àag cot yac age tet tâc et« gtt gct ggt ggg «« Leu Lys Leu Lys Pro Ãsp Ser Ser Tyr l<eu Val Ala Gly Gly Leu 2X85 2200 2205 333 33« att gga «ãg cãg átc fcgt cag tgg ctt gtt gat cat 33« Qly Giy Ile Gly Lys Sis lie cys Gin Trp Leu val Ãsp Kls Gly 2210 2215 2220 303 aof esc ttg att ate eta ttg aga agt gea aag geç agt çça AXà l.ye Rís Leu Ilê lie L®u Ser Am Ser Ala Lys Ala ser Pro 2225 2233 2235 tte ata acc age ttg eaa aat caa cag tgc gct gtc feãt cta cac Fhe lie The Ser Lèu GXn Asa Gin Gin Cys Ala val Tyr Leu Ma 2240 2245 2250 qca tgt gae ate tça gafe caa gat eag gtc ace aãf gtg cfec «33 Ala Cys Asp lie Ser Asp Gin Asp Gin Vãl Tb.r Lys Val Leu Arg 2255 2250 2265 ttg tgc gaa gaa gsa eat gea eeg cca att cga ggt ate ata caa Leu Cys Glu Glu Ala Sis Ala Pre Oro lie Arg ííJ.y Ilê Jlé GxiS 2270 2275 2280 ggt gee atg gtt etc «ag gae gcg ctt cta teg cg» atg aca ttg Gly Ala Met Vai Leu Lye Asp Ala Leu Leu Ser Arg Met Thr Leu 2285 2280 2235 gat gaa ttt aet gça gça aça ege cca «aa gta c*g ggt agt Asp Glu Phe Aen Ala Ala Thr Arg prç Lys Val Sl» Gly Ser Trp 2300 2305 2310
Ml 9 62« 4 «300 6354 «339 «444 6489 «534 «579 ««24 «669 S714
67SS 6804 «84$ 6894 ma 194 tat ctt Tyr Lou 2315 tca tcc Ser Ser assa gca gct Alã Ala. 234$ que cat Àls Mis 23 Sô ter crtr S«r Vai 2375 «te get Leu Ala 23S0 gafc gtg Asp Vai 2405 tea cCt Ser Pro 2430 get eac Ma His 2435 gga ctt àly Léu 24S0 tet teg Ser Ser 240$ agg gtc Arg Vai 348» ac.g acg Met Thr 2495 atg t«e Met Ser 2SI0 gtc gee Vai Ãla 252S gat gtg Asp Vai 2S4S etc gfcc Leu vai 2555 ΡΕ1149919 sae a&g ate gea eag gat gtt gae etc ttc gfcg atg etc Hia Lys lie Ala Gin Asp Vai Asp Phe í>he Vai Kefc Le» 2320 2325 ctt ffet ggg gtc atg ggt ggg gc* ggc cag gee aat tac Leu Vai éíy Vai Het Giy Giy Ala &ty Gin Ma Aso Tyr 3335 2340 fet ggt, gea ttc eag gsç gea ctt geg cac cac cgg ag» Ala Gly Ala Phe Gin Ãsp Ala Leu Ma Hía Híe Arg &rg 2350 2355 ggt atg ccg get gtc acc att f*c ttg ggc atg gtc aag Giy Met Pso Ala Vai Thr lia A*p Leu Giy Wftt Vai Lya 2355 2378 gga tae gtg gct gaa aet ggç egt ggt gtg gee gae cgg Giy Tyr Vai Ala, Glu Thr Giy Arg Giy Vai Ala âsp Arg 2300 2385 aga ata ggt tae sag eet àtg cat gaâ aag gae gtc atg Arg Xlç Giy Tyr Ly« pro· Met KA» §1« Ly» A®p Vai Kefc 2395 .2400 tfcf gag a«g gea ate efcg tgt tet tcc çet caa tfcfc cea Leu Glu Lye tíi li» Leu çye Ser Ser Pr© Gin Fhe Pt© 2410 2415 eoe gea get gtg gtt aea gga ate aae aça tce e«9 ggt
Oro Ala Ala Vai Vai Thr Oly Xie Asrs Thr Set Pto Giy 24 2 S .2430 tgg acc «eg gea asuc tgg ata cag gaa cag cgg ttt gtg Lrp Thr Glu Ala Aan Trp lie Gin Giu Gin Arg Phe Vai 244Õ 2445 aaa tae cgç eaa gtc ctt cat gea gac eaa tcc ttt gtc Lys Tyr Arg Gi« Vai Leu Hi® Ala ftsp Gla Ser Phe Vai 2455 24SÔ cat aãâ aaa gga cea gat ggc gtg cgg gee eaa cta age His ly® Lye ©íy Pro Àsp Gly Vai Arg Ala Gin Leu Ser 2470 2475 «se tet cac gac gsg geç att tet ate gtc etc usa gea Thr Ser His Asp Glu Ala Xie Ser Sle Vai Lea Lya Ala 2485 3450 f&a aag ctg atg cga «tg ttt ggt ctg gea gaa gac gac Gltó Ly*ê iitu Mêt Arg Mét fhe Gly Lea Mu Glu Aeu Asp 2500 2505 teg teç eua aae ctg gea ggt gtc gge gta gac tea ctc Ser Ser Ly® Abu Leu Âla Gly vai Giy Va.1 Asp Ser Leu 2515 2S20 att gas ctt cga aac tgg ate aca tet gaa ate eat gtt lie Glu Lea Arg Asn Trp lie Thr Ser Slu He Eia Vai S530 2535 teg ate ttt gag etc atg aafc ggt aae aee ate gee gge Ser Xle Ohe Glu Leu Ket Aan Giy Aan Thr He Ala Giy 2545 2550 gag tta gtt gtg geg aaa fcge ugt taa Glu Leu vai vai Ma Lys Cy® Ser 2550 5984 7029 7074 TU9 71€4 7209 7254 7299 7344 7389 7434 74 79 7524 75S9 7414 7âSf 7592 195 ΡΕ1149919
<210> 46 <211> 2563 <212> PRT <213> Penicillium citrinum <400> 46
Met Asn Άβα Thr Pr© Ala Vai Thr Ala Thr Ala Thr Ala Thr Ala Thr 3. 5 10 15 AU Thr Ala Met Ala 01 y Ser Ala Cye S«r As« Thr Ser Thr Pro He 20 25 Í0
Ala lie Vai Gly Met Gly Cya Ârg Phe AU Oly Asp Ala Thr Ser Pro 35 40 «
Gin Lys Leu Trp Glu «et Vai SIu Arg Gly Gly Ser Ala Trp Ser Lys 50 55 60
Vai Pro Ser Ser Arg PM Asn Vai Arg C=ly Vai Tyr Ri» Pro Asn Gly 65 70 ‘?S 80 GIu Axg Vai Gly Ser Thr Eis Vai Lys Gly Gly Hiâ Pha Ile Afip Gly 85 50 35
ftsp Pío Ala Leu The Asp Ala Ala Phe PM Mn Met Thr Thr 31 u vai 100 10.5 HO A,la. Ser Cye Mk*t A*p Pr* sltt Tyr tag Leu Met Leu Gla Vai Vai Tyr
115 120- 12S
Glu Ser Leu Glu Ser Ala Gly 11® Thr 11« Asp Gly Met Ala Gly Ser 1.30 135 140
Asn Thr Ser V-al Phe Gly Gly Vai Met Tyr Kie Asp Tyr Glu Asp Ser 145 150 155 1É0
Leu Asn Arg Asp Pro Glu Thr vai Pro Arg Tyr Phe He Thr Gly Aen ÍÉS 170 175
Ser Gly Thr Met Leu Ser Aen Arg He Ser Ris Phe Tyr Aap Leu Arg ISO: X8S 130
Sly pro Ser Vai Thr Vai Asp Thr Ala Cye Ser Thr Thr Leu Thr Ais 1ÔS 200 205
Leu Me Leu Ala Cya Gin Ser Leu Arg Thr Gly Glu Ser Asp Thr Ala 210 215 220
He vai He Gly Ala Asm Leu Leu Leu Asn Pro Asp Vai Phe Vai Thr 225 230 235 240
Met Ser Asn Leu Gly Phe Leu Ser Pro Asp Gly IIe Ser Tyr Ser Phe 245 2:50 255 196 ΡΕ1149919
Asp Pro Arg Ala &an Gly Tyr Sly Ai*j Sly Sis Giy lie Aiá Ala Leu 250 265 27Θ Vãl lltt Ly# AX& Leu P*© km Α1& {«eu Arg Asp Gl» Juap fcr» íie Arg tn 280 285
Ma Vai Xle Arg Slu Thr Ala teu As® 61« ksp Sly Lya Thr Pro Alá 2S0 295 300
Ile Tfcr Ala Pro ser &gp Vai Ala Glti hys Ser Leu lie Slis Slu cye 3 OS 3-10 SIS 320
Tyr As-p hve Ala Sly Leu Asp Met $er Leu Thr Ser Tyr Vai slu Ala M$ 330 33S
His Sly S&r Gly Thr pre Thr Giy Aap pro Lee Slu Ue Ser Ala lie 34« 34.5 350
Ser Ala Ala Pto* Lya Slv Sis Pra Leu His Leu Gly Ser Vai Lys Ala 355 ‘ K0 365
Asn lie Sly Me Thr Slu Ala Ala Ser Gly Leu Ala Ser íle lie Lys .378 175 300 val Ala Leu Ala Lau slu tyts Gly Leu lie ?ro Pro Aer> Ala Arg Phe 395 390 395 400
Leu Slu lys Asn Ser í,ys Leu Ket Leu Ásp GXs Lys As» He Lys He 405 410 415
Pró Síét Sér Ala Glfi Asp Trp PtO Vai Lys Hsp Gly Thr Airg Aítj Alá 420 425 430
Ser Vai Asn &sn Pbe Sly Phe Sly Sly Ser Asa Ala His Vai He Leu 435 440 445
Glu Ser Tyr Asp Arg Ala Ser Leu Ala Lá» Pro Glu Aep 61 ft Vai Si» 4SÔ 45S 4«S
Vai Asa Sly As® Ser Glu lio Gly Arg Vai 61« Aap Sly Ser Ly® Gin 465 470 475 480
Ser Arf lia Tyr Vai Vai Arg Ala Lya Asp Slu Gin Ala Cys Arg Axg 495 4S0 495
Thr lie Ala Ser Leu Arg Asp Tyr 11« Lys Ser Vai Ala Asp lie Asp 500 505 SlO aiy ãlu Pro Phe Leu Ala ser Leu Ala Tyr Thr Leu Sly ser Arg Arg 515 520 525
Ser lie Leu Pro ?rp Thr Ser Vai Tyr Vãl Ala, Aap Ser Leu Sly Sly S38 S3S 540 197 ΡΕ1149919
Leu Vai ser Ala Leu Ser Asp Glu ser Asa Gi» Fro Lye Arg Ala Asa 545 55® SS5 56®
Glu Lye Vai Arg Leu Gly Fhe Vai Fhe íhr Qly Gin fíly Ala oia Trp ses 570 575
Ris Ala Met Gly Arg Glu Leu Vai Aan Thr Pfee Fro Vai Phe Lys Gin 58® ' 585 55®
Ala Ile Leu Glu Cys Asp Gly Tyr Ile Lys Gin Leu Gly Ala Ser Trp 555 ‘ SOS 405
Jtím Phí Mtefc Glu ©la Leu Mis Arg Asp Glu Leu Thr Th* Arg Vai JtSn 410 615 520
Asp AlS Glu Tyr Ser Lati Fro Leu Ser Thr Ala Sle Gin Ile Ala. Léu 025 63® 635 64®
Vai Arg Leu Leu Trp Ser Trp Gly lie Arg »ro Tfcr Gly lie TAr Ser 645 65® 655
Ria Ser ser Gly Glu Ais Ala Ala Ala Tyr Ala Ala Gly Ala Leu Ser 460 6êS 670
Ala Arg Ser Ala Ile Gly Ile Thr Tyr lie Ara Gly ¥al Leu Vhr Thr 675 68® ' S85
Ly# Pro Lys Rco Ala Leu Ala Ala Lys Gly Gly ttet Me& Ala Vai Gly 08® 055 78®
Leu Gly Arg Ser Glu Thr Aen Vai Tyr Ile Ser Arg Leu Àsn Gin Glu 705 71® 715 720
Asp Gly Cys Vai Vai Vai Gly Cys XXe Asa Ser Gin Cys Ser Vai Thr 725 7.58 735
Vai Ser Gly Asp Leu Gly Ala Ile Glu Lys Leu Glu Lye Leu Leu Ria 740 745 75®
Ma Asp Gly lie ffee Thr Arg Lys Leu Lye Vai Thr Glu Ala Phe Hía 755 760 765
Ser Ser His Set Arg Pro Ket Ala Asp Ala Phç Gly Ala Ser Leu Arg 77® 775 730
Asp Leu Phe Asn Ser Asp Asa Asa Asa Asp Asa Pr© Asa Ala Asp Thr 785 790 795 300
Ser Lys Gly Vai Leu Tyr Ser Ser Fro Lye Thr Gly Ser Arg Mefc Thr 805 810 815 198 PE1149919 ftsjp l©u hy* te» te» te» wtt> tfcr Bi# Trp «at Asg Ser Het teu 820 825 830
Sis Prô V4l 61« Pft© SIss ter Sét teu Atf 01« «et Çys Sb* A»p Pro 83S S4S 845
Aen T&t ty» 61© l*y* Ala v»l Asp vai xie ji« 61« ile çiy Pro Hl# 850 «555 OSÓ
Gly Ma teu 62y Gly bo II© AS* 62» Vai «et 61* Asp Leu 61y Leu $65 87¾ 875 880
Lys Sly Thr Aap lie Ass Tyr teu Set Cy# Leu Set Are Sly Arg Ser 885 880 S95
Ser Leu 61« tfct «et tyr A»§f Ala Ala KJw 61« teu 11« Set Lys Gly 800 $05 910
Tyr Gly teu Lys Met Asp Ala 2le Ase $ha Pr O Ml» Sly At* I*y® 61« SIS $20 §25
Pr© Arg Vai Lys Vai teu ter Aep teu teu Ala Tyr te» Trp teu Eia 930 935 940
Gin Tbr teg fyr Τηρ Arg 61» te® Arg Gly Ser Arg Slti Ser Ly# Gin 945 950 $55 $80
Arg Thr bis Aro fero Ele tbr teu lie Gly Ser &rg çl« Set teu Set SWS 970 97$
Pt* Hi« í%© Ma Pr® Lys Trp Lys Kie Vai teu Ajrg teu ter Aep 11a 980 935 ' 990
Pt® frp Ué Arg tep Hia Vai Vai Sly Ser Ser 11© Π© P&© St» Gly 995 IMO 1005
Ala Gly ?he lie Ser Wet Ala 21© 61« Gly Phe 61« Vai Cys 2910 1015 2020 Pro Pm Vai Ala Gly Ma Ser 21© Asu Tyr Ate Leu Arg Asp Vai 102S 1030 1035 Glu teu Ma Glu Ma teu Ile lie Pro Ala Asp Ala Glu Ma 61« 1040 1045 2050 Vai Aep teu Arg teu Tiur II® Arg Ser Cys slu 61« Arg Ser Leu 2055 1060 1065 Gly Thr Ly» Ate Trp Sis Gl« Fhe Ser Vai Eis Ser 11© Ser 61y 1070 1075 1080 Glii Asa Aj» Thr trp »«f Gltt Hls Cy# Tht Sly teu II© Arg Ser 1085 109C 1095 199 ΡΕ1149919
Glu ser Glu Arg Ser li® Leu AfP cyt Ser TM Vai ai« Ale Ser lios nos Xlio
Arg Arg Leu Aen. Leu Giy Ser Asp Asa Arg ser íle Asp Are Asn ms 31.20 1125
Asp Leu Trp Glu Ser Leu Kia Ala As» SXy Ile Cya fíis Siy Aro 123® 1135 1143
íle ¥hs Gin Ma Xle 61a Arg lie GIr Asa Asn Gly Sla Gly Ser 114 5 USO 11SS
Phe Cya Arg Pha Ser II* Ala Aep Thr Ala Ser Ala Met Pro His 12€Ô 1165 1170
Ser Tyr Glu Asa Arg His Ile Vai Hia Pr© TM Thr Leu àsp Ser 1175 1180 1.185
Vai 11« 61a Ala Ala Tyr tfer Vai jtaa Pro Tyr Ala Gly Thr Arg 12 §0 1135 1200
Mat. byu Thr Ala Hst Vai Pr© Arg Arg Leu Arg Aen Vai Lys 11* 2203 1220 1315
Ser Ser Ser ku Ala Asp Leu <Slu Ala Gly Asp Ai a Leu &ep Ala 1330 1225 1230
Gin Ala Ser íle Lya A»p Arg ASh Ser Gin Ser Phe Ser Thr ftep 223$ 1340 124$
Leu Ala Vai P&e Asp Aep Tyr A®p Ser Gly Ser Ser Pro Ser Aep 1.350 225S 1260
Gly lie Pr© Vai 11« Slu íle · Glu Gly Leu Vai Phe Gin Ser Vai 1255 1370 127$
Gly .Ser Ser Phe Ser Asp Glh Lys Ser Asp Ser Ase Asp TM- Glu 1380 12®3 1290
Asa Ala Cys Ser Ser Trp Vai Trp Ala Pro Asp íle Ser Leu Sly 229$ ' 2300 2305
Asp Ser Thr Trp Leu Lya Glu Lys Leu Ser Thr Glu Ala Glu Thr 2210 1315 1320
Lys 6Xu Thr Glu Leu Met Set Aap Mu Arg Arg Cy® TSir 11« Aea 1325 1330 1335
Fhe He Gin Glu Ala Vai Thr Mp Leu Thr Aan Ser Asp Xl* ela 1340 IMS 1350 200 PE1149919
Hie Leu Ãsp Gly His Leu Gin Ly» tyr 5he Asp *ítp mt As» vai 135$ 1.350 1365
Gin Leu ftsp Leu Ala Arg Gin As» Lya Leu Ssr Pro Ala Ser Cys 1373 1375 IMO
Asp Trp Leu Ser Âep âop Ala Glu Gin Lys Lye Cys Leu Gin Ala 138$ 1390 13$$ Àrg Vai Ala Gly Slu Ser Vai Aá» 8Iy GIu MéS lie Ser Aí'g Lee 1400 1405 1410
Gly Prô Gl® Leu lie Alá Hat LêU Arg Arg 6lu fhr Gla Prs Le» 1415 1420 142$ 61» Lea Het Kee 61» Asp 61» Leu Leu Ser Arg ¥yr Tyr Vai Asn 1430 143$ 1440
Ala lie Lys trp Ser Ârg Ser hm Ala Gl« Alá Ser Glu Leu Ile 1445 1450 1455
Artj Leu Cys Ala Sis Lys Aea Sro Arg Ser Arg Ile Léu Slu 11® 1440 34S5 ' 1479
Gly Gly Gly ffer Gly Gly Cys fhr I»y® Leu He ¥*1 hm Ma hm 1475 1480 1485
Gly hm Tfcr Lys fxo íle Aap Arg Tyr Asp Phe Thr &»$> vai ser 14S0 .14 »5 1S00
Ala Gly Fhe Phe Glu S«r Ala Arg 61« 61® Phá Ala Asp Trp Gin l$es 151« 1515
Aep Vai Met Thr Stoe Ly* Lyá Le» Asp He 61« Ser Asp Pr a alu 1520 1S2S 1530
Gin Gin Gly Phe Glu Cy» Ala Thr Tyr Aep Vai Vai Vai Ala. Cys ISIS 1540 ‘ 1545
Gin vai Leu sis Ale Thr Arg cys Met Lys Arg Thr Leu ser Aea 1550 1S$S 1580
Vai Arg Lys Leu Leu Lye Pr© Gly Gly As» Leu Ile Leu vai Glu 1S6S 1 1570' 1575
Thr Thr Arg Aep Gin Leu tep Leu Ffce She Thr Phs Gly Leu Leu 1580 1505 15S0
Sw> Gly Trp Trp Leu Ser 61« Slu tro Slu Arg Lya Ser Thr P*o 15:55 16 00 16 Q 5
Ser Lèu Thr Thr Afflp Leu Trp A*n Thr Méfc Leu ABp Thr Ser Gly lilO 1ÊÍS 1«ÍG 201 PE1149919 pjfts Asa Gly Vai Giu Leu Glu Vai Arg Asp Çys Slia &sp Asp Glu 162$ lia® i63s
Phe Tyr «et lie Sei' fhr «et Leu Ser Thr Ala Arg Lys Glu Asn 1640 1645 M$fl
Thr Thr Prt Ahp fhr Vai. Ala Glu Ser Glu Vai Leu Leu Leu Eis i6ss liee iêss
Gly Ala Leu Arg Pr o Pr o Ser Set Trp Leu Glu Ser Leu Glu Ala 1679 1675 168»
Ala lie Cys Glu Lya *Har Ser ser Ser Sr© Ser lie Asa Ala Leu 1S85 issa 1695
Gly Glu Vai Asp Thr Thr Gly Arg Thr Cys Ile Phe Leu Gly Glu 1790 1795 1710
Met Gla Ser Ser Leu Leu Gly Glu Vai Gly Ser Glu fhr Ph® Lys 171.5 1720 172S
Ser lie Thr Ala Ket Leu Aàs Asa Cys Asm Ala Lèu Leu Trp Vai 1730 1735 1749
Ser Ar£ Gly Ala Ala «et Ser Ser Glu Asp Pro Trp Lys Ala Léu 1745 1750 17SS
Hia ile Gly Leu :Leu Arg Thr lia Arej abo Glu asb Aeu Gly Lys 176Ô 1765 ' 1770
Glu Tyr Vai. Ser Leu Asp Leu Asp Pro Ser Arg Asa Ala Tyr Thr 1775 1789 1785
Sis Glu Ser Irttt Tyr Alá Ile Cy§ As® Ile Phe Asa Gly Arg Leu 1790 1795 Ιβββ
Gly &®p Leu Ser Glu Asp lys Glu jpha Glu Phe Ala Glu Arg Asa iSOS 1810 18:15
Gly Vai 21a Mis Vai ftro Arg Leu Phe Â8o ASp PtO Ri# Trp ly# 1820 1825 1839 Áap Gin Glu Alã Vai Glu Vai Thr Lêu Gi« Pro Phe Glu Gin Pro 1835 1849 1845
Gly Arg Arg Leu Arg «et Glu vai Glu Thr Pro Gly Leu Leu Asp 1850 ' 185 S 1849
Ser Leit Gl*i Fht Arg Aep Asp Glu Gly Arg Glu Gly Lys A#p Leu
1845 1879 187E 202 ΡΕ1149919 Ρϊα Asp Asp Tip ml Glu Ile ulu Prc Lys Ala Pha Gly Mu Am lago 1005 1890 PM Mg AMp V*1 Met v*i Ma «et Gly Slts Léu Sly ftla Asa Mg liPS 1909 1905 vai ne>t Gly sfcse oi« cys Ala eiy vai 11« mr i»y& Leu Gly Gly 1910 ISIS 1920
Ala Ala Ala Ala ser Gin Gly Mu Arg Mu Gly Aap Arg Vai Cye 132S 1930 1939
Ala teu Mu Lys Gly Sis Trp Ma Thr Mg Tfcr Gin T&r Pr© Xyr IMU IMS 1950
Thr Asn vai vai Arg Ile Pro Asp <31 u «et Gly phe Pr© Glu Ala mS IMO 1965
Ala Ser vai tro Leu Ala ?fce Shr T»r Ala Tyr lie Ala Leu Tyr 19 Te 1.975 1980 TAr Thr Ala Ly® Leu Arg Mg Gly Glu Arg VAX Leu lie fíls Ser 1985 1990' 1995
Gly Ala Gly Gly Vai Gly Gin Ala Ala He Jle Leu Ser Gin Mu 2000 2005 2010
Ala Gly Ala Slu Vai Phe Vai Thr Ala Gly Thr Gin Ala Lys Arg 2015 2023 202S
Aap Ph® Vai Sly Asp Lys Pite Gly Ile Asft Pr© Asp Kis lie phe 2030 2015 2040
Ser Ser Arg Aan Asp tea Fhe VA? Aap Gly IIè Lys Ala Tyr Thr 2045 2050 3055
Gly Gly Leu Gly Vai Mis Vai Vai Lee Mn Ser Leu Ala Gly Gin 2060 2065 2070
Leu Leu Gin Ala Ser 0» Asip Cys K*t Alâ Glu Phe Sly Arg phe 2075 2080 20 B 5 val Glu lie Gly Lys Lys Asp Leu Glu Gl» Aan ser Arg Leu Asp 2030 2095 2100
Met Leu 0» Pfee ftr Mg Aep Vai. Ser íSse Thr Ser lie Αβρ Leu 2X05 2110 ms
Leu Ser Trp Gin Mg Ala Lys Ser Glu Glu Vai âér Glu Ala Leu 2120 .2125 3110
Mn ais Val Thr Lys Leu Leu Glu Thr Lys Ala lie Sly Leu He 2125 2140 2145 203 PE1149919 sxy Pr© 11« Gin Gin síe ser teu s«r Asa 11« GiU tyr Ma Pfce 21SG 21SS 2160 &rg Tfer Met Gin Ser Gly Gló Vai Gly Lys Vai Vai vai Aa» 2265 3170 2175 Vai Ser Gly Asp GiU L«« vai Píp Vai Gly Asp Qiy Gly Phe s«r 2230 2X85 2i se Leu Lye LíSU Lye Çro Asp Ser Ser Tyr Leu Vai Ala Gly Gly te« 2in 2200 22Q5 Gly Gly 11« Gly Lya Sin 11« Cys Glss Trp teu vai Asp HiS Gly 2220 2215 2320 Ala Lys Xis teu IU I2e Leu Ser Mg Ser Ala tys Ala Ser Pio 2225 2230 2235 ?5ie lie Thr Ser Leu «la Ase Gin Gin Cys Ala Vai Tyr Leu Bis 2240 3245 2250 Alá Cyss Ãsp n« Ser Asp Gin Asp GÍX3 Vai Thr Lys Vai teu Arg 2255 2260 2265 Leu Cys Glu Glis Ala Sis Ala Pro Pro He Argr GÍY n« n« Gin 2270 2275 2280 Gly Alá Met Vai Leu Lye ASp Ala Leu Lee Ser ATf «et Thr teu 3285 2230 3255 Asp Glu Sfc® As?J Ais Ala Thr Arg Pro Lys Vai Glu Gly Ser Trp 2200 23 OS 2316 Tyr Leu Hi.s tys 11« Ala GlS Asp- vai Aep ste »e vai «et teu 2335 2320 2325 Ser s«r Leu vai Gly vai Met Gly Qiy Ala Gly Glu Ala Asrs. Tyr 2000 2335 3346 Ala Ala Ha 81y Ala Pbe Gin Asp Ala Leu Ai a hl a His Arg Arg 2340' 2350 235S Ala Hxa Gly «et Pro Ala Vâl Tfcr lie Asp Leu Gly «et Vai Lys 2360 236S 2:370 Ser Vai Gly Tyr vai Ala Glu Thr Gly Argi Gly vai Ala Mp Arg 237$ 2360 2385 Leu Ale Ãrg XI e Gly Tyx Lys Pr© «®t Hie Glu Lya Asp Vai Met 2390 2335 2400 204 PE1149919 Αβρ Vai Lsu Glu Lys Ala Ile Leu Cys Ser Ser fce© Glu Phe jpr* 240S 2418 2415
Ser Pro Pro Ala Ala Vai Vai Thr Gly lie Asa The Ser fro Gly 2420 2425 2418
Ala His Trp Thr Glu Ala Asa Trp Ile Gin Glu Gin Arg Pbe Vai 243S 2440 2445
Gly Leu Lye Tyr Arg Glu Vai Leu Me Ale Asp Gin Ser Phe Vai 24S0 34SS 2440
Ser Ser Sis Lya Lye Gly Pro Asp Gly Vai Arg Mi Gin Leu Ser 245$ 2470 2475
Arg Vai Thr Ser Eis Mp Glu Ala Ile Ser ile Vai Leu Lys Ala 2480 2485 2490 ítet Tfer Glu Lys Leu 9tet Arg titet Phe Gly Leu Ala Glu k$p Asp 2495 2500 2S05
Met Ser Ser Ser Lys Asn Leu Ala Gly Vai Gly Vai Asp Ser Leu 2510 2515 2520
Vai Ala Ile Glu Leu Arg Asa ?rp Ile Tbr Ser Glu Ile His Vai 2525 2530 2S35
Asp Vai Ser lie Pfae Glu Leu tfet Asa Gly Asn Thr Ile Ala Gly 2540 2545 2550
Leu Vai Glu Leu Vai Vai Ala Lys Cys Ser 2555 2550 <210> 47 <211> 1557 Λ ro M to V DNA <213> Penicillium citrinum <220> <221> CDS <222> (1) .. (1557) <400> 47 ΡΕ1149919 - 205 - afcg Ct-C gge cag g*« CtE «tg ase gte gaa tcg tac caa tgg gta tçg Mefc 1 Leu Giy Si» Vai 5 Leu leu Tfoi Vai Glu 10 Sét Tyr Gin trp vai 15 Ser açe eet eaa gce ett gtg ges gte gea 9*9 ett efet agt cte ate gcc Thr Pro Gin. Ala 20 Leu Vai Ma Val Ala 35 Vai Leu Lçu Ser Leu 30 lie Ma tas cgt fctg cgg 933 çge eag tee gsa etg eaã gte tat a&t eec aaa tyr Mg Lee 35 Arg <31 y Mg Gin Se* 40 Olá Leu Gl» Vai tyr 45 Asn Pro Lys âíã& tgg tgg pag fctg BGf acc atg asg gct *gg cag eae ttç gat «9 Lys Trp 50 Trp Glu L6U rhr ifcr m MeR Arg Ala Gin SO Aap Pfce Asp Tbr 206 ΡΕ1149919 tat ggt ceg age tgg ate g*a gct tgg ttc teg aaa aac gae aag ccc 24 o
Tyr Gly ff*© S#r Trp Xle 61« Ala Trp S«y fcy# &sp Mp Lyi fte* g$ xo ?s se ctg »gc tfce att gtfc gafe tee ggc tae fcgc aec ate cfcc cca tef tec 588
Leu A*g Phe lie Vai Asp Ser' Gly Tyr Cys Thr Jle Leu Pro Ser Ser 8.5 9$ *?5 atg gee gac gag ttt cgg ««a ate asa gat *tg tgc atg tac aag ttt 338 Mèt Alà Asp Sl» Phe Arg hyé tle L-ys Asp Ret Cys *tet Tyz Lya Pim ιοο ias no ttg gcg gát gac ttt cac fcct cat. efcè cct ggs ttc gac ggg ttc aag 384 L*u Ala Ásp Asp ilha Si* Set Sis Leu pro 6iy Ffee Asp Cly Phe Lys 115 12β 125 ga& ate tgc cag gat gea est ctfc gee aae aaa gtt gtt ttg aac cag 432 61« tla fijm 61« Asp úa Sis La» vai tvm Lya vai vai Leu Asa Gin 130 135 14« tta ca& ace caa gev eec m§ tac *c* a«g cca ttg get açe ttg gee 4so
Leu sln Thr 61« Àlã Pro Lys Tyr Thr Lys Pro Leu Ala Thr Leu Ala 145 150 155 ISO gac get «et att gee ssg ttg ttc ggt asa age gag gag tgg eea ate 528
Assp Ala Th* Xle Ala Lys Lew fhe 6iy Lya Set 61« 61« Trp 61a Th* 1«S 170 17$ gc« ççt gt-C ttt tçc ast gga ttg gac cfct gtc aca cga aea gte aça $*t$
Ala Pro Vai Ty* S*t **» Sly Leu Ãsp Leu Vai TA* Arg Th*· Vai Th* 180 185 190 etc att «tg gtc gge gac «»* ate tgc cac set gag gag tgg ttg gat €24
Leu Xle Wet Vai Gly Âap Lya lie Cys Mb λβκ Glu 61« Trp Leu. hap 1.95 200 205 att gea «ag aac eat gee gtg agt. gtg gcg gfea caa gct tsge eaa ett €72
Xla Ãlá Lya Aan Sía Ãla Vai Ser Vai Ãlá Vai Glu Ala Arg 61« Leu SiÔ 215 220 ege gea tgg cct atg eta etg ega ceg etc gct cac tgg ttc caa eeg 720
Arg Vai Trp »*o Met Leu Leu Arg Pro Le« Ala His Trp Phe 61« P«s 225 230 235 240 eaa gga ege aaa ttg cgt gae eaa gfcg ege ege gea cga aag ate att 7$8 6lR 6íy Arg Lya L®u Arg Aap Gin Val Arg Arg Ala Arg Lya Xla Xla
24$ 2 £0 2£E gat çct gag att cag cga cga egt gct gaa aag gee gea tgt gta gcg 8X5
Mp pye 11# 61» Aj?g A»g Ar§ Ais 6lu hys Alá Ala 0y# Vai Ais 388 265 278 aag gge gtg cag eeg eee eag tae gtc gae aee atg eaa tgg ttt gaa 884
Lys Gly Vai 6ln Pro Pr* Gin Τχ'* Vai Aep Thr M-et 61« Trp Phe Glu
27$ 280 28S gae aee gee gae gge ege tgg tae gst ftp gef ggt gct eag ett gct 912
Mp Thr Ala Aep sly Arg Trp Tyr Aap Vai Ala Qly Ais Glu Lau Ala 280 295 308 afcg gat tte gee gge ate tae gee eeg acg gat ett ttc gte ggt gee 980 Mçç. Asp Phe Ala Sly lie Tyr Ala St* TKt* hsp LfeU Pite Vai OXy Ala 305 310 315 320 ett gcg gae att gee agg cac eca gae ett att cag cct etc ege eaa 1008 Léu Vai Asp Ile Ala Arg fíi® Pro Asp Leu Xle Sis Pro Leu Arg 61« 125 330 23$ gag ate ege act gta ate gga gaa ggg gge tgg acf cct gee tet ctg 1055 61a lie Arg Thr Vai Xle <31y 61« GÍy Gly Trp Thr Pré Ala Ser Lew 207 PE1149919 340 345 350 ttc aag ctg aag etc etc gac age tgc atg aaa gag acg çag cga ate 1104 Phe Lys teu Lys teu te u Asp Ser Cys Met Lys Glu Thr Gin Arg Xle 3S5 360 365 aag ceg gtc gag tgc gee aet atg ege agt aec gct ctc aga gac ate 1152 Lys Pro Vai Gl» Cys Ala Thr Met Arg Ser Thr Ala teu Arg Ásp Ile 370 37S 380 act. cta tese aat ggc cie ttc afct ces aAg ggc gag ttg gee gct gtg 1200 thr teu Ser Aan Sly teu Phe Ile Pro Lys Gly Glu teu Ala Ma Vai 385 390 395 400 g-çt gca gac ege atg aaç aae ççt gat gtf tgg aae cec gaa aat 1248 Ala Âsp Arg Met Astt Asn Pro Asp Vai Trp Glu Asu Pro Glu Ask 405 410 415 tac gst eee tac ega ttt atg ege atg ege gag gat cca gac aag gee 129« Tyr Asp Pro tyr Arg Phe Met Arg Met Arg Glu Aap Pro Asp Lys Ala 420 425 430 ttc acc gçt caa ttc gaa acc a.aç ggt gat eae ate gge ttc fiW<= 1344 Phê thr Ala Gin Leu Glu Aea. Thr Aen Gly Asp Hís lie Gly Phe Gly 43S 440 445 fcgg ase cca ege get tfí. cec ggs vgg ttc ttc gcC tçg aag gaa ate 13 S 2 Trp AjSíÍ Prp Arg Ala eya Prõ Gly Arg Phe Phe Ala Ser Lys Glu lie 450 4S5 460 aag att ctc etc gct cat ata ctg att c*g tat gat gtg aag ççt gta 1440 Lys Ll« Leu Leu Ala Sis XIê teu xle Gin Tyr Asp Vai Lys Pro Vai 405 470 47S 480 CC£ gga gac gat gac aaa tac tac cgt Câç gçt ttt agç gfcfc cgt atg 1488 Pro Glv As® As® Asp Lys Tyr Tyr Arg Sis Ala Phe ter Vai Arg Met 485 490 495 cat cca acc aca aag ctc atg gta cgç cgg ege ase gag gac ate ccg 1S36 &:i.6 Pro Thr Thr Lys teu «et Vsl Arg Arg Arg Aftft viu Asp ile Prn 500 SOS S10 ctc eet eat gac cgg tgc taa 15S7 teu Pro Ris Asp Arg Cys 5X5
<210> 48 <211> 518 <212> PRT <213> Penicillium citrinum <400> 48
Met teu Gly Gin vai teu teu Thr vai Glu Ser Tyr 61® Τϊρ Vai Ser 1 5 10 iS
Thr Pr» Gin Ala teu. vai Ala Vai Ala Vai te» teu Ser teu He Ala 20 25 30
Tyr Arg teu Arg Gly Arg Gle Ser Glu teu Ola Vai Tyr Asn Pró !>yS 35 40 45
Lye tsp Trp Glu teu Thr Thr Met Arg Ala A*S Gin *SP ^ **Ρ Thr SS> 55 60 208 ΡΕ1149919
Tyx GXy Pre Ser Trp lie GIu Ai* Trp Põe Ser Lys Asa Asp Lys Pr® SS 70 75 se teu Arg Phe Xle Vai Aep ser SXy Tyr Cys Tisr lie teu Pro ser Ser as se $s
Met Ala Asp elu Phe Arg Ly» Xle Lys Asp «et Cy» «et Tyr Lys Pte J.Ô0 1S5 iic teu Ate Asp Asp Phe ais Ser Sis teu Jteo Sly Pfee tosp (Sly '&>* Lys 115 130 1.25
Glu lie Cye Gin Agp Ala Sis teu Va.l Asa Lys Vai Vai teu Asa Gin 130 ' 135 140
teu G!a tte Gin Al* teo Lya Tyr Thr Lys pro Leu Ais Thx teu Ais 14S ISO 355 ISO
Aso Ais Tbr ile Ala Lys teu Fhé Sly Lys Ser Glu 61t> Trp Gin. Thf i«s 170 r?s
Ala Pro Vai Vyr Ser ftsn Sly teu Asp teu Vai TSr Arg Thr Vai Thr 180 185 ISO
Leu íle Wet vai G:y Assp Lys 11« Cys liis Asa Glu 61« Trp Leu Asp ÍS5 300 1 2m íle Ala Lys Asa Sis Ala Vai Ser Vai Ala Vai Gin Ala Arg Glr- teu 210 ' 2X5 228
Arg Vai T*p Fr© M#1£ teu Leu Atrg Fr* tea Ale HA# Tsp Fte Gl» Fr* 22$ 230 235 280 ôl» Oly Arg Lys teu Arg Asp Gin Vai A*g Arg· Ala Arg Lys Sle lie 245 .ISO 2.55
As» Pro SIu lie Qlu Arg Arg Arg Ale Glu Lys Ala Al* O/s Vai Ala 3«SJ 28 S 270
Lys Gly Vai Gin Pr» Pr® Gin Tyr Vai Asp fbx Met 61» Trp Phe Giu 275 280 205
Asp TSir Ala Aap Sly Arg Trp Tyr mp Vai Ala Sly Ala Gin teu. Ala 290 2SS 300
tfee Αβρ Fhê Ala Gly lie Tyr Ala Ser Tfcr Asp teu Fhe Vai Sly Ala 30S 310 315 32F
Leu Vai Asp lie Ale Arg His Fr* Asp teu lie Gin Pr© teu Arg Gin 32S 330 335
Slu Ile Ar* Tfer Vai lie Sly Glu Gly Sly Trp Thr Pr© Ala Ser Leu 340 345 ASO 209 ΡΕ1149919
Ptte Ly# Leu Lys Leu Leu Asp Ser Cye MBZ hys Glu Tftx Gin Arg ll« 35$ ' 369 36$
Lys fro Vai Glu Çys Ala Thr fttet Arg Ser Thr Alt Léu Aíg Asp Ilé 37& 37S 300
Thr teu Ser Asn Gly Leu Fhe ile Fm Lys Gly Glu Leu Ala Ala Vai 385 350 395 400
Ala Ala Asp Arg Net As» As» Pro Asp y»l Trp Glu Asn Fro Glu Asa 405 410 415
Tyr Asp Pre Tyr Arg Ph« Mafc Arg Mefc Argt Glu Asp Fro Asp Lys Ala 420 425 430
Fhe Thr Ala 61» Leu Glu As» Thr Asa Gly Asp His U« Gly PM Gly 435 440 44$
Trp Asa Pro Arg Ala Cys Pro Gly Arg Phs FM Ala Ser Lys Glu lie 45Õ 455 460
Lys Ile Leu Leu Alã Hie lie Leu 11« Gin Tyr Asp Vai Lys Pro Vai 465 470 475 480 •s
Prc Gly Asp Asp Asp Lye Tyr Tyr Arg Hl* Alá FM Ser Vai Arg Met 4S5 4.90 495
Sis Pro Thr Thr Lys Leu Met Vai Arg Arg Arg Asn Glu Asp Ile Pt o SOO SOS 510
Leu Pro His Asp Arg Cye SIS <210> 49 <211> 3522 <212> DNA <213> Penicillium citrinum <220> <221> CDS <222> (1) . . (3522) <400> 49 ΡΕ1149919 210 stg Btc get tcg ttg cta ccc tct egc tfcfc cgc ggt agg gsa tca afcg Met Vai Ãla Sor Leu Leu Pm Ser Arg Phe ftrg GJy Arg Glu Ser Met 1 £ m 15 aàfc caçf vag cae cct cta Cfe tegr 99» aat cgg gca ttg ate teer aca ÃS» gíb Gin His Pto Leu Arg Ser Sif Asn Arg Ala Leu Thr Ser fhr 20 25 30· cfcc caa fcfct çta tee âââ aeg gcg e«t éfca eae ccg ate cat acc gtt Léu £31b Phe hm ser Lye mr Ale Cys Leu lie iro 11« Mie Thr Vai 35 40 4S fcge aec ata get att eta get agt aec «ml tae gtt m& eta ctc aaa Cy® Th* lie Ma lie Leu Ala S«í Thr· tbxr Tyr Vai Qly Leu Leu Lye 48 Μ 144 1*2 211 PE1149919 50 SS 60 gac age tte te© eae ggc etse 90a aac gtt gat aax gc* gaa fcgg ggc 240
Asp Ser Phe Phe His Gly Fto Ma Asn Vai Asp Lys Ala Glu Trp Gly 65 70 75 80 tet ttg ge© gaa gg* sgt egs age ttg «te acc gge eea esg aafc gge 288
Ser Leu Vai Glu Gly Ser Ãrg Ser Leu lie Thr Gly Prõ Gin Asti Sly 86 50 0$ tgg ásf tgg eag age fete gae ggg gat gea gat gtt ©t© gga gat tts 335
Trp Lys Trp Gin Se? Phe Asp Gly Asp Ais Asp Vsl Leu Sly Asp p&e 100 105 110 aac cat e«a gea cta atg acc ttg gta tte ceg ggg toa tat ggg gtt .384
Aeo KA* Glu Ais Leu Met Thr Leu. Vai The Pr» Sly Ser Tyr Gly vsl 115 120 125 gea tet cas gea gee feca cca tte efet gct ece ctc cet gtg sã© eta 432
Ala Ser Gin Ala Ala Ser Pro Phe Leu Ala Pro Leu Pro Vai Aan Leu 130 135 140 tet gfcg att gae ctt eee tea asg teg age ©et tta aec gee t*t teg 480 5®r Vai ll« Ãsp Leu Pre Ser Thr Se? Ser Pr© Leu fhr Ala Tyr ser 14S 150 155 100 aa* gat asa gtt tte gee tte tet gtg gaa tac age age geg ©cg gaa 528
Ly» Asp Lya Vai The Ala Pb* Ser Vai Óla Tyr Ser Ser Ala Pr« Glu 165 170 175 ctc gtg gct gct gtt caa gaa ate ccc aac aac agfc gee gae ctg asa 576 'Leu Vsl Ala Ala V»1 Gin Glu 11« Vro Asa Asa Ser Ala Asp Leu Lye ISO 195 150 ttg eag gag aeg ©** ttg ate gag aeg gea ege eag atg tgg ate atg 524
Leu Sis Òlu Thr Gin Leu. lie Glu Met 51* Àrg 51» ttefc T*j» ΪΧ« Het 105 206 205 asg get gee agg gct eae aca aaa ege age ctt gct cae tgg gtg cae 672
Lys Ma Ala A*g Alá Hl» Tfct Lya Arej Sé? Leu Ala Gin Trp Vai Hie 210 215 220 gat acc tgg *c* geg tet ett gat ett ate «ag age gct caa aeg ctc 720 Ãap Thr Tsp Thr Glu Ser Leu Asp Leu ile Lys Ser Ala Gin Thr Leu 225 230 235 340 gac gtg gtt gtc atg gtg ett ggt tãt ata tça atg esc ttg act tte 760 ksp vai vai vai Met Vai Leu Gly Tyr Ile Ser Met Hie Leu Thr phe 24S 250 255 gtc te* etc tte etc age atg asa asa ttg gga teg *sg gtt tgg ctg 016
Vai Ser Leu Phe Leu Set Met Lys Lya Leu Gly Sér Lys Vai Trp LSU 260 265 270 gct aea ãgc gtc ett ttg teg te* aca ttt gee fctt ctc ctc ggt ctc 864 Àla Thr Ser Vai Leu Leu Ser Ser Tiir Phe Ãlã Phe Léu Leu Gly Leu 275 280 285 gae gtg g©c ata aga eta ggg gtt· ceg atg age atg agg ttg eta tee 012
Asp vai Ala lie A?g Leu Gly vai Pro Met Ser Met Arg Leu Leu Ser 255 200 gaa ggc etc ecc tte ttg gtg gtg ate gtt ggc ttt gag a»g age ate 960 51« 51y Leu Pro Phe Leu Vai Vai lie Vai Gly Pfee GXu Lys Ser 11« 305 310 115 320 act ctg acc agg gct gtt ttg tcc tat gct ftg eag «se cga aag cçc Thr Leu Thr Arf Ala Vai Leu Sar Tyr Ma Vai 51c Hia Axg Lys ?re 325 330 335 1008 1056 1056 212 ΡΕ1149919 eag 3¾¾ ata eag tcfc gac cag ggt age gtg aea gee afcfc gct gaa agt βΐη Lys 11« Gift $êX Mp 61» Gly Ser Vai Thr Ala 11« Ala Glu $ér 340 345 350 acc ate aat tac gee gte ega age gee att egg gsg seg ggt tae «st fí»y n« A*» tyt Ala Vai Arg Ser Ala lie Arg Giu Lys eiy iyr A»n 355 í«t? 3 €5 íiçg gtg tge eatt fcac gtg gtc gag »tc ctg ctc eta gtt ate ggt gct 11« vai Cye Sis gyr Vai Vai Clv 11« L«« L*u Leu Vsl XI* Gly Ale
370 1 3?S ISO gtc tte age ate eas. ggt ggg eta eag cac tte tgt gtt eta gct gea vsl Leu Sly He Glfi Gly Gly Leu Gin Kis pbe Cy® Vai Leu Ala Ala 3$S 3$0 395 400 ttf ate ctg tte ttt gac fcgfc cfcg efcg ctg ttt aca ttc tac act gcg
Leu 11« Leu Phe phe Mp CV® Leu Leu Leu p.h* Tàr Phe tyx- fbr Ala tOS 410 4IS #tt cfcg ttt ate aeg tte §ag gta áãè ege etc aaa egt esc ate aac lie Leu set Πβ Ly» Lee Glu Vai Aso Jfctg Leu Lye Axg Hie Ile Asa 420 ' 435 430 afcg cgg tac gcg tte 3a& g*t s«f ggt «&« *ft ta® cgs *«g g«g gag bSefc Arg tyr Ala Leu fâlu Asp Gl« sly Leu Ser sln Arg TJar Ala Glu 435 440 44§ agt gtc gcg *cc age «st gat gee *»* «jac agt gea çgt aca tat ctg
Ser Vai Ais Thr Set As» Aãp Ala Glis Asp Ser Ala Ar-g Thr Tyr Lee 450 4S5 48(5
ttt ggc aat gst atg aaa gge age agfc gtt eeg aag tte aaa tte tgg Phs Gly Asm Ãsp Met Lye Sly Ser Ser Vai Pr* Lys Fbe Lys Phe Trp 40.5 470 4?5 4BS atg gts gfefc .ggt. ttc efcfc ate gfcc aae cfc« gtç aae ate ggc tcc acc
Ret vai Vai Sly Fbe Leu He Vai Asm Leu vai As» lie Giy Sex Tht 485 490 45S ctt tte caa gee tet tet «gt gga teg ttg tos agt ata tea «et tgg Leu Phe Sl» Aia Ser Ser Ser Gly Ser Leu ser ser sle Ser Ser trp 50« ' 505 $15 aec gaa agt ecg ®gs gpa teg erce att aaa cec ceg ctt gag ccc ttc Thr Gtw Ser Leu Ser Sly Ser Ala He Lys Pr* Pro Leu Glu Pr* Phe SIS $20 525 aag gfc* g*t gga agrfc gpa cta gat gãá çta ctt tte eag gea aga ggg Lys Vai À3a Giy Ser Giy Leu As? Giv Leu Leu Phe Gla Ala teg Gly 530 $3$ 540 ege ggc. caa teg act atg gtc act gtc etc gee ccc ate aag taç ga.a Ar* Gly Gin Ser thr Met Vai thr Vai Leu Ala Pr* Ha Lys fyr Glu $45 SSO 555 S50 eta gag tat cct tcc afct c«c cgr ggt acc teg *ag et* c«e gag tat Leu Glú Tyr Pr* Ser He flit M’g Gly thr Ser Gl» Leu tíis Glu Tyx 565 570 575 gga gfcfc ggt gga aaa atg gtc ggt age ctg etc ase age etg gaa gat Giy Val Gly Gly Lye Mefc Vai Giy Ser Leu Leu thr Ser Leu Giu Asp 580 5g$ 590 cec gee ctc tcc a*® tgg gtg ttt gtg gcá çtç gçe eta agt gtc gct Pr* Vai Leu Ser Lys Trp Vai pise vai Ala Leu Ala Leu Ser Vai Ala 595 404 €05 ctg aac age tat etgf ttc aag gee gee aga etg gga ate ããa. gat cct Leu Ae» Ser tyr Leu Pbe Lye Ala Ala Arg Leu Gly lie Lys Asp Pr* 1104 US2 1300 124® 1296 1344 13 S 2 144» 14SS 1536 1584 1832 I5S8 1728 177« 1824 1872 213 ΡΕ1149919 S3Õ sis 620 1923 1068
aât cte ecg agt cac cea gtt gat cea gtt gag ctt gac cag gee gaa Asií Leu Pró Sét Ri# Pto Vai. A&p fteo Vai ©lu Ma Aap ei& Ma GlU 625 Ofl «35 MO age tfec aae gcfc gee cag aac cag *cc cct cag ate eaa tea agt etc Ser Pfce Aãh AXã Ma Gl« As* Gin tftr ftro Gin Ele <3# Ser Ser Leu 645 £50 6S5 caa fet cct. cag aee aga gtg ttc aet cct acç aee aee gse agt gae Gl». Àla Pr© ôla Thr Arg vai Fhe Thr Pro Thr Thr Thr Asp Ser 2016 £50 £73
agt gafe gee te* tta gte tta afcfc aaa gea tet et* aagr fte aet aag Ser Àsp Àla Ser Lea Vai Lm IXe Lys Ala Ser Leu Lys Vai Thr Lys 675 680 6ÔS 2664
cga gea gaa gga aag aea gee aet agt gaa ctt eee gtg tet ege aea Arg Alá 8la Gly Lys Thr Ma Thr Ser Slu Leu Pro Vai Ser Arg Thr 689 695 TOO 2U2 caa ate gaa etg gac aac ttg etg sag es§ mè *e« ate age gag ttf Gin íle Glu Leu Asp Asa Leu Leu Lys Gin Asa Thr Me Ser Siw Leu TOS 710 715 720 2160 ase gat gag gat gfcc gtt gee ttg tçt ttg cgg gga asg gtt cec ggg As* Asp Glu Asp Vai Vai Ala Leu Ser Leu Arg Sly Lye Vai Sr» Gly 12& 730 335 2208 tat gcc cta gag aagf *St etc aaa gae tgc «ct cgt gee gtc a&g gfct Tyr Ala Leu §1« Lya Ser Léu Lys Asp Cys Thr Axg Ma Vai Lys Vai 740 745 750 22S6 ege ege tet ate atfe fecg agg aca ceg gtt ace gea gag ctt aea agt Arg Arg Ser Me 11« Ser Arg Th-r Pr© Ala Thr Ala Clu Leu Thr Ser 755 76S ‘765 M04 atg cfcg gag cac teg aa§ ctg ecg tae ga* a*e tac gee tgg gaa ege «et Leu Slu Ais S«r Lye Leu Pre Tyr Glu Asa Tyr Ala Tsp Glu Arg 770 715 im 2353 gtg etc ggt ge* tgfe tgc gag aac gtt att ggc tat a.tg cca gtc cct Vaí. Leu Sl.y Ala Cy® Cya Glu Asa Vai 11« G'iy Tyr Hat Pro Vai fro 7SS 700 755 800 2400 gtt g®c gt« gee ggt' cot ate gtt ate g*e gge aag agt tat ttc atfe Vai «ly Vai Ala Sly fs* lie Vai 11* Asp Cly Lya Ser Tyr Pfce Me SOS 810 815 cct atg gea aeç açcs gag ggc gtc ate gtc gefc agt gefe age cgt gge Fro M«t Ais Tlir Tlir Glu Sly Vai Leu Vai Ala Ser Ata Ser Arg Giy 820 625 830 M$4 agt, aag gea ate a*e cte ggt ggc «gt gee ft-g usa gte etf act gge Ser Lye Ma llé Asm Leu §ly Gly õly Ala Vai. TSar Vai Mu Thr G.iy 835 840 845 2544 gac ggt stg aea ega. gge seg tgt gfcg asg ttt gat gtc ctt gaã cga 2582 Asp Giy Met Thr Arg Gly Pro Cys Vai Ly» Phe Aáp Vai Leu Siu Arg 850 855 860 got ggt gct gct aaf ate tg$ etc gat teg gac gte gge esg aec gta 2640 Ma. Sly Alá Ala Lyè 11« T^> Leu Asp Ser Asp Vai Gly Gin Thr Vai M£ 070 075 ®6Õ at.g aaa gaa gçe «te ást «e* aee age ag» ttt gcg ege tta eaa agt Met Lys Glu Ala Õhe Aan SAV Thr Ser .Arg Pise Ala Arg Leu Gin Ser 885 Θ80 895 2680 214 PE1149919 atg cgg aaa act ate gee ggt a,çt caç tta tac att cg a ttfc aag a et 2:73®
Mel Ara «ur tJur lie M» Gly ti» 8i« Leu Tyr íle Axg Phe Lye Thr
soò »S MO
aet act 99c gae gee *69 99a atg aat atg att tet «09 99c gfcg gag 27W
Thr Thr Sly Asp Ala Mefc Gly Met Asn Met 11« Ser Lye Giy Vai 81« 91S $20 $25 cat gea etg «a« gtt atg gcg aca g*g gea ggt- t-tc agç gat atg aat 2832
His Ala Leu Asa Vai mt Ala Thr Glu Ma Gly PM Ser A»p «et Aaa S30 $15 940 att att ate «la tea gga aet tac tg* acg gat aag asa cct tea get soee
Ue llê fhr Leu Ser sly Asn Tyr Cys Thr Asp Lys hys Pro ser Ala
346 $S£| $56 5"$G tfcg aat tgg ate gat, gge cg$ g$C aag ggc att gtg gee gaa gcC Ate 292® l®u Asn Trp lie Àep Sly Ar® Gly Lys Qly 11® Vai áia Slu Ma lie $«$ 970 $75 afcs ceg gcg ase gtfc gte agg gat gte tta asg age gat gtg gat age 2V7Í
He Pm Mà Asn Vai Vai Arg A«p Vai Leu L-ye Ser Assp Vai Asp S»r
380 9B5 §9D atq gtt cag· ctc a,ac ata fceg aaa aat ctg att ggg tce get ate §ét 3024 «et vai elu Lm Ma l Xe st» Lys Mn La* Xle <31 y Ser Ala Met Ala $35 1000 1005
ggc tea gtt ggc ggc ttc a»e g«e e»a gct gee aat cfct fog gta 30$S giv Ser Vai Gly Gly Phe A»» Ala 61» Ala Ala Aee Asm. Ala Alã tòÍÔ 1015 1020
gee Att tee att gee aes ggt eag fat ceg fcg eaa gtt gtg gag MM
Ala lis She 11« Ala- Thr Gly $Ú> Aep Pro Ala Gla Vai Vai Glú
182S 1030 1S3S sgc gct a«e tge ate aet tte atg aac aat ctt ege ggs teg cftt 3JS9
Ser Ala Asn Cys 11« Thr &£u Met ASU Asa Leu Arg Gly Ser teu 1840 1045 1050 ca» ate tet gte tee atg «cg t«£ att gag gtt gga acg ttg ggc 3204
Gití lia Ser V*X s«r «et fro s«r lie Slu Vai Gly Thr Leu Gly 285.5 1000 1065 «tg& gqt a«g att. «cg gag cce «sag ggc gea atg ctt g»e atg ett 32<9
Gly sly Tht' n« Leu Gla 9to Gin Gly Àia «ôt Leu Aeg Met ILeu 2070 1075 1080 «gt gtc ege gg» te» esc «cg aee aefe ccc ggt gag aat ge» cgs 3294
Gly Vai Arg Gly S«r 8is fro Thr Tter fro Gly Glá Aan. Ala Arg 108S 1030 1035 ea» ctt sfcg ege ate ate gga age gct gtt ttg gct ggg gag etc 33â$
Gin Leu Ala A*g lia Tie Gly Ssr Ala Vai Leu Ala Gly Giú Leu Íj.00 1105 U15 teg cta tgt get gee «ta gee ge« ggt. cac ctg gtc «u»g sreg cae Μβ4
Sck1 Leu Cys Ais Ala Leu Ala Ala Gly Mie Lee Vai Lyá Alá Hie .111$ use ms âtg gcg esc aaç egt tet gee eeg gea tet tea goc cct tet cga 342$ M«t Ma Kis Ase Arg Ser Ma PtO Al» Mt Mt Ai» Pt« S«r Arg 1130 1135 1140 a« gte tao eeg tea ggc gga ácc âgg âfia gte CCt gtt tet aac 3474
Ser Va.l Ser Pro set siy Gly Thr Arg Thr Vai pro vai Pro Aa.it 1:14.5 1150 US5 aat gçs «tg agg ccg agt gct gea gct açt gat egg gct cgs ege 351$ ·
Asa Ala Leu Arg Pro Ser Ala Ala Ala Thr As? Arg Ala Arg Arg
UIO
liSS 1170 215 ΡΕ1149919
<210> 50 <211> 1173 <212> PRT <213> Penicillium citrinum <400> 50
Het Vai Ais Ser Leu Leu Prc Ser Arg phe Arg Gly Arg Glu Ser Met 1 5 10 15
Asn Gin 01a Hifi Pro Leu Arg Ser Gly Asa Arg Ala Leu Thr Ser Thr 20 25 30 .Leu Gin Phe Leu Ser Lys Thr Ala Cys Leu Kie Pro He hís Thr Vai 35 40 45
Cye Thr Ile Ala Jle Leu Ala Ser Thr Thr Tyr Vai Gly Leu Leu Lya 50 55 60
Asp Ser Phe Phe Bi a Gly Pro Ala Aais Vai Asp Lys Ala Glu Trp Gly 65 ?0 7:5 80
Ser Leu Vai Glu Gly Ser Arg Ser Leu ílá thr Gly Pro Gin As» Gly 35 90 35
Trp Lys Trp Gin Ser Phe Asp Gly Aep Ala Asp Vai Leu Gly Asp Phe 100 105 110
Assn Hie Gin Ala Leu Hat Thr Leu Vai Phe Pro Gly Ser Tyr Gly Vai 115 120 125
Ala Ser Gin Ala Ais Ser Pro Phe L&« Ala Pro Leu pro Vai Asn Leu 130 135 140 ser vai lie Asp Leu Pro Ser Thr Ser ser Pro Leu Thr Ala Tyr Ser 145 150 155 160
Vya Aep Lys Vai Phe Ala Phe Ser Vai Glu Tyr Ser Ser Ala Pro Glu 165 170 175
Leu vai Ala Ma Vai Gin Glu Ila Pro Aen Aen Per Ala Asp L«u Ly« 180 185 190
Leu Glu Glu Thr Gin Leu Ile Glu Nefc Glu Arg Gin Hat Trp He Met 13$ 20» 205
Lys Ala Ala &rg Ala His Thr Lya Arg Ser Leu Ala Gin Trp Vai Sis 210 215 320
Aesp Thr Trp Thr Glu Ser Leu Asp Leu lie Lys Ser Ala Gin Thr Leu 2:25 230 235 540 216 PE1149919 Ακρ Vai Vai Vai «et Vai teu Gly Tvx Ile Ser Met Mis Leu Thr fhe 245 250 255
Vai Sçr teu Phe Leu Ser Nee hy» í>ya Meti Gly Ser l»y» Vai Trp Leu 2£0 ' 265 21Ú
Ala 7b:r Ser Vai Leu Leu ser Ser thx Phe Ala Pto* Leu Leu Sly te» 27S 2Μ 285
Asp Vai Ala lie Ar# Leu 8.1 y Vai Pro Met ser Mefc Ar# Leu te» Ser 290 295 300
Giu siy Leu Pro Phe Leu Vai Vai lie Vai Gly 5?he filu Lys Ser Ue 105 310 315 320
Thr Leu Thr Ar# Ala Vai Léu Ser Tyr Ma Vai «1» Mi» Atg Lyo Fro 325 330 335
Gin Lys 11« 01 a Ser Asp Si» Gly Ser Vai Thr Ala 11« Ala SXu Ser 340 34 S 3SÔ
Thr il« Αβη tyr Ala Vai Ar# Set Ma 11« As# Olo Ly# Sly Tyr hm 3S5 '350 365 11« Vai Cys Kis Tyr Vai vai Glu Xle teu Leu Leu Vai lie Oly Ala 110 37S 380
Vai Leu Oly lie Gin Gly Gly Leu Olo Mi Phe Cys Vai Leu Ala. Ala 385 350 385 ' 400 teu II* teu. Phe Phe Aep cys Leu Leu Leu Phe Thr Phe Tyr Thr Ala 405 410 413 II e Leu Ser He Ly« teu Glu Vai As» Ar# teu Lys Ar# His Ile A®o 420 425 430
Met Arg Tyr Ala teu 81« A#p 81 u Gly Leu Ser Gin Ar# fhx Ala Glu 435 440 44$
Ser Vai Ala Thr Ser Aen Ásp Ma 81» Asp Ser Ala Ar# Thr Tyr te» 450 455 460
Ffee Gly Aan Aap Met Lys Giy Ser Ser Vai Pro Lys Phe Lys Phe Trp 465 47B 4?S 480
Met Vai Vai Gly Phe teu lie vai A«» teu vai Asa ile Gly Ser Thr 485 450 495
Leu Phe Gla Ale Ser Ser Ser Gly Ser teu Ser Ser lie Ser Ser Trp SOO .SOS 510 217 PE1149919
Thr Glu Ser h®« Ser Gly Ser Ala lie Lys Pr» Pr» Luu Glu Pr» Ph« 515 $20 525
Ly* Vai Ala Gly Ser Gly Leu Asjp Glu Mu Lêu Pb* «X» Ala A*g «ly 530 SIS 540 Àrg Gly ®1ís Ser Thr Met Vai Thr Vâl Im Ala Pr* 1U Lya Tyr Glu S4S 550 5S5 560
Leu Glu tyr Pttf Ser 11« Mi® A*g Gly Thr Ser Sln Leu Hia 61« Tyr 565 570 575
Sly Vai Sly Sly Ly* 1*tet Vai Sly Ser Leu Leu Thr Ser t*U 61« Mp
580 ' 555 SOO
Ptrs val Leu Ser Lys Trp· Vai Pfce vai Ala Leu Ala Leu Ser Vai Ale SOS ¢00 505
Lee Au® Ser Tyr Leu Ptoe Ly* Ala Ala, Arg Leu Sly lie ly* Asp Pro 610 61,5 620
Mn Let: Pró Ser Hie Pro Vai Âsp Oro Vai Si ti Leu Asp 61« Ala 61a Ê2S 63Q 63 £ 640
Ser Phé Asa Ala Ala Gin Âsn Slrs Thr Pró Sia Ilè 61« Ser Ser Asa 645 «56 655 .
Gin Ais Pre Sis Thr Arg Vai ífee Thr Pro Thr Thr Thr Asp Ser hep 660 5SS «76
Ser Asp Ala Ser Leu Vai Leu Ile Lys Ala Ser leu Lye Vai Thr Lys 675 660 6®5
Arg Ata Gla «ly Lye Thr Ala Thr Ser Glu Leu Pro Vai Ser Arg Thr 6S0 655 700
Gin 11« 61«, :&sv A9p Aan í>U« Leu Lya Θ1» Asa Thr lie Ser Gla Asa ?05 710 715 7*6
Asn Asp Glu Asp VAX Vai Ala leu Ser Leu Arg Sly Lye Vai Pro Sly 72S TIS 735
Tyr Ala Leu Glu Ly® Ser Leu Lys Asp Cys Thr Arg Ala Vai Lys Vai 740 74S 750
Arg Arg ser II* lie Ser Arf Thr Pto Ala Thr Ala Glu Leu Thr Ser 755 760 765
Met Leu Glu His Ser Ly* Leu Wm Tyr Glu, Asm Tyr Ala Trp «1» Arg 770 ?T5 780
Vai Leu sly Ala Cys Cys Glu Mc Vai Ile Gly Tyr wet Pro vai Pre 705 750 755 806 218 ΡΕ1149919
Vai Gly VaL Ma Gly Pm Ik Vai íle Asp Gly Lys .Ser Tyr ík 80S 910' 915 Fífô Met. Ma thr Thr Siu Sjy Vai L*u Vai Ala Sér Ala Ser Arg Gly 820 ' 825 830
Se* Lys Ala Ik .Asn Má Siy Sly Gly Ala Vai Th* V*1 Ϊ*» Tfc* Sly 835 840 945
Asp Sly Hat Thr Axg Oly Pm Cys Vsl Lys H» Mp Vál «1« Mg 850 855 908
Ala Gly Ala Ala Lys lie Trp Leu Aap Ser Asp Vai Gly 51a ar Vai 855 870 S‘?S 890
Het Lys Glà Ala Phe Asa Ser Thr Ser Arg Phe Ala Arg Leu 51b Ser 885 »9« 89S {te* Arg Ha Thr Ile Ala Gly Thr t&s Léu Tyr He Arg Phs Lyé Tht SOÔ 905 910
Thr Thr Gly Mp Ala Meí. Gly Met Aea Met 1.1* Ser Lys Gly Vá! Slu SIS 920 925
KiS Ala Leu Asa Vai Met Má Tfer Glu Ala Gly Phe Ser Aáp Má* Αεω 930 935 940 XI* Π* Thr Leu Ser Gly ASM Tyr Cys Thr Jj$p Ly# Lye &%£> Ser Ala 945 5S0 995 900
Leu Aáh Trp xie Asp Gly Mg Gly Ay® Gly lie Vai Ala Glu Ala He 905 1 9T0 -975
He oro Ma a&s* vai Vai Arg Asp Vai Leu Lye Ser Asp Vai Asp Ser 985 985 990
Met, Vai G2* Leu Mu Ik Ser Ly« As» Leu 11® Gly Ser Ala «et Ala. 995 1000 1005
Gly Ser Vai 81 y Sly Phs Asa Ala Gi.K Ala Ala Aso Leu Ala Ala 1010 1015 1020
Ala lie Phs Xte Ala Thr Gly Gin A»p· Pra Ala ©Ira Vai Vál. Glu ISIS 1030 1035
Ser Me Ae» Cys Ile Thr Leu Me* Asm Asa Leu Arg Gly Ser Leu 1500 1045 1050
©Ira XI® Ser Vál Ser M*t ftre Ser Ha Glu Vai Gly Thr Leu Gly 1055 1060 J.0SS 219 ΡΕ1149919
Gly Gly Thr 11e Lsu Slu Pr» Glit Gly Ala Wet Leu A&p M6t Leu 1070 1375· 10BO íxly Vai Arg Sly Ser Sie fcro Thr Thr Pro Gly Glu Aen Ala Arg iões 1050 1055 βίκ IsôU Aref Ha Ile Gly Ser Ala Vai Leu Ala Gly Glu Leu 1100 1105 1110 Ser Leu cys Ala Ala Leu Ala Ala sly His Leu Vai Lys Ala Hia 1115 1120 1125 Met Ala Hia Aen Arg Ser Ala Pro Ala ser ser Ala pic Ser Arg 1130 1135 1140 Ser vai Ser Pr» ser Gly Gly Thr Arg Thr Vai Pr» Vai Pro Ass 1145 11S0 nss ften Ala Leu Arg Pro Ser Ala Ala Ala Thr Asp Arg Ala Arg Arct 1160 116 S 1170
<210> 51 <211> 20 <212> DNA <213> Penicillium citrinum <400> 51 gcaagctctg ctaccagcac 20
<210> 52 <211> 20 <212> DNA <213> Penicillium citrinum <400> 52 ctaggccaac ttcagagccg 20
<210> 53 <211> 20 <212> DNA <213> Penicillium citrinum <400> 53 20 agtcatgcag gatctgggtc ΡΕ1149919
<210> 54 <211> 20 <212> DNA <213> Penicillium citrinum <400> 54 gcagacacat cggtgaagtc
<210> 55 <211> 20 <212> DNA <213> Penicillium citrinum <400> 55 aaaccgcacc tgtctattcc
<210> 56 <211> 20 <212> DNA <213> Penicillium citrinum <400> 56 ctttgtggtt ggatgcatac
<210> 57 <211> 20 <212> DNA <213> Penicillium citrinum <400> 57 cgctctatca tttcgaggac
<210> 58 <211> 20 <212> DNA <213> Penicillium citrinum <400> 58 tcaatagacg gcatggagac
<210> 59 <211> 20 <212> DNA <213> Penicillium citrinum <400> 59 221 ΡΕ1149919 atgtcagaac ctctaccccc
<210> 60 <211> 20 <212> DNA <213> Penicillium citrinum <400> 60 tcaagcatca gtctcaggca
<210> 61 <211> 20 <212> DNA <213> Penicillium citrinum <400> 61 atgtccctgc cgcatgcaac
<210> 62 <211> 20 <212> DNA <213> Penicillium citrinum <400> 62 ctaagcaata ttgtgtttct
Lisboa, 4 de Dezembro de 2007

Claims (31)

  1. PE1149919 1 REIVINDICAÇÕES 1. Um polinucleótido seleccinado do grupo consistindo em: (a) um polinucleótido codificador de uma proteína tendo a sequência de aminoácidos de SEQ ID NO: 42; (b) um polinucleótido que compreende a sequência nucleotídica de SEQ ID NO: 41, adequado para usar na aceleração da biossíntese de ML-236B; (c) um polinucleótido que consiste na sequência nucleotídica de SEQ ID NO: 41, (d) um polinucleótido que híbrida com um polinucleótido de acordo com (a) a (c) em condições restringentes e que se caracteriza pela aceleração da biossóntese de ML-236B num microrganismo produtor de ML-236B quando introduzido no referido microrganismo produtor de ML-236B; e (e) um mRNA que pode hibridar com um polinucleótido de (d) em condições restringentes.
  2. 2. Um polinucleótido de acordo com a reivindicação 1 compreendendo DNA obtido a partir de Escherichia coli tansformada pSAKexpR SANK 72599 (FERM BP-7006) .
  3. 3. Um polinucleótido de acordo com qualquer uma das reivindicações anteriores em combinação operacional com um ou mais polinucleótidos; a referida combinação sendo adequada para usar na estimulação da produção de ML-236B 2 PE1149919 num microrganismo produtor de ML-236B.
  4. 4. Um polinucleótido de acordo com a reivindicação 3 compreendendo um polinucleótido da reivindicação 1 ou 2 conjuntamento com um polinucleótido codificador de uma proteina incluindo ou consistindo na sequência de aminoácidos de SEQ ID NO: 38, 42, 44, 46, 48 ou 50.
  5. 5. Um polinucleótido de acordo com a reivindicação 3 compreendendo o polinucleótido de SEQ ID NO: 41, em combinção com uma ou mais sequências seleccionadas entre SEQ ID NO: 37, 41, 43, 45, 47 ou 49.
  6. 6. Um polinucleótido de acordo com qualquer uma das reivindicações anteriores que é um DNA.
  7. 7. Um polinucleótido de acordo com qualquer uma das reivindicações anteriores que é um DNA genómico.
  8. 8. Um polinucleótido de acordo com as reivindicações 1-6 que é um cDNA.
  9. 9. Um vector compreendendo um polinucleótido de acordo com qualquer uma das reivindicações anteriores.
  10. 10. Um vector de acordo com a reivindicação 9, em que o vector ainda compreende um polinucleótido tendo a sequência nucleotídica de SEQ ID NO: 37. 3 ΡΕ1149919
  11. 11. Um vector de acordo com a reivindicação 9 ou reivindicação 10, em que o vector ainda compreende um ou mais polinucleótidos seleccionados entre SEQ ID NO: 43, 45, 47 ou 49.
  12. 12. Um vector de acordo com a reivindicação 9, em que o vector não compreende as sequências polinucleotídicas de SEQ ID NO: 37, 43, 45, 47 ou 49.
  13. 13. Um vector de acordo com a reivindicação 9 em que o vector não compreende as sequências polinucleotídicas de SEQ ID NOS: 43, 45, 47 ou 49.
  14. 14. Um vector de acordo com a reivindicação 9 obtido a partir de Escherichia coli pSAKexpR SANK 72599 (FERM BP-7006).
  15. 15. Um vector de acordo com qualquer uma das reivindicações 9 a 14 que é um vector de expressão.
  16. 16. Uma célula hospedeira transformada por um vector de acordo com qualquer uma das reivindicações 9 a 15.
  17. 17. Uma célula hospedeira de acordo com a reivindicação 16 caracterizada por ser um microrganismo produtor de ML-236B.
  18. 18. Uma célula hospedeira de acordo com a 4 ΡΕ1149919 reivindicação 17 caracterizada por ser uma espécie de Penicillium.
  19. 19. Uma célula hospedeira de acordo com a reivindicação 17 ou reivindicação 18 caracterizado por ser um Penicillium citrinum.
  20. 20. Uma célula hospedeira de acordo com a reivindicação 16 caracterizada por ser Escherichia coli.
  21. 21. Uma célula hospedeira de acordo com a reivindicação 20 caracrterizada por ser uma Escherichia coli pSAKexpR SANK 72599 (FERM BP-7006).
  22. 22. Um polipeptídeo codificado por um polinucleótido de acordo com qualquer uma das reivindicações 1 a 8.
  23. 23. Um polipeptideo compreendendo a sequência de SEQ ID NO: 42 ou uma sua variante que tem pelo menos 80% de identidade com SEQ ID NO: 42 e que é capaz de acelerar a produção de ML-236B num organismo produtor de ML-236B.
  24. 24. Um polipeptideo consistindo na sequência de SEQ ID NO: 42.
  25. 25. Um método para a produção de ML-236B, compreendendo a cultura de uma célula hospedeira de acordo com qualquer uma das reivindicações 16 a 19 e depois 5 PE1149919 recuperação de ML-236B a partir da cultura.
  26. 26. Um método de acordo com a reivindicação 25, em que a célula hospedeira é transformada com um vector compreendendo a sequência nucleotidica de SEQ ID NO: 41.
  27. 27. Um método de acordo com a reivindicação 26, em que o vector não compreende a sequência polinucleotídica de SEQ ID NO: 37.
  28. 28. Um método de acordo com a reivindicação 26 ou reivindicação 27, em que o vector não compreende pelo menos um polinucleótido codificador da sequência de aminoácidos de SEQ ID NOS: 44, 46, 48 e/ou 50.
  29. 29. Um método de acordo com qualquer uma das reivindicações 25 a 28 em que a produção ocorre na ausência de um ou mais de um polipeptídeo recombinante tendo uma sequência de aminoácidos correspondendo a SEQ ID NOS: 38, 44, 46, 48 e/ou 50.
  30. 30. Um método de acordo com qualquer uma das reivindicações 25 a 28, em que a produção ocorre na ausência de um ou mais cDNAs correspondendo a SEQ ID NOS: 37, 43, 45, 47 e/ou 49.
  31. 31. Um método de produção de pravastatina, que compreende a realização de um método de acordo com qualquer uma das reivindicações 25 a 30 e conversão de ML-236B em ΡΕ1149919 pravastatina. Lisboa, 4 de Dezembro de 2007
PT01303527T 2000-04-18 2001-04-18 Genes relacionados com a biossíntese de ml-236b PT1149919E (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000116591 2000-04-18
JP2000117458 2000-04-19

Publications (1)

Publication Number Publication Date
PT1149919E true PT1149919E (pt) 2007-12-17

Family

ID=26590305

Family Applications (1)

Application Number Title Priority Date Filing Date
PT01303527T PT1149919E (pt) 2000-04-18 2001-04-18 Genes relacionados com a biossíntese de ml-236b

Country Status (24)

Country Link
US (3) US7056710B2 (pt)
EP (1) EP1149919B1 (pt)
KR (1) KR100632174B1 (pt)
CN (1) CN1325959B (pt)
AR (1) AR034550A1 (pt)
AT (1) ATE373101T1 (pt)
AU (1) AU783319B2 (pt)
BR (1) BR0101518A (pt)
CA (1) CA2342397C (pt)
CY (1) CY1106985T1 (pt)
CZ (1) CZ20011367A3 (pt)
DE (1) DE60130394T2 (pt)
DK (1) DK1149919T3 (pt)
ES (1) ES2293966T3 (pt)
HK (1) HK1037683A1 (pt)
HU (1) HUP0101569A3 (pt)
IL (1) IL142619A (pt)
MX (1) MXPA01003913A (pt)
NO (1) NO328653B1 (pt)
NZ (1) NZ511166A (pt)
PL (1) PL202457B1 (pt)
PT (1) PT1149919E (pt)
RU (1) RU2236463C2 (pt)
TW (1) TWI312807B (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540811A (ja) * 2006-06-22 2009-11-26 ディーエスエム アイピー アセッツ ビー.ブイ. プラバスタチンの産生
WO2010034686A1 (en) * 2008-09-24 2010-04-01 Dsm Ip Assets B.V. Improved statin production
WO2010069914A1 (en) * 2008-12-19 2010-06-24 Dsm Ip Assets B.V. Statin transcription regulators
WO2015161856A1 (en) * 2014-04-23 2015-10-29 Danmarks Tekniske Universitet Statin resistance and export

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572240A (en) 1980-06-06 1982-01-07 Sankyo Co Ltd Ml-236b derivative
US5179013A (en) * 1987-02-02 1993-01-12 Sankyo Company, Limited Cytochrome P-450 enzymes
WO1995012661A1 (en) 1993-11-02 1995-05-11 Merck & Co., Inc. Dna encoding triol polyketide synthase
KR100186758B1 (ko) * 1996-08-09 1999-04-01 영진약품공업 주식회사 프라바스타틴(pravastatin)전구체의제조방법
US6391583B1 (en) 1998-12-18 2002-05-21 Wisconsin Alumni Research Foundation Method of producing antihypercholesterolemic agents
AU6475800A (en) 1999-08-11 2001-03-13 Sankyo Company Limited Ml-236b biosynthesis-associated dna
FR2801648B1 (fr) * 1999-11-30 2002-06-21 Commissariat Energie Atomique Injecteur a vapeur haute pression comportant un drain axial

Also Published As

Publication number Publication date
MXPA01003913A (es) 2003-08-20
CZ20011367A3 (cs) 2001-12-12
DE60130394D1 (de) 2007-10-25
CN1325959A (zh) 2001-12-12
RU2236463C2 (ru) 2004-09-20
EP1149919B1 (en) 2007-09-12
US20030078395A1 (en) 2003-04-24
EP1149919A2 (en) 2001-10-31
ES2293966T3 (es) 2008-04-01
CN1325959B (zh) 2010-05-05
HK1037683A1 (en) 2002-02-15
TWI312807B (en) 2009-08-01
HUP0101569A2 (hu) 2002-05-29
KR100632174B1 (ko) 2006-10-11
KR20010098713A (ko) 2001-11-08
NZ511166A (en) 2002-11-26
HU0101569D0 (en) 2001-06-28
HUP0101569A3 (en) 2005-01-28
AU3709201A (en) 2001-10-25
US20070111293A1 (en) 2007-05-17
CY1106985T1 (el) 2012-09-26
ATE373101T1 (de) 2007-09-15
NO20011890L (no) 2001-10-19
AU783319B2 (en) 2005-10-13
PL202457B1 (pl) 2009-06-30
IL142619A (en) 2008-03-20
CA2342397A1 (en) 2001-10-18
AR034550A1 (es) 2004-03-03
DE60130394T2 (de) 2008-06-19
EP1149919A3 (en) 2002-02-06
NO20011890D0 (no) 2001-04-17
PL347118A1 (en) 2001-10-22
CA2342397C (en) 2011-08-23
BR0101518A (pt) 2001-11-13
US20050214909A1 (en) 2005-09-29
DK1149919T3 (da) 2007-12-03
US7056710B2 (en) 2006-06-06
NO328653B1 (no) 2010-04-19

Similar Documents

Publication Publication Date Title
Pieper-Fürst et al. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber
JP4599357B2 (ja) プラジエノライドの生合成に関与するポリペプチドをコードするdna
US6022729A (en) Granule-associated proteins and methods for their use in polyhydroxyalkanoate biosynthesis
US9505779B2 (en) Tacrolimus analogues, a neuroprotective composition comprising the same, an immunosuppressive composition comprising the same, a method for preparing the same, and a mutant for producing the same
CN113227364A (zh) 用于产生熊去氧胆酸及其前体的细胞和方法
IL266709A (en) LovD mutants exhibiting enhanced properties relative to simvastatin synthesis
KR20040032891A (ko) 답토마이신 생합성 유전자 클러스터에 관련된 조성물 및방법
PT1149919E (pt) Genes relacionados com a biossíntese de ml-236b
WO2003014297A2 (en) Compositions and methods relating to the daptomycin biosynthetic gene cluster
JP5524053B2 (ja) ハーボキシジエンの生合成に関与するポリペプチドをコードするdna
CN108504640A (zh) 甾体化合物侧链修饰基因及其应用
KR101748678B1 (ko) 글라이코펩타이드 화합물 생산증대방법
WO2000055304A2 (en) A chc biosynthetic gene cluster
Abdel-Hameed Polyketide biosynthesis in lichen fungi Cladonia uncialis
JP2003116567A (ja) 遺伝子クラスター
WO2012096421A1 (ko) 세베키아 베니하나의 신규 사이클로스포린 a 하이드록실레이즈 유전자
JP2002315579A (ja) 遺伝子クラスター上の構造遺伝子
JP2001112487A (ja) Ml−236b生合成関連dna