NO340225B1 - Fremgangsmåte, anordning og datamaskinprogram til spektralinnnhyllingsjustering - Google Patents
Fremgangsmåte, anordning og datamaskinprogram til spektralinnnhyllingsjustering Download PDFInfo
- Publication number
- NO340225B1 NO340225B1 NO20150891A NO20150891A NO340225B1 NO 340225 B1 NO340225 B1 NO 340225B1 NO 20150891 A NO20150891 A NO 20150891A NO 20150891 A NO20150891 A NO 20150891A NO 340225 B1 NO340225 B1 NO 340225B1
- Authority
- NO
- Norway
- Prior art keywords
- subband
- filter bank
- signal
- adjacent
- real
- Prior art date
Links
- 230000003595 spectral effect Effects 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 20
- 238000004590 computer program Methods 0.000 title claims description 8
- 238000004458 analytical method Methods 0.000 claims description 24
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 238000003786 synthesis reaction Methods 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/20—Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/022—Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
- G10L19/025—Detection of transients or attacks for time/frequency resolution switching
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/083—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being an excitation gain
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/26—Pre-filtering or post-filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/12—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being prediction coefficients
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/21—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
- H03H17/0264—Filter sets with mutual related characteristics
- H03H17/0266—Filter banks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Stereophonic System (AREA)
- Spectrometry And Color Measurement (AREA)
- Color Television Image Signal Generators (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Processing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Image Generation (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Studio Circuits (AREA)
- Stereo-Broadcasting Methods (AREA)
- Processing Of Color Television Signals (AREA)
Description
Teknisk område
Oppfinnelsen angår systemer som omfatter spektralinnhyllingsjustering av lydsignaler ved benyttelse av en realverdibasert underbånds-filterbank. Den reduserer den aliasing som innføres ved benyttelse av en realverdibasert (eng: real-valued) underbånds-filterbank for spektral innhyllingsjustering. Den muliggjør også en nøyaktig energi-beregning for sinuskomponenter i en realverdibasert underbåndsfilterbank.
Bakgrunn for oppfinnelsen
Det er blitt vist i PCT/SE02/00626 "Aliasing-reduksjon ved benyttelse av kompleks-eksponentialmodulerte filterbanker" at en kompleks-eksponentialmodulert filterbank er et utmerket verktøy for spektral innhyllingsjustering av lydsignaler. Ved en slik prosess er den spektrale innhylling av signalet representert ved energiverdier som svarer til visse filterbankkanaler. Ved å anslå den aktuelle energi i disse kanaler, kan de tilsvarende underbåndssampler modifiseres slik at de får den ønskede energi, og følgelig justeres spektralinnhyllingen. Dersom begrensninger på beregningskompleksitet hindrer anvendelse av en kompleks-eksponentialmodulert filterbank, og bare tillater en cosinus-modulert (realverdibasert) implementering, oppnås alvorlig aliasing når filterbanken benyttes for spektral-innhyllingsjustering. Dette er særlig åpenbart for lydsignaler med en kraftig tonal struktur, hvor aliasing-komponentene vil forårsake intermodulasjon med de opprinnelige spektralkomponenter. Den foreliggende oppfinnelse tilbyr en løsning på dette ved å sette begrensinger på forsterkningsverdiene som funksjon av frekvensen på signalavhengig måte.
Annen kjent teknikk går frem av i WO 98/57436 A2 og omtales nærmere senere i dette søknadsdokumentet.
Sammenfatning av oppfinnelse
Det er et formål med oppfinnelsen å tilveiebringe en forbedret teknikk for spektralinnhyllingsjustering.
Dette oppnås med en fremgangsmåte for å redusere eller å eliminere intermodulasjon innført av aliasing i en realverdi-filterbank brukt til spektralhyllkurvejustering. Fremgangsmåten omfatter å analysere et inngangssignal for å skaffe tilveie informasjon og å bruke den fremskaffede informasjonen til å begrense hyllkurvejusteringskapabiliteter av realverdi-filterbanken ved å gruppere forsterkningsverdier av tilstøtende kanaler.
I et annet aspekt oppnås oppfinnelsens fordeler med en anordning for å redusere eller å eliminere intermodulasjon innført av aliasing i en realverdi-iflterbank brukt til spektralhyllkurvejustering. Anordningen omfatter midler for å analysere et inngangssignal for å skaffe tilveie informasjon og midler for å benytte den fremskaffede informasjonen til å begrense hyllkurvejusteringskapabiliteter av realverdi-filterbanken ved å gruppere forsterkningsverdier av tilstøtende kanaler.
Et tredje aspekt av oppfinnelsen er et datamaskinprogram med en programkode for å utføre fremgangsmåten nevnt ovenfor når programmet kjører på en datamaskin.
Kort beskrivelse av tegningene
Oppfinnelsen skal nå beskrives ved hjelp av illustrerende eksempler, som ikke begrenser oppfinnelsens ramme, med henvisning til de ledsagende tegninger, der
fig. 1 illustrerer en frekvensanalyse av det frekvensområde som dekkes av kanalene 15-24 i en M-kanals underbåndsfilterbank, for et opprinnelig signal som inneholder
et stort antall sinuskomponenter. Frekvensoppløsningen for den viste analyse er med hensikt høyere enn frekvensoppløsningen til de benyttede filterbanker, for å
vise hvor i en filterbankkanal sinusformen er til stede,
fig. 2 illustrerer en forsterkningsvektor som inneholder de forsterkningsverdier som
skal anvendes på underbåndskanalene 15-24 for det opprinnelige signal,
fig. 3 illustrerer utmatningen fra ovennevnte forsterkningsjustering i en realverdibasert
implementering uten den foreliggende oppfinnelse,
fig. 4 illustrerer utmatningen fra ovennevnte forsterloiingsjustering i en kompleks-verdibasert implementering,
fig. 5 illustrerer i hvilken halvdel av hver kanal en sinuskomponent er til stede,
fig. 6 illustrerer den foretrukne kanalgruppering ifølge oppfinnelsen,
fig. 7 illustrerer utmatningen fra ovennevnte forsterkningsjustering i en realverdibasert
implementering med den foreliggende oppfinnelse,
fig. 8 illustrerer et blokkskjema av innretningen ifølge oppfinnelsen,
fig. 9 illustrerer kombinasjoner av analyse- og syntese-filterbanker for hvilke oppfinnelsen med fordel kan benyttes,
fig. 10 illustrerer et blokkskjema av undersøkelsesirmretningen på fig. 8 i overensstemmelse med den foretrukne utførelse, og
fig. 11 illustrerer et blokkskjema av irmretningen for forsterloiingsjustering på fig. 8 i overensstemmelse med den foretrukne utførelse av oppfinnelsen.
Beskrivelse av foretrukne utførelser
De nedenfor beskrevne utførelser er bare illustrerende for prinsippene ifølge oppfinnelsen for forbedring av en spektralinnhyllmgs-justermgsinmetning basert på en realverdibasert filterbank. Man vil forstå at modifikasjoner og variasjoner av de arrange-menter og detaljer som er beskrevet her, vil være åpenbare for andre som er fagfolk på området. Det er derfor hensikten å være begrenset bare av omfanget av de etterfølgende krav, og ikke av de spesielle detaljer som er presentert som beskrivelse og forklaring av de foreliggende utførelser.
I den etterfølgende beskrivelse benyttes en realverdibasert pseudo-QMF som omfatter en realverdibasert analyse så vel som en realverdibasert syntese. Man må imidlertid være klar over at det aliasing-problem som adresseres av oppfinnelsen, også fremkommer for systemer med en kompleks analyse og en realverdibasert syntese, så vel som for hvilken som helst annen cosinus-modulert filterbank bortsett fra den pseudo-QMF som benyttes i denne beskrivelse. Oppfinnelsen er anvendelig også for slike systemer. I en pseudo-QMF overlapper hver kanal i det vesentlige bare sin tilstøtende nabo i frekvens. Frekvensresponsene til kanalene er vist i de etterfølgende figurer ved hjelp av de stiplede linjer. Dette er bare for illustrasjonsformål for å vise overlappingen av kanalene, og må ikke tolkes som den virkelige kanalrespons som gis av prototypfilteret. Frekvensanalysen av et opprinnelig signal er vist på fig. 1. Figuren viser bare det frekvensområde som er dekket av 15 - nlM til 25 - n IM av den M-kanals filterbank. I den etterfølgende beskrivelse er de angitte kanalnumre utledet fra deres lave overgangs-frekvens, og kanal 16 dekker følgelig frekvensområdet 16- nlM til Xl- nIM unntatt overlappingen med sine naboer. Dersom ingen modifikasjon utføres på underbåndssamplene mellom analyse og syntese, vil aliasingen være begrenset av prototypfilterets egenskaper. Dersom underbåndssamplene for tilstøtende kanaler modifiseres i overensstemmelse med en forsterkningsvektor, som vist på fig. 2, med uavhengige forsterkningsverdier for hver kanal, går aliasing-opphevelsesegenskapene tapt. En aliasing-komponent vil følgelig vise seg i utgangssignalet som avspeiles rundt filterbankkanalenes overgangsområde, som vist på fig. 3. Dette er ikke tilfelle for en kompleks implementering som beskrevet i PCT/SE02/00626, hvor utgangssignalet, som vist på fig. 4, ikke ville lide av forstyrrende aliasing-komponenter. For å unngå aliasing-komponentene som forårsaker alvorlig mtennodulasjonsforvrengning i utgangssignalet, lærer den foreliggende oppfinnelse at to tilstøtende kanaler som deler en sinuskomponent, slik som f.eks. kanal 18 og 19 på fig. 1, må modifiseres på liknende måte, dvs. den forsterk-ningsfaktor som anvendes på de to kanaler, må være identisk. Dette omtales i det følgende som koplet forsterkning for disse kanaler. Dette innebærer selvsagt at frekvens-oppløsningen for innhyllmgsjustermgsinmetningen ofres, for å redusere aliasingen. Dersom et tilstrekkelig antall kanaler er gitt, er imidlertid tapet i frekvensoppløsning en lav pris å betale for fraværet av alvorlig mtennodulasjonsforvrengning.
For å vurdere hvilke kanaler som skal ha koplede forsterkningsfaktorer, lærer eller foreskriver oppfinnelsen anvendelse av innenbånds lineær forutsigelse. Dersom en lav ordens, lineær forutsigelse benyttes, f.eks. en andre ordens LPC, er dette frekvensanalyseverktøy i stand til å oppløse én sinuskomponent i hver kanal. Ved å observere fortegnet for den første prediktor-polynom-koeffisient, er det lett å bestemme om sinuskomponenten er beliggende i den øvre eller den nedre halvdel av frekvensområdet for underbåndskanalen.
Et andre ordens forutsigelsespolynom
oppnås ved lineær forutsigelse ved benyttelse av autokorrelasjonsmetoden eller kovariansmetoden for hver kanal i QMF-filterbanken som vil bli påvirket av spektralinn-hyllingsjusteringen. Fortegnet for QMF-bank-kanalen defineres i overensstemmelse med: hvor k er kanalnummeret, M er antall kanaler, og hvor frekvensinversjonen for annenhver QMF-kanal tas i betraktning. Det er følgelig mulig for hver kanal å vurdere hvor en kraftig tonalkomponent er beliggende, og således gruppere sammen de kanaler som deler en kraftig sinuskomponent. På fig. 5 er fortegnet for hver kanal angitt, og følgelig i hvilken halvdel av underbåndskanalen sinusformen er beliggende, hvor +1 angir den øvre halvdel og -1 angir den nedre halvdel. Oppfinnelsen lærer at for å unngå aliasing-komponentene, må underbåndskanalens forsterkningsfaktorer grupperes for de kanaler hvor kanal k har et negativt fortegn og kanal k-1 har positivt fortegn. Kanalfortegnene som er vist på fig. 5, gir følgelig den nødvendige gruppering ifølge fig. 6, hvor kanalene 16 og 17, kanalene 18 og 19, kanalene 21 og 22, og kanalene 23 og 24 er gruppert. Dette betyr at forsterkningsverdiene gk(m) for de grupperte kanaler k og k-1 beregnes sammen, i stedet for separat, i overensstemmelse med:
hvor Ekref( m) er referanseenergien og Ek( m) er den anslåtte energi ved tidspunktet m. Dette sikrer at de grupperte kanaler får samme forsterkningsverdi. En slik gruppering av forsterkningsfaktorene bevarer filterbankens aliasing-opphevelsesegenskaper og gir utgangssignalet ifølge fig. 7. Det er her åpenbart at de aliasing-komponenter som er til stede på fig. 3, har forsvunnet. Dersom det ikke finnes noen kraftig sinuskomponent, vil nullene likevel være beliggende i den ene eller den andre halvdel av z-planet, angitt ved fortegnet for kanalen, og kanalene vil bli gruppert tilsvarende. Dette betyr at det ikke er noe behov for deteksjonsbasert beslutningstaking angående hvorvidt en kraftig tonalkomponent er til stede eller ikke.
I en realverdibasert filterbank er energivurderingen ikke enkel slik som i en kompleks representasjon. Dersom energien beregnes ved å summere de kvadrerte underbåndssampler av en eneste kanal, er det en fare for sporing av tidsinnhyllingen av signalet i stedet for den virkelige energi. Dette skyldes det faktum at en sinuskomponent kan ha en vilkårlig frekvens fra 0 opp til filterbank-kanalbredden. Dersom en sinuskomponent er til stede i en filterbankkanal, kan den ha en meget lav relativ frekvens, selv om den er en høyfrekvent sinuskomponent i det opprinnelige signal. Vurdering av energien av dette signal blir vanskelig i et realverdibasert system, på grunn av at dersom middelverditiden velges dårlig i forhold til frekvensen av sinuskomponenten, kan en tremulant (amplitude-variasjon) innføres, når i virkeligheten signalenergien faktisk er konstant. Oppfinnelsen lærer imidlertid at filterbankkanalene skal grupperes to og to ved gitt beliggenhet av sinuskomponentene. Dette reduserer i vesentlig grad tremulantproblemet, slik det skal omtales nedenfor.
I en cosinusmodulert filterbank er analysefiltrene hk(n) cosinusmodulerte versjoner av et symmetrisk lavpass-prototypfilter p0(n), så som
hvor M er antall kanaler, k = 0,1,..., M-l, N er prototypfilterets orden og n = 0,1,..., N. Prototypfilterets symmetri antas her å være med hensyn til n = N/2. Utledningene nedenfor er likeartede i tilfelle av halvsampelsymmetri. Dersom det er gitt et sinusformet inngangssignal x(n) = Acos(fin + 0) med frekvens 0 < Q < rc, kan underbåndssignalet til kanal k > 1 beregnes til å være tilnærmet lik hvor P(co) er den realverdibaserte, diskrete tids-Fourier-transformasjon av det forskjøvne prototypfilter p0(n + N/2). Approksimasjonen er god når P(Q + rc(k + V&yM) er liten, og dette gjelder spesielt dersom P(co) er neglisjerbar for |co| > rc/M, en hypotese som ligger til grunn for den etterfølgende diskusjon. For spektralinnstillingsjustering kan den gjennomsnittlige energi innenfor et underhånd k beregnes som hvor w(n) er et vindu med lengde L. Innsetting av likning (5) i likning (6) fører til hvor v|/(fi) er et faseledd som er uavhengig av k, og W(co) er den diskrete tids-Fourier-transformasjon av vinduet. Denne energi kan være kraftig fluktuerende dersom Q ligger nær et heltallig multiplum av n/ M, selv om inngangssignalet er en stasjonær sinuskurve. Artifakter av tremulanttypen vil fremkomme i et system basert på slike enkeltstående realanalyse-bankkanal-energiestimater. Dersom man på den annen side antar at7t(k - V2)/M < Q <7t(k + l/2)/M og at P(co) er neglisjerbar for |co| >k/M, har bare underbåndskanalene k og k-1 ikke-null-utgangssignaler, og disse kanaler vil bli gruppert sammen slik som foreslått ved den foreliggende oppfinnelse. Energiestimatet basert på disse to kanaler er hvor og
For de fleste brukbare konstruksjoner av prototypfiltre gjelder at S(Q) er tilnærmet konstant idet frekvensområdet som er gitt ovenfor. Dersom videre vinduet w(n) har en lavpass-filterkarakter, er |e(fi)| mye mindre enn |W(0)|, slik at fluktuasjonen av energiestimatet ifølge likning (8) er vesentlig redusert sammenliknet med estimatet ifølge liloiing (7).
Fig. 8 viser en innretning ifølge oppfinnelsen for spektralinnhyllingsjustering av et signal. Imrretningen ifølge oppfinnelsen omfatter en imiretning 80 for tilveiebringelse av et antall underbåndsignaler. Det skal bemerkes at det til et underbåndsignal er knyttet et kanalnummer k som angir et frekvensområde som dekkes av underbåndskanalen. Underbåndsignalet skriver seg fra et kanalfilter med kanalnummeret k i en analysefilterbank. Analysefilterbanken har et antall kanalfiltre hvor kanalfilteret med kanalnummeret k har en viss kanalrespons som er overlappet med en kanalrespons til et tilstøtende kanalfilter som har et lavere kanalnummer k-1. Overlappingen finner sted i et visst over- lappingsområde. Når det gjelder overlappingsområdene, henvises det til figurene 1, 3, 4 og 7 som viser overlappende pulsresponser med stiplede linjer for tilstøtende kanalfiltre i en analysefilterbank.
Underbåndsignalene som utmates av innretningen 80 på fig. 8, innmates i en innretning 82 for undersøkelse av underbåndsignalene med hensyn til aliasing-genererende signalkomponenter. Innretningen 82 er spesielt operativ for å undersøke det underbåndsignal som har kanalnummeret k knyttet til seg, og for å undersøke et tilstøtende underbåndsignal som har kanalnummeret k-1 knyttet til seg. Dette er for å bestemme hvorvidt underbåndsignalet og det tilstøtende underbåndsignal har aliasing-genererende signalkomponenter i overlapping sområdet, så som en sinuskomponent som vist for eksempel på fig. 1. Det skal her bemerkes at sinussignalkomponenten for eksempel i det underbåndsignal som har tilknyttet kanalnummeret 15, ikke er plassert i overlappingsområdet. Det samme gjelder for sinussignalkomponenten i det underbåndsignal som har tilknyttet kanalnummeret 20. Når det gjelder de andre sinuskomponenter som er vist på fig. 1, blir det klart at disse ligger i overlappingsområder for tilsvarende, tilstøtende underbåndsignaler.
Undersøkelsesinnretningen 82 er operativ for å identifisere to tilstøtende underbåndsignaler som har en aliasing-genererende signalkomponent i overlappingsområdet. Innretningen 82 er koplet til en innretning 84 for beregning av forsterkningsjusteringsverdier for tilstøtende underbåndssignaler. Innretningen 84 er spesielt operativ for å beregne den første forsterkningsjusteringsverdi og en andre forsterloiingsjusteringsverdi for underbåndsignalet på den ene side og det tilstøtende underbåndsignal på den annen side. Beregningen utføres som reaksjon på et positivt resultat for undersøkelses-innretningen. Innretningen for beregning er spesielt operativ for å bestemme den første forsterkningsjusteringsverdi og den andre forsterloiingsjusteringsverdi som ikke er uavhengige av hverandre, men avhengige av hverandre.
Innretningen 84 utmater en første forsterloiingsjusteringsverdi og en andre forsterkningsjusteringsverdi. Det skal på dette punkt bemerkes at den første forsterkningsjusteringsverdi og den andre forsterkningsjusteringsverdi fortrinnsvis er like hverandre i en foretrukket utførelse. I tilfelle av modifisering av forsterloiingsjusteringsverdier, som er blitt beregnet for eksempel i en spekatralbånd-gjenpartkoder (eng: spectral band replication encoder), er de modifiserte forsterkmngsjusteringsverdier som svarer til de opprinnelige SBR-forsterkningsjusteringsverdier, begge mindre enn den høyeste verdi av de opprinnelige verdier, og høyere enn den laveste verdi av de opprinnelige verdier, slik det vil bli skissert senere.
Innretningen 84 for beregning av forsterkningsjusteringsverdier beregner derfor to forsterkningsjusteringsverdier for de tilstøtende underbåndsignaler. Disse forsterkningsjusteringsverdier og selve underbåndsignalene tilføres til en innretning 86 for for- sterknmgsjustering av de tilstøtende underbåndsignaler ved benyttelse av de beregnede forsterkningsjusteringsverdier. Den forsterkningsjustering som utføres av innretningen 86, utføres fortrinnsvis ved hjelp av en multiplikasjon av underbåndssampler med forsterkningsjusteringsverdiene, slik at forsterkningsjusteringsverdiene er forsterkningsjusterings-faktorer. Forsterkningsjusteringen av et underbåndsignal som har flere underbåndssampler, utføres med andre ord ved å multiplisere hvert underbåndssampel fra et underhånd med forsterkningsjusteringsfaktoren som er blitt beregnet for det respektive underhånd. Finstrukturen av underbåndssignalet berøres derfor ikke av forsterkningsjusteringen. Med andre ord opprettholdes de relative amplitudeverdier av underbåndssamplene, mens de absolutte amplitudeverdier av underbåndssamplene endres ved å multiplisere disse sampler med den forsterkningsjusteringsverdi som er knyttet til det respektive underbåndsignal.
På utgangen av innretningen 86 oppnås forsterkningsjusterte underbåndsignaler. Når disse forsterkningsjusterte underbåndsignaler innmates i en syntesefilterbank som fortrinnsvis er en realverdibasert syntesefilterbank, oppviser utgangssignalet fra syntesefilterbanken, dvs. det syntetiserte utgangssignal, ikke vesentlige aliasing-komponenter, slik det er blitt beskrevet foran med henvisning til fig. 7.
Det skal her bemerkes at en fullstendig opphevelse av aliasing-komponentene kan oppnås når forsterkningsverdiene av de tilstøtende underbåndsignaler gjøres like hverandre. Ikke desto mindre kan i det minste en reduksjon av aliasing-komponentene oppnås når forsterloiingsjusteringsverdiene for de tilstøtende underbåndsignaler beregnes i avhengighet av hverandre. Dette betyr at en forbedring av aliasing-situasjonen allerede oppnås når forsterkningsjusteringsverdiene ikke er helt like hverandre, men ligger nærmere hverandre sammenliknet med det tilfelle i hvilket ingen oppfinneriske skritt er blitt tatt.
Oppfinnelsen benyttes normalt i forbindelse med spektralbåndkopiering (SBR = Spectral Band Replication) eller høyfrekvensrekonstruksjon (HFR), hvilket er nærmere beskrevet i WO 98/57436 A2.
Slik det er kjent i teknikken, omfatter spektralinnhyllingskopiering eller høy-frekvensrekonstruksjon visse trinn på kodersiden så vel som visse trinn på dekodersiden.
I koderen kodes et opprinnelig signal som har full båndbredde, ved hjelp av en kildekoder. Kildekoderen frembringer et utgangssignal, dvs. en kodet versjon av det opprinnelige signal, i hvilket ett eller flere frekvensbånd som var inkludert i det opprinnelige signal, ikke lenger er inkludert i de kodede versjoner av det opprinnelige signal. Den kodede versjon av det opprinnelige signal omfatter normalt bare et lavt bånd av den opprinnelige båndbredde. Det høye bånd av den opprinnelige båndbredde av det opprinnelige signal er ikke inkludert i den kodede versjon av det opprinnelige signal. På kodersiden finnes det i tillegg en spektralinnhyllingsanalysator for analyse av den spektralinnhylling av det opprinnelige signal i båndene som mangler i den kodede versjon av det opprinnelige signal. Dette eller disse manglende bånd er for eksempel det høye bånd. Spektralinnhyllingsanalysatoren er operativ for å frembringe en grov innhyllings-representasjon av det bånd som mangler i den kodede versjon av det opprinnelige signal. Denne grove spektralinnhyllingsrepresentasjon kan genereres på flere måter. En måte er å lede den respektive frekvensandel av det opprinnelige signal gjennom en analysefilterbank, slik at respektive underbåndsignaler for respektive kanaler i det tilsvarende frekvensområde oppnås, og å beregne energien for hvert underhånd slik at disse energiverdier er den grove spektralinnhyllingsrepresentasjon.
En annen mulighet er å utføre en Fourier-analyse av det manglende bånd og å beregne energien av det manglende frekvensbånd ved å beregne en gjennomsnittlig energi av spektralkoeffisientene i en gruppe, så som et kritisk bånd, når lydsignaler betraktes, ved å benytte en gruppering i overensstemmelse med den velkjente Bark-skala.
I dette tilfelle består den grove spektralinnhyllingsrepresentasjon av visse referanseenergiverdier, hvor en referanseenergiverdi er knyttet til et visst frekvensbånd. SBR-koderen multiplekser nå denne grove spektralinnhyllingsrepresentasjon med den kodede versjon av det opprinnelige signal for å danne et utgangssignal som overføres til en mottaker eller en SBR-klar dekoder.
Slik det er kjent i teknikken, er den SBR-klare dekoder operativ for å regenerere det manglende frekvensbånd ved å benytte et visst frekvensbånd eller alle frekvensbånd som oppnås ved dekoding av den kodede versjon av det opprinnelige signal, for å oppnå en dekodet versjon av det opprinnelige signal. Den dekodede versjon av det opprinnelige signal omfatter selvsagt heller ikke det manglende bånd. Dette manglende bånd rekonstrueres nå ved å benytte de bånd som var inkludert i det opprinnelige signal, ved hjelp av spektralbåndkopiering (eng: spectral band replication). Spesielt utvelges ett eller flere bånd i den dekodede versjon av det opprinnelige signal og kopieres opp til bånd som må rekonstrueres. Finstrukturen av de kopierte underbåndsignaler eller frekvens/spektral-koeffisienter justeres deretter ved benyttelse av forsterloiingsjusteringsverdier som beregnes ved benyttelse av den virkelige energi av underbåndsignalet som på den ene side er blitt oppkopiert, og benyttelse av referanseenergien som uttrekkes fra den grove spektralinnhyllingsrepresentasjon som er blitt overført fra koderen til dekoderen. Normalt beregnes forsterlomigsjusteringsfaktoren ved å bestemme kvotienten mellom referanseenergien og den virkelige energi, og ved å ta kvadratroten av denne verdi.
Dette er den situasjon som er blitt beskrevet foran med henvisning til fig. 2. Fig. 2 viser spesielt slike forsterkningsjusteringsverdier som for eksempel er blitt bestemt av en forsterkningsjusteringsblokk i en høyfrekvens-rekonstruksjonsdekoder eller en SBR-klar dekoder.
Den oppfinneriske innretning som er vist på fig. 8, kan benyttes for fullstendig å erstatte en normal SBR-forsterknmgsjustermgsinnretning, eller den kan benyttes for å forbedre en tidligere kjent forsterknmgsjustermgsinnretning. Ved den første mulighet bestemmes forsterloiingsjusteringsverdiene for tilstøtende underbåndsignaler i avhengighet av hverandre i tilfelle de tilstøtende underbåndsignaler har et aliasingproblem. Dette betyr at det i de overlappende filterresponser til de filtre fra hvilke de tilstøtende underbåndsignaler skriver seg, var aliasing-genererende signalkomponenter, så som en tonal signalkomponent slik det er blitt omtalt i forbindelse med fig. 1. I dette tilfelle beregnes forsterkningsjusteringsverdiene ved hjelp av referanseenergiene som overføres fra den SBR-klare koder, og ved hjelp av et estimat for energien til de oppkopierte underbånd-signaler, og som reaksjon på innretningen for undersøkelse av underbåndsignalene med hensyn til aliasing-genererende signalkomponenter.
I det andre tilfelle, i hvilket innretningen ifølge oppfinnelsen benyttes for forbedring av funksjonsdyktigheten av en eksisterende SBR-klar dekoder, kan innretningen for beregning av forsterlomigsjusteringsverdier for tilstøtende underbåndsignaler implementeres slik at den gjenfinner forsterkningsjusteringsverdiene til to tilstøtende underbåndsignaler som har et aliasingproblem. Da en typisk SBR-klar koder ikke tar noe hensyn til aliasingproblemer, er disse forsterloiingsjusteringsverdier for disse to til-støtende underbåndsignaler uavhengige av hverandre. Innretningen ifølge oppfinnelsen for beregning av forsterloiingsjusteringsverdiene er operativ for å utlede beregnede forsterkningsjusteringsverdier for de tilstøtende underbåndsignaler basert på de to gjenfunne "opprinnelige" forsterloiingsjusteringsverdier. Dette kan gjøres på flere måter. Den første måte er å gjøre den andre forsterkningsjusteringsverdi lik den første forsterkningsjusteringsverdi. Den andre mulighet er å gjøre den første forsterloiingsjusteringsverdi lik den andre forsterkningsjusteringsverdi. Den tredje mulighet er å beregne middelverdien av begge opprinnelige forsterkningsjusteringsverdier og å benytte denne middelverdi som den første beregnede forsterkningsjusteringsverdi og den andre beregnede innhyllings-justeringsverdi. En annen mulighet ville være å velge forskjellige eller like første og andre beregnede forsterloiingsjusteringsverdier som begge er lavere enn den høyeste opprinnelige forsterkningsjusteringsverdi, og som begge er høyere enn den laveste forsterkningsjusteringsverdi av de to opprinnelige forsterloiingsjusteringsverdier. Når fig. 2 og fig. 6 sammenliknes, blir det klart at de første og andre forsterloiingsjusteringsverdier for to tilstøtende underhånd som er blitt beregnet avhengig av hverandre, begge er høyere enn den opprinnelige laveste verdi og begge er lavere enn den opprinnelige høyeste verdi.
I overensstemmelse med en annen utførelse av oppfinnelsen utføres særtrekkene med tilveiebringelse av underbåndsignaler (blokken 80 på fig. 8), undersøkelse av underbåndsignalene med hensyn til aliasing-genererende signalkomponenter (blokken 82 på fig. 8) og beregning av forsterloiingsjusteringsverdier for tilstøtende underbåndsignaler (blokken 84), utført i en SBR-klar koder som ikke utfører noen forsterkningsjusterings-operasjoner. I dette tilfelle er innretningen for beregning, som er betegnet med henvis- ningstallet 84 på fig. 8, forbundet med en innretning for utmating av den første og den andre beregnede forsterkningsjusteringsverdi for overføring til en dekoder.
I dette tilfelle vil dekoderen motta en allerede "aliasing-redusert", grov spektralinnhyllingsrepresentasjon sammen med fortrinnsvis en indikasjon på at den aliasing-reduserende gruppering av tilstøtende underbåndsignaler allerede er blitt utført. Ingen modifikasjoner av en normal SBR-dekoder er da nødvendige, da forsterkningsjusteringsverdiene allerede er i god form, slik at det syntetiserte signal ikke vil oppvise noen ailiasing-forvrengning.
I det følgende skal visse implementeringer av innretningen 80 for tilveiebringelse av underbåndsignaler beskrives. I tilfelle oppfinnelsen implementeres i en ny koder, er innretningen for tilveiebringelse av et antall underbåndsignaler analysatoren for analysering av det manglende frekvensbånd, dvs. det frekvensbånd som ikke er inkludert i den kodede versjon av det opprinnelige signal.
I tilfelle oppfinnelsen implementeres i en ny dekoder, kan inmetningen for tilveiebringelse av et antall underbåndsignaler være en analysefilterbank for analysering av den dekodede versjon av det opprinnelige signal kombinert med en SBR-innretning for transponering av underbåndsignalene i det lave bånd til underbåndskanaler i et høyt bånd. Dersom imidlertid den kodede versjon av det opprinnelige signal omfatter kvantiserte og eventuelt entropi-kodede underbåndsignaler selv, omfatter innretningen for tilveiebringelse ikke en analysebank. I dette tilfelle er innretningen for tilveiebringelse operativ for å uttrekke entropidekodede og rekvantiserte underbåndsignaler fra det overførte signal som innmates til dekoderen. Innretningen for tilveiebringelse er videre operativ for å trans-ponere slike uttrukne underbåndsignaler i det lave bånd i overensstemmelse med hvilken som helst av de kjente transponeringsregler til det høye bånd, slik det er kjent i teknikken for spektralbåndkopiering eller høyfrekvensrekonstruksj on.
Fig. 9 viser samvirket mellom analysefilterbanken (som kan være beliggende i koderen eller dekoderen) og en syntesefilterbank 90 som er beliggende i en SBR-dekoder. Syntesefilterbanken 90 som er anbrakt i dekoderen, er operativ for å motta de forsterkningsjusterte underbåndsignaler for å syntetisere høybåndsignalet som deretter, etter syntese, kombineres til den dekodede versjon av det opprinnelige signal for å oppnå et fullbåndsdekodet signal. Alternativt kan den realverdibaserte syntesefilterbank dekke hele det opprinnelige frekvensbånd, slik at lavbåndskanalene i syntesefilterbanken 90 suppleres med underbåndsignalene som representerer den dekodede versjon av det opprinnelige signal, mens høybånds-filterkanalene suppleres med de forsterkningsjusterte underbåndsignaler som utmates av innretningen 84 på fig. 8.
Slik det er blitt skissert tidligere, gjør den oppfinneriske beregning av forsterkningsjusteringsverdier i avhengighet av hverandre det mulig å kombinere en kompleks analysefilterbank og en realverdibasert syntesefilterbank, eller å kombinere en real verdibasert analysefilterbank og en realverdibasert syntesefilterbank spesielt for billige dekoderanvendelser.
Fig. 10 illustrerer en foretrukket utførelse av innretningen 82 for undersøkelse av underbåndsignalene. Slik det er blitt skissert på forhånd med hensyn til fig. 5, omfatter undersøkelsesinnretningen 82 på fig. 8 en innretning 100 for bestemmelse av en lavordens prediktor-polynomkoeffisient for et underbåndsignal og et tilstøtende underbåndsignal, slik at det oppnås koeffisienter av prediktor-polynomer. Slik det er blitt skissert med hensyn til likning (1), beregnes fortrinnsvis den første precliktor-polynomkoeffisient av et andre ordens forutsigelsespolynom slik som definert i likning (1). Innretningen 100 er koplet til en innretning 102 for bestemmelse av et fortegn for en koeffisient for de til-støtende underbåndsignaler. I overensstemmelse med den foretrukne utførelse av oppfinnelsen er bestemmelsesinnretningen 102 operativ for å beregne likning (2), slik at det oppnås et underbåndsignal og det tilstøtende underbåndsignal. Fortegnet for et under-båndssignal som oppnås av innretningen 102, avhenger på den ene side av fortegnet for prediktor-polynomkoeffisienten, og på den annen side av kanalnummeret eller under-båndsnummeret k. Innretningen 102 på fig. 10 er koplet til en innretning 104 for analysering av fortegnene for å bestemme tilstøtende underbåndsignaler som har aliasing-problematiske komponenter.
I overensstemmelse med den foretrukne utførelse av oppfinnelsen er innretningen 104 spesielt operativ for å bestemme underbåndsignaler som underbåndsignaler med aliasing-genererende signalkomponenter, i tilfelle underbåndsignalet med det laveste kanalnummer har positivt fortegn og underbåndsignalet med det høyeste kanalnummer har negativt fortegn. Når fig. 5 betraktes, blir det klart at denne situasjon oppstår for underbåndsignaler 16 og 17, slik at underbåndsignalene 16 og 17 bestemmes til å være tilstøtende underbåndsignaler med koplede forsterkningsjusteringsverdier. Det samme gjelder for underbåndsignalene 18 og 19 eller underbåndsignalene 21 og 22 eller underbåndsignalene 23 og 24.
Det skal her bemerkes at det alternativt også kan benyttes et annet forutsigelsespolynom, dvs. et forutsigelsespolynom av tredje, fjerde eller femte orden, og at også en annen polynomkoeffisient kan benyttes for bestemmelse av fortegnet, så som den andre, tredje eller fjerde ordens forutsigelses-polynomkoeffisient. Imidlertid fore-trekkes den prosedyre som er vist med hensyn til likningene 1 og 2, da den innebærer lave faste beregningsutgifter.
Fig. 11 viser en foretrukket implementering av innretningen for beregning av forsterkningsjusteringsverdier for tilstøtende underbåndsignaler i overensstemmelse med den foretrukne utførelse av oppfinnelsen. Spesielt omfatter innretningen 84 på fig. 8 en innretning 110 for tilveiebringelse av en indikasjon på en referanseenergi for tilstøtende underhånd, en innretning 112 for beregning av anslåtte energier for de tilstøtende under bånd, og en innretning 114 for bestemmelse av første og andre forsterkningsjusteringsverdier. Den første forsterkningsjusteringsverdi gkog den andre forsterkningsjusteringsverdi gk.!er fortrinnsvis like. Innretningen 114 er fortrinnsvis operativ for å utføre likning (3) som vist foran. Det skal her bemerkes at indikasjonen på referanseenergien for tilstøtende underhånd normalt oppnås fra et kodet signal som utmates av en normal SBR-koder. Referanseenergiene utgjør spesielt den grove spektralinnhyllmgsinformasjon slik den genereres av en normal SBR-klar koder.
Oppfinnelsen angår også en fremgangsmåte for spektralinnhyllingsjustering av et signal, idet det benyttes en filterbank hvor filterbanken omfatter en realverdibasert analysedel og en realverdibasert syntesedel, eller hvor filterbanken omfatter en kompleks analysedel og en realverdibasert syntesedel, hvor en i frekvens lavere kanal og den tilstøtende i frekvens høyere kanal modifiseres ved benyttelse av den samme forsterkningsverdi, dersom den lavere kanal har et positivt fortegn og den høyere kanal har et negativt fortegn, slik at relasjonen mellom underbåndssamplene av den lavere kanal og underbåndssamplene av den høyere kanal opprettholdes.
Ved ovennevnte fremgangsmåte beregnes fortrinnsvis den nevnte forsterkningsverdi ved å benytte den gjennomsnittlige energi til de tilstøtende kanaler.
Avhengig av omstendighetene kan den oppfinneriske fremgangsmåte for spektral-innhyllingsjustering implementeres i maskinvare eller i programvare. Implementeringen kan finne sted på et digitalt lagringsmedium, så som en plate eller en CD med elektronisk lesbare styresignaler, som kan samvirke med et programmerbart datamaskinsystem slik at fremgangsmåten ifølge oppfinnelsen utføres. Oppfinnelsen er derfor generelt et data-maskinprogramprodukt med en programkode som er lagret på en maskinlesbar bærer, for utførelse av fremgangsmåten ifølge oppfinnelsen, når datamaskin-programproduktet kjøres på en datamaskin. Med andre ord er oppfinnelsen derfor også et datamaskinprogram med en programkode for utførelse av fremgangsmåten ifølge oppfinnelsen, når datamaskinprogrammet kjøres på en datamaskin.
Claims (15)
1 Fremgangsmåte for å redusere eller å utelukke intermodulasjon innført av aliasing i en realverdi-filterbank brukt til spektramyllkurvejustering, som omfatter: • å analysere et inngangssignal for å skaffe tilveie informasjon; og • å bruke den fremskaffede informasjonen til å begrense hyllkurvejusteringskapabiliteter av realverdi-filterbanken ved å gruppere forsterloiingsverdier av tilstøtende kanaler.
2 Fremgangsmåte ifølge krav 1,
som omfatter å endre en kanalforsterloiing av tilstøtende kanaler mellom en analyse og en syntese av realverdi-filterbanken.
3 Fremgangsmåte ifølge krav 1 eller 2,
hvor bruken omfatter å utføre en lav-ordens lineær prediksjon på underbånd-sampler av filterbankkanaler til å vurdere, ved å observere egenskapene av en LPC-polynom utledet med lav-ordens lineær prediksjon, hvor det foreligger i en filterbankkanal en kraftig tonal komponent.
4 Fremgangsmåte ifølge krav 1, 2, eller 3,
hvor bruken omfatter å bedømme hvilke tilstøtende kanaler av realverdi-filterbanken må ha grupperte forsterkningsverdier, hvor de tilstøtende kanalene av realverdifilterbanken, som må ha grupperte forsterloiingsverdier, ikke må ha uavhengige forsterkningsverdier.
5 Anordning for å redusere eller å eliminere intermodulasjon innført av aliasing i en realverdi-filterbank brukt til spektramyllkurvejustering, som omfatter: • midler for å analysere et inngangssignal for å skaffe tilveie informasjon; og • midler for å benytte den fremskaffede informasjonen til å begrense hyllkurvejusteringskapabiliteter av realverdi-filterbanken ved å gruppere forsterkningsverdier av tilstøtende kanaler.
6 Anordning ifølge krav 5,
hvor realverdi-filterbanken er konfigurert for å generere flere underbånd-signaler generert ved å filtrere et signal ved å bruke en analysefilterbank, hvor realverdi-filterbanken har underbånd-filtre, tilstøtende underbånd-filtre av filterbanken har overgangsbånd som overlapper i et overlappende område.
7 Anordning ifølge krav 6,
hvor middelet for å analysere omfatter midler (82) for å undersøke et underbånd-signal som kommer fra et underbånd-filter og et tilstøtende underbånd-signal som kommer fra et tilstøtende underbånd-filter for å bestemme, hvorvidt underbånd-signalet og det tilstøtende underbånd-signal har aliasing-genererende signalkomponenter i det overlappende område for å fremskaffe grupperte underbånd-signaler i respons på et positivt resultat av undersøkelsen.
8 Anordning ifølge krav 7,
hvor middelet for å benytte omfatter midler (84) for å beregne en første forsterkningsjusteringsverdi og en annen forsterloiingsjusteringsverdi for de grupperte tilstøtende underbånd-signalene, hvor midlene for å beregne er i stand til å bestemme en angivelse av en referanseenergi for de grupperte underbånd-signalene og et energiestimat for en energi i de grupperte tilstøtende underbånd-signalene, og
å beregne forsterloiingsjusteringsverdiene for de grupperte underbånd-signalene basert på indikasjonen av referanseenergien og energiestimatet.
9 Anordning i samsvar med krav 8,
hvor middelet (84) for å beregne er i stand til å beregne den første og den andre forsterloiingsjusteringsverdien slik at de skiller seg gjennom mindre enn en forutbestemt terskel eller er lik med hverandre.
10 Anordning i samsvar med krav 8,
hvor middelet (82) for å undersøke er i stand til å beregne fortegn for underbånd-signaler basert på koeffisienter til prediksjonspolynomer for underbånd-signalet og det tilstøtende underbånd-signal (100, 102), og til å angi (104) et positivt resultat, når fortegnene har en forhåndsbestemt sammenheng med hverandre.
11 Anordning i samsvar med krav 10,
hvor middelet (82) for å undersøke er i stand til å benytte en autokorrelasjon-beregningsmetode eller en kovarians-beregningsmetode.
12 Anordning i samsvar med krav 10 eller 11,
hvor prediksjonspolynomet er et lav-ordens polynom som har en koeffisient av første orden, hvor orden av det lav-ordens polynomet er mindre enn 4 og hvor middelet for å undersøke (82) er i stand til å bruke koeffisienten av første orden for å beregne fortegnene til underbånd-signalene.
13 Anordning i samsvar med krav 10, 11 eller 12,
hvor den forhåndsbestemte sammenhengen defineres slik at underbånd-signalet som har assosiert med seg kanalnummeret k har et første fortegn og det tilstøtende underbånd-signal som har assosiert med seg kanalnummeret k-1 har et andre fortegn, som er mot-satt til det første fortegn.
14 Anordning i samsvar med krav 5,
hvor et energiestimat for et underbånd-signal beregnes ved summering av kvadratiske underbånd-sampler av underbånd-signalet.
15 Datamaskinprogram som har en programkode for å utføre fremgangsmåten i samsvar med krav 1, når datamaskinprogrammet kjører på en datamaskin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0202770A SE0202770D0 (sv) | 2002-09-18 | 2002-09-18 | Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks |
PCT/EP2003/009485 WO2004027998A2 (en) | 2002-09-18 | 2003-08-27 | Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20150891L NO20150891L (no) | 2005-04-15 |
NO340225B1 true NO340225B1 (no) | 2017-03-20 |
Family
ID=20289031
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20190931A NO345377B1 (no) | 2002-09-18 | 2003-08-27 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
NO20051861A NO335321B1 (no) | 2002-09-18 | 2005-04-15 | Fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20092676A NO336926B1 (no) | 2002-09-18 | 2009-07-14 | Anordning og fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20092677A NO336930B1 (no) | 2002-09-18 | 2009-07-14 | Anordning, fremgangsmåte og dataprogram for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20150250A NO340385B1 (no) | 2002-09-18 | 2015-02-23 | Fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20150891A NO340225B1 (no) | 2002-09-18 | 2015-07-10 | Fremgangsmåte, anordning og datamaskinprogram til spektralinnnhyllingsjustering |
NO20180077A NO343509B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
NO20180075A NO343469B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte for reduksjon av aliasing ved spektralhyllekurvejustering i en realverdibasert under¬bånds-filter¬bank. |
NO20180078A NO343510B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte og anordning for reduksjon av aliasing introdusert av spektral-omhyllingsjustering i realverdi-filterbanker |
NO20180074A NO343466B1 (no) | 2002-09-18 | 2018-01-18 | Apparat og fremgangsmåte for reduksjon av aliasing introdusert ved spektralhyllejustering i en realverdi filterbank |
NO20180076A NO343508B1 (no) | 2002-09-18 | 2018-01-18 | Apparat og fremgangsmåte for å utføre forsterkningsjustering på flere audio underbåndssignaler. |
NO20180181A NO344083B1 (no) | 2002-09-18 | 2018-02-05 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20190931A NO345377B1 (no) | 2002-09-18 | 2003-08-27 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
NO20051861A NO335321B1 (no) | 2002-09-18 | 2005-04-15 | Fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20092676A NO336926B1 (no) | 2002-09-18 | 2009-07-14 | Anordning og fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20092677A NO336930B1 (no) | 2002-09-18 | 2009-07-14 | Anordning, fremgangsmåte og dataprogram for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
NO20150250A NO340385B1 (no) | 2002-09-18 | 2015-02-23 | Fremgangsmåte for reduksjon av aliasing innført ved spektralinnhyllingsjustering i realverdibaserte filterbanker |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20180077A NO343509B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
NO20180075A NO343469B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte for reduksjon av aliasing ved spektralhyllekurvejustering i en realverdibasert under¬bånds-filter¬bank. |
NO20180078A NO343510B1 (no) | 2002-09-18 | 2018-01-18 | Fremgangsmåte og anordning for reduksjon av aliasing introdusert av spektral-omhyllingsjustering i realverdi-filterbanker |
NO20180074A NO343466B1 (no) | 2002-09-18 | 2018-01-18 | Apparat og fremgangsmåte for reduksjon av aliasing introdusert ved spektralhyllejustering i en realverdi filterbank |
NO20180076A NO343508B1 (no) | 2002-09-18 | 2018-01-18 | Apparat og fremgangsmåte for å utføre forsterkningsjustering på flere audio underbåndssignaler. |
NO20180181A NO344083B1 (no) | 2002-09-18 | 2018-02-05 | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
Country Status (18)
Country | Link |
---|---|
US (18) | US7577570B2 (no) |
EP (5) | EP1527517B1 (no) |
JP (5) | JP4328720B2 (no) |
KR (3) | KR100697255B1 (no) |
CN (3) | CN100466471C (no) |
AT (3) | ATE485628T1 (no) |
AU (1) | AU2003270114B2 (no) |
CA (7) | CA2924914C (no) |
DE (4) | DE60333872D1 (no) |
DK (3) | DK2239847T3 (no) |
ES (5) | ES2354002T3 (no) |
HK (3) | HK1077413A1 (no) |
MX (1) | MXPA05002628A (no) |
NO (12) | NO345377B1 (no) |
SE (1) | SE0202770D0 (no) |
UA (1) | UA79301C2 (no) |
WO (1) | WO2004027998A2 (no) |
ZA (1) | ZA200500873B (no) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8605911B2 (en) | 2001-07-10 | 2013-12-10 | Dolby International Ab | Efficient and scalable parametric stereo coding for low bitrate audio coding applications |
SE0202159D0 (sv) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
EP1423847B1 (en) | 2001-11-29 | 2005-02-02 | Coding Technologies AB | Reconstruction of high frequency components |
SE0202770D0 (sv) | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks |
BRPI0510014B1 (pt) * | 2004-05-14 | 2019-03-26 | Panasonic Intellectual Property Corporation Of America | Dispositivo de codificação, dispositivo de decodificação e método do mesmo |
US7558389B2 (en) * | 2004-10-01 | 2009-07-07 | At&T Intellectual Property Ii, L.P. | Method and system of generating a speech signal with overlayed random frequency signal |
FR2888699A1 (fr) * | 2005-07-13 | 2007-01-19 | France Telecom | Dispositif de codage/decodage hierachique |
JP4876574B2 (ja) * | 2005-12-26 | 2012-02-15 | ソニー株式会社 | 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体 |
US7590523B2 (en) * | 2006-03-20 | 2009-09-15 | Mindspeed Technologies, Inc. | Speech post-processing using MDCT coefficients |
DE102006047197B3 (de) | 2006-07-31 | 2008-01-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Verarbeiten eines reellen Subband-Signals zur Reduktion von Aliasing-Effekten |
US20080208575A1 (en) * | 2007-02-27 | 2008-08-28 | Nokia Corporation | Split-band encoding and decoding of an audio signal |
DE102008058496B4 (de) * | 2008-11-21 | 2010-09-09 | Siemens Medical Instruments Pte. Ltd. | Filterbanksystem mit spezifischen Sperrdämpfungsanteilen für eine Hörvorrichtung |
TWI788752B (zh) * | 2009-02-18 | 2023-01-01 | 瑞典商杜比國際公司 | 用於高頻重建或參數立體聲之複指數調變濾波器組 |
TWI662788B (zh) | 2009-02-18 | 2019-06-11 | 瑞典商杜比國際公司 | 用於高頻重建或參數立體聲之複指數調變濾波器組 |
KR101433701B1 (ko) | 2009-03-17 | 2014-08-28 | 돌비 인터네셔널 에이비 | 적응형으로 선택가능한 좌/우 또는 미드/사이드 스테레오 코딩과 파라메트릭 스테레오 코딩의 조합에 기초한 진보된 스테레오 코딩 |
TWI556227B (zh) | 2009-05-27 | 2016-11-01 | 杜比國際公司 | 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體 |
US11657788B2 (en) * | 2009-05-27 | 2023-05-23 | Dolby International Ab | Efficient combined harmonic transposition |
JP5754899B2 (ja) | 2009-10-07 | 2015-07-29 | ソニー株式会社 | 復号装置および方法、並びにプログラム |
JP5771618B2 (ja) | 2009-10-19 | 2015-09-02 | ドルビー・インターナショナル・アーベー | 音声オブジェクトの区分を示すメタデータ時間標識情報 |
PL2545551T3 (pl) | 2010-03-09 | 2018-03-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Poprawiona charakterystyka amplitudowa i zrównanie czasowe w powiększaniu szerokości pasma na bazie wokodera fazowego dla sygnałów audio |
KR101412117B1 (ko) | 2010-03-09 | 2014-06-26 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 재생 속도 또는 피치를 변경할 때 오디오 신호에서 과도 사운드 이벤트를 처리하기 위한 장치 및 방법 |
ES2522171T3 (es) | 2010-03-09 | 2014-11-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Aparato y método para procesar una señal de audio usando alineación de borde de patching |
JP5609737B2 (ja) | 2010-04-13 | 2014-10-22 | ソニー株式会社 | 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム |
JP5850216B2 (ja) | 2010-04-13 | 2016-02-03 | ソニー株式会社 | 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム |
ES2719102T3 (es) * | 2010-04-16 | 2019-07-08 | Fraunhofer Ges Forschung | Aparato, procedimiento y programa informático para generar una señal de banda ancha que utiliza extensión de ancho de banda guiada y extensión de ancho de banda ciega |
KR101679570B1 (ko) * | 2010-09-17 | 2016-11-25 | 엘지전자 주식회사 | 영상표시장치 및 그 동작방법 |
US8665321B2 (en) * | 2010-06-08 | 2014-03-04 | Lg Electronics Inc. | Image display apparatus and method for operating the same |
JP6075743B2 (ja) | 2010-08-03 | 2017-02-08 | ソニー株式会社 | 信号処理装置および方法、並びにプログラム |
JP5707842B2 (ja) | 2010-10-15 | 2015-04-30 | ソニー株式会社 | 符号化装置および方法、復号装置および方法、並びにプログラム |
GB2484969B (en) * | 2010-10-29 | 2013-11-20 | Canon Kk | Improved reference frame for video encoding and decoding |
AU2011358654B2 (en) * | 2011-02-09 | 2017-01-05 | Telefonaktiebolaget L M Ericsson (Publ) | Efficient encoding/decoding of audio signals |
EP2681734B1 (en) * | 2011-03-04 | 2017-06-21 | Telefonaktiebolaget LM Ericsson (publ) | Post-quantization gain correction in audio coding |
US9117440B2 (en) | 2011-05-19 | 2015-08-25 | Dolby International Ab | Method, apparatus, and medium for detecting frequency extension coding in the coding history of an audio signal |
US20130006644A1 (en) * | 2011-06-30 | 2013-01-03 | Zte Corporation | Method and device for spectral band replication, and method and system for audio decoding |
JP2013073230A (ja) * | 2011-09-29 | 2013-04-22 | Renesas Electronics Corp | オーディオ符号化装置 |
JP6036073B2 (ja) * | 2012-09-19 | 2016-11-30 | 富士通株式会社 | 送信ユニット、診断方法及び診断プログラム |
JP6531649B2 (ja) | 2013-09-19 | 2019-06-19 | ソニー株式会社 | 符号化装置および方法、復号化装置および方法、並びにプログラム |
JP6593173B2 (ja) | 2013-12-27 | 2019-10-23 | ソニー株式会社 | 復号化装置および方法、並びにプログラム |
US9577798B1 (en) * | 2014-04-30 | 2017-02-21 | Keysight Technologies, Inc. | Real-time separation of signal components in spectrum analyzer |
CN106549652B (zh) * | 2015-09-18 | 2022-01-11 | 杜比实验室特许公司 | 时域滤波中的滤波器系数更新 |
EP3605536B1 (en) | 2015-09-18 | 2021-12-29 | Dolby Laboratories Licensing Corporation | Filter coefficient updating in time domain filtering |
CN114420148B (zh) * | 2022-03-30 | 2022-06-14 | 北京百瑞互联技术有限公司 | 啸叫检测和抑制方法、装置、介质及设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057436A2 (en) * | 1997-06-10 | 1998-12-17 | Lars Gustaf Liljeryd | Source coding enhancement using spectral-band replication |
Family Cites Families (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3947827A (en) | 1974-05-29 | 1976-03-30 | Whittaker Corporation | Digital storage system for high frequency signals |
US4053711A (en) | 1976-04-26 | 1977-10-11 | Audio Pulse, Inc. | Simulation of reverberation in audio signals |
US4166924A (en) | 1977-05-12 | 1979-09-04 | Bell Telephone Laboratories, Incorporated | Removing reverberative echo components in speech signals |
FR2412987A1 (fr) | 1977-12-23 | 1979-07-20 | Ibm France | Procede de compression de donnees relatives au signal vocal et dispositif mettant en oeuvre ledit procede |
US4330689A (en) | 1980-01-28 | 1982-05-18 | The United States Of America As Represented By The Secretary Of The Navy | Multirate digital voice communication processor |
GB2100430B (en) | 1981-06-15 | 1985-11-27 | Atomic Energy Authority Uk | Improving the spatial resolution of ultrasonic time-of-flight measurement system |
EP0070948B1 (fr) | 1981-07-28 | 1985-07-10 | International Business Machines Corporation | Procédé de codage de la voix et dispositif de mise en oeuvre dudit procédé |
US4700390A (en) | 1983-03-17 | 1987-10-13 | Kenji Machida | Signal synthesizer |
US4667340A (en) | 1983-04-13 | 1987-05-19 | Texas Instruments Incorporated | Voice messaging system with pitch-congruent baseband coding |
US4672670A (en) | 1983-07-26 | 1987-06-09 | Advanced Micro Devices, Inc. | Apparatus and methods for coding, decoding, analyzing and synthesizing a signal |
US4700362A (en) | 1983-10-07 | 1987-10-13 | Dolby Laboratories Licensing Corporation | A-D encoder and D-A decoder system |
DE3374109D1 (en) | 1983-10-28 | 1987-11-19 | Ibm | Method of recovering lost information in a digital speech transmission system, and transmission system using said method |
US4706287A (en) | 1984-10-17 | 1987-11-10 | Kintek, Inc. | Stereo generator |
JPH0212299Y2 (no) | 1984-12-28 | 1990-04-06 | ||
US4885790A (en) | 1985-03-18 | 1989-12-05 | Massachusetts Institute Of Technology | Processing of acoustic waveforms |
JPH0774709B2 (ja) | 1985-07-24 | 1995-08-09 | 株式会社東芝 | 空気調和機 |
US4748669A (en) | 1986-03-27 | 1988-05-31 | Hughes Aircraft Company | Stereo enhancement system |
DE3683767D1 (de) | 1986-04-30 | 1992-03-12 | Ibm | Sprachkodierungsverfahren und einrichtung zur ausfuehrung dieses verfahrens. |
JPH0690209B2 (ja) | 1986-06-13 | 1994-11-14 | 株式会社島津製作所 | 反応管の攪拌装置 |
US4776014A (en) | 1986-09-02 | 1988-10-04 | General Electric Company | Method for pitch-aligned high-frequency regeneration in RELP vocoders |
GB8628046D0 (en) | 1986-11-24 | 1986-12-31 | British Telecomm | Transmission system |
US5054072A (en) | 1987-04-02 | 1991-10-01 | Massachusetts Institute Of Technology | Coding of acoustic waveforms |
US5285520A (en) | 1988-03-02 | 1994-02-08 | Kokusai Denshin Denwa Kabushiki Kaisha | Predictive coding apparatus |
FR2628918B1 (fr) | 1988-03-15 | 1990-08-10 | France Etat | Dispositif annuleur d'echo a filtrage en sous-bandes de frequence |
US5127054A (en) | 1988-04-29 | 1992-06-30 | Motorola, Inc. | Speech quality improvement for voice coders and synthesizers |
JPH0212299A (ja) | 1988-06-30 | 1990-01-17 | Toshiba Corp | 音場効果自動制御装置 |
JPH02177782A (ja) | 1988-12-28 | 1990-07-10 | Toshiba Corp | モノラルtv音声復調回路 |
US5297236A (en) | 1989-01-27 | 1994-03-22 | Dolby Laboratories Licensing Corporation | Low computational-complexity digital filter bank for encoder, decoder, and encoder/decoder |
EP0392126B1 (en) | 1989-04-11 | 1994-07-20 | International Business Machines Corporation | Fast pitch tracking process for LTP-based speech coders |
CA2014935C (en) * | 1989-05-04 | 1996-02-06 | James D. Johnston | Perceptually-adapted image coding system |
US5309526A (en) * | 1989-05-04 | 1994-05-03 | At&T Bell Laboratories | Image processing system |
US5434948A (en) | 1989-06-15 | 1995-07-18 | British Telecommunications Public Limited Company | Polyphonic coding |
US5261027A (en) | 1989-06-28 | 1993-11-09 | Fujitsu Limited | Code excited linear prediction speech coding system |
US4974187A (en) | 1989-08-02 | 1990-11-27 | Aware, Inc. | Modular digital signal processing system |
US5054075A (en) * | 1989-09-05 | 1991-10-01 | Motorola, Inc. | Subband decoding method and apparatus |
US4969040A (en) | 1989-10-26 | 1990-11-06 | Bell Communications Research, Inc. | Apparatus and method for differential sub-band coding of video signals |
JPH03214956A (ja) | 1990-01-19 | 1991-09-20 | Mitsubishi Electric Corp | テレビ会議装置 |
JP2906646B2 (ja) | 1990-11-09 | 1999-06-21 | 松下電器産業株式会社 | 音声帯域分割符号化装置 |
US5293449A (en) | 1990-11-23 | 1994-03-08 | Comsat Corporation | Analysis-by-synthesis 2,4 kbps linear predictive speech codec |
US5632005A (en) * | 1991-01-08 | 1997-05-20 | Ray Milton Dolby | Encoder/decoder for multidimensional sound fields |
JP3158458B2 (ja) | 1991-01-31 | 2001-04-23 | 日本電気株式会社 | 階層表現された信号の符号化方式 |
GB9104186D0 (en) | 1991-02-28 | 1991-04-17 | British Aerospace | Apparatus for and method of digital signal processing |
US5235420A (en) | 1991-03-22 | 1993-08-10 | Bell Communications Research, Inc. | Multilayer universal video coder |
JP2990829B2 (ja) | 1991-03-29 | 1999-12-13 | ヤマハ株式会社 | 効果付与装置 |
JP3050978B2 (ja) | 1991-12-18 | 2000-06-12 | 沖電気工業株式会社 | 音声符号化方法 |
JPH05191885A (ja) | 1992-01-10 | 1993-07-30 | Clarion Co Ltd | 音響信号イコライザ回路 |
JP3500633B2 (ja) | 1992-02-07 | 2004-02-23 | セイコーエプソン株式会社 | マイクロエレクトロニクス・デバイスのエミュレーション方法及びエミュレーション装置並びにシミュレーション装置 |
US5559891A (en) | 1992-02-13 | 1996-09-24 | Nokia Technology Gmbh | Device to be used for changing the acoustic properties of a room |
US5765127A (en) | 1992-03-18 | 1998-06-09 | Sony Corp | High efficiency encoding method |
GB9211756D0 (en) | 1992-06-03 | 1992-07-15 | Gerzon Michael A | Stereophonic directional dispersion method |
US5278909A (en) | 1992-06-08 | 1994-01-11 | International Business Machines Corporation | System and method for stereo digital audio compression with co-channel steering |
US5436940A (en) * | 1992-06-11 | 1995-07-25 | Massachusetts Institute Of Technology | Quadrature mirror filter banks and method |
IT1257065B (it) | 1992-07-31 | 1996-01-05 | Sip | Codificatore a basso ritardo per segnali audio, utilizzante tecniche di analisi per sintesi. |
JPH0685607A (ja) | 1992-08-31 | 1994-03-25 | Alpine Electron Inc | 高域成分復元装置 |
US5408580A (en) * | 1992-09-21 | 1995-04-18 | Aware, Inc. | Audio compression system employing multi-rate signal analysis |
JP2779886B2 (ja) | 1992-10-05 | 1998-07-23 | 日本電信電話株式会社 | 広帯域音声信号復元方法 |
FR2696874B1 (fr) * | 1992-10-13 | 1994-12-09 | Thomson Csf | Modulateur d'onde électromagnétique à puits quantiques. |
JP3191457B2 (ja) | 1992-10-31 | 2001-07-23 | ソニー株式会社 | 高能率符号化装置、ノイズスペクトル変更装置及び方法 |
CA2106440C (en) | 1992-11-30 | 1997-11-18 | Jelena Kovacevic | Method and apparatus for reducing correlated errors in subband coding systems with quantizers |
US5455888A (en) | 1992-12-04 | 1995-10-03 | Northern Telecom Limited | Speech bandwidth extension method and apparatus |
JPH06202629A (ja) | 1992-12-28 | 1994-07-22 | Yamaha Corp | 楽音の効果付与装置 |
JPH06215482A (ja) | 1993-01-13 | 1994-08-05 | Hitachi Micom Syst:Kk | オーディオ情報記録媒体、およびこのオーディオ情報記録媒体を用いる音場生成装置 |
JP3496230B2 (ja) | 1993-03-16 | 2004-02-09 | パイオニア株式会社 | 音場制御システム |
JPH0685607U (ja) | 1993-06-01 | 1994-12-13 | 千加士 大宮 | 差替え可能可動フック付き櫛 |
JP3685812B2 (ja) * | 1993-06-29 | 2005-08-24 | ソニー株式会社 | 音声信号送受信装置 |
US5463424A (en) | 1993-08-03 | 1995-10-31 | Dolby Laboratories Licensing Corporation | Multi-channel transmitter/receiver system providing matrix-decoding compatible signals |
US5581653A (en) | 1993-08-31 | 1996-12-03 | Dolby Laboratories Licensing Corporation | Low bit-rate high-resolution spectral envelope coding for audio encoder and decoder |
DE4331376C1 (de) | 1993-09-15 | 1994-11-10 | Fraunhofer Ges Forschung | Verfahren zum Bestimmen der zu wählenden Codierungsart für die Codierung von wenigstens zwei Signalen |
US5533052A (en) * | 1993-10-15 | 1996-07-02 | Comsat Corporation | Adaptive predictive coding with transform domain quantization based on block size adaptation, backward adaptive power gain control, split bit-allocation and zero input response compensation |
EP0681764A1 (en) | 1993-11-26 | 1995-11-15 | Koninklijke Philips Electronics N.V. | A transmission system, and a transmitter and a receiver for use in such a system |
JPH07160299A (ja) | 1993-12-06 | 1995-06-23 | Hitachi Denshi Ltd | 音声信号帯域圧縮伸張装置並びに音声信号の帯域圧縮伝送方式及び再生方式 |
JP3404837B2 (ja) | 1993-12-07 | 2003-05-12 | ソニー株式会社 | 多層符号化装置 |
JP2616549B2 (ja) | 1993-12-10 | 1997-06-04 | 日本電気株式会社 | 音声復号装置 |
KR960012475B1 (ko) | 1994-01-18 | 1996-09-20 | 대우전자 주식회사 | 디지탈 오디오 부호화장치의 채널별 비트 할당 장치 |
DE4409368A1 (de) | 1994-03-18 | 1995-09-21 | Fraunhofer Ges Forschung | Verfahren zum Codieren mehrerer Audiosignale |
US5787387A (en) | 1994-07-11 | 1998-07-28 | Voxware, Inc. | Harmonic adaptive speech coding method and system |
JP3483958B2 (ja) | 1994-10-28 | 2004-01-06 | 三菱電機株式会社 | 広帯域音声復元装置及び広帯域音声復元方法及び音声伝送システム及び音声伝送方法 |
US5839102A (en) | 1994-11-30 | 1998-11-17 | Lucent Technologies Inc. | Speech coding parameter sequence reconstruction by sequence classification and interpolation |
JPH08162964A (ja) * | 1994-12-08 | 1996-06-21 | Sony Corp | 情報圧縮装置及び方法、情報伸張装置及び方法、並びに記録媒体 |
FR2729024A1 (fr) | 1994-12-30 | 1996-07-05 | Matra Communication | Annuleur d'echo acoustique avec filtrage en sous-bandes |
US5701390A (en) | 1995-02-22 | 1997-12-23 | Digital Voice Systems, Inc. | Synthesis of MBE-based coded speech using regenerated phase information |
JP2956548B2 (ja) | 1995-10-05 | 1999-10-04 | 松下電器産業株式会社 | 音声帯域拡大装置 |
JP3139602B2 (ja) | 1995-03-24 | 2001-03-05 | 日本電信電話株式会社 | 音響信号符号化方法及び復号化方法 |
US5915235A (en) | 1995-04-28 | 1999-06-22 | Dejaco; Andrew P. | Adaptive equalizer preprocessor for mobile telephone speech coder to modify nonideal frequency response of acoustic transducer |
JP3416331B2 (ja) | 1995-04-28 | 2003-06-16 | 松下電器産業株式会社 | 音声復号化装置 |
US5692050A (en) | 1995-06-15 | 1997-11-25 | Binaura Corporation | Method and apparatus for spatially enhancing stereo and monophonic signals |
JPH095778A (ja) | 1995-06-23 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 空間光変調素子 |
JPH0946233A (ja) | 1995-07-31 | 1997-02-14 | Kokusai Electric Co Ltd | 音声符号化方法とその装置、音声復号方法とその装置 |
JPH0955778A (ja) | 1995-08-15 | 1997-02-25 | Fujitsu Ltd | 音声信号の広帯域化装置 |
US5774837A (en) | 1995-09-13 | 1998-06-30 | Voxware, Inc. | Speech coding system and method using voicing probability determination |
JP3301473B2 (ja) | 1995-09-27 | 2002-07-15 | 日本電信電話株式会社 | 広帯域音声信号復元方法 |
US5774737A (en) * | 1995-10-13 | 1998-06-30 | Matsushita Electric Industrial Co., Ltd. | Variable word length very long instruction word instruction processor with word length register or instruction number register |
US5956674A (en) | 1995-12-01 | 1999-09-21 | Digital Theater Systems, Inc. | Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels |
US5687191A (en) | 1995-12-06 | 1997-11-11 | Solana Technology Development Corporation | Post-compression hidden data transport |
US5732189A (en) * | 1995-12-22 | 1998-03-24 | Lucent Technologies Inc. | Audio signal coding with a signal adaptive filterbank |
TW307960B (en) | 1996-02-15 | 1997-06-11 | Philips Electronics Nv | Reduced complexity signal transmission system |
JP3519859B2 (ja) | 1996-03-26 | 2004-04-19 | 三菱電機株式会社 | 符号器及び復号器 |
JP3529542B2 (ja) | 1996-04-08 | 2004-05-24 | 株式会社東芝 | 信号の伝送/記録/受信/再生方法と装置及び記録媒体 |
EP0798866A2 (en) | 1996-03-27 | 1997-10-01 | Kabushiki Kaisha Toshiba | Digital data processing system |
US5848164A (en) | 1996-04-30 | 1998-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | System and method for effects processing on audio subband data |
DE19628293C1 (de) | 1996-07-12 | 1997-12-11 | Fraunhofer Ges Forschung | Codieren und Decodieren von Audiosignalen unter Verwendung von Intensity-Stereo und Prädiktion |
DE19628292B4 (de) | 1996-07-12 | 2007-08-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Codieren und Decodieren von Stereoaudiospektralwerten |
US5951235A (en) | 1996-08-08 | 1999-09-14 | Jerr-Dan Corporation | Advanced rollback wheel-lift |
CA2184541A1 (en) | 1996-08-30 | 1998-03-01 | Tet Hin Yeap | Method and apparatus for wavelet modulation of signals for transmission and/or storage |
GB2317537B (en) * | 1996-09-19 | 2000-05-17 | Matra Marconi Space | Digital signal processing apparatus for frequency demultiplexing or multiplexing |
JP3707153B2 (ja) | 1996-09-24 | 2005-10-19 | ソニー株式会社 | ベクトル量子化方法、音声符号化方法及び装置 |
JPH10124088A (ja) | 1996-10-24 | 1998-05-15 | Sony Corp | 音声帯域幅拡張装置及び方法 |
US5875122A (en) | 1996-12-17 | 1999-02-23 | Intel Corporation | Integrated systolic architecture for decomposition and reconstruction of signals using wavelet transforms |
US5886276A (en) * | 1997-01-16 | 1999-03-23 | The Board Of Trustees Of The Leland Stanford Junior University | System and method for multiresolution scalable audio signal encoding |
US6345246B1 (en) | 1997-02-05 | 2002-02-05 | Nippon Telegraph And Telephone Corporation | Apparatus and method for efficiently coding plural channels of an acoustic signal at low bit rates |
JP4326031B2 (ja) * | 1997-02-06 | 2009-09-02 | ソニー株式会社 | 帯域合成フィルタバンク及びフィルタリング方法並びに復号化装置 |
US5862228A (en) | 1997-02-21 | 1999-01-19 | Dolby Laboratories Licensing Corporation | Audio matrix encoding |
US6236731B1 (en) * | 1997-04-16 | 2001-05-22 | Dspfactory Ltd. | Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids |
IL120788A (en) | 1997-05-06 | 2000-07-16 | Audiocodes Ltd | Systems and methods for encoding and decoding speech for lossy transmission networks |
US6370504B1 (en) * | 1997-05-29 | 2002-04-09 | University Of Washington | Speech recognition on MPEG/Audio encoded files |
KR20000068538A (ko) * | 1997-07-11 | 2000-11-25 | 이데이 노부유끼 | 정보 복호 방법 및 장치, 정보 부호화 방법 및 장치, 및 제공매체 |
US5890125A (en) * | 1997-07-16 | 1999-03-30 | Dolby Laboratories Licensing Corporation | Method and apparatus for encoding and decoding multiple audio channels at low bit rates using adaptive selection of encoding method |
US6144937A (en) | 1997-07-23 | 2000-11-07 | Texas Instruments Incorporated | Noise suppression of speech by signal processing including applying a transform to time domain input sequences of digital signals representing audio information |
US6124895A (en) * | 1997-10-17 | 2000-09-26 | Dolby Laboratories Licensing Corporation | Frame-based audio coding with video/audio data synchronization by dynamic audio frame alignment |
KR100335611B1 (ko) | 1997-11-20 | 2002-10-09 | 삼성전자 주식회사 | 비트율 조절이 가능한 스테레오 오디오 부호화/복호화 방법 및 장치 |
US20010040930A1 (en) * | 1997-12-19 | 2001-11-15 | Duane L. Abbey | Multi-band direct sampling receiver |
KR100304092B1 (ko) | 1998-03-11 | 2001-09-26 | 마츠시타 덴끼 산교 가부시키가이샤 | 오디오 신호 부호화 장치, 오디오 신호 복호화 장치 및 오디오 신호 부호화/복호화 장치 |
JPH11262100A (ja) | 1998-03-13 | 1999-09-24 | Matsushita Electric Ind Co Ltd | オーディオ信号の符号化/復号方法および装置 |
US6351730B2 (en) | 1998-03-30 | 2002-02-26 | Lucent Technologies Inc. | Low-complexity, low-delay, scalable and embedded speech and audio coding with adaptive frame loss concealment |
KR100474826B1 (ko) | 1998-05-09 | 2005-05-16 | 삼성전자주식회사 | 음성부호화기에서의주파수이동법을이용한다중밴드의유성화도결정방법및그장치 |
JP3354880B2 (ja) | 1998-09-04 | 2002-12-09 | 日本電信電話株式会社 | 情報多重化方法、情報抽出方法および装置 |
JP2000099061A (ja) | 1998-09-25 | 2000-04-07 | Sony Corp | 効果音付加装置 |
US6353808B1 (en) | 1998-10-22 | 2002-03-05 | Sony Corporation | Apparatus and method for encoding a signal as well as apparatus and method for decoding a signal |
CA2252170A1 (en) | 1998-10-27 | 2000-04-27 | Bruno Bessette | A method and device for high quality coding of wideband speech and audio signals |
GB2344036B (en) | 1998-11-23 | 2004-01-21 | Mitel Corp | Single-sided subband filters |
SE9903552D0 (sv) | 1999-01-27 | 1999-10-01 | Lars Liljeryd | Efficient spectral envelope coding using dynamic scalefactor grouping and time/frequency switching |
SE9903553D0 (sv) | 1999-01-27 | 1999-10-01 | Lars Liljeryd | Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL) |
US6507658B1 (en) | 1999-01-27 | 2003-01-14 | Kind Of Loud Technologies, Llc | Surround sound panner |
WO2000051015A1 (en) * | 1999-02-26 | 2000-08-31 | Microsoft Corporation | An adaptive filtering system and method for cancelling echoes and reducing noise in digital signals |
US6496795B1 (en) * | 1999-05-05 | 2002-12-17 | Microsoft Corporation | Modulated complex lapped transform for integrated signal enhancement and coding |
JP2000267699A (ja) | 1999-03-19 | 2000-09-29 | Nippon Telegr & Teleph Corp <Ntt> | 音響信号符号化方法および装置、そのプログラム記録媒体、および音響信号復号装置 |
US6363338B1 (en) * | 1999-04-12 | 2002-03-26 | Dolby Laboratories Licensing Corporation | Quantization in perceptual audio coders with compensation for synthesis filter noise spreading |
US6937665B1 (en) * | 1999-04-19 | 2005-08-30 | Interuniversitaire Micron Elektronica Centrum | Method and apparatus for multi-user transmission |
US6539357B1 (en) | 1999-04-29 | 2003-03-25 | Agere Systems Inc. | Technique for parametric coding of a signal containing information |
US6298322B1 (en) | 1999-05-06 | 2001-10-02 | Eric Lindemann | Encoding and synthesis of tonal audio signals using dominant sinusoids and a vector-quantized residual tonal signal |
US6426977B1 (en) * | 1999-06-04 | 2002-07-30 | Atlantic Aerospace Electronics Corporation | System and method for applying and removing Gaussian covering functions |
US6226616B1 (en) | 1999-06-21 | 2001-05-01 | Digital Theater Systems, Inc. | Sound quality of established low bit-rate audio coding systems without loss of decoder compatibility |
JP2003505967A (ja) | 1999-07-27 | 2003-02-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | フィルタリング装置 |
JP4639441B2 (ja) * | 1999-09-01 | 2011-02-23 | ソニー株式会社 | ディジタル信号処理装置および処理方法、並びにディジタル信号記録装置および記録方法 |
DE19947098A1 (de) | 1999-09-30 | 2000-11-09 | Siemens Ag | Verfahren zur Ermittlung der Kurbelwellenstellung |
DE60019268T2 (de) | 1999-11-16 | 2006-02-02 | Koninklijke Philips Electronics N.V. | Breitbandiges audio-übertragungssystem |
CA2290037A1 (en) | 1999-11-18 | 2001-05-18 | Voiceage Corporation | Gain-smoothing amplifier device and method in codecs for wideband speech and audio signals |
US6947509B1 (en) | 1999-11-30 | 2005-09-20 | Verance Corporation | Oversampled filter bank for subband processing |
JP2001184090A (ja) | 1999-12-27 | 2001-07-06 | Fuji Techno Enterprise:Kk | 信号符号化装置,及び信号復号化装置,並びに信号符号化プログラムを記録したコンピュータ読み取り可能な記録媒体,及び信号復号化プログラムを記録したコンピュータ読み取り可能な記録媒体 |
KR100359821B1 (ko) | 2000-01-20 | 2002-11-07 | 엘지전자 주식회사 | 움직임 보상 적응형 영상 압축과 복원방법 및 그 장치와디코더 |
US6732070B1 (en) * | 2000-02-16 | 2004-05-04 | Nokia Mobile Phones, Ltd. | Wideband speech codec using a higher sampling rate in analysis and synthesis filtering than in excitation searching |
US6718300B1 (en) * | 2000-06-02 | 2004-04-06 | Agere Systems Inc. | Method and apparatus for reducing aliasing in cascaded filter banks |
US6879652B1 (en) | 2000-07-14 | 2005-04-12 | Nielsen Media Research, Inc. | Method for encoding an input signal |
WO2002007481A2 (en) | 2000-07-19 | 2002-01-24 | Koninklijke Philips Electronics N.V. | Multi-channel stereo converter for deriving a stereo surround and/or audio centre signal |
US20020040299A1 (en) | 2000-07-31 | 2002-04-04 | Kenichi Makino | Apparatus and method for performing orthogonal transform, apparatus and method for performing inverse orthogonal transform, apparatus and method for performing transform encoding, and apparatus and method for encoding data |
WO2002013572A2 (en) * | 2000-08-07 | 2002-02-14 | Audia Technology, Inc. | Method and apparatus for filtering and compressing sound signals |
SE0004163D0 (sv) | 2000-11-14 | 2000-11-14 | Coding Technologies Sweden Ab | Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering |
SE0004187D0 (sv) | 2000-11-15 | 2000-11-15 | Coding Technologies Sweden Ab | Enhancing the performance of coding systems that use high frequency reconstruction methods |
EP1211636A1 (en) | 2000-11-29 | 2002-06-05 | STMicroelectronics S.r.l. | Filtering device and method for reducing noise in electrical signals, in particular acoustic signals and images |
JP4649735B2 (ja) * | 2000-12-14 | 2011-03-16 | ソニー株式会社 | 符号化装置および方法、並びに記録媒体 |
AU2001276588A1 (en) | 2001-01-11 | 2002-07-24 | K. P. P. Kalyan Chakravarthy | Adaptive-block-length audio coder |
US6931373B1 (en) * | 2001-02-13 | 2005-08-16 | Hughes Electronics Corporation | Prototype waveform phase modeling for a frequency domain interpolative speech codec system |
SE0101175D0 (sv) * | 2001-04-02 | 2001-04-02 | Coding Technologies Sweden Ab | Aliasing reduction using complex-exponential-modulated filterbanks |
DE60217484T2 (de) * | 2001-05-11 | 2007-10-25 | Koninklijke Philips Electronics N.V. | Schätzung der signalleistung in einem komprimierten audiosignal |
US6473013B1 (en) * | 2001-06-20 | 2002-10-29 | Scott R. Velazquez | Parallel processing analog and digital converter |
US6879955B2 (en) * | 2001-06-29 | 2005-04-12 | Microsoft Corporation | Signal modification based on continuous time warping for low bit rate CELP coding |
SE0202159D0 (sv) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
CA2354755A1 (en) * | 2001-08-07 | 2003-02-07 | Dspfactory Ltd. | Sound intelligibilty enhancement using a psychoacoustic model and an oversampled filterbank |
CA2354808A1 (en) * | 2001-08-07 | 2003-02-07 | King Tam | Sub-band adaptive signal processing in an oversampled filterbank |
CA2354858A1 (en) * | 2001-08-08 | 2003-02-08 | Dspfactory Ltd. | Subband directional audio signal processing using an oversampled filterbank |
US7200561B2 (en) | 2001-08-23 | 2007-04-03 | Nippon Telegraph And Telephone Corporation | Digital signal coding and decoding methods and apparatuses and programs therefor |
US7362818B1 (en) * | 2001-08-30 | 2008-04-22 | Nortel Networks Limited | Amplitude and phase comparator for microwave power amplifier |
US6895375B2 (en) | 2001-10-04 | 2005-05-17 | At&T Corp. | System for bandwidth extension of Narrow-band speech |
US6988066B2 (en) | 2001-10-04 | 2006-01-17 | At&T Corp. | Method of bandwidth extension for narrow-band speech |
DE60208426T2 (de) | 2001-11-02 | 2006-08-24 | Matsushita Electric Industrial Co., Ltd., Kadoma | Vorrichtung zur signalkodierung, signaldekodierung und system zum verteilen von audiodaten |
EP1423847B1 (en) * | 2001-11-29 | 2005-02-02 | Coding Technologies AB | Reconstruction of high frequency components |
US7095907B1 (en) * | 2002-01-10 | 2006-08-22 | Ricoh Co., Ltd. | Content and display device dependent creation of smaller representation of images |
US6771177B2 (en) | 2002-01-14 | 2004-08-03 | David Gene Alderman | Warning device for food storage appliances |
US20100042406A1 (en) * | 2002-03-04 | 2010-02-18 | James David Johnston | Audio signal processing using improved perceptual model |
US20030215013A1 (en) * | 2002-04-10 | 2003-11-20 | Budnikov Dmitry N. | Audio encoder with adaptive short window grouping |
US6904146B2 (en) * | 2002-05-03 | 2005-06-07 | Acoustic Technology, Inc. | Full duplex echo cancelling circuit |
DE60327039D1 (de) * | 2002-07-19 | 2009-05-20 | Nec Corp | Audiodekodierungseinrichtung, dekodierungsverfahren und programm |
CA2464408C (en) * | 2002-08-01 | 2012-02-21 | Matsushita Electric Industrial Co., Ltd. | Audio decoding apparatus and method for band expansion with aliasing suppression |
JP3861770B2 (ja) | 2002-08-21 | 2006-12-20 | ソニー株式会社 | 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体 |
US6792057B2 (en) * | 2002-08-29 | 2004-09-14 | Bae Systems Information And Electronic Systems Integration Inc | Partial band reconstruction of frequency channelized filters |
SE0202770D0 (sv) * | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks |
EP1543307B1 (en) * | 2002-09-19 | 2006-02-22 | Matsushita Electric Industrial Co., Ltd. | Audio decoding apparatus and method |
US7191136B2 (en) | 2002-10-01 | 2007-03-13 | Ibiquity Digital Corporation | Efficient coding of high frequency signal information in a signal using a linear/non-linear prediction model based on a low pass baseband |
US20040252772A1 (en) * | 2002-12-31 | 2004-12-16 | Markku Renfors | Filter bank based signal processing |
US20040162866A1 (en) * | 2003-02-19 | 2004-08-19 | Malvar Henrique S. | System and method for producing fast modulated complex lapped transforms |
FR2852172A1 (fr) | 2003-03-04 | 2004-09-10 | France Telecom | Procede et dispositif de reconstruction spectrale d'un signal audio |
US7318035B2 (en) * | 2003-05-08 | 2008-01-08 | Dolby Laboratories Licensing Corporation | Audio coding systems and methods using spectral component coupling and spectral component regeneration |
US7447317B2 (en) | 2003-10-02 | 2008-11-04 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V | Compatible multi-channel coding/decoding by weighting the downmix channel |
US6982377B2 (en) * | 2003-12-18 | 2006-01-03 | Texas Instruments Incorporated | Time-scale modification of music signals based on polyphase filterbanks and constrained time-domain processing |
-
2002
- 2002-09-18 SE SE0202770A patent/SE0202770D0/xx unknown
-
2003
- 2003-08-27 AT AT08011168T patent/ATE485628T1/de active
- 2003-08-27 EP EP03750451A patent/EP1527517B1/en not_active Expired - Lifetime
- 2003-08-27 DE DE60333872T patent/DE60333872D1/de not_active Expired - Lifetime
- 2003-08-27 KR KR1020057004606A patent/KR100697255B1/ko active IP Right Grant
- 2003-08-27 AT AT06000181T patent/ATE478471T1/de active
- 2003-08-27 CN CNB038221454A patent/CN100466471C/zh not_active Expired - Lifetime
- 2003-08-27 CA CA2924914A patent/CA2924914C/en not_active Expired - Lifetime
- 2003-08-27 CA CA2924915A patent/CA2924915C/en not_active Expired - Lifetime
- 2003-08-27 CA CA2924913A patent/CA2924913C/en not_active Expired - Lifetime
- 2003-08-27 DK DK10172087.8T patent/DK2239847T3/da active
- 2003-08-27 CA CA2496665A patent/CA2496665C/en not_active Expired - Lifetime
- 2003-08-27 ES ES08011168T patent/ES2354002T3/es not_active Expired - Lifetime
- 2003-08-27 NO NO20190931A patent/NO345377B1/no not_active IP Right Cessation
- 2003-08-27 MX MXPA05002628A patent/MXPA05002628A/es active IP Right Grant
- 2003-08-27 WO PCT/EP2003/009485 patent/WO2004027998A2/en active Application Filing
- 2003-08-27 DK DK06000181.5T patent/DK1643642T3/da active
- 2003-08-27 KR KR1020067021145A patent/KR100890201B1/ko active IP Right Grant
- 2003-08-27 DE DE60317722T patent/DE60317722T2/de not_active Expired - Lifetime
- 2003-08-27 KR KR1020067021146A patent/KR100890203B1/ko active IP Right Grant
- 2003-08-27 EP EP08011168A patent/EP1986321B1/en not_active Expired - Lifetime
- 2003-08-27 ES ES05027760T patent/ES2297600T3/es not_active Expired - Lifetime
- 2003-08-27 UA UAA200502437A patent/UA79301C2/uk unknown
- 2003-08-27 ES ES03750451T patent/ES2256773T3/es not_active Expired - Lifetime
- 2003-08-27 JP JP2004536958A patent/JP4328720B2/ja not_active Expired - Lifetime
- 2003-08-27 CA CA2688916A patent/CA2688916C/en not_active Expired - Lifetime
- 2003-08-27 DE DE60334653T patent/DE60334653D1/de not_active Expired - Lifetime
- 2003-08-27 AT AT03750451T patent/ATE315845T1/de not_active IP Right Cessation
- 2003-08-27 DK DK08011168.5T patent/DK1986321T3/da active
- 2003-08-27 EP EP10172087.8A patent/EP2239847B1/en not_active Expired - Lifetime
- 2003-08-27 EP EP05027760A patent/EP1635461B1/en not_active Expired - Lifetime
- 2003-08-27 CN CN2009100098653A patent/CN101505145B/zh not_active Expired - Lifetime
- 2003-08-27 AU AU2003270114A patent/AU2003270114B2/en not_active Expired
- 2003-08-27 ES ES10172087.8T patent/ES2440287T3/es not_active Expired - Lifetime
- 2003-08-27 CA CA3040083A patent/CA3040083C/en not_active Expired - Lifetime
- 2003-08-27 CA CA2688871A patent/CA2688871C/en not_active Expired - Lifetime
- 2003-08-27 DE DE60303214T patent/DE60303214T2/de not_active Expired - Lifetime
- 2003-08-27 EP EP06000181A patent/EP1643642B1/en not_active Expired - Lifetime
- 2003-08-27 CN CN2009100098649A patent/CN101505144B/zh not_active Expired - Lifetime
- 2003-08-27 ES ES06000181T patent/ES2350746T3/es not_active Expired - Lifetime
- 2003-08-29 US US10/652,397 patent/US7577570B2/en active Active
-
2005
- 2005-01-31 ZA ZA200500873A patent/ZA200500873B/xx unknown
- 2005-04-15 NO NO20051861A patent/NO335321B1/no not_active IP Right Cessation
- 2005-10-20 HK HK05109281A patent/HK1077413A1/xx not_active IP Right Cessation
-
2007
- 2007-09-21 US US11/859,521 patent/US7590543B2/en not_active Expired - Lifetime
- 2007-09-26 US US11/862,143 patent/US7548864B2/en not_active Expired - Lifetime
-
2009
- 2009-04-28 JP JP2009109603A patent/JP5132627B2/ja not_active Expired - Lifetime
- 2009-04-28 JP JP2009109604A patent/JP5557467B2/ja not_active Expired - Lifetime
- 2009-05-26 US US12/472,147 patent/US8108209B2/en not_active Expired - Lifetime
- 2009-05-27 US US12/473,075 patent/US8145475B2/en not_active Expired - Lifetime
- 2009-07-14 NO NO20092676A patent/NO336926B1/no not_active IP Right Cessation
- 2009-07-14 NO NO20092677A patent/NO336930B1/no not_active IP Right Cessation
- 2009-09-25 HK HK09108857.6A patent/HK1129169A1/xx not_active IP Right Cessation
- 2009-10-19 HK HK09109639.9A patent/HK1131473A1/xx not_active IP Right Cessation
-
2010
- 2010-08-09 JP JP2010178996A patent/JP5577187B2/ja not_active Expired - Lifetime
- 2010-08-31 US US12/872,482 patent/US8346566B2/en not_active Expired - Lifetime
-
2012
- 2012-03-27 JP JP2012072474A patent/JP5326020B2/ja not_active Expired - Lifetime
- 2012-07-18 US US13/552,598 patent/US8498876B2/en not_active Expired - Lifetime
- 2012-07-18 US US13/552,590 patent/US8606587B2/en not_active Expired - Lifetime
-
2013
- 2013-11-14 US US14/080,504 patent/US9542950B2/en not_active Expired - Lifetime
-
2015
- 2015-02-23 NO NO20150250A patent/NO340385B1/no not_active IP Right Cessation
- 2015-07-10 NO NO20150891A patent/NO340225B1/no not_active IP Right Cessation
-
2016
- 2016-12-28 US US15/392,545 patent/US9847089B2/en not_active Expired - Lifetime
-
2017
- 2017-05-05 US US15/587,667 patent/US9842600B2/en not_active Expired - Lifetime
- 2017-10-31 US US15/799,641 patent/US9990929B2/en not_active Expired - Lifetime
- 2017-10-31 US US15/799,777 patent/US10013991B2/en not_active Expired - Lifetime
- 2017-10-31 US US15/799,853 patent/US10115405B2/en not_active Expired - Lifetime
- 2017-12-01 US US15/828,829 patent/US10157623B2/en not_active Expired - Lifetime
-
2018
- 2018-01-18 NO NO20180077A patent/NO343509B1/no not_active IP Right Cessation
- 2018-01-18 NO NO20180075A patent/NO343469B1/no not_active IP Right Cessation
- 2018-01-18 NO NO20180078A patent/NO343510B1/no not_active IP Right Cessation
- 2018-01-18 NO NO20180074A patent/NO343466B1/no not_active IP Right Cessation
- 2018-01-18 NO NO20180076A patent/NO343508B1/no not_active IP Right Cessation
- 2018-02-05 NO NO20180181A patent/NO344083B1/no not_active IP Right Cessation
- 2018-10-29 US US16/174,056 patent/US10418040B2/en not_active Expired - Lifetime
-
2019
- 2019-08-07 US US16/534,685 patent/US10685661B2/en not_active Expired - Fee Related
-
2020
- 2020-06-14 US US16/900,950 patent/US11423916B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057436A2 (en) * | 1997-06-10 | 1998-12-17 | Lars Gustaf Liljeryd | Source coding enhancement using spectral-band replication |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO20190931A1 (no) | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering | |
NO20170302A1 (no) | Fremgangsmåte, anordning og program til spektralinnhyllingsjustering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1K | Patent expired |