TWI788752B - 用於高頻重建或參數立體聲之複指數調變濾波器組 - Google Patents

用於高頻重建或參數立體聲之複指數調變濾波器組 Download PDF

Info

Publication number
TWI788752B
TWI788752B TW110100299A TW110100299A TWI788752B TW I788752 B TWI788752 B TW I788752B TW 110100299 A TW110100299 A TW 110100299A TW 110100299 A TW110100299 A TW 110100299A TW I788752 B TWI788752 B TW I788752B
Authority
TW
Taiwan
Prior art keywords
filter
filter bank
prototype
analysis
complex
Prior art date
Application number
TW110100299A
Other languages
English (en)
Other versions
TW202119758A (zh
Inventor
皮爾 伊斯坦德
Original Assignee
瑞典商杜比國際公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商杜比國際公司 filed Critical 瑞典商杜比國際公司
Publication of TW202119758A publication Critical patent/TW202119758A/zh
Application granted granted Critical
Publication of TWI788752B publication Critical patent/TWI788752B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0266Filter banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0272Quadrature mirror filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2240/00Indexing scheme relating to filter banks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Optical Filters (AREA)
  • Image Processing (AREA)

Abstract

本文件係有關調變式次取樣數位濾波器組,且係有關用來設計此種濾波器組之方法及系統。本文件尤其提出了一種用來改良低延遲調變式數位濾波器組之方法及裝置。該方法採用對非對稱低通原型濾波器之調變、以及將該濾波器的係數最佳化之一新方法。此外,提供了一種使用640係數之原型濾波器長度及319樣本之系統延遲的64通道濾波器組之特定設計。當諸如將一濾波器組用來作為一頻譜等化器時,該方法實質上減少了由於對各次頻帶信號的獨立修改發生的頻疊所產生之假像。最好是以在標準PC或數位信號處理器(DSP)上運行的軟體實施該方法,但是亦可將該方法硬編碼在一客製晶片中。該方法提供了對各種類型的數位等化器、適應性濾波器、多頻帶壓縮擴展器、以及調整被用於高頻重建(HFR)或參數立體聲系統的濾波器組的適應性包絡線之改良。

Description

用於高頻重建或參數立體聲之複指數調變濾波器組
本文件係有關調變式次取樣(sub-sampled)數位濾波器組,且係有關用來設計此種濾波器組之方法及系統。本發明尤其提供了一種用來以接近完美的方式重建針對因對頻譜係數(spectral coefficient)或次頻帶信號(subband signal)的修改而發生的頻疊(aliasing)的抑制而最佳化之低延遲餘弦或複指數(complex-exponential)調變式濾波器組之新設計方法及裝置。此外,提供了一種使用640係數之原型濾波器(prototype filter)長度及319樣本之系統延遲的64通道濾波器組之特定設計。
可將本文件之揭示應用於:在諸如A.J.S.Ferreira及J.M.N.Viera於AES preprint,98thConvention 1995 February 25-28 Paris,N.Y.,USA中發表的論文“An Efficient 20 Band Digital Audio Equalizer”中概述之數位 等化器(digital equalizer);在諸如A.Gilloire及M.Vetterli於IEEE Transaction on Signal Processing,vol.40,no.8,August,1992中發表的論文“Adaptive Filtering in Subbands with Critical Sampling:Analysis,Experiments,and Application to Acoustic Echo Cancellation”中概述之適應性濾波器(adaptive filter);多頻帶壓縮擴展器(compander);以及利用高頻重建(High Frequency Reconstruction;簡稱HFR)方法之音訊編碼系統;或採用被稱為參數立體聲(parametric stero)技術之音訊編碼系統。在後兩個例子中,一數位濾波器組被用於音訊信號的頻譜包絡線(spectral envelope)之適應性調整。一例示的HFR系統是在諸如WO 98/57436中概述之頻帶複製(Spectral Band Replication;簡稱SBR)系統、以及在諸如EP1410687中述及之參數立體聲系統。
在其中包括申請專利範圍的整個本發明之揭示中,詞語“次頻帶信號”或“次頻帶樣本”意指來自一數位濾波器組的分析部分之一或多個輸出信號或一或多個輸出樣本、或來自一正轉換(forward transform)(亦即,對一基於轉換的系統的時域資料操作之轉換)之輸出。此種正轉換的輸出之例子是來自一窗口式(windowed)數位傅利葉轉換(Digital Fourier Transform;簡稱DFT)之頻域係數、或來自一改良式離散餘弦轉換(Modified Discrete Cosine Transform;簡稱MDCT)的分析階段之輸出樣本。
在其中包括申請專利範圍的整個本發明之揭示中,詞 語“頻疊”意指因降取(decimation)及內插(interpolation)且可能結合了對次取樣式數位濾波器組中之次頻帶樣本的修改(例如,衰減或量化(quantization))而造成的非線性失真。
數位濾波器組是由兩個或更多個平行的數位濾波器構成之一組數位濾波器。分析濾波器組將進入的信號分成一些各別的被稱為次頻帶信號或頻譜係數之信號。當每單位時間的次頻帶樣本之總數與輸入信號之總數相同時,該濾波器組將執行臨界取樣(critically sampled)或最大程度的降取。一所謂的合成濾波器組(synthesis filter bank)將該等次頻帶信號合併成一輸出信號。一常見類型的臨界取樣式濾波器組是餘弦調變式濾波器組,其中係對一所謂的原型濾波器之一低通濾波器執行餘弦調變而得到該等濾波器。該餘弦調變式濾波器組提供了有效的實施方式,且通常被用於自然音訊編碼系統。若要得知進一步的細節,請參閱K.Brandenburg於AES,Collected Paperson on Digital Audio Bitrate Reduction,1996所發表的論文“Introduction to Perceptual Coding”。
濾波器組設計的一常見問題在於:諸如藉由施加一等化增益曲線或將樣本量化而改變次頻帶樣本或頻譜係數之任何嘗試通常將造成輸出信號中之頻疊假像(aliasing artifact)。因此,最好是能有縱然在次頻帶樣本受到重大修改時也能減少此種假像之濾波器組設計。
一種可能的方法是使用超取樣式(oversampled)(亦即,非臨界取樣式)濾波器組。超取樣式濾波器組的一例 子是複指數調變式濾波器組之類別,其中將一被虛數正弦調變的部分加入一餘弦調變式濾波器組之實數部分。EP1374399中說明了此種複指數調變式濾波器組,本發明特此引用該專利以供參照。
複指數調變式濾波器組之一特性在於該等濾波器組不會有餘弦調變式濾波器組中出現的主要頻疊項。因此,此種濾波器組通常較不會有因對次頻帶樣本的修改而引起之假像。然而,仍然存在有其他的頻疊項,且應實施此種複指數調變式濾波器組的原型濾波器之精密設計技術,以便將諸如因對次頻帶信號修改而發生之頻疊等的缺陷最小化。該等剩餘頻疊項通常比主要頻疊項不顯著。
濾波器組的一進一步之特性是當一信號通過此種濾波器組時所引發的延遲量。尤其對於諸如音訊及視訊流等的即時應用而言,濾波器或系統延遲應是低的。得到具有低總系統延遲(亦即,通過一分析濾波器組及一接續的合成濾波器組的一信號之低延遲或時延)的濾波器組之一可能方法是使用短對稱式原型濾波器。使用短原型濾波器時,通常將導致較差的頻帶分離特性,且將導致各相鄰次頻帶間之大頻率重疊區。因此,短原型濾波器通常不容許在修改次頻帶樣本時將適當地抑制頻疊之濾波器組設計,且需要有設計低延遲濾波器組之其他方法。
因此,最好是能提供一種結合某些所需特性的濾波器組之設計方法。這些特性是:諸如因對次頻帶信號的修改而發生的頻疊等的信號缺陷的高度不敏感;通過分析及合 成濾波器組的信號之低延遲或時延;以及完美重建特性之良好近似。換言之,最好是能提供一種產生低度誤差的濾波器組之設計方法。次取樣式濾波器組通常產生兩種類型的誤差:因通帶項而發生的線性失真,而線性失真可被進一步分為振幅及相位誤差;以及因頻疊項而發生的非線性失真。縱然完美重建(Perfect Reconstruction;簡稱PR)特性之“良好近似”會將所有這些誤差保持在低位準,但是將重點放在因頻疊而造成的失真之降低在知覺的觀點上可能是有利的。
此外,最好是能提供一種可被用來設計一呈現這些特性的分析及(或)合成濾波器組之原型濾波器。濾波器組的一進一步所需特性是呈現接近固定的群組延遲(group delay),以便將由於輸出信號的相位分散(phase dispersion)而造成之假像最小化。
本文件示出了可採用一種被稱為改良式頻疊項最小化(Improved Alias Term Minimization;簡稱IATM)方法之濾波器組設計方法,而顯著降低因對次頻帶信號的相改而發生之缺陷,以便將對稱或非對稱式原型濾波器最佳化。
本文件揭示了:可延伸虛擬正交鏡像濾波器(Quadrature Mirror Filter;簡稱QMF)設計(亦即,接近完美重建濾波器組設計)之觀念,而涵蓋採用非對稱原型濾波器之低延遲濾波器組系統。因此,可設計具有低系 統延遲、對頻疊及(或)其中包括相位打散的低位準通帶誤差(pass band error)的低敏感性之接近完美重建濾波器組。可根據特定需求而改變該等濾波器組特性中被強調的一特性。因此,根據本文件的濾波器組設計方法減輕了目前對被用於等化系統或修改頻譜係數的其他系統的PR濾波器組之限制。
根據本文件的低延遲複指數調變式濾波器組之設計可包含下列步驟:
‧設計針對所需頻疊及通帶誤差拒斥而最佳化且針對一系統延遲D而進一步最佳化之具有π/2M的截止頻率之一非對稱低通原型濾波器;M是濾波器組的通道數目;以及
‧藉由對該被最佳化之原型濾波器施加複指數調變而建構一M通道濾波器組。
此外,根據本文件的該低延遲複指數調變式濾波器組之操作可包含下列步驟:
‧經由該濾波器組之分析部分而將實數值時域信號濾波;
‧諸如根據一所需的可能隨時間變化之等化器設定而修改複數值次頻帶信號;
‧經由該濾波器組之合成部分而將該等被修改之複數值次頻帶樣本濾波;以及
‧計算自該濾波器組的該合成部分得到的複數值時域輸出信號之實數部分。
除了提出一種新濾波器設計方法之外,本文件也說明了一種具有640係數的原型濾波器長度及319樣本的系統延遲之64通道濾波器組之特定設計。
可將尤其是所提出的濾波器組及根據所提出的設計方法而設計之濾波器組之本文件的揭示用於各種應用。這些應用是各種類型的數位等化器、適應性濾波器、多頻帶壓縮擴展器、以及調整被用於HFR或參數立體聲系統的濾波器組的適應性包絡線之改良。
根據一第一觀點,說明了一種決定用來建構M通道低延遲次取樣式分析/合成濾波器組的非對稱原型濾波器p0的N個係數之方法。該分析/合成濾波器組可包含M個分析濾波器hk及M個合成濾波器fk,其中k呈現自0至M-1之值,且其中M通常大於1。該分析/合成濾波器組具有一總體轉換函數(transfer function),該總體轉換函數通常係與該等分析及合成濾波器之係數相關聯,且與降取及(或)內插操作相關聯。
該方法包含下列步驟:選擇其中包含一目標延遲D的該濾波器組之一目標轉換函數。通常選擇小於或等於N之一目標延遲D。該方法進一步包含下列步驟:決定其中包含一通帶誤差項et及一頻疊誤差項ea之一複合目標函數etot。該通帶誤差項係與該濾波器組的該轉換函數與該目標轉換函數間之偏差相關聯,且該頻疊誤差項ea係與由於次取樣(亦即,該濾波器組的降取及(或)內插)而引發的誤差相關聯。在一進一步之方法步驟中,決定該非對 稱原型濾波器p0的將減少該複合目標函數etot之N個係數。
通常迭代地重複決定該目標誤差函數etot之該步驟以及決定該非對稱原型濾波器p0的該等N個係數之該步驟,直到到達該目標誤差函數etot的最小值為止。換言之,根據該原型濾波器的一特定組之係數而決定該目標函數etot,且藉由減少該目標誤差函數而產生該原型濾波器的一被更新組之係數。重複該程序,直到無法經由該等原型濾波器係數的修改而實現該目標函數的進一步減少為止。此即意指決定該目標誤差函數etot之該步驟可包含下列步驟:決定該原型濾波器p0的一些特定的複合目標函數etot之值,且決定該非對稱原型濾波器p0的該等N個係數之該步驟可包含下列步驟:根據與該原型濾波器p0的該等係數相關聯的該複合目標函數etot之梯度而決定該原型濾波器p0的被更新之係數。
根據一進一步之觀點,係以下式表示該複合目標誤差函數etot
e tot (α)=α e t +(1-α)e a
其中et是通帶誤差項,ea是頻疊誤差項,且α是呈現0與1之間的各值之一加權常數。可針對複數個頻率累積該濾波器組的轉換函數與該目標轉換函數間之離差平方(squared deviation),而決定該通帶誤差項et。尤其可以下式計算該通帶誤差項et
Figure 110100299-A0101-12-0009-16
其中P(ω)e-jωD是目標轉換函數,且
Figure 110100299-A0101-12-0009-17
其中Hk(z)及Fk(z)分別是分析及合成濾波器hk(n)及fk(n)之z轉換。
針對複數個頻率累積各頻疊增益項之振幅平方(squared magnitude),而決定該頻疊誤差項ea。尤其可以下式計算該頻疊誤差項ea
Figure 110100299-A0101-12-0009-18
其中在z=e之情形下,
Figure 110100299-A0101-12-0009-20
(z)),l=1...M-1,且其中
Figure 110100299-A0101-12-0009-21
是對具有W=e-i2π/M的單位圓(unitcircle)估算之第1個頻疊增益項,其中Hk(z)及Fk(z)分別是分析及合成濾波器hk(n)及fk(n)之z轉換。表示法Al*(z)是複共軛序列(complex-conjugatedsequence)a1(n)之z轉換。
根據一進一步之觀點,決定該複合目標函數etot的值之該步驟可包含下列步驟:根據使用餘弦調變、正弦調變、及(或)複指數調變之原型濾波器p0(n)而產生該分 析/合成濾波器組之分析濾波器hk(n)及合成濾波器fk(n)。尤其可使用餘弦調變而以下式決定該等分析及合成濾波器:
Figure 110100299-A0101-12-0010-22
其中n=0...N-1(針對該分析濾波器組之M個分析濾波器);以及
Figure 110100299-A0101-12-0010-23
其中n=0...N-1(針對該合成濾波器組組之M個合成濾波器)。
亦可使用複指數調變而以下式決定該等分析及合成濾波器:
Figure 110100299-A0101-12-0010-24
其中n=0...N-1,且A是一任意的常數(針對分析濾波器組之M個分析濾波器);以及
Figure 110100299-A0101-12-0010-25
其中n=0...N-1(針對合成濾波器組之M個合成濾波器)。
根據另一觀點,決定該複合目標函數etot的值之該步驟可包含下列步驟:將該等濾波器組通道中之至少一濾波器組通道設定為零。可將零增益施加到至少一分析及 (或)合成濾波器而完成該步驟,亦即,可針對至少一通道k而將濾波器係數hk及(或)fk設定為零。在一例子中,可將預定數目的低頻通道及(或)預定數目的高頻通道設定為零。換言之,可將該等低頻濾波器組通道(k=0直到Clow,其中Clow大於零)設定為零。替代地或額外地,可將該等高頻濾波器組通道(k=Chigh直到M-1,其中Chigh小於M-1)設定為零。
在該例子中,決定該複合目標函數etot的值之該步驟可包含下列步驟:使用複指數調變而產生頻疊項Clow及M-Clow、及(或)Chigh及M-Chigh之分析及合成濾波器。該步驟可進一步包含下列步驟:使用餘弦調變而產生剩餘頻疊項之分析及合成濾波器。換言之,可以一種部分複數值之方式執行該最佳化程序,其中使用實數值濾波器(例如,使用餘弦調變而產生的濾波器)計算沒有主要頻疊之頻疊誤差項,且其中諸如使用複指數調變濾波器而在複數值處理中修改載有一實數值系統中之主要頻疊之頻疊誤差項。
根據一進一步之觀點,該分析濾波器組可使用該等M個分析濾波器hk而自一輸入信號產生M個次頻帶信號。可以一因數M降取這些M個次頻帶信號,而得到被降取的次頻帶信號。通常為了諸如等化或壓縮而修改該等被降取的次頻帶信號。可以一因數M將該等可能被修改之被降取的次頻帶信號增加取樣(upsampled),且該合成濾波器組可使用該等M個合成濾波器fk而自該等被增加取 樣之被降取的次頻帶信號產生一輸出信號。
根據另一觀點,說明了一種包含可以任何捨入(rounding)操作、截斷(truncating)操作、縮放(scaling)操作、次取樣操作、或超取樣操作而自表1所示之該等係數推導出各係數之非對稱原型濾波器p0(n)。該等捨入、截斷、縮放、次取樣、或超取樣操作之任何組合是可行的。
該等濾波器係數之該捨入操作可包含下列操作中之任一操作:捨入到多於20個有效位數、多於19個有效位數、多於18個有效位數、多於17個有效位數、多於16個有效位數、多於15個有效位數、多於14個有效位數、多於13個有效位數、多於12個有效位數、多於11個有效位數、多於10個有效位數、多於9個有效位數、多於8個有效位數、多於7個有效位數、多於6個有效位數、多於5個有效位數、多於4個有效位數、多於3個有效位數、多於2個有效位數、多於1個有效位數、1個有效位數。
該等濾波器係數之該截斷操作可包含下列操作中之任一操作:截斷到多於20個有效位數、多於19個有效位數、多於18個有效位數、多於17個有效位數、多於16個有效位數、多於15個有效位數、多於14個有效位數、多於13個有效位數、多於12個有效位數、多於11個有效位數、多於10個有效位數、多於9個有效位數、多於8個有效位數、多於7個有效位數、多於6個有效位數、 多於5個有效位數、多於4個有效位數、多於3個有效位數、多於2個有效位數、多於1個有效位數、1個有效位數。
該等濾波器係數之該縮放操作可包含對該等濾波器係數的擴尺度(up-scaling)或縮尺度(down-scaling)。該縮放操作尤其可包含以濾波器組通道的數目M進行之擴尺度及(或)縮尺度。可將該擴尺度及(或)縮尺度用來維持濾波器組的輸入信號在該濾波器組的輸出上之輸入能量。
該次取樣操作可包含以小於或等於2、小於或等於3、小於或等於4、小於或等於8、小於或等於16、小於或等於32、小於或等於64、小於或等於128、小於或等於256的一因數進行之次取樣。該次取樣操作可進一步包含將次取樣式濾波器係數決定為各鄰接濾波器係數之平均值。尤其可將R個鄰接濾波器係數的平均值決定為該次取樣式濾波器係數,其中R是次取樣因數。
該超取樣操作可包含以小於或等於2、小於或等於3、小於或等於4、小於或等於5、小於或等於6、小於或等於7、小於或等於8、小於或等於9、小於或等於10的一因數進行之超取樣。該超取樣操作可進一步包含將超取樣式濾波器係數決定為兩個鄰接濾波器係數間之內插。
根據一進一步之觀點,說明了一種包含M個濾波器之濾波器組。該濾波器組之該等濾波器係基於本文件中述及的非對稱原型濾波器、及(或)經由本文件中概述的方 法而決定之非對稱原型濾波器。該等M個濾波器尤其可以是被調變之該原型濾波器,且該調變可以是餘弦調變、正弦調變、及(或)複指數調變。
根據另一觀點,說明了一種產生具有對因修改被降取的次頻帶信號而發生的頻疊的低敏感性之該次頻帶信號之方法。該方法包含下列步驟:根據本文件中概述之方法而決定一分析/合成濾波器組之各分析濾波器;經由該等分析濾波器而將一實數值時域信號濾波,以便得到複數值次頻帶信號;以及降取該等次頻帶信號。此外,說明了一種自具有對因修改複數個複數值次頻帶信號而發生的頻疊的低敏感性之該複數個複數值次頻帶信號產生實數值輸出信號之方法。該方法包含下列步驟:根據本文件中概述之方法而決定一分析/合成濾波器組之各合成濾波器;對該複數個複數值次頻帶信號執行內插;經由該等合成濾波器而將該複數個被內插之次頻帶信號濾波;產生係為自該濾波步驟得到的該等信號的總和之一複數值時域輸出信號;以及取得係為實數值輸出信號的該複數值時域輸出信號之實數部分。
根據另一觀點,說明了一種可操作而自一時域輸入信號產生一些次頻帶信號之系統,其中該系統包含根據本文件中概述的方法而產生且(或)基於本文件中概述的原型濾波器之一分析濾波器組。
請注意,可單獨使用或配合本文件中揭示的方法及系統之其他觀點而使用其中包括該等方法及系統的本專利申 請案中概述之較佳實施例之該等方法及系統之觀點。此外,可任意地結合本專利申請案中概述的該等方法及系統之所有觀點。尤其可以任意的方式將申請專利範圍之特徵相互結合。
101:分析部分
102:合成部分
103:分析濾波器
104:降取器
105:內插器
106、201、202:合成濾波器
203、204、214:負頻率濾波器
211、212、213、214:對分析濾波器的調變
220、221:重疊
501:類比至數位轉換器
502、516:移位暫存器
503、515:原型濾波器
504、514:合併器
505、512:第四型離散餘弦轉換器
506、513:第四型離散正弦轉換器
507:頻譜包絡線調整器
511:複數值旋轉因子
517:數位至類比轉換器
已參照各附圖而以舉例但不限制範圍之方式說明了本發明,在該等附圖中:
第1圖示出一數位濾波器組之分析及合成部分;
第2圖示出一組濾波器之格式化頻率響應,用以解說在修改一餘弦調變式(亦即,實數值)濾波器組中之次頻帶樣本時的不利影響;
第3圖是最佳化程序的一例子之一流程圖;
第4圖示出用於具有64通道及319樣本的總系統延遲的一低延遲調變式濾波器組的一被最佳化之原型濾波器之一時域圖及頻率響應;以及
第5圖示出一低延遲複指數調變式濾波器組系統的分析及合成部分之一例子。
我們應可了解:可將本發明之揭示應用於包含本專利中明確提到的那些數位濾波器組以外的數位濾波器組之實施例範圍。尤其可將本發明之揭示應用於根據一原型濾波器而設計一濾波器組之其他方法。
在下文中,將決定一分析/合成濾波器組之總體轉換函數。換言之,將說明通過一濾波器組系統的一信號之數學表示法。數位濾波器組是由共用一共同輸入或一共同輸出之M個(M是兩個或更多個)平行的數位濾波器構成之一組數位濾波器。若要得知此種濾波器組之細節,請參閱“Multirate Systems and Filter Banks”P.P.Vaidyanathan Prentice Hall:Englewood Cliffs,NJ,1993。當共用一共同輸入時,可將該濾波器組稱為一分析濾波器組。該分析濾波器組將進入的信號分成M個各別的被稱為次頻帶信號之信號。該等分析濾波器被表示為Hk(z),其中k=0,...,M-1。當以一因數M降取該等次頻帶信號時,該濾波器組被臨界取樣或被最大程度地降取。因此,跨越所有次頻帶的每一時間單位之次頻帶樣本總數與輸入信號的每一時間單位之樣本數相同。合成濾波器組將這些次頻帶信號合併為一共同輸出信號。該等合成濾波器被表示為Fk(z),其中k=0,...,M-1。
第1圖中示出具有M個通道或次頻帶之一被最大程度地降取的濾波器組。分析部分101自輸入信號X(z)產生次頻帶信號Vk(z),該等次頻帶信號Vk(z)構成將被傳輸、儲存、或修改之信號。合成部分102將該等信號Vk(z)重新組合成輸出信號
Figure 110100299-A0101-12-0016-70
(z)。
將Vk(z)重新組合而得到原始信號X(z)的近似
Figure 110100299-A0101-12-0016-71
(z)時,將容易發生數種誤差。該等誤差可能是由於完美重建特性的一近似,且包括由於頻疊而發生的非線性缺陷,其 中可能因次頻帶的降取及內插而造成頻疊。因完美重建特性的近似而發生的其他誤差可能是由於諸如相位及振幅失真等的線性缺陷。
遵循第1圖所示之符號,分析濾波器Hk(z)103之輸出係如下式所示:
X k (z)=H k (z)X(z), (1)
其中k=0,...,M-1。也被稱為減少取樣單元(down-sampling unit)之降取器104提供了下列輸出:
Figure 110100299-A0101-12-0017-26
其中W=e-i2π/M。也被稱為增加取樣單元的內插器105提供了下式所示之輸出:
Figure 110100299-A0101-12-0017-27
且可將自合成濾波器106得到的信號之總和表示為下式:
Figure 110100299-A0101-12-0017-28
其中
Figure 110100299-A0101-12-0017-29
是第1個頻疊項X(zW1)之增益。方程式(4)示出:
Figure 110100299-A0101-12-0018-72
(z)是由被調變的輸入信號X(zW1)與對應的頻疊增益項Al(z)之乘積構成之M個成分的總和。可將方程式(4)改寫為下式:
Figure 110100299-A0101-12-0018-30
右手邊(Right Hand Side;簡稱RHS)的最後總和構成所有不想要的頻疊項之總和。取消所有的頻疊時,亦即,利用Hk(z)及Fk(z)的適當選擇而強制使該總和為零時,將得到下式:
Figure 110100299-A0101-12-0018-31
其中
Figure 110100299-A0101-12-0018-32
是總體轉換函數或失真函數。方程式(8)示出:視Hk(z)及Fk(z)而定,T(z)可以沒有相位失真及振幅失真。在該例子中,該總體轉換函數將只是具有一固定的標度因數(scale factor)c的D個樣本之延遲,亦即:
T(z)=cz -D , (9)
上式被取代到方程式(7)而得到下式:
Figure 110100299-A0101-12-0018-33
滿足方程式(10)的該類型之濾波器被稱為具有完美重 建(PR)特性。如果並未完美地滿足方程式(10),但是近似地滿足了方程式(10),則該等濾波器屬於近似完美重建濾波器的類別。
在下文中,說明了一種自原型濾波器設計分析及合成濾波器組之方法。所得到的該等濾波器組被稱為餘弦調變式濾波器組。在餘弦調變式濾波器組的傳統理論中,該等分析濾波器hk(n)及合成濾波器fk(n)是餘弦調變式對稱低通原型濾波器p0(n),亦即該等分析濾波器hk(n)及合成濾波器fk(n)分別為:
Figure 110100299-A0101-12-0019-34
Figure 110100299-A0101-12-0019-35
其中M是該濾波器組之通道數,且N是原型濾波器階數(prototype filter order)。
上述之餘弦調變式分析濾波器組產生了實數值輸入信號之實數值次頻帶樣本。以一因數M將該等次頻帶樣本減少取樣,而使該系統被臨界取樣。視對原型濾波器的選擇而定,該濾波器組可構成一近似完美重建系統(亦即,在諸如US5436940中述及的所謂虛擬正交鏡像濾波器(QMF)組)、或一完美重建(PR)系統。PR系統的一例子是H.S.Malvar在IEEE Trans ASSP,vol.38,no.6,1990發表的論文“Lapped Transforms for Efficient Transform/Subband Coding”中進一步詳細說明之調變式重 疊轉換(Modulated Lapped Transform;簡稱MLT)。傳統的餘弦調變式濾波器組之總體延遲或系統延遲是N。
為了得到具有較低系統延遲之濾波器組系統,本文件揭示了以非對稱原型濾波器取代傳統濾波器組中使用的對稱原型濾波器。在先前技術中,非對稱原型濾波器的設計已被限制為具有完美重建(PR)特性之系統。EP0874458中說明了此種使用非對稱原型濾波器之完美重建系統。然而,由於在設計原型濾波器時被限制之自由度,所以完美重建的限制對諸如等化系統中使用的濾波器組施加了限制。請注意,對稱原型濾波器具有線性相位,亦即,對稱原型濾波器在所有的頻率中有固定的群組延遲。另一方面,非對稱濾波器具有非線性相位,亦即,非對稱濾波器具有可隨著頻率而改變之群組延遲。
在使用非對稱原型濾波器之濾波器組系統中,可分別以下列兩方程式表示分析及合成濾波器:
Figure 110100299-A0101-12-0020-36
Figure 110100299-A0101-12-0020-37
其中
Figure 110100299-A0101-12-0020-73
(n)及
Figure 110100299-A0101-12-0020-74
(n)分別是長度為Nh及Nf之分析及合成原型濾波器,且D是該濾波器組系統之總延遲。在不限制範圍的情況下,下文中述及的調變式濾波器組是分析及合成原型是相同的原型之系統,亦即:
Figure 110100299-A0101-12-0020-38
其中N是原型濾波器p0(n)的長度。
然而,請注意,在使用本文件中概述的濾波器設計體系時,可決定使用不同的分析及合成原型濾波器之濾波器組。
餘弦調變的一固有特性是每一濾波器有兩個通帶,其中一通帶在正頻率範圍,且一對應的通帶在負頻率範圍。可證明:因濾波器負通帶與被調頻的正通帶間之頻率重疊,或相反地,因濾波器正通帶與被調頻的負通帶間之頻率重疊,而發生所謂的主要或顯著頻疊項。選擇方程式 (13)及(14)中之最後的項(亦即,該等項
Figure 110100299-A0101-12-0021-1
),以便 提供餘弦調變式濾波器組中之主要頻疊項之抵消。然而,於修改次頻帶樣本時,主要頻疊項的抵消被削弱,因而導致對因主要頻疊項而發生的頻疊之強烈影響。因此,最好是可完全自次頻帶樣本移除這些主要頻疊項。
可利用基於餘弦調變至複指數調變的延伸之所謂的複指數調變式濾波器組,而實現主要頻疊項的移除。該延伸得到以下式表示之分析濾波器hk(n):
Figure 110100299-A0101-12-0021-40
其中該方程式使用與前文相同的符號。可將該分析濾波器視為將一虛數部分加到實數值濾波器組,其中該虛數部分包含被正弦調變的相同之原型濾波器。考慮一實數值輸入信號,可將該濾波器組之輸出理解為一組次頻帶信號,其中實數及虛數部分是彼此的希爾伯特轉換(Hilbert transform)。所產生的該等次頻帶因而是自該餘弦調變式濾波器組得到的實數值輸出之分析信號。因此,由於該複數值表示法,以因數2將該等次頻帶信號超取樣。
以相同之方式將該等合成濾波器延伸為下式:
Figure 110100299-A0101-12-0022-41
方程式(16)及(17)意指該合成濾波器組之輸出是複數值。使用矩陣符號時,其中Ca是具有方程式(13)所示餘弦調變式分析濾波器之一矩陣,且Sa是具有相同引數(argument)的正弦調變之一矩陣,得到形式為Ca+jSa的方程式(16)所示之濾波器。在這些矩陣中,k是列索引(row index)且n是行索引(column index)。類似地,矩陣Cs是具有方程式(14)所示之合成濾波器,且Ss是對應的被正弦調變之矩陣。可將方程式(17)表示為Cs+jSs,其中k是行索引,且n是列索引。將輸入信號表示為x時,將自下式得到輸出信號y:
y=(C s+j S s)(C a+j S a)x=(C s C a-S s S a)x+j(C s S a+S s C a)x (18)
如方程式(18)所示,實數部分包含兩項:來自該餘弦調變式濾波器組之輸出、以及來自一正弦調變式濾波器組之輸出。易於證明:如果一餘弦調變式濾波器組具有完美重建特性,則正負號改變的被正弦調變之該濾波器組也構成一完美重建系統。因此,藉由取得該輸出之實數部分,該複指數調變式系統提供了與對應的被餘弦調變的版本的重建正確性相同之重建正確性。換言之,使用實數值輸入 信號時,可取得輸出信號的實數部分,而決定複指數調變式系統之輸出信號。
可將該複指數調變式系統延伸成也處理複數值輸入信號。藉由將通道數延伸到2M(亦即,藉由增添用於負頻率之濾波器),且保持輸出信號的虛數部分,而得到用於複數值信號之一虛擬正交鏡像濾波器(QMF)或一完美重建系統。
請注意,該複指數調變式濾波器組的每一濾波器在正頻率範圍中只有一通帶。因此,該濾波器組沒有主要頻疊項。由於沒有主要頻疊項,所以該複指數調變式濾波器組排除了餘弦(或正弦)調變式濾波器組的頻疊抵消限制。因而可以下式表示分析及合成濾波器:
Figure 110100299-A0101-12-0023-42
以及
Figure 110100299-A0101-12-0023-43
其中A是任意的(可能為零)常數,且如同前文所述,M是通道數,N是原型濾波器長度,且D是系統延遲。藉由使用A的不同值,可得到更有效率的分析及合成濾波器組之實施例(亦即,具有較低複雜度之實施例)。
在提出一種將原型濾波器最佳化的方法之前,先總結所揭示的設計濾波器組之方法。可根據對稱或非對稱原型濾波器,而諸如使用一餘弦函數或一複指數函數將該等原 型濾波器調變,因而產生濾波器組。用於分析及合成濾波器組之該等原型濾波器可以是不同的或相同的。於使用複指數調變時,該等濾波器組的主要頻疊項是廢棄的,且可被移除,因而減少了對所產生的濾波器組的次頻帶信號的修改之頻疊敏感性。此外,於使用非對稱原型濾波器時,可減少該等濾波器組之總體系統延遲。也已證明:於使用複指數調變式濾波器組,可取得濾波器組的複數值輸出信號之實數部分,而決定來自一實數值輸入信號之輸出信號。
在下文中,將詳細說明一種將原型濾波器最佳化之方法。視需求而定,可在增加完美重建的程度(亦即,減少頻疊及振幅失真的組合、減少對頻疊的敏感性、減少系統延遲、減少相位失真、及(或)減少振幅失真)之情形下進行該最佳化。為了將原型濾波器p0(n)最佳化,決定頻疊增益項之第一式。在下文中,將推導出一複指數調變式濾波器組之該等頻疊增益項。然而,請注意,所概述的該等頻疊增益項對餘弦調變式(實數值)濾波器組也是有效的。
請參閱方程式(4),輸出信號
Figure 110100299-A0101-12-0024-78
(n)的實數部分之z轉換是:
Figure 110100299-A0101-12-0024-44
符號
Figure 110100299-A0101-12-0024-76
.(n)是複共軛序列
Figure 110100299-A0101-12-0024-77
(n)之z轉換。自方程式(4),將繼續下式所示的對輸出信號的實數部分之轉換:
Figure 110100299-A0101-12-0025-45
其中使用上式時,輸入信號x(n)是實數值,亦即,X*(zW1)=X(zW-1)。在重新配置之後,可將方程式(22)表示為下式:
Figure 110100299-A0101-12-0025-46
其中
Figure 110100299-A0101-12-0025-47
是最佳化中使用的頻疊增益項。可自方程式(24)得知:
Figure 110100299-A0101-12-0025-48
具體而言,對於實數值系統而言,
A M-l *(z)=A l (z) (26)
上式將方程式(24)簡化為:
Figure 110100299-A0101-12-0025-49
檢視方程式(23),且回顧方程式(21)之轉換,即可看出a0(n)的實數部分一定是一完美重建系統之狄拉克 (Dirac)脈衝,亦即,
Figure 110100299-A0101-12-0026-79
(z)的形式為
Figure 110100299-A0101-12-0026-2
。此外, aM/2(n)的實數部分必須是零,亦即,
Figure 110100299-A0101-12-0026-80
(z)必須是零,且對於l≠0的該等頻疊項而言,M/2必須滿足下式:
A M-l (z)=-A l *(z), (28)
因而對實數值系統而言,回顧方程式(26),意指所有的a1(n)(其中l=1...M-1)必須是零。在虛擬正交鏡像濾波器(QMF)系統中,方程式(28)只近似地適用。此外,a0(n)的實數部分並不正好是一狄拉克脈衝,aM/2(n)的實數部分也不正好是零。
在進入與原型濾波器的最佳化有關之進一步細節之前,先研究針對頻疊而修改次頻帶樣本之影響。如前文所述,改變一餘弦調變式濾波器組中之頻道的增益時,亦即,使用分析/合成系統作為一等化器時,將因主要頻疊項而造成嚴重失真。理論上,該等主要頻疊項將以成對之方式相互抵消。然而,當將不同的增益施加到不同的次頻帶通道時,主要頻疊項抵消的該理論將失效。因此,輸出信號中之頻疊可能是顯著的。為了證明上述狀況,考慮通道p及各較高通道被設定為零增益之一濾波器組,亦即如下式所示:
Figure 110100299-A0101-12-0026-50
第2圖中示出所討論的分析及合成濾波器之格式化頻率響應。第2(a)圖示出分別以代號201及202標示之合成 通道濾波器Fp-1(z)及Fp(z)。如前文所述,對每一通道之餘弦調變將導致一正頻率濾波器及一負頻率濾波器。換言之,該等正頻率濾波器201及202分別有對應的負頻率濾波器203及204。
第2(b)圖中示出對分析濾波器Hp-1(z)的第p個調變(亦即,以代號211及213指示之Hp-1(zWp))以及以代號201及203指示之合成濾波器Fp-1(z)。在該圖中,代號211指示被調變之原始正頻率濾波器Hp-1(z),且代號213指示被調變之原始負頻率濾波器Hp-1(z)。由於對階數p的調變,所以負頻率濾波器213被移到正頻率區,並因而與正合成濾波器201重疊。該等濾波器之陰影重疊區220示出一主要頻疊項之能量。
在第2(c)圖中,示出對Hp(z)的第p個調變(亦即,以代號212及214指示之Hp(zWp))以及以代號202及204指示之對應的合成濾波器Fp(z)。由於對階數p的調變,所以負頻率濾波器214仍然被移到正頻率區。陰影重疊區221仍然示出一主要頻疊項之能量,且通常將無法抵消,因而導致顯著的頻疊。為了抵消頻疊,該項應是自第2(b)圖所示的濾波器Hp-1(zWp)213與Fp-1(z)201的交插而得到的頻疊之極性相反項(亦即,陰影區220之極性相反的陰影區)。在增益不改變的一餘弦調變式濾波器組中,這些主要頻疊項通常將完全地相互抵消。然而,在該例子中,分析(或合成)濾波器p之增益是零,濾波器p-1引起之頻疊在輸出信號中將保持不被抵消。負頻率範圍中也 將發生同樣強烈的頻疊殘餘。
於使用複指數調變式濾波器組時,複指數調變只導致正頻率濾波器。因此,主要頻疊項消失了,亦即,被調變的分析濾波器Hp(zWp)與其對應的合成濾波器Fp(z)之間並無顯著的重疊,且於使用此種濾波器組系統作為等化器時,可顯著地減少頻疊。所產生的頻疊只取決於對剩餘頻疊項之抑制程度。
因此,縱然在使用複指數調變式濾波器組時,雖然已在此種濾波器組中消除了主要頻疊項,但是設計一種對頻疊增益項作最大抑制的原型濾波器仍然是相當重要的。縱然剩餘頻疊項比主要頻疊項較不顯著,這些剩餘頻疊項仍然將產生會對被處理的信號造成假像之頻疊。因此,最好是可將一複合目標函數最小化,而完成對此種原型濾波器之設計。為達到此一目的,可使用各種最佳化演算法。一些例子是諸如線性規劃(linear programming)法、簡捷法(Downhill Simplex Method)或基於無限制梯度的方法、或其他非線性最佳化演算法。在一實施例中,選擇原型濾波器的一起始解。使用複合目標函數時,決定可提供該複合目標函數的最高梯度之用來修改原型濾波器係數之一方向。然後,使用某一步長(step length)修改該等濾波器係數,且重複該迭代程序,直到得到該複合目標函數之一最小值為止。若要得知與此種最佳化演算法有關之進一步細節,請參閱W.H.Press、S.T.Teukolsky、W.T.Vetterling、B.P.所著的“Numeric Recipesin C,The Artof Scientific Computing,Second Edition”(Cambridge University Press,NY,1992),本發明特此引用該資料以供參照。
對於原型濾波器的改良式頻疊項最小化(IATM)而言,可以下式表示一較佳的目標函數:
e tot (α)=α e t +(1-α)e a , (30)
其中總誤差etot(α)是轉換函數誤差et及頻疊誤差ea之加權總和。可將在單位圓(亦即,對z=e而言)上估算的方程式(23)的右手邊(RHS)之第一項用來提供對以下式表示的該轉換函數的誤差能量et之一量測:
Figure 110100299-A0101-12-0029-51
其中P(ω)是用來界定通帶及截止帶(stop band)範圍的一對稱實數值函數,且D是總系統延遲。換言之,P(ω)描述了所需之轉換函數。在最一般性之情形中,該轉換函數包含係為頻率ω的一函數之振幅。對於一實數值系統而言,方程式(31)簡化為下式:
Figure 110100299-A0101-12-0029-52
可將該目標函數P(ω)及該目標延遲D選擇為該最佳化程序之輸入參數。可將表達式P(ω)e-jωD稱為目標轉換函數。
可估算單位圓上的方程式(23)的右手邊(RHS)的該 等頻疊項(亦即,方程式(23)之第二項)之總和,而以下式計算總頻疊ea的能量之量測:
Figure 110100299-A0101-12-0030-53
對於實數值系統而言,上式被轉換為下式:
Figure 110100299-A0101-12-0030-54
總體而言,用來決定一原型濾波器p0(n)的一最佳化程序可基於將方程式(30)的誤差之最小化。可將參數α用來分配對轉換函數與對原型濾波器頻疊的敏感性間之強調。當朝向1而增加該參數α時,將更為強調轉換函數誤差et,而當朝向0而減少該參數α時,將更為強調頻疊誤差ea。可將該等參數P(ω)及D用來設定該原型濾波器p0(n)之目標轉換函數,亦即,用來界定通帶及截止帶特性以及用來界定總體系統延遲。
根據一例子,可將一些濾波器組通道k設定為零,例如,將上半部的濾波器組通道設定為零增益。因此,該濾波器組被觸發成產生大量的頻疊。隨後將以最佳化程序將該頻疊最小化。換言之,藉由將某些濾波器組通道設定為零,而將引起頻疊,以便產生可在最佳化程序期間被最小化之一頻疊誤差ea。此外,可將一些濾波器組通道設定為零,而減少該最佳化程序的計算複雜度。
根據一例子,係針對可比複數值原型濾波器更適於直 接最佳化之一實數值(亦即,一餘弦調變式)濾波器組而將一原型濾波器最佳化。這是因為實數值處理對遠處頻疊衰減的優先程度高於複數值處理。然而,當以前文概述之方式觸發頻疊時,此種情形中之被引發的頻疊之主要部分通常將源自於載有主要頻疊項之該等項。因此,該最佳化演算法可將資源耗用在原本不存在於所產生的複指數調變式系統中之主要頻疊的最小化。為了減輕此一問題,可針對部分複數系統執行該最佳化;可使用實數值濾波器處理對沒有主要頻疊之頻疊項執行最佳化。另一方面,將針對複數值濾波器處理而修改一實數值系統中將載有主要頻疊項之頻疊項。利用此種部分複數最佳化,可得到執行使用實數值處理的處理之效益,且同時仍然將用於複指數調變式濾波器組系統之原型濾波器最佳化。
在正好將上半部的濾波器組通道設定為零之一最佳化中,自複數值濾波器計算出之唯一頻疊項是方程式(33)之1=M/2項。在該例子中,可將方程式(31)之函數P(ω)選擇為範圍自-π/2+ε至π/2-ε之一單位振幅常數(其中ε是π/2之一分數),以便涵蓋構成通帶的頻率範圍。在該通帶之外,可將該函數P(ω)界定為零,或保留不界定。在後一種情形中,只自-π/2+ε至π/2-ε之間估算方程式(31)所示的該轉換函數之誤差能量。可替代地且較佳地自-π至π而在P(ω)係為常數之情形下界對所有通道k=0,...,M-1計算通帶誤差et,同時仍然以如前文所述的被設定為零之複數個通道計算頻疊。
該最佳化程序通常是一迭代程序,其中在已知在某一迭代步驟中之原型濾波器係數p0(n)(n=0,...,N-1)、目標延遲D、通道之數目M、被設定為零的低帶通道之數目loCut、被設定為零的高帶通道之數目hiCut、以及加權因數α之情形下,針對該迭代步驟而計算目標函數之一值。使用半複數運算時,該迭代程序包含下列步驟:
1.為了得到該通帶誤差et,使用下式而以係為一常數之P(ω)估算方程式(32):
Figure 110100299-A0101-12-0032-55
其中Hk(e)及Fk(e)分別是在該迭代步驟中利用方程式(13)至(15)而自該等原型濾波器係數產生的分析及合成濾波器hk(n)及fk(n)之DFT轉換。
2.為了得到並未受到顯著頻疊的頻疊項之頻疊誤差ea,估算下式:
Figure 110100299-A0101-12-0032-56
其中係以下式計算Al(e):
Figure 110100299-A0101-12-0032-57
且Hk(e)及Fk(e)是利用方程式(13)至(15)而產生的 分析及合成濾波器hk(n)及fk(n)之DFT轉換(亦即,在分析及合成濾波器hk(n)及fk(n)的單位圓上估算之z轉換)。
3.針對受到顯著頻疊的該等項而估算下式:
Figure 110100299-A0101-12-0033-58
其中方程式(24)提供
Figure 110100299-A0101-12-0033-81
(e),其中Al(e)係如同方程式(37),且其中Hk(e)及Fk(e)是來自方程式(19)及(20)的hk(n)及fk(n)之DFT轉換。
4.隨後以下式將該誤差加權:
e tot (α)=αe t +(1-α)(e aReal +e aCplx ). (39)
使用前文中述及的任何非線性最佳化演算法,而以修改原型濾波器係數之方式減少總誤差,直到得到一最佳組的係數為止。舉例而言,在某一迭代步驟中,為該等原型濾波器係數決定誤差函數etot的最大梯度之方向。使用某一步階大小(step size)而沿著該最大梯度之方向修改該等原型濾波器係數。將該等被修改之原型濾波器係數用來作為後續迭代步驟之起始點。重複該程序,直到已將該最佳化程序收斂到該誤差函數etot的最小值為止。
第3圖中以一流程圖300之方式示出該最佳化程序之一實施例。自一參數決定步驟301中,界定該最佳化程序之參數,亦即,尤其界定包含目標延遲D之目標轉換函 數、目標濾波器組之通道數目M、原型濾波器係數之數目N、目標誤差函數之加權參數α、以及頻疊產生之參數(亦即,loCut及(或)hiCut)。在一初始化步驟302中,選擇該原型濾波器之第一組係數。
在通帶誤差決定單元303中,使用該原型濾波器的該特定組之係數而決定通帶誤差項et。可配合方程式(35)以及(13)至(15)而使用方程式(32)以執行該步驟。在實數值頻疊誤差決定單元304中,可配合方程式(13)至(15)使用方程式(36)及(37)而決定頻疊誤差項ea之第一部分eaReal。此外,在複數值頻疊誤差決定單元305中,可配合方程式(19)及(20)使用方程式(38)而決定頻疊誤差項ea之第二部分eaCplx。因此,可使用方程式(39)而自該等單元303、304、及305的結果決定該目標函數etot
非線性最佳化單元306使用諸如線性規劃等的最佳化方法,以便減少該目標函數的值。舉例而言,可以與對原型濾波器係數的修改有關之方式決定該目標函數的一可能最大梯度,而執行該步驟。換言之,可決定將導致該目標函數的一可能最大減少的對該等原型濾波器係數之那些修改。
如果在單元306中決定的該梯度仍然在預定界限之內,則決定單元307決定已到達了該目標函數的最小化,且該最佳化程序終止於步驟308。另一方面,如果該梯度超過了該預定值,則在更新單元309中更新該等原型濾波器係數。可以該梯度提供的方向上之一預定步階修改該等 係數,而執行對該等係數之更新。最後,將該等被更新的原型濾波器係數重新插入作為該通帶誤差決定單元303之輸入,以便進行該最佳化程序的另一迭代。
總體而言,可陳述為:可將上述之誤差函數及一適當的最佳化演算法用來決定針對原型濾波器的完美重建程度(亦即,針對低頻疊結合低相位及(或)振幅失真、原型濾波器對因次頻帶修改而發生的頻疊之適應性、原型濾波器的系統延遲、及(或)原型濾波器的轉換函數)而最佳化之原型濾波器。該設計方法提供了為了得到上述該等濾波器特性的一最佳組合而可選擇的尤其是加權參數α、目標延遲D、目標轉換函數P(ω)、濾波器長度N、濾波器組通道數目M、以及頻疊觸發參數loCut、hiCut之一些參數。此外,可將某些數目的次頻帶通道之被設定為零以及部分複數處理用來減少該最佳化程序之總體複雜度。因此,可決定具有接近完美重建特性、對頻疊的低敏感性、及低系統延遲之非對稱原型濾波器,以供用於複指數調變式濾波器組。請注意,已在複指數調變式濾波器組之環境下概述了上述之原型濾波器決定體系。如果使用諸如餘弦調變式或正弦調變式濾波器組設計方法等的其他濾波器組設計方法,則可使用該各別濾波器組設計方法之設計方程式以產生分析及合成濾波器hk(n)及fk(n),而調整該最佳化程序。舉例而言,在餘弦調變式濾波器組之環境中,可使用方程式(13)至(15)。
在下文中,將說明一64通道低延遲濾波器組之一詳 細例子。使用所提出的上述最佳化方法,而將概述一頻疊增益項被最佳化的低延遲64通道濾波器組(M=64)之一詳細例子。在該例子中,使用了部分複數最佳化方法,且於原型濾波器最佳化期間已將最高的40個通道設定為零,亦即,hiCut=0,而loCut參數保持未被使用。因此,使用實數值濾波器計算除了
Figure 110100299-A0101-12-0036-82
(其中l=24,40)之外的所有頻疊增益項。將總系統延遲選擇為D=319,且原型濾波器長度是N=640。第4(a)圖提供了所產生的原型濾波器之一時域圖,且第4(b)圖中示出該原型濾波器之頻率響應。該濾波器組提供了-72分貝的通帶(振幅及相位)重建誤差。當並未對次頻帶樣本執行任何修改時,自一線性相位的相位偏差小於±0.02°,且頻疊抑制是76分貝。表1中示出實際的濾波器係數。請注意,係以與取決於該原型濾波器的絕對尺度的本文件中之其他方程式之方式,而以因數M=64設定該等係數之尺度。
雖然上文中對濾波器組的設計之說明係基於一標準濾波器組符號,但是所設計的濾波器組之例子可在諸如可對數位信號處理器執行更有效率的操作之濾波器組實施例等的其他濾波器組描述或符號中操作。
在一例子中,可以下文所述之方式說明使用被最佳化的原型濾波器將時域信號濾波之步驟:
‧為了以一種有效率之方式操作該濾波器組,首先以多相位表示法配置原型濾波器(亦即,表1之p0(n)),其中該等多相位濾波器係數中之每隔一個 的多相位濾波器係數是否定的,且所有的係數是隨著時間而轉變的,如下式所示:
Figure 110100299-A0101-12-0037-59
‧分析階段開始時,以時域信號x(n)施加到濾波器之多相位表示法,以便產生長度128之一向量x1(n),如下式所示:
Figure 110100299-A0101-12-0037-60
‧然後將x1(n)乘以一調變矩陣,如下式所示:
Figure 110100299-A0101-12-0037-61
其中vk(n),k=0...63,構成次頻帶信號。因而在次頻帶樣本中提供了時間索引n。
‧然後可根據某些所需的可能為隨時間而變化且為複數值的等化曲線gk(n)而修改該等複數值次頻帶信號,如下式所示:
Figure 110100299-A0101-12-0037-62
‧以對該等被修改的次頻帶信號之一解調步驟開始合成階段,如下式所示:
Figure 110100299-A0101-12-0037-63
請注意,可利用一些使用快速傅立葉轉換(Fast Fourier Transform;簡稱FFT)核心之快速演算法而以一種在計算上非常有效率之方式完成方程式(42)及(44)之調 變步驟。
‧以該原型濾波器之多相位表示法將該等被解調之樣本濾波,並根據下式而將該等被濾波之樣本累積到輸出時域信號
Figure 110100299-A0101-12-0038-83
(n):
Figure 110100299-A0101-12-0038-64
其中於開始時,
Figure 110100299-A0101-12-0038-84
(n)對所有n被設定為0。
請注意,浮點及定點實施例都可將表1提供的該等係數之數值準確度改變為更適於處理之數值準確度。在不限制範圍之情形下,可將該等係數捨入、截斷、及(或)縮放至整數或其他表示法(尤指適於將對濾波器組進行操作的硬體及(或)軟體平台的可用資源之表示法),而將該等數值量化至一較低的數值準確度。
此外,上述的例子概述了時域輸出信號具有與輸入信號相同的取樣頻率之操作。其他實施例可分別使用不同大小(亦即,不同通道數目)的分析及合成濾波器而將該等時域信號重新取樣。然而,該等濾波器組應基於相同的濾波器組,且係經由降取或內插將原始的原型濾波器重新取樣,而得到該等濾波器組。舉例而言,將該等係數p0(n)重新取樣而得到用於32通道濾波器組之一原型濾波器,如下式所示:
Figure 110100299-A0101-12-0038-66
,0
Figure 110100299-A0101-12-0038-85
i<320.
新原型濾波器的長度因而是320,且延遲是
Figure 110100299-A0101-12-0039-67
,其中算子
Figure 110100299-A0101-12-0039-86
送回其引數的整數部分。
Figure 110100299-A0101-12-0039-3
Figure 110100299-A0101-12-0040-4
Figure 110100299-A0101-12-0041-5
Figure 110100299-A0101-12-0042-6
在下文中,將概述實際實施例的一些不同觀點。使用標準PC或數位信號處理器(DSP)時,對低延遲複指數調變式濾波器組之即時操作是可行的。也可將該濾波器組硬編碼(hard-coded)在一客製晶片中。第5(a)圖示出一 複指數調變式濾波器組系統的分析部分的一有效實施例之結構。先將類比輸入信號傳送到一類比至數位轉換器501。該數位時域信號被傳送到存放2M個樣本且一次移位M個樣本之一移位暫存器502。然後經由原型濾波器503之多相位係數將來自該移位暫存器之信號濾波。該等被濾波的信號然後在合併器504中被合併,且被第四型離散餘弦轉換器505及第四型離散正弦轉換器506平行地轉換。來自該等餘弦及正弦轉換器之輸出分別構成次頻帶樣本之實數及虛數部分。根據現有的頻譜包絡線調整器507之設定而修改該等次頻帶樣本之增益。
第5(b)圖示出一低延遲複指數調變式系統的合成部分之一有效實施例。先將該等次頻帶樣本乘以複數值旋轉因子(亦即,與複數值通道相依之常數)511,且以一第四型離散餘弦轉換器512將實數部分調變,並以一第四型離散正弦轉換器513將虛數部分調變。該等轉換器之輸出在合併器514中被合併,且經由原型濾波器515之多相位組件而被傳送。自移位暫存器516得到時域輸出信號。最後,該時域輸出信號在一數位至類比轉換器517中被轉換為一類比波形。
雖然上文所述之實施例使用第四型離散餘弦及正弦轉換,但是使用第二型或第三型離散餘弦轉換核心之實施例也是同樣可行的(使用基於第二型或第三型離散正弦轉換之實施例也是如此)。然而,用於複指數調變式濾波器組的在計算上最有效率之實施例使用純快速傅立葉轉換 (FFT)核心。使用直接矩陣-向量乘法之實施例也是可行的,但是在效率上較差。
總結而言,本文件說明了一種用於分析/合成濾波器組的原型濾波器之設計方法。該等原型濾波器以及所產生的分析/合成濾波器組之所需特性是接近完美重建、低延遲、對頻疊之低敏感性、以及最小的振幅/相位失真。提出了可在一最佳化演算法中被用來決定該等原型濾波器的適當的係數之一誤差函數。該誤差函數包含可被調整成修改對該等所需特性間之強調程度的一組參數。最好是使用非對稱原型濾波器。此外,說明了一種提供所需濾波器特性(亦即,接近完美重建、低延遲、對頻疊之高適應性、以及最小的相位/振幅失真)的良好妥協之原型濾波器。
雖然本說明書中已說明了一些特定實施例及應用,但是對此項技術具有一般知識者應可了解:在不脫離本說明書中述及的且在申請專利範圍中請求的本發明之範圍下,對本說明書中述及的該等實施例及應用作出許多變化是可行的。我們應可了解:雖然已示出且說明了本發明的某些形式,但是本發明將不限於所說明的及示出的特定實施例或所說明的特定方法。
可將本文件述及的濾波器設計方法及系統以及濾波器組實施為軟體、韌體、及(或)硬體。某些組件可諸如被實施為在數位信號處理器或微處理器上運行之軟體。其他的組件可諸如被實施為硬體及(或)特定應用積體電路。可將所述及的方法及系統中遇到的信號儲存在諸如隨機存 取記憶體或光學儲存媒體等的媒體。可經由諸如無線電網路、衛星網路、無線網路、或諸如網際網路之有線網路等的網路而傳輸該等信號。利用本文件所述的濾波器組之典型裝置是將音頻信號解碼之機上盒(set-top box)或其他用戶終端設備(customer premise equipment)。在編碼端上,可將該等濾波器組用於諸如視訊頭端(headend)系統中之廣播站。

Claims (11)

  1. 一種用以濾波與處理音頻信號的信號處理裝置,該信號處理裝置包含:分析濾波器組,接收實數值時域輸入音頻樣本及產生複數值次頻帶樣本;高頻重建器或參數立體聲處理器,產生修改複數值次頻帶樣本;以及合成濾波器組,接收該等修改複數值次頻帶樣本與產生時域輸出音頻樣本,其中,該分析濾波器組包含分析濾波器(hk(n))且該分析濾波器(hk(n))係依據下式原型濾波器(p0(n))之複指數調變版本:
    Figure 110100299-A0305-02-0050-1
    ,0
    Figure 110100299-A0305-02-0050-3
    n<N,0
    Figure 110100299-A0305-02-0050-4
    k<M 其中,M為通道數量,該原型濾波器(p0(n))具有長度N,且該分析濾波器組與合成濾波器組具有D樣本之系統延遲,其中,該信號處理裝置至少一部份係藉由一或更多硬體元件被執行。
  2. 如申請專利範圍第1項之信號處理裝置,其中該原型濾波器(p0(n))為對稱低通原型濾波器或非對稱低通原型濾波器。
  3. 如申請專利範圍第1項之信號處理裝置, 其中該分析濾波器組為可延伸虛擬正交鏡像濾波器(QMF)組。
  4. 如申請專利範圍第1項之信號處理裝置,其中該原型濾波器(p0(n))之階數等同該系統延遲D。
  5. 如申請專利範圍第1項之信號處理裝置,其中該高頻重建器實施頻帶複製(SBR)。
  6. 如申請專利範圍第1項之信號處理裝置,其中該數量之值被選擇以降低該裝置之執行的複雜度。
  7. 如申請專利範圍第1項之信號處理裝置,其中該一或更多硬體元件包含數位信號處理器、微處理器、或記憶體。
  8. 如申請專利範圍第1項之信號處理裝置,其中該分析濾波器組中的該通道數量不同於該合成濾波器組中的通道數量。
  9. 如申請專利範圍第8項之信號處理裝置,其中該分析濾波器組中的該通道數量為32,而該合成濾波器組中的該通道數量為64。
  10. 一種由用以濾波音頻信號的信號處理裝置實施之方法,該方法包含:以分析濾波器組濾波實數值時域輸入音頻樣本,以產生複數值次頻帶樣本;經由高頻重建程序或參數立體聲程序而產生修改複數值次頻帶樣本;以合成濾波器組濾波該些修改複數值次頻帶樣本,以 產生時域輸出音頻樣本,其中,該分析濾波器組包含分析濾波器(hk(n))且該分析濾波器(hk(n))係依據下式原型濾波器(p0(n))之複指數調變版本:
    Figure 110100299-A0305-02-0052-2
    ,0
    Figure 110100299-A0305-02-0052-5
    n<N,0
    Figure 110100299-A0305-02-0052-6
    k<M 其中,M為通道數量,該原型濾波器(p0(n))具有長度N,且該分析濾波器組與合成濾波器組具有D樣本之系統延遲,其中,D係小於N,其中,該信號處理裝置包含一或更多硬體元件。
  11. 一種非暫態電腦可讀取媒體,包含當由處理器實施如請求項10之該方法時的指令。
TW110100299A 2009-02-18 2010-02-02 用於高頻重建或參數立體聲之複指數調變濾波器組 TWI788752B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0900217-1 2009-02-18
SE0900217 2009-02-18
US25710509P 2009-11-02 2009-11-02
US61/257,105 2009-11-02

Publications (2)

Publication Number Publication Date
TW202119758A TW202119758A (zh) 2021-05-16
TWI788752B true TWI788752B (zh) 2023-01-01

Family

ID=67688670

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110100299A TWI788752B (zh) 2009-02-18 2010-02-02 用於高頻重建或參數立體聲之複指數調變濾波器組
TW108109837A TWI716833B (zh) 2009-02-18 2010-02-02 用於高頻重建或參數立體聲之複指數調變濾波器組

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108109837A TWI716833B (zh) 2009-02-18 2010-02-02 用於高頻重建或參數立體聲之複指數調變濾波器組

Country Status (6)

Country Link
KR (4) KR102210144B1 (zh)
BR (6) BR122019022312B1 (zh)
ES (3) ES2748579T3 (zh)
HK (2) HK1243561A1 (zh)
HU (3) HUE045955T2 (zh)
TW (2) TWI788752B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202329625A (zh) * 2021-11-30 2023-07-16 瑞典商都比國際公司 用於設計過取樣低延遲濾波組之方法及裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023116A1 (en) * 2000-03-29 2002-02-21 Atsushi Kikuchi Signal processing device and signal processing method
US6680972B1 (en) * 1997-06-10 2004-01-20 Coding Technologies Sweden Ab Source coding enhancement using spectral-band replication
US20040117177A1 (en) * 2002-09-18 2004-06-17 Kristofer Kjorling Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks
EP1374399B1 (en) * 2001-04-02 2005-12-07 Coding Technologies AB Aliasing reduction using complex-exponential modulated filterbanks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442581B1 (en) * 1999-09-21 2002-08-27 Creative Technologies Ltd. Lattice structure for IIR and FIR filters with automatic normalization
CA2354755A1 (en) * 2001-08-07 2003-02-07 Dspfactory Ltd. Sound intelligibilty enhancement using a psychoacoustic model and an oversampled filterbank
US7447631B2 (en) * 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680972B1 (en) * 1997-06-10 2004-01-20 Coding Technologies Sweden Ab Source coding enhancement using spectral-band replication
US20020023116A1 (en) * 2000-03-29 2002-02-21 Atsushi Kikuchi Signal processing device and signal processing method
EP1374399B1 (en) * 2001-04-02 2005-12-07 Coding Technologies AB Aliasing reduction using complex-exponential modulated filterbanks
US20040117177A1 (en) * 2002-09-18 2004-06-17 Kristofer Kjorling Method for reduction of aliasing introduced by spectral envelope adjustment in real-valued filterbanks

Also Published As

Publication number Publication date
BR122019023527B1 (pt) 2021-04-20
KR102412706B1 (ko) 2022-06-27
KR20210104931A (ko) 2021-08-25
ES2758249T3 (es) 2020-05-04
KR20190099094A (ko) 2019-08-23
HUE045955T2 (hu) 2020-01-28
BR122020017733B1 (pt) 2021-01-26
KR20200007091A (ko) 2020-01-21
HUE046532T2 (hu) 2020-03-30
KR102292319B1 (ko) 2021-08-24
BR122016027555B1 (pt) 2021-04-20
BR122016027555A2 (pt) 2019-08-27
KR20210012054A (ko) 2021-02-02
HUE046719T2 (hu) 2020-03-30
BR122016027554B1 (pt) 2021-04-20
KR102210144B1 (ko) 2021-02-01
ES2751087T3 (es) 2020-03-30
HK1244112A1 (zh) 2018-07-27
TW201926893A (zh) 2019-07-01
KR102068464B1 (ko) 2020-01-22
ES2748579T3 (es) 2020-03-17
BR122019023520B1 (pt) 2021-04-27
HK1243561A1 (zh) 2018-07-13
BR122019022312B1 (pt) 2021-04-27
BR122016027554A2 (pt) 2019-08-27
TW202119758A (zh) 2021-05-16
TWI716833B (zh) 2021-01-21

Similar Documents

Publication Publication Date Title
TWI613887B (zh) 用於高頻重建或參數立體聲之複指數調變濾波器組
TWI788752B (zh) 用於高頻重建或參數立體聲之複指數調變濾波器組
TWI854418B (zh) 用於高頻重建或參數立體聲之複指數調變濾波器組