MX2014006871A - Proceso para recuperacion de acidos monocarboxilicos alifaticos a partir de residuos de destilacion. - Google Patents

Proceso para recuperacion de acidos monocarboxilicos alifaticos a partir de residuos de destilacion.

Info

Publication number
MX2014006871A
MX2014006871A MX2014006871A MX2014006871A MX2014006871A MX 2014006871 A MX2014006871 A MX 2014006871A MX 2014006871 A MX2014006871 A MX 2014006871A MX 2014006871 A MX2014006871 A MX 2014006871A MX 2014006871 A MX2014006871 A MX 2014006871A
Authority
MX
Mexico
Prior art keywords
acid
process according
further characterized
branching
distillation
Prior art date
Application number
MX2014006871A
Other languages
English (en)
Inventor
Jörg Arnold
Thomas Müller
Matthias Kramer
Guido Frey
Wolfgang Höfs
Original Assignee
Oxea Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxea Gmbh filed Critical Oxea Gmbh
Publication of MX2014006871A publication Critical patent/MX2014006871A/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención se refiere a un proceso para recuperación de ácidos monocarboxílicos alifáticos que tienen de 4 a 11 átomos de carbono a partir del residuo de destilación obtenido en la oxidación del aldehído correspondiente por medio de oxígeno o mezclas de gas que contienen oxígeno en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo para formar el ácido monocarboxílico correspondiente y destilación subsecuente, en donde el residuo de destilación se hace reaccionar con un ácido acuoso en un reactor del tubo.

Description

PROCESO PARA RECUPERACIÓN DE ÁCIDOS MONOCARBOXÍLICOS ALIFÁTICOS A PARTIR DE RESIDUOS DE DESTILACIÓN MEMORIA DESCRIPTIVA La presente invención se relaciona con un proceso para la recuperación de ácidos monocarboxílicos alifáticos a partir de residuos de destilación mediante tratamiento de estos residuos con un ácido acuoso en un reactor del tubo.
Los aldehidos son los materiales iniciales habituales para obtener ácidos carboxílicos. La posición de preferencia para este campo de uso es gracias a su disponibilidad en una gran variedad y su facilidad de conversión del grupo carbonilo en el grupo carboxilo por oxidación. En procesos llevados a cabo industrialmente, la conversión de aldehidos en ácidos carboxílicos se lleva a cabo ya sea en presencia o en ausencia de catalizadores o aditivos. Los posibles catalizadores son predominantemente sales de metales de transición, en particular sales de cobalto y de manganeso y también de cromo, hierro, cobre, níquel, plata y vanadio. La formación de ácido carboxílico a partir de aldehidos con frecuencia se asocia con reacciones secundarias y reacciones de degradación incluso cuando se adhieren a las condiciones de temperatura óptima. Esto se aplica por igual para reacciones en presencia y ausencia de catalizadores, en estos casos, la selectividad de la reacción se puede mejorar considerablemente mediante el uso de sales de metal alcalino o sales de metal alcalinotérreo de ácido débiles y aditivos (Ullmanns Encyclopádie der technischen Chemie, cuarta edición 1975, volumen 9, página 139).
Particularmente en la oxidación de aldehidos alifático ramificados con a-alquilo en el cual el átomo de carbono adyacente al carbono carbonilo presenta la rama alquilo, la técnica anterior recomienda la adición de cantidades pequeñas de carboxilatos de metal alcalino para mejorar la selectividad. Así, por ejemplo, se sabe a partir del documento DE 950 007 que la oxidación de aldehidos ramificados en la posición a requiere la adición de cantidades pequeñas de sales de metal alcalino de ácidos carboxílicos con el fin de obtener el ácido carboxílico deseado con un alto rendimiento y también una alta pureza. Se conoce a partir del documento de E.U.A. 5,504,229 que el residuo de destilación que contiene metal alcalino obtenido en la destilación de ácidos carboxílicos a-alquil ramificados se pueden reutilizar para la oxidación de aldehido. También se ha establecido que el ácido carboxílico a-alquil ramificado se puede liberar del residuo de destilación por acidificación. No obstante, el ácido carboxílico purificado subsecuentemente presenta solo un número de color moderado.
De acuerdo con las enseñanzas de la solicitud de patente Japonesa publicada 53-105413, los aldehidos a-ramificados alifáticos se oxidan por medio de oxígeno en presencia de compuestos de litio o compuestos de metal alcalinotérreo los cuales se utilizan en cantidades de 0.01 a 10% en peso, en base en el sistema de reacción total, con el fin de preparar ácidos carboxílicos a-ramificados alifáticos. El proceso de oxidación de baja temperatura descrito en la solicitud de patente Francesa 2 769 624 también se lleva a cabo en presencia de compuestos de metal alcalino o compuestos de metal alcalinotérreo como aditivos. El documento DE-C1-100 10 771 describe que tanto el uso único de sales de metal alcalino como el uso de estos mezclados con metales de transición en la oxidación de 2-metilbutanal.
En la oxidación de aldehidos alifáticos de cadena lineal o ramificada que no presentan una rama alquilo en la posición a, también, el uso de una mezcla de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo con metales de transición ha sido descrita, el documento DE 10 2004 055 252 A1 describe la oxidación de n-pentanal o de isononanal en base en 3,5,5-trimetilhexanal en presencia del carboxilato de potasio correspondiente y hierro. El ácido crudo obtenido después de oxidación se separa por destilación y el residuo de destilación que contiene metal contenido puede ser reutilizado en la oxidación de aldehido. De acuerdo con las enseñanzas del documento DE 10 2006 022 168 A1 , una mezcla de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo y metales de transición se prepara como producto de reacción en una primera reacción de oxidación de aldehido y este producto de reacción se reutiliza para la oxidación subsecuente de los ácidos monocarboxílicos alifáticos de cadena lineal o ramificados en ß-alquilo.
Es habitual para el ácido carboxílico respectivo que en primer lugar se haga reaccionar en una reacción separada con una solución acuosa de un compuesto de metal alcalino o compuesto de metal alcalinotérreo, preferiblemente con un hidróxido de metal alcalino acuoso o una solución de hidróxido de metal alcalinotérreo, convertirlo en el carboxilato respectivo el cual se mezcla en el aldehido que se va a oxidar. Un hidróxido de metal alcalino acuoso o una solución de hidróxido de metal alcalinotérreo también se puede agregar a la mezcla de reacción de manera que la formación de los carboxilatos respectivos se produce durante la oxidación. Se ha encontrado que el uso de carboxilatos de potasio es particularmente útil. Después de que se completa la reacción de oxidación, el ácido crudo es trabajado por destilación lo que proporciona un residuo de destilación altamente viscoso que contiene carboxilato de metal alcalino o carboxilato de metal alcalinotérreo. Este residuo de destilación puede, en cierta medida, hacerse recircular en el proceso de oxidación. No obstante, conforme aumenta la cantidad que se hace recircular, disminuye la selectividad de la oxidación del aldehido y el residuo de destilación, a la postre, debe ser descargado del proceso.
No obstante, puesto que el residuo de destilación altamente viscoso contiene no solo sustancias con punto de ebullición alto sino una proporción predominante del ácido monocarboxílico alifático deseado, ya sea en forma de carboxilato o como un ácido monocarboxílico alifático libre entre mezclado físicamente, es deseable recuperar el ácido monocarboxílico alifático de una manera sencilla a partir de los residuos de destilación de ácido monocarboxílico y por lo tanto mejorar la productividad y por lo tanto la economía del proceso de oxidación. La cantidad del residuo de destilación altamente viscoso obtenido también debe disminuir con el fin de reducir el gasto de desperdicios.
La presente invención en consecuencia proporciona un proceso para recuperar ácidos monocarboxílicos alifáticos que tienen de 4 a 11 átomos de carbono a partir del residuo de destilación obtenido en la oxidación del aldehido correspondiente por medio de oxígeno o mezclas de gas que contienen oxígeno en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo para formar el ácido monocarboxílico correspondiente y la subsecuente destilación, caracterizado porque el residuo de destilación se pone en contacto con un ácido acuoso en un reactor del tubo y la mezcla de dos fases que fluye fuera del reactor del tubo se introduce en un recipiente de sedimentación en el cual la fase orgánica la que se separa tiene un pH de 4.5 o menos.
La mezcla de dos fases del residuo de destilación orgánico tratado y el ácido acuoso presente después de abandonar el reactor del tubo sorprendentemente se separa sin problemas en la fase orgánica líquida y la fase acuosa en un recipiente de sedimentación corriente abajo. La separación de fase se produce de manera espontánea pronunciada sin formación de una capa intermedia similar a espuma. Esta separación pronunciada de fases ventajosa no se esperaba puesto que, debido a las propiedades tensioactivas de los carboxilatos de metal alcalino o los carboxilatos de metal alcalinotérreo, se habría esperado formación de espuma al contacto con la fase acuosa. La separación de fases rápida y pronunciada en primer lugar genera un alto rendimiento del residuo de destilación orgánica y el posible ácido acuoso. Además, la contaminación de la fase acuosa con constituyentes orgánicos después de separación de fases permanece limitada y el contenido de metal alcalino o metal alcalinotérreo de la fase orgánica se puede reducir a un nivel aceptable.
Como material inicial, se hace uso del residuo que contiene metal alcalino o metal alcalinotérreo de la destilación de ácidos monocarboxílicos alifáticos que tienen de 4 a 11 átomos de carbono los cuales se preparan por oxidación de los aldehidos correspondientes por medio de oxígeno o mezclas de gas que contienen oxígeno en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo. Los carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo son los carboxilatos, por ejemplo de litio, sodio o potasio o de calcio o bario. La oxidación de aldehido preferiblemente se lleva a cabo en presencia del carboxilato de potasio correspondiente. En general, una solución que contiene carboxilato de metal alcalino o carboxilato de metal alcalinotérreo se prepara al neutralizar una solución acusa que contiene el compuesto de metal alcalino o compuesto de metal alcalinotérreo con un exceso del ácido carboxílico deseado y la solución se agrega al aldehido alifático que se va a oxidar. Los compuestos de metal alcalino o los compuestos de metal alcalinotérreo los cuales son adecuados para este propósito, en particular, son los hidróxidos, carbonatos o carbonates ácidos. No obstante, también es posible generar los carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo en la mezcla de reacción al agregar compuestos de metal alcalino o compuestos de metal alcalinotérreo los cuales se convierten bajo las condiciones de reacción en los carboxilatos a la mezcla de reacción. Por ejemplo, es posible utilizar hidróxidos, carbonatos, carbonatos ácidos u óxidos de metal alcalino o de metal alcalinotérreo. Se pueden agregar ya sea en forma sólida o como una solución acuosa.
Los contenidos de metal alcalino o metal alcalinotérreo del residuo de destilación que van a ser trabajados generalmente están en el intervalo de 3 a 15% en peso, preferiblemente de 5 a 10% en peso, en base en el residuo de destilación total. Además, del carboxilato unido apropiadamente, el residuo de destilación también contiene ácido monocarboxílico alifático libre en una cantidad la cual depende de las condiciones de destilación. La parte orgánica del residuo de destilación comprende, dependiendo de las condiciones de destilación, hasta 98% en peso del ácido monocarboxílico alifático respectivo en forma de ácido monocarboxílico alifático libre y el carboxilato correspondiente. El resto hasta 100% en la parte orgánica contiene predominantemente sustancias con punto de ebullición alto que contienen oxígeno. La composición indicada se puede considerar que es un valor de línea de guía y puede variar por medio de las condiciones de destilación, por ejemplo, el grado de espesamiento. No obstante, un grado excesivamente alto de concentración debe evitarse puesto que, de otra manera, el residuo de destilación que se va a trabajar tiene una viscosidad excesiva y ya no puede ser bombeado satisfactoriamente. Debido a la consistencia altamente viscosa, es aconsejable precalentar el residuo de destilación a una temperatura desde 30 hasta 90°C, preferiblemente desde 50 hasta 80°C antes de la introducción en el reactor del tubo.
El residuo de destilación que va a ser trabajado se pone en contacto con un ácido acuoso en el reactor del tubo. Aquí, las corrientes orgánica y acuosa se pueden introducir por separado pero simultáneamente en el reactor del tubo. Los dos líquidos preferiblemente se mezclan de antemano y se introducen como una mezcla de dos fases de fase orgánica y fase acuosa en el reactor del tubo. En una modalidad particularmente preferida, la mezcla de dos fases es transportada a través de un elemento de mezclado estático corriente arriba con el fin de intensificar el contacto entre las dos fases antes de entrar en el reactor del tubo. Estos elementos de mezclado están disponibles comercialmente y se ofrecen, por ejemplo, como mezcladores Sulzer o mezcladores Kenicks con líneas de producto específicas para el mezclado de líquidos que tienen viscosidades diferentes.
El residuo de destilación puede ser trabajado y el ácido acuoso puede ser introducido por separado o como una mezcla en el reactor del tubo. En el caso de adición separada, las fases orgánica y acuosa pueden fluir dentro del reactor del tubo ya sea con la corriente o a contracorriente. Un reactor del tubo adecuado es, por ejemplo, un tubo de flujo pequeño a una distribución deseada, por ejemplo vertical u horizontal del tubo de flujo o un tubo de flujo de serpentín sencillo. El reactor del tubo de igual manera puede contener elementos de empacado o piezas internas, por ejemplo anillos Raschig, de silla de montar, anillos Pall, hélices, deflectores o mezcladores estáticos o empacados de mezclador. El reactor preferiblemente es operado de manera continua.
Como ácido acuoso se hace uso de soluciones acuosas de ácidos inorgánicos las cuales tienen suficiente fuerza ácida con el fin de convertir los carboxilatos de metal alcalino o los carboxilatos de metal alcalinotérreo presentes en el residuo de destilación para ser trabajados a los ácidos monocarboxílicos alifáticos correspondientes. Los ácidos inorgánicos adecuados son, por ejemplo, ácido clorhídrico, ácido sulfúrico, ácido fosfórico o ácido nítrico los cuales se utilizan como solución acuosa que tiene un contenido de ácido de 1 a 20% en peso, preferiblemente de 5 a 10% en peso. Una fuerza de 5-10% acuosa en peso de solución de ácido sulfúrico se ha encontrado que es particularmente útil. El ácido acuoso se utiliza en una cantidad tal que de 1 a 20%, preferiblemente 10%, de exceso equivalente, en base en la cantidad de ácido requerido para completar la conversión está presente por equivalente de carboxilato de metal alcalino o carboxilato de metal alcalinotérreo. La conversión o liberación del ácido monocarboxílico alifático, debido a la alta viscosidad del residuo de destilación preferiblemente se lleva a cabo a una temperatura de 30 a 90°C, en particular de 50 a 80°C, bajo presión autógena o presión ligeramente superatmosférica, aunque no se descarta el uso de presiones mayores, por ejemplo de hasta 0.8 MPa.
Una velocidad de espacio V/Vh de los fondos de destilación que van a ser trabajados a través del reactor del tubo son de 0.1 a 10 h"1 y una velocidad de espacio correspondiente del ácido acuoso alimentado es de 0.5 a 25 h"1, en cada caso en base en el volumen del reactor y el tiempo, que se ha encontrado que es ventajoso cuando las dos corrientes se alimentan por separado pero simultáneamente en el reactor del tubo. Si los fondos de destilación y el ácido acuoso se mezclan de antemano, preferiblemente por medio de un elemento de mezclado estático localizado corriente arriba del reactor del tubo, la mezcla de dos fases heterogéneas se introduce en el reactor del tubo a una velocidad de espacio desde 0.5 hasta 35 h"\ en base en el volumen de reactor y el tiempo. La velocidad de espacio puede variar sobre un intervalo amplio o incluso a velocidades de espacio altos a través del reactor en el intervalo de 20 a 32 h"1, se observa liberación satisfactoria del ácido monocarboxílico alifático deseado y en consecuencia una reducción del contenido de metal alcalino o metal alcalinotérreo de la fase orgánica.
La mezcla de dos fases que fluye fuera del reactor del tubo se introduce en el recipiente de sedimentación en el cual la fase acuosa se separa espontáneamente de la fase orgánica. La separación de fases es pronunciada y sin formación de una capa intermedia similar a espuma. El pH determinado en la fase orgánica se correlaciona con el contenido residual de metal alcalino o metal alcalinotérreo y tiene 4.5 unidades de pH o menos. Dentro de este intervalo de pH un contenido suficientemente bajo de metal alcalino o de metal alcalinotérreo de menos de 1000 ppm en la fase orgánica se asegura. El pH de la fase orgánica debe estar por encima de 4.5, las condiciones de reacción, por ejemplo la cantidad y concentración de ácido utilizado y la velocidad espacio del ácido acuoso a través del reactor del tubo necesita hacerse variar de manera que la fase orgánica, después de separación de fases presenta un pH de 4.5 o menos. La correlación encontrada entre el pH y la fase orgánica y el contenido de metal alcalino o metal alcalinotérreo permite monitoreo simple del proceso de conversión puesto que los valores de pH pueden ser monitoreados de manera muy sencilla por medición incluso en el proceso que se está llevando a cabo. La fase orgánica superior consiste esencialmente del ácido monocarboxílico alifático el cual es liberado por la conversión y es trabajado adicionalmente en aparatos de destilación corriente abajo. Para evitar procesos de descomposición y la formación de componentes que impartan color en la purificación subsecuente por destilación, es aconsejable un contenido residual de sales de metal alcalino o sales de metal alcalinotérreo de menos de 1000 ppm.
La solución acuosa obtenida en el recipiente de sedimentación que contiene la sal de metal alcalino o la sal de metal alcalinotérreo del ácido inorgánico correspondiente y el ácido inorgánico agregado en exceso para la conversión. La fase acuosa, la cual tiene un pH en el intervalo de 0.2 a 1.8 es extraída del proceso como agua de desperdicio y puede ser extraída con un disolvente orgánico polar, por ejemplo con alcoholes, ésteres o éteres, para reducir el contenido de impurezas orgánicas. No obstante, también es posible recircular la fase acuosa eliminada por separación al reactor del tubo con adición de solución ácida fresca.
Los ácidos monocarboxílicos alifáticos que tienen de 4 a 11 átomos de carbono recuperados de los residuos de destilación por el proceso de la invención se obtienen por oxidación de los aldehidos de 4 a 11 átomos de carbono correspondientes por medio de oxígeno o de gases que contienen oxígeno. El origen de los aldehidos no se limita a procesos de producción particulares.
Debido a su disponibilidad fácil, los aldehidos obtenidos por medio de los procesos oxo, es decir, por reacción de olefinas de 3 a 10 átomos de carbono con monóxido de carbono e hidrógeno son los que se prefieren. En este contexto, no es crítico cual modalidad específica del proceso oxo sea utilizado para obtener los aldehidos, es decir, si la reacción ha sido catalizada, por ejemplo, por medio de cobalto o por medio de rodio, siempre que los metales se utilicen solos o junto con agentes formadores de complejo y si los catalizadores se disuelven homogéneamente en la mezcla de reacción o se conforman como una fase heterogénea separada. El proceso de la invención es adecuado para ácidos monocarboxílicos alifáticos de cadena lineal o ramificada.
El proceso de la invención es particularmente adecuado para recuperación de ácidos monocarboxílicos alifáticos ramificados a-alquilo que tienen de 4 a 11 átomos de carbono, puesto que la oxidación habitualmente se lleva a cabo en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo para mejorar la selectividad. En particular se pueden recuperar de los residuos de destilación ácido isobutírico, ácido 2-etilbutírico, ácido 2-metilbutírico, ácido 2-metilpentanoico, ácido 2-metilhexanoico, ácido 2-etilhexanoico, ácido 2-metiloctanoico, ácido 2-metilnonanoico y ácido 2-propil-heptanoico. No obstante, el proceso de la invención también se puede utilizar exitosamente para recuperar ácidos monocarboxílicos alifáticos de cadena lineal o ácidos monocarboxílicos alifáticos que tengan cualquier ramificación diferente de la ramificación a-alquilo en la medida en que la oxidación de aldehido se lleva a cabo en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo. Por ejemplo, el ácido n-butírico, ácido n-pentanoico, ácido n-hexanoico, ácido n-heptanoico, ácido n-octanoico, ácido n-nonanoico, ácido n-decanoico, ácido isopentanoico que tenga cualquier ramificación, ácido isohexanoico que tenga cualquier ramificación, ácido isoheptanoico que tenga cualquier ramificación, ácido isooctanoico que tenga cualquier ramificación, ácido isononanoico que tenga cualquier ramificación, ácido isodecanoico que tenga cualquier ramificación o ácido isoundecanoico que tenga cualquier ramificación se puede recuperar por el proceso de la invención. Como un ejemplo de ácido isononanoico que tenga cualquier ramificación, el ácido isononanoico que tiene el constituyente principal ácido 3,5,5-trimetilhexanoico con el número CAS 3302-10-1 , el aldehido correspondiente del cual se puede obtener por el proceso oxo utilizando diisobutileno como material inicial, se puede recuperar de manera particularmente ventajosa. Como el ácido isopentanoico que tenga cualquier ramificación se puede recuperar el ácido 3-metilbutírico. El proceso de la invención de igual manera se puede extender a la recuperación de ácidos monocarboxílicos alifáticos insaturados, por ejemplo ácidos monocarboxílicos alifáticos insaturados ramificados a-alquilo tales como ácido 2-etilbutenoico, ácido 2-metilpentenoico, ácido 2-etilhexenoico y ácido 2-propilheptenoico, aunque el tratamiento de residuos de destilación a partir de la preparación de estos tipos de ácidos monocarboxílicos tiende a permanecer limitada a casos especiales.
El aislamiento del ácido monocarboxílico alifático deseado a partir de los residuos de destilación que contienen metal alcalino o metal alcalinotérreo habilita la economía del proceso general para preparar ácidos monocarboxílicos alifáticos y sus rendimientos para que mejoren de manera significativa.
El proceso de la invención se ilustrará en lo siguiente con la ayuda del esquema en principio con respecto a la figura 1. No obstante, el proceso de la invención no se limita a la modalidad que se muestra en la figura.
El residuo que contiene metal alcalino o metal alcalinotérreo a partir de la destilación de los ácidos monocarboxílicos alifáticos, los cuales han sido calentados a 50-80°C, se suministra por medio de la línea (1) y una solución acuosa diluida de un ácido inorgánico se suministra por medio de la línea (2) y las dos están, después de ser combinadas en la línea (3), mezclados de manera intensa en el mezclador estático (4). La mezcla en dos fases subsecuentemente entra en el fondo del reactor del tubo (6) por medio de la línea (5). En la parte superior del reactor, la salida del reactor líquido se descarga por medio de la línea (7) y se introduce en un recipiente de sedimentación (8) en el cual la fase orgánica más ligera se separa de la fase acuosa más pesada. Los componentes gaseosos se descargan por medio de la línea (9). La fase orgánica sedimentada, la cual contiene el ácido monocarboxílico alifático deseado deja el recipiente de sedimentación (8) por medio de la línea (10) y es destilada para proporcionar un ácido puro en etapas de destilación subsecuentes (no mostradas en la figura 1). La solución acuosa obtenida en el recipiente de sedimentación (8) que contiene la sal de metal alcalino o sal de metal alcalinotérreo del ácido inorgánico agregado y es descargada por medio de la línea (11). Para reducir la proporción de material orgánico, la fase acuosa se puede extraer con un disolvente orgánico polar, por ejemplo, con un alcohol orgánico tal como 2-etilhexanol.
En una modalidad adicional, la solución acuosa se descarga por medio de la línea (11) y se puede hacer recircular por medio de la línea (11') y por medio de la línea (2') al proceso, opcionalmente después de remoción de la corriente secundaria por medio de la línea (12') y adición de ácido fresco por medio de la línea (13').
El proceso de la invención se ilustra a continuación con la ayuda de algunos ejemplos pero no se limita a las modalidades descritas.
EJEMPLOS Recuperación de ácido 2-etilhexanoico Un residuo de destilación que contiene potasio de la oxidación de 2-etilhexanal en presencia de 2-etilhexanoato de potasio para formar ácido 2-etilhexanoico con destilación subsecuente la cual tiene la siguiente composición (% en peso) determinada por cromatografía de gas, es la que se utiliza: El tratamiento del residuo que contiene potasio a partir de la preparación y destilación del ácido 2-etilhexanoico se lleva a cabo utilizando la instalación experimental que se muestra en principio en la figura 1. El residuo de destilación el cual ha sido calentado a 50°C se suministra por medio de la línea (1) y una fuerza 5% en peso de ácido sulfúrico acuoso el cual de igual manera ha sido tratado a 50°C se suministra por medio de la línea (2). Los dos líquidos se combinan en la línea (3) y se mezclan de manera intensa en el mezclador estático (4). El mezclador Sulzer modelo SMX DN4. La mezcla en dos fases es transportada por medio de la línea (5) a la parte inferior de una columna empacada vertical que tiene una longitud de 20 cm y un lecho de 250 mi de 2 mm por medio de hélices V2A. La mezcla en dos fases es extraída por medio de la línea (7) en la parte superior del reactor y se dirige al interior del separador de fases (8) en la cual se produce separación espontánea de fases con superficies de contacto de fases pronunciadas en los siguientes pocos segundos. El ácido 2-etilhexanoico crudo liberado se descarga por medio de la línea (10) y la fase acuosa inferior que contiene exceso de ácido sulfúrico y sulfato ácido de potasio/sulfato de potasio se descarga por medio de la línea (11) y los componentes gaseosos se descargan por medio de la línea (9).
El cuadro 1 a continuación muestra los resultados de diferentes ajustes de pH. Se puede observar aquí que, después de la separación de fases, existe una correlación entre el pH y el contenido e potasio en la fase orgánica de manera que el contenido de potasio en la fase orgánica se puede concluir a partir de una medición de pH simple de llevar a cabo. La medición de pH se lleva a cabo utilizando un medidor de pH modelo CG836 de Schott.
CUADRO 1 Reacción de los residuos de destilación a partir de la preparación de ácido 2-etilhexanoico con 5% de fuerza, de ácido sulfúrico acuoso en el reactor del tubo Como lo muestran los resultados de los experimentos 5 y 6, el pH en la fase orgánica puede ser menor de 4.5 con el fin de asegurar una separación suficientemente alta de potasio. El contenido de potasio se determina por titulación del 2-etilhexanoato de potasio con ácido clorhídrico y conversión a potasio con un límite de detección de 100 ppm. Si el pH de la fase acuosa se utiliza como una guía para el contenido de potasio en la fase orgánica, debe establecerse un pH de menos de 1.3.
Reutilización de la fase acuosa: Las condiciones experimentales del experimento 7 se modificaron al hacer recircular la solución ácida acuosa que se separa del separador de fases (8) por medio de las líneas (11') y (2') sin adición de ácido fresco al proceso de neutralización. Los resultados se muestran en el cuadro 2 a continuación.
CUADRO 2 Reutilización de la fase acuosa para la reacción de los residuos de destilación a partir de la preparación de ácido 2-etilhexanoico La reutilización en el experimento 7 (a) también demuestra que los datos de pH para la fase orgánica pueden ser utilizados para concluir que el contenido de potasio en la fase orgánica.
Variación de la velocidad de espacio a través del reactor: En los siguientes experimentos el volumen de la columna empacada se redujo, y de esta manera se incrementó la velocidad espacio a través de la misma. Una columna empacada que tiene una longitud de 40 cm y un diámetro de 10 mm que contiene hélices V2A de 2 mm como lecho que tiene una altura de llenado de 30 cm es lo que se utilizó.
CUADRO 3 Reacción de los residuos de destilación a partir de la preparación de ácido 2-etilhexanoico con fuerza de 5%. acido sulfúrico acuoso en el reactor del tubo con variación en la velocidad de espacio Los experimentos 9 a 11, también, demuestran que el pH en la fase orgánica permite que el contenido de potasio se concluya directamente. Si el pH en al fase orgánica se reduce lo suficiente, se obtiene remoción satisfactoria de potasio a partir de la fase orgánica incluso a una velocidad de espacio alta a través del reactor.
Recuperación de ácido 2-metilbutírico Se utilizó un residuo de destilación que contiene potasio de la oxidación de 2-metilbutanal en presencia de 2-metilbutanoato de potasio para formar ácido 2-metilbutírico con destilación subsecuente el cual tiene la siguiente composición (% en peso) determinado por cromatografía de gas: El tratamiento del residuo que contiene potasio a partir de la preparación y destilación de ácido 2-metilbutírico se llevó a cabo utilizando la instalación experimental que se muestra en principio en la figura 1. El residuo de destilación se suministra por medio de la línea (1) y ácido sulfúrico acuoso con una fuerza 5% en peso se suministró por medio la línea (2). Los dos líquidos se combinan en la línea 3 y se mezclan de manera intensa en el mezclador estático (4), mezclador Sulzer modelo SMX DN4. La mezcla en dos fases se transfiere por medio de la línea (5) al fondo de una columna empacada vertical que tiene una longitud de 40 cm y un diámetro de 10 mm y que contiene hélices V2A de 2 mm como lecho que tiene una altura de llenado de 30 cm. La mezcla en dos fases es extraída por medio de la línea (7) en la parte superior del reactor y se dirige al interior del separador de fases (8) en el cual se produce dentro de pocos segundos una separación espontánea de fases con superficies de contacto de fase pronunciada. El ácido 2-metilbutírico crudo liberado se descarga por medio de la línea (10) y la fase acuosa inferior que contiene ácido sulfúrico en exceso y sulfato ácido de potasio/sulfato de potasio se descarga por medio de la línea (11) y los componentes gaseosos se descargan por medio de la línea (9).
El cuadro 4 a continuación muestra los resultados de diferentes ajustes de pH. Se puede observar aquí, después de separación de fases, existe una correlación entre el pH y el contenido de potasio en la fase orgánica de manera que el contenido de potasio en la fase orgánica se puede concluir a partir de una medición de pH sencilla de llevar a cabo. La medición de pH se lleva a cabo utilizando el medidor de pH modelo CG836 de Schott.
CUADRO 4 Reacción de los residuos de destilación a partir de la preparación de ácido 2-metil butírico con ácido sulfúrico acuoso fuerza 5% en el reactor del tubo Como lo muestran los resultados de los experimentos 12 y 13, el pH en la fase orgánica debe ser menor de 4.0 con el fin de asegurar una eliminación suficientemente alta de potasio. El contenido de potasio se determina por titulación del 2-metilbutanoato de potasio con ácido clorhídrico y conversión a potasio con un límite de detección de 100 ppm. Si el pH de la fase acuosa se utiliza como una guía para el contenido de potasio en la fase orgánica, debe establecerse un pH menor de 1.6.
Reutilización de la fase acuosa: La condición experimental del experimento 14 se modifica al hacer recircular la solución ácida acuosa que se separa en el separador de fases (8) por medio de las líneas (11 ') y (2') sin adición de ácido fresco al proceso de neutralización. Los resultados se muestran en el cuadro 5 a continuación.
CUADRO 5 Reutilización de la fase acuosa para la reacción de los residuos de destilación a partir de la preparación de ácido 2-metilbutírico La reutilización en los experimentos 14(a) y 14(b), también, demuestra que los datos de pH para la fase orgánica se pueden utilizar para concluir el contenido de potasio en la fase orgánica.

Claims (16)

NOVEDAD DE LA INVENCION REIVINDICACIONES
1.- Un proceso para recuperación de ácidos monocarboxílicos alifáticos que tienen de 4 a 11 átomos de carbono a partir del residuo de destilación obtenido en la oxidación del aldehido correspondiente por medio de oxígeno o mezclas de gas que contienen oxígeno en presencia de carboxilatos de metal alcalino o carboxilatos de metal alcalinotérreo para formar el ácido monocarboxílico correspondiente y destilación subsecuente, en donde el residuo de destilación se hace reaccionar con un ácido acuoso en un reactor del tubo y la mezcla de dos fases que fluye fuera del reactor del tubo se introduce en un recipiente de sedimentación en el cual la fase orgánica que se separa tiene un pH de 4.5 o menos.
2.- El proceso de conformidad con la reivindicación 1 , caracterizado además porque el elemento de mezclado estático se instala corriente arriba del reactor del tubo.
3. - El proceso de conformidad con la reivindicación 1 ó 2, caracterizado además porque el reactor del tubo contiene elementos de empacado o componentes internos.
4. - El proceso de conformidad con una o más de las reivindicaciones 1 a 3, caracterizado además porque el residuo de destilación se precalienta a una temperatura de 30 a 90°C, preferiblemente de 50 a 80°C.
5. - El proceso de conformidad con una o más de las reivindicaciones 1 a 4, caracterizado además porque la reacción se lleva a cabo a una temperatura de 30 a 90°C, preferiblemente de 50 a 80°C.
6. - El proceso de conformidad con una o más de las reivindicaciones 1 a 5, caracterizado además porque una solución acuosa de un ácido orgánico se utiliza como ácido acuoso.
7. - El proceso de conformidad con la reivindicación 6, caracterizado además porque el ácido clorhídrico, el ácido sulfúrico, el ácido fosfórico o el ácido nítrico se utilizan como ácido inorgánico.
8.- El proceso de conformidad con cualquiera de una o más de las reivindicaciones 1 a 7, caracterizado además porque se utilizan los residuos de destilación de la preparación de ácidos monocarboxílicos alifáticos de cadena lineal o ramificada.
9.- El proceso de conformidad con la reivindicación 8, caracterizado además porque se utilizan los residuos de la preparación de ácidos monocarboxílicos alifáticos de cadena lineal que se seleccionan del grupo que consiste de ácido n-butírico, ácido n-pentanoico, ácido n-hexanoico, ácido n-heptanoico, ácido n-octanoico, ácido n-nonanoico y ácido n-decanoico.
10.- El proceso de conformidad con la reivindicación 8, caracterizado además porque se utilizan en los residuos de destilación de la preparación de ácidos monocarboxílicos alifáticos ramificados a-alquilo.
11.- El proceso de conformidad con la reivindicación 10, caracterizado además porque se utiliza ácido isobutírico, ácido 2-etilbutírico, ácido 2-metilbutírico, ácido 2-metilpentanoico, ácido 2-metilhexanoico, ácido 2-etilhexanoico, ácido 2-metiloctanoico, ácido 2-metilnonanoico, ácido 2-propilheptanoico, ácido 2-etilbutenoico, ácido 2-metilpentenoico, ácido 2-etilhexenoico o ácido 2-propilheptenoico como el ácido monocarboxilico alifático ramificado a-alquilo.
12. - El proceso de conformidad con la reivindicación 8, caracterizado además porque se utilizan los residuos de destilación de la preparación de los ácidos monocarboxílicos ramificados alifáticos los cuales no son ramificados a-alquilo.
13. - El proceso de conformidad con la reivindicación 12, caracterizado además porque se utiliza un ácido isopentanoico que tenga cualquier ramificación, ácido isohexanoico que tenga cualquier ramificación, ácido isoheptanoico que tenga cualquier ramificación, ácido isooctanoico que tenga cualquier ramificación, ácido isononanoico que tenga cualquier ramificación, ácido isodecanoico que tenga cualquier ramificación o ácido isoundecanoico que tenga cualquier ramificación, como el ácido monocarboxilico ramificado alifático con la condición de que no hay ramificación a-alquilo.
14. El proceso de conformidad con la reivindicación 13, caracterizado además porque el ácido 3-metilbutírico se utiliza como ácido isopentanoico que tiene cualquier ramificación.
15.- El proceso de conformidad con la reivindicación 13, caracterizado además porque se utiliza el ácido isononanoico que tiene como constituyente principal el ácido 3,5,5-trimetilhexanoico como ácido isononanoico que tiene cualquier ramificación.
16. El proceso de conformidad con cualquiera de una o más de las reivindicaciones 1 a 15, caracterizado además porque los residuos de destilación que contienen carboxilato de potasio o carboxilato de sodio de los ácidos monocarboxílicos correspondientes se hacen reaccionar con el ácido acuoso.
MX2014006871A 2011-12-08 2012-11-20 Proceso para recuperacion de acidos monocarboxilicos alifaticos a partir de residuos de destilacion. MX2014006871A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011120587A DE102011120587A1 (de) 2011-12-08 2011-12-08 Verfahren zur Gewinnung von aliphatischen Monocarbonsäuren aus Destillationsrückständen
PCT/EP2012/004809 WO2013083236A1 (de) 2011-12-08 2012-11-20 Verfahren zur gewinnung von aliphatischen monocarbonsäuren aus destillationsrückständen

Publications (1)

Publication Number Publication Date
MX2014006871A true MX2014006871A (es) 2014-07-14

Family

ID=47226103

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2014006871A MX2014006871A (es) 2011-12-08 2012-11-20 Proceso para recuperacion de acidos monocarboxilicos alifaticos a partir de residuos de destilacion.

Country Status (11)

Country Link
US (1) US9018417B2 (es)
EP (1) EP2788309B1 (es)
JP (1) JP6109846B2 (es)
KR (1) KR101965146B1 (es)
CN (1) CN104114527B (es)
BR (1) BR112014006642B1 (es)
DE (1) DE102011120587A1 (es)
MX (1) MX2014006871A (es)
RU (1) RU2014111799A (es)
TW (1) TWI452033B (es)
WO (1) WO2013083236A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009787A1 (de) 2011-05-19 2012-11-22 Josef Meissner Gmbh & Co. Kg Verfahren und Vorrichtung zur Aufreinigung von Nitrierproduten
CN103709027A (zh) * 2013-12-06 2014-04-09 西南化工研究设计院有限公司 一种脂肪酸金属盐废液的回收方法
CN107382708B (zh) * 2017-08-10 2020-11-20 中国科学院成都生物研究所 一种中链脂肪酸己酸的提取方法
CN113924282B (zh) * 2019-06-12 2023-09-12 诺力昂化学品国际有限公司 用于从含水侧流中分离羧酸的方法
ES2963382T3 (es) 2019-06-12 2024-03-26 Nouryon Chemicals Int Bv Proceso para la producción de peróxidos de diacilo
WO2020249688A1 (en) 2019-06-12 2020-12-17 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides
CN113979856B (zh) * 2021-11-09 2024-04-19 国药集团威奇达药业有限公司 从克拉维酸钾釜残液中回收叔丁胺和异辛酸盐的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE950007C (de) 1951-09-26 1956-10-04 Basf Ag Verfahren zur Herstellung von ª‡-verzweigten gesaettigten Carbonsaeuren
IT1022095B (it) * 1973-10-06 1978-03-20 Basf Ag Processo per l ottenimento di aci di carbossilici da residui della ossosintesi
DE2460784C2 (de) * 1974-12-21 1976-12-16 Basf Ag Verfahren zur Aufbereitung von carbonsaure Salze enthaltenden Rückständen aus der über die Hydroformylierung von Äthylen oder Porpylen verlaufenden Synthese von Alkoholen
JPS53105413A (en) 1977-02-28 1978-09-13 Mitsubishi Chem Ind Ltd Preparation of alpha-branched aliphatic carboxylic acid
JPS6055492B2 (ja) * 1977-02-28 1985-12-05 三菱化学株式会社 α−分岐脂肪族カルボン酸の製法
DE3738198A1 (de) * 1987-11-10 1989-05-18 Henkel Kgaa Verfahren zur herstellung von alpha-verzweigten c(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)2(pfeil abwaerts)-c(pfeil abwaerts)4(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-fettsaeuren
US5504229A (en) 1993-08-10 1996-04-02 Basf Aktiengesellschaft Synthesis of aliphatic C2 -C22 carboxylic acids
FR2769624B1 (fr) 1997-10-09 2000-03-03 Atochem Elf Sa Procede de preparation d'acide carboxylique
DE10010771C1 (de) 2000-03-04 2001-05-03 Celanese Chem Europe Gmbh Verfahren zur Herstellung aliphatischer Carbonsäuren aus Aldehyden
DE102004055252A1 (de) * 2004-11-16 2006-05-24 Celanese Chemicals Europe Gmbh Verfahren zur Herstellung von aliphatischen geradkettigen und ß-alkylverzweigten Carbonsäuren
DE102006022168B4 (de) 2006-05-12 2014-02-27 Oxea Gmbh Katalytisches Verfahren zur Herstellung von aliphatischen geradkettigen und ß-alkylverzweigten Carbonsäuren

Also Published As

Publication number Publication date
EP2788309A1 (de) 2014-10-15
KR101965146B1 (ko) 2019-04-03
TWI452033B (zh) 2014-09-11
DE102011120587A1 (de) 2013-06-13
CN104114527B (zh) 2015-09-30
US9018417B2 (en) 2015-04-28
WO2013083236A1 (de) 2013-06-13
CN104114527A (zh) 2014-10-22
KR20140099550A (ko) 2014-08-12
JP6109846B2 (ja) 2017-04-05
BR112014006642B1 (pt) 2019-12-03
RU2014111799A (ru) 2016-01-27
BR112014006642A2 (pt) 2017-04-25
TW201332960A (zh) 2013-08-16
EP2788309B1 (de) 2016-02-03
US20140303401A1 (en) 2014-10-09
JP2015500251A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
MX2014006871A (es) Proceso para recuperacion de acidos monocarboxilicos alifaticos a partir de residuos de destilacion.
JP5039297B2 (ja) 直鎖状のおよびβ−アルキル分岐した脂肪族カルボン酸の製造方法
EP2812307B1 (de) Verfahren zur herstellung von vinylestern
TWI464143B (zh) 從2-乙基己醇進行製造異壬酸羧酸酯之製法及其製品
EP2479164A1 (de) Katalytisches Verfahren zur Herstellung von aliphatischen geradkettigen und beta-alkylverzweigten Carbonsäuren
KR20070110299A (ko) 사이클로헥산온 및 사이클로헥산올의 제조 방법
JP2015522044A (ja) 2−エチルヘキサノールからイソノナン酸を製造する方法
CA2768604A1 (en) Process for preparing decanecarboxylic acids
KR102331106B1 (ko) 개선된 알킬 (메트)아크릴레이트의 제조 방법
JP2015500251A5 (ja) 脂肪族モノカルボン酸の蒸留残滓からの回収方法
SK170097A3 (en) Process for the treatment of reaction mixtures obtained by oxidation of cyclohexane
JPWO2008149648A1 (ja) 1,5−ペンタンジオール及び/又は1,6−ヘキサンジオールの製造方法
JPH04308548A (ja) カルボン酸の精製方法
JP6425837B1 (ja) 酢酸の製造方法
US4246185A (en) Catalyst metal separation from saturated aliphatic monocarboxylic acids
JP2008524298A (ja) シクロヘキシルハイドロパーオキサイドの分解方法
US9896406B2 (en) Method for producing 2-methylbutyric acid having a reduced content of 3-methylbutyric acid from the secondary flows arising in the production of pentanoic acids
JP7278506B2 (ja) アルデヒドの製造方法
JPH06256238A (ja) フェノール及びメチルエチルケトンの製造方法
US9517995B2 (en) Method for producing isomeric hexanoic acids from the subsidiary flows arising during the production of pentanals