KR930008533B1 - 반도체장치의 제조방법 - Google Patents
반도체장치의 제조방법 Download PDFInfo
- Publication number
- KR930008533B1 KR930008533B1 KR1019880017621A KR880017621A KR930008533B1 KR 930008533 B1 KR930008533 B1 KR 930008533B1 KR 1019880017621 A KR1019880017621 A KR 1019880017621A KR 880017621 A KR880017621 A KR 880017621A KR 930008533 B1 KR930008533 B1 KR 930008533B1
- Authority
- KR
- South Korea
- Prior art keywords
- region
- channel
- swing
- conductivity type
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005468 ion implantation Methods 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 19
- 150000002500 ions Chemical class 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 5
- 229920005591 polysilicon Polymers 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 239000002019 doping agent Substances 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/082—Ion implantation FETs/COMs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
내용 없음.
Description
제 1 도는 본 발명의 실시예에 의한 채널도프 이온 주입량과 역치전압 및 스윙 특성 관계의 도시도.
제 2 도는 채널도프 이온 주입량을 변화시킨 경우의 n벽 깊이와 n벽 불순물 농도의 관계를 도시하는 선도.
제 3 도는 본 발명의 방법에 의한 MIS 트랜지스터의 스윙값과 차단전류의 관계를 도시하는 특성도.
제 4 도는 제 1 도에 대응하는 스윙값과 차단전류의 관계를 도시하는 게이트 전압-드레인 전류의 특성도.
제 5 도는 본 발명을 설명하기 위한 MIS 트랜지스터의 차단 전류와 정시의 소비전류와의 관계도.
[산업상의 이용분야]
본 발명은 채널도프를 갖는 MIS(Metal Insulator Semiconductor)형 반도체 장치의 제조 방법에 관한 것이다.
[종래의 기술]
일반적으로 채널도프를 갖는 MIS형 반도체 장치에 있어서, 역치 전압은 기판의 불순물 농도에 대한 채널도프 이온 주입량에 의해 제어된다. 즉, MIS 트랜지스터의 채널 영역에 불순물 이온을 선택적으로 주입하여 역치 전압의 제어를 행하는 채널도프는, 저농도 도핑의 제어성의 좋은 점을 살린 것이다. 이 경우, 역치 전압은, 사용하는 전원 전압에 의해, 또한 그 하한값은 정지시 소지전류등의 제약에 의해 결정되고 있다. 그러나 이 경우, 역치전압을 결정하는 채널도프 이온 주입은, 정지시 소비전류에 큰 영향을 주는 "스윙(swing)"에 대해서 고려하여, 결정되어 있는 것은 아니고, 단지 역치 전압에 맞추어 주므로서 결정 되고 있다. 상기 스윙이란 서브스레숄드 영역으로 드레인 전류를 1자리 변화시키는데에 필요한 게이트 전압 변화량을 지칭하는 것이다.
또한, 상기 스윙 및 게이트 전압이 OV일때의 드레인 전류 즉 차단전류에 대해서는 1981년 Sze, S.M. 존 윌리 인터사이언스에 의해 간행된 "반도체 장치의 물리학"에 상세히 설명되어 있다.
그러나, 상기와 같은 종래의 제조 방법은 단지 역치 전압의 맞추어주는 것만을 고려하여, 스윙을 고려 하지 아니하고 채널도프 이온 주입량을 결정한 경우에는 스윙이 큰 값으로 되어, 차단전류가 증가하여 정지시 소비 전류가 극단으로 증가한다. 이 경향은 단채널 MIS형 트랜지스터만큼 현저하게 나타난다.
상기 문제점에 대해서, 최근에서는, IC로의 고집적, 고기능화로의 요구와 함께, 저소비 전력화가 엄격하게 요구되고 있으며, 차단전류의 저감에 의한 정지시 소비전류의 저감은 매우 중요한 논제로 되어 있다.
본 발명은 상기 문제점을 해결하기 위해 행해진 것으로, 그 목적은 스윙을 고려하여, 차단전류의 증가에 의한 정지시 소비전류의 증가를 적게 억제한 채널도프 이온 주입량을 갖는 MIS형 반도체 장치의 제조방법을 제공하는 것이다.
본 발명에 따르는 반도체 장치의 제조방법은, 소스/드레인 영역간의 제 1 영역에, 채널도프를 갖는 MIS형 반도체 장치에 적용이 되는 것으로, 채널도프 이온 주입량을 바꾸었을때의 제 1 의 영역 깊이에 대한 제 1 의 영역 불순물 농도의 분포특성을 구해, 이 분포 특성에 의하여, 서브스레숄드 영역에 있어서 드레인 전류를 시뮬레이션 하므로서 스윙값 계산등에 의해 구하거나 또는 게이트 전압-드레인 전류 특성을 실측하므로서 상기 스윙을 산출하여 이 스윙값이 최소값 또는 극소값으로 되는 채널도프 이온량을 제 1 의 영역의 불순물 농도에 따라 채택하여 채널부에 주입하는 방법을 사용하므로서 상기 문제점을 해결할 수 있다.
본 발명의 일실시예를 제 1 의 도전형의 P형 Si기판에 형성된 제 2 의 도전형 불순물을 갖는 n벽에 대해, 붕소 즉 n벽과는 이극형의 제 1 의 불순물이 도프된 채널도프를 갖는 P+다결정 Si게이트 P채널 MIS형 트랜지스터를 예로 하여 본 발명의 방법에 적용한 제 2 도, 3 도를 참조로 하여 설명한다.
제 2 도는 채널도프 이온 주입공정에 있어서, 가속 에네르기를 일정하게 하여 주입량 1을 주입하지 않고 5의 2.5×1012cm-2까지 변화시킨 경우의 n벽의 깊이 방향의 불순물 농도 프로파일의 시뮬레이션 결과이다. 제 2 도에 있어서 횡축은 n벽 깊이이며, 종축은 n벽 불순물 농도이다.
제 2 도에서는 극형의 불순물 채널도프의 경우, 이온 주입량의 증가에 따라, 이온 주입시의 불순물 분포와 피크위치를 중립으로 하여, n벽의 불순물 농도가 서서히 감소하여 오목한 부분 A, B가 형성되는 것을 명백하게 보여준다. 그래서 어떤 일정 이온 주입량에 있어서, 붕소 즉 P형의 피크가 n벽내에 나타나, 이 이피크 C, D는 주입량의 증가에 따라 커져서, 말하자면 버리드 채널(buried channel) 구조로 된다.
제 1 도는, 제 2 도에 도시한 시뮬레이션에 사용한 MIS 트랜지스터의 채널도프 이온 주입량에 대응하는 역치 전압과 스윙(점선)의 관계의 실측 데이타를 도시하는 곡선이다. 제 1 도에 있어서, 붕소의 채널도프 이온 주입량을 횡축으로 하여, 종축에 역치전압(좌)과 스윙의 값(우)을 도시하고 있다.
제 1 도에서는 채널도프 이온 주입량의 증가에 대해서, 역치 전압은 단조롭게 증가하는데 대해서, 스윙은 주입량의 증가와 함께 감소하여, 어느 일정한 주입량에서 극소(제 1 도의 E점)으로 되어, 그 이상의 주입량에 대해서는 증가의 경향을 명백하게 도시한다.
제 1 도와 제 2 도의 비교로부터, 제 2 도에 있어서 n벽 불순물 농도의 오목함이 최대가 되는 채널도프 이온 주입량(7.5×1011cm-2)의 부근에 있어서, 가장 스윙값이 작은것을 알 수 있다.
여기에서, 제 3 도에 스윙값을 산출하기 위해서 측정한 게이트 전압에 대한 드레인 전류 특성선도를 도시한다. 횡축은 서브스레숄드 영역에 있어서 게이트 전압, 종축은 드레인 전류의 대수를 표시한다. 제 3 도는 제 1 도의 결과와는 직접 1대 1로 대응하고 있지는 아니하나 스윙값과 차단 전류의 관계를 표시하는 것이며, 역치전압(VTH)-0.5V의 P채널 MIS 트랜지스터에 대해서 구한 결과이다. 즉, 제 3 도에 있어서, 1, 2, 3의 곡선은, n벽의 이온 주입량과 채널도프의 이온 주입량의 조합에 의해 VTH가 모두 -0.5V이나 다른 스윙값을 표시하는 P채널 트랜지스터의 3가지 예에 대응하는 것이다.
또한, 제 3 도에 있어서, 실선은 실측값이나, 예를들어 곡선(1)에 대해서보면, 점 N의 영역은 측정장치의 한정한계에 의해 포화 부분이다. 점선은 곡선(1)의 점 L과 점 M을 연결하는 직선부분을 게이트 전압 VG=0의 영역까지 외삽하여 직선으로 근사한 것이다. 곡선(2), (3)에 대해서도 동일하게 하여 근사 직선이 구해진다.
스윙값은 이들의 근사직선의 구배를 구해서, 그 역수로서 결정된 것이며, 1, 2, 3의 곡선은 스윙값이 각각 100, 90, 80mV/decade의 특성을 갖는 트랜지스터의 3가지 예에 대응하는 것이다.
제 3 도에서, 예를들자면 역치가 -0.5V의 경우에 스윙이 적은 면이 0표로 표시한 차단 전류가 저감할 수 있는 것을 알 수 있다.
다음에, 더욱 구체적으로 제 1 도에 대응하는 스윙값과 차단전류의 관계를 제 4 도의 게이트 전압-드레인 전류의 특성곡선에 의해 설명을 한다. 도면에 있어서, 횡축은 게이트 전압, 종축은 드레인 전류의 대수이다. 또한, 실선은 실측값, 점선은 근사직선이다.
제 4 도의 각 특성곡선 1, 2, 3은 제 3 도의 각각 채널도프 이온량 0(1), 8×1011cm-2(2), 1.4×1012cm-2(3)의 경우의 특성곡선이며, 스윙 값과 역치전압 VTH이 각각 150, -0.8V, 85, -0.5V, 88, -0.2V에 대응하고 있다. 또한, 스윙값의 산출법은 제 3 도에서 설명한 것과 같이, 근사직선의 구배의 역수에서 구한 것이다. 또한, 역치 전압은 드레인 전류(ID=10-7A)의 대수가 -7인때의 게이트 전압의 값이며, 예를들자면, 곡선 I에서는 -0.8V로 되어 있다.
제 4 도에 도시한 바와 같이, 단계(1)에서 단계(2)로와 같이, 채널도프 이온량의 증가와 함께 역치전압 VTH이 -0.8V에서 -0.2V까지 감소해가면, 특성곡선은 1에서 3으로 우에서 좌로 이동되기 때문에 차단전류는 확실하게 증대하게 되어, 차단전류의 저감에 대해서는 VTH의 절대값을 크게하는 것이 가장 효과적이 된다. 그러나, VTH는 여러가지의 제약으로 반드시 절대값을 크게할 수 없으므로, 제 4 도의 경우는 VTH를 -0.5V의 경우에 있어서 스윙값을 적게하는 채널도프 이온량의 선정에 의해 차단전류를 적게 할 수 있는 가장 적합한 조건이 얻을 수 있는 것이, 본 발명의 제조 방법의 특징이라 할 수 있다. 곧, 여기에서 가령 -0.5V의 VTH를 얻으려는 경우에는, 벽의 불순물 농도(벽이 없는 경우는 기판농도)와 채널도프 이온량의 조합에 의해 여러가지의 제작법이 생각되나, 스윙값이 최소에 가까운 채널도프 이온량을 선정하므로서, 차단전류의 저감이 가능해지는 것이다.
제 5 도는 시계용 IC의 트랜지스터를 예로 취해서 차단전류와 정지시 소비전류의 관계를 도시하는 곡선이며 본 발명을 설명하기 위한 것이다. 그래서 횡축에 게이트 전압 0V인때의 드레인 전류 즉 차단전류의 대수, 종축은 정지시 소비전류의 대수를 도시한다. 각 측정점은 역치 전압 VTH이 -0.3 내지 0.7V사이의 트랜지스터에 대해서 5종류의 VTH의 다른 IC를 대상으로 한 것이며, 차단 전류와 정지시 소비전류와는 어느 일정한 관계로 대응하는 것을 알 수 있다. 즉, 스윙값이 적게 억제되면, 차단 전류의 증가를 최소한으로 억제할 수가 있고, 또한 그 결과로서 제 5 도에 도시한 바와같이 정지시 소비전류의 저감에 의한 저소비 전력화가 꾀해진다.
앞에서, 어떤 소망의 역치전압에 있어서 스윙값은 가급적 작은편이 좋다고 설명을 하여 왔다. 여기에서는, 또다시 스윙값으로서의 바람직한 범위를 규정하기 위한 설명을 하기로 한다.
먼저, 제 5 도에 도시한 시계용 IC의 트랜지스터에 있어서, 통상적으로 정지시 소비전류가 108(A) 이하의 것을 일반적으로 고품질의 것으로 하고 있다. 이때의 차단전류의 대수는 -12.4 내지 -12.5정도이다. 따라서, 제 5 도에 도시한 시계용 IC에서는, 차단전류의 대수는 -12.4 내지 -12.5정도보다 작은 것이 바람직하다 할 수 있다.
그래서, 제 3 도에 있어서 데이타를 취해서 트랜지스터는, 제 5 도에 도시한 트랜지스터와 특성이 가장 흡사한 것을 사용하고 있다.
거기에서, 제 3 도의 역치전압의 -0.5V로 스윙값이 각각 다른 P채널 트랜지스터중, 차단전류의 대수가 -12.4 내지 -12.5보다 적은 P채널 트랜지스터의 스윙값은, 거의 98 내지 95mV/decade보다 적은 값을 취하는 것을 알 수 있다.
또한, 다른 특성을 갖는 트랜지스터를 동일하게 하여 조사하여 가장 적합한 스윙값을 산출하면, 역시 약 100이하가 정지시 소비전류를 작게 하므로서 좋은 결과가 얻어진다. 다시말하면, 90수mV/decade 이하가 좋다는 결과이다.
따라서, 이상으로 말할 수 있는 것은 스윙값을 극력 적게하는 트랜지스터는, 정지시 소비전류가 가장 적은 것으로 된다. 그래서, 일반적으로는 스윙이 되도록 적지않는 90수mV/decade 이하 또는 100mV/decade 약 이하인 것이 바람직하다고 할 수 있다.
예를들자면, 상기 제 1 도에 적용하여 생각해보면, 스윙값은 그 최소값을 포함하는 약 15% 오우버 이내의 값을 취하는 것이 바람직하다 할 수 있다.
또한 본 실시예는, n벽을 갖는 채널 P채널 MIS형 트랜지스터를 예로하여 설명을 하였으나 벽을 갖지 않는 MIS형 트랜지스터라도 좋고, 또다시 n채널 MIS형 트랜지스터에 대해서도 똑같게 적용하는 것이 가능하다. 또한 본 실시예는, 게이트 전극으로서 P+폴리실리콘을 에로하여 설명하였으나, 게이트 전극재료로서는 n+폴리실리콘, 폴리실리콘과 후술한 고융점금융의 실리사이드(silicide)와의 적층구조인 폴리사이드, 후술한 고융점 금융의 실리사이드, Ti, W, Ta, Mo, Nb, Pt등의 고융점금속, 알루미늄, 알루미늄과 Si 또는 Cu를 합금화한 알루미늄 합금 등에 대해서도 똑같이 적용할 수가 있다. 또한, 채널도프에 사용하는 이온 종류에 대해서도 ⅢA족 및 ⅤA족의 원소면 똑같이 적용이 된다.
[발명의 효과]
이상 상술한 바와같이 본 발명에 의하면, 채널도프를 갖는 MIS형 반도체 장치의 제조방법에 있어서, 서브스레숄드 영역에서 드레인 전류를 1자리 변화시키는데 필요한 게이트 전압값, 즉 스윙값이 90수mV/decade 이하 또는 100mV/decade 약 이하의 값, 혹은 최소값을 포함하는 최소값의 약 15% 오우버 이내의 값이 되는 채널도프 이온 주입량을 갖도록 이온주입을 하므로서 게이트 전압의 0V시의 드레인 전류, 즉 차단 전류의 증가를 최소한으로 억제하는 일이 가능해지기 때문에, 정지시 소비전류의 저감에 의한 저소비 전력화가 도모되는 효과가 있다.
Claims (5)
- 제 1 의 도전형의 불순물을 갖는 반도체 기판 또는 벽으로 형성이 되는 제 1 의 영역과, 이 제 1 의 영역내에 서로 이격하여 형성되고 제 1 의 도전형과 반대 도전형의 제 2 의 도전형의 불순물을 갖는 소스/드레인 영역과, 상기 소스/드레인 영역간의 상기 제 1 의 영역 상벙에 형성이 되는 게이트 전극으로 형성이 되며, 상기 소스/드레인 영역간의 상기 제 1 의 영역에 불순물을 도입하는 채널도프 구조의 반도체 장치의 제조 방법에 있어서, 상기 채널도프 구조를 형성하는 채널도프 이온의 주입량을 파라미터로 하는 상기 제 1 의 영역 깊이에 대한 제 1 의 영역 불순물 농도의 분포특성을 구하고, 이 분포 특성에 의거하여, 서브스레숄드영역에 있어서, 드레인 전류를 1자리 변화시키는데에 필요한 게이트 전압 변화량(이하 이것을 스윙값이라 함)을 게이트 전압 드레인 전류 특성에서 산출하여, 상기 스윙값을 90수mV/decade 이하 또는 100mV/decade 이하로 하는 상기 채널도프 이온의 주입량을 상기 제 1 의 영역 불순물 농도에 따라서 채택하여 채널부에 도입하므로서, 상기 채널도프 구조의 MIS 트랜지스터를 형성하는 것을 특징으로 하는 반도체 장치의 제조 방법.
- 제 1 항에 있어서, 상기 채널도프 이온의 주입량은, 상기 스윙값을 최소값을 포함하는 최소값의 약 15% 오우버 이내로 하는 값임을 특징으로 하는 반도체 장치의 제조 방법.
- 제 1 항에 있어서, 상기 게이트 전극은 제 2 의 도전형의 폴리실리콘으로 형성되는 것을 특징으로 하는 반도체 장치의 제조 방법.
- 제 1 항에 있어서, 상기 채널도프 이온의 제 2 의 도전형인 것을 특징으로 하는 반도체 장치의 제조 방법.
- 제 1 항에 있어서, 상기 게이트 전극은 제 2 의 도전형 폴리실리콘으로 형성이 되며, 또한 상기 채널도프 이온이 제 2 의 도전형인 것을 특징으로 하는 반도체 장치의 제조 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30588 | 1988-01-06 | ||
JP63-305 | 1988-01-06 | ||
JP63211638A JP2666403B2 (ja) | 1988-01-06 | 1988-08-26 | Mis型半導体装置の製造方法 |
JP63-211638 | 1988-08-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR890012395A KR890012395A (ko) | 1989-08-26 |
KR930008533B1 true KR930008533B1 (ko) | 1993-09-09 |
Family
ID=26333260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019880017621A KR930008533B1 (ko) | 1988-01-06 | 1988-12-28 | 반도체장치의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5270235A (ko) |
JP (1) | JP2666403B2 (ko) |
KR (1) | KR930008533B1 (ko) |
DE (2) | DE3900147C2 (ko) |
NL (1) | NL191868C (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407849A (en) * | 1992-06-23 | 1995-04-18 | Imp, Inc. | CMOS process and circuit including zero threshold transistors |
US5427964A (en) * | 1994-04-04 | 1995-06-27 | Motorola, Inc. | Insulated gate field effect transistor and method for fabricating |
US5482878A (en) * | 1994-04-04 | 1996-01-09 | Motorola, Inc. | Method for fabricating insulated gate field effect transistor having subthreshold swing |
US5441906A (en) * | 1994-04-04 | 1995-08-15 | Motorola, Inc. | Insulated gate field effect transistor having a partial channel and method for fabricating |
US5457060A (en) * | 1994-06-20 | 1995-10-10 | Winbond Electronics Corporation | Process for manufactuirng MOSFET having relatively shallow junction of doped region |
US5559050A (en) * | 1994-06-30 | 1996-09-24 | International Business Machines Corporation | P-MOSFETS with enhanced anomalous narrow channel effect |
FR2794898B1 (fr) | 1999-06-11 | 2001-09-14 | France Telecom | Dispositif semi-conducteur a tension de seuil compensee et procede de fabrication |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895966A (en) * | 1969-09-30 | 1975-07-22 | Sprague Electric Co | Method of making insulated gate field effect transistor with controlled threshold voltage |
US4112455A (en) * | 1977-01-27 | 1978-09-05 | The United States Of America As Represented By The Secretary Of The Navy | Field-effect transistor with extended linear logarithmic transconductance |
JPS568879A (en) * | 1979-07-03 | 1981-01-29 | Nec Corp | Insulating gate field effect transistor |
JPS5833870A (ja) * | 1981-08-24 | 1983-02-28 | Hitachi Ltd | 半導体装置 |
US4514893A (en) * | 1983-04-29 | 1985-05-07 | At&T Bell Laboratories | Fabrication of FETs |
JPS62105464A (ja) * | 1985-11-01 | 1987-05-15 | Hitachi Ltd | 半導体装置の製造方法 |
-
1988
- 1988-08-26 JP JP63211638A patent/JP2666403B2/ja not_active Expired - Fee Related
- 1988-12-22 NL NL8803143A patent/NL191868C/xx not_active IP Right Cessation
- 1988-12-28 KR KR1019880017621A patent/KR930008533B1/ko not_active IP Right Cessation
-
1989
- 1989-01-03 US US07/292,757 patent/US5270235A/en not_active Expired - Lifetime
- 1989-01-04 DE DE3900147A patent/DE3900147C2/de not_active Expired - Fee Related
- 1989-01-04 DE DE3943738A patent/DE3943738C2/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
NL191868B (nl) | 1996-05-01 |
KR890012395A (ko) | 1989-08-26 |
JPH02367A (ja) | 1990-01-05 |
JP2666403B2 (ja) | 1997-10-22 |
DE3943738C2 (de) | 1995-12-07 |
DE3900147C2 (de) | 1996-02-08 |
NL191868C (nl) | 1996-09-03 |
NL8803143A (nl) | 1989-08-01 |
US5270235A (en) | 1993-12-14 |
DE3900147A1 (de) | 1989-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7089515B2 (en) | Threshold voltage roll-off compensation using back-gated MOSFET devices for system high-performance and low standby power | |
US4021835A (en) | Semiconductor device and a method for fabricating the same | |
US5770881A (en) | SOI FET design to reduce transient bipolar current | |
US4417263A (en) | Semiconductor device | |
US5134447A (en) | Neutral impurities to increase lifetime of operation of semiconductor devices | |
TW200603404A (en) | Semiconductor device | |
KR0174335B1 (ko) | 기판의 감도를 감소시키기 위해 이온 주입에 의해 카운터도핑을 한 mos 채널 소자 | |
KR930008533B1 (ko) | 반도체장치의 제조방법 | |
US6989569B1 (en) | MOS transistor with a controlled threshold voltage | |
US20030207504A1 (en) | Transistors with controllable threshold voltages, and various methods of making and operating same | |
US20020109192A1 (en) | Semiconductor devices | |
CN110119178A (zh) | 基准电压产生装置 | |
KR100314486B1 (ko) | 반도체 기억장치 및 그 제조 방법 | |
CN109360850B (zh) | 一种降低amoled像素驱动电路中驱动tft功耗的方法 | |
US6815765B2 (en) | Semiconductor device with function of modulating gain coefficient and semiconductor integrated circuit including the same | |
US20010005613A1 (en) | Semiconductor device and method of fabricating the same | |
US11527536B2 (en) | Semiconductor structure with gate electrode doping | |
Fukutome et al. | Suppression of poly-gate-induced fluctuations in carrier profiles of sub-50nm MOSFETs | |
CN112234065B (zh) | 一种单电子记忆胞及其制造方法 | |
CN103545375A (zh) | 近源栅近漏栅分立控制型无掺杂场效应晶体管 | |
Zhang et al. | Dynamic hot carrier degradation behavior of polycrystalline silicon thin-film transistors under gate voltage pulse stress with fast transition time | |
JPH04357865A (ja) | 半導体装置 | |
JPS6139749B2 (ko) | ||
KR20090092019A (ko) | 트랜지스터 | |
KR950008263B1 (ko) | 박막 트랜지스터의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20060824 Year of fee payment: 14 |
|
LAPS | Lapse due to unpaid annual fee |