KR20230065351A - 전반사 형광 x선 분석 장치 - Google Patents

전반사 형광 x선 분석 장치 Download PDF

Info

Publication number
KR20230065351A
KR20230065351A KR1020237013895A KR20237013895A KR20230065351A KR 20230065351 A KR20230065351 A KR 20230065351A KR 1020237013895 A KR1020237013895 A KR 1020237013895A KR 20237013895 A KR20237013895 A KR 20237013895A KR 20230065351 A KR20230065351 A KR 20230065351A
Authority
KR
South Korea
Prior art keywords
ray
sample
total reflection
ray irradiation
irradiation direction
Prior art date
Application number
KR1020237013895A
Other languages
English (en)
Other versions
KR102539723B1 (ko
Inventor
마코토 캄베
카즈히코 오모테
토시후미 히구치
츠토무 타다
하지메 후지무라
마사히로 노노구치
리카이 장
보리스 베르만
유리 플라토노프
Original Assignee
가부시키가이샤 리가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 리가쿠 filed Critical 가부시키가이샤 리가쿠
Publication of KR20230065351A publication Critical patent/KR20230065351A/ko
Application granted granted Critical
Publication of KR102539723B1 publication Critical patent/KR102539723B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/052Investigating materials by wave or particle radiation by diffraction, scatter or reflection reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/204Sources of radiation source created from radiated target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/316Accessories, mechanical or electrical features collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

분석 감도가 높고 또한 분석 속도가 빠른 전반사 형광 X선 분석 장치를 제공한다. 전반사 형광 X선 분석 장치로서, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향의 유효폭이 상기 조사 방향의 치수보다 큰 전자선 초점을 가진 X선원과, 상기 직교되는 방향의 유효폭이 전자선 초점보다 크고, 상기조사 방향으로 만곡된 면을 가진 분광 소자와, 상기 직교되는 방향으로 나열하여 복수 배치되고, 상기 분광 소자에 의해 집광된 1차 X선이 조사된 시료에서 발사되는 형광 X선의 강도를 측정하는 검출기를 갖는다.

Description

전반사 형광 X선 분석 장치
본 발명은, 전반사 형광 X선 분석 장치에 관한 것이다.
시료에 포함되는 원소를 분석하는 장치로서 형광 X선 분석 장치가 알려져 있다. 형광 X선 분석 장치는, 1차 X선을 시료에 조사하고, 시료로부터 출사되는 형광 X선의 강도와 에너지에 기초하여 분석을 한다. 특히, 시료 표면의 미량 오염 등을 분석하기 위해서는, 시료 표면에 대해 전반사 임계 각도 이하로 1차 X선을 조사하는 전반사 형광 X선 분석 장치가 이용되고 있다.
최근, 반도체 산업에서의 오염 관리가 고도화되고 있으며, 극미량의 불순물의 혼입 등을 신속히 판정하기 위해 분석 감도와 분석 속도의 향상이 요구되고 있다. 분석 감도와 분석 속도를 향상시키기 위한 방법 중 하나로서, 시료의 표면에 조사되는 1차 X선의 강도를 향상시키는 방법이 있다.
예를 들면, 하기 특허 문헌 1에는, 점광원으로부터 출사된 1차 X선이 오목면을 가진 인공 다층막 격자로 집광되고, 집광된 강도가 높은 1차 X선을 시료에 조사하는 것이 개시되어 있다.
또 하기 특허 문헌 2 내지 7에는, 복수의 검출기 또는 검출 면적이 넓은 검출기를 이용하여 소정 영역에서 발생하는 형광 X선을 측정함으로써 단위 시간당 검출할 수 있는 형광 X선의 강도를 향상시키는 점이 개시되어 있다.
[특허 문헌 1] 일본 특개평6-82400호 공보
[특허 문헌 2] 일본 특개평8-5584호 공보
[특허 문헌 3]미국 특허 제5742658호 명세서
[특허 문헌 4] 일본 특개 2001-165875호 공보
[특허 문헌 5] 일본 특개평9-61382호 공보
[특허 문헌 6] 일본 특개평11-40632호 공보
[특허 문헌 7] 일본 특허 2921910호 공보
시료에서 발생하는 형광 X선의 강도의 총합은, 시료에 조사되는 1차 X선의 강도 및 검출 면적에 의존한다. 따라서 종래부터, 특허 문헌 2 내지 7과 같이, 검출 면적을 늘림으로써 검출되는 형광 X선량을 증가시키기 위한 연구가 이루어져 왔다. 이에 추가하여 시료에 조사되는 1차 X선의 강도를 증대시킴으로써 분석 감도와 분석 속도를 더욱 향상시킬 수 있다.
그러나 상기 특허 문헌 1과 같이 X선원이 점광원인 경우, 전자선원, 예를 들면 필라멘트에 흘리는 전류를 늘리면, 열에 의한 필라멘트의 증발, 변형, 용해의 우려가 있어 필라멘트의 수명이 짧아진다. 냉음극형의 전자 소스를 이용하는 경우라 해도 흘리는 전류를 늘리면 수명이 짧아지는 것으로 알려져 있다. 또, 전류 증가에 의해 타겟도 데미지를 받고 나아가 용해될 우려도 있다.
본 발명은 상기 과제를 감안하여 이루어진 것으로서, 그 목적은, 분석 감도가 높고 또한 분석 속도가 빠른 전반사 형광 X선 분석 장치를 제공하는 것이다.
(1) 본 발명의 일측면에 관한 전반사 형광 X선 분석 장치는, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향의 유효폭이 상기 X선 조사 방향의 치수보다 큰 전자선 초점을 가진 X선원과, 상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 유효폭이 상기 전자선 초점의 유효폭보다 크고, 상기 X선 조사 방향을 포함한 상기 시료 표면에 수직인 면 내에, 만곡된 단면을 가진 분광 소자와, 상기 시료 표면을 향해 상기 X선 조사 방향으로 직교되는 방향으로 나열하여 복수 배치되고, 상기 분광 소자에 의해 집광된 상기 X선이 조사된 상기 시료에서 발생하는 형광 X선의 강도를 측정하는 검출기를 가진 것을 특징으로 한다.
(2) 본 발명의 상기 형태에서, 상기 시료 표면에서 상기 X선 조사 방향으로 직교되는 방향의 상기 X선 조사폭이 60 mm 이상인 것을 특징으로 한다.
(3) 본 발명의 상기 형태에서, 상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 분광 소자의 유효폭이 30 mm 이상인 것을 특징으로 한다.
(4) 본 발명의 상기 형태에서, 상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 전자선 초점의 유효폭이 15 mm 이상인 것을 특징으로 한다.
(5) 본 발명의 상기 형태에서, 상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 분광 소자의 반사면의 단면이 직선인 것을 특징으로 한다.
(6) 본 발명의 상기 형태에서, 상기 복수의 검출기는, 특성이 다른 검출기를 포함한 것을 특징으로 한다.
(7) 본 발명의 상기 형태에서, 상기 특성은 검출 면적, 에너지 분해 능력, 공간 분해 능력, 또는 에너지 감도인 것을 특징으로 한다.
(8) 본 발명의 상기 형태에서, 상기 복수의 검출기는, 상기 X선 조사 방향을 포함한 상기 시료 표면에 수직인 면에 대해 대칭으로 배치되는 것을 특징으로 한다.
본 발명에 의하면, 분석 감도가 높고 또한 분석 속도가 빠른 전반사 형광 X선 분석 장치를 실현할 수 있다.
[도 1] 전반사 형광 X선 분석 장치의 전체 구성을 개략적으로 도시한 도면이다.
[도 2] X선원을 모식적으로 도시한 도면이다.
[도 3] 1차 X선의 경로를 도시한 도면이다.
[도 4] 실험 결과의 일례를 도시한 도면이다.
[도 5] 실험 결과의 일례를 도시한 도면이다.
[도 6] 검출기의 배치 레이아웃을 도시한 도면이다.
도 1에 도시한 것처럼, 전반사 형광 X선 분석 장치(100)는, 실리콘 기판 등의 시료(110)의 표면에 대해 1차 X선을 전반사 임계 각도 이하로 조사한다. 그리고, 전반사 형광 X선 분석 장치(100)는, 출사되는 형광 X선의 강도와 에너지의 관계를 나타내는 스펙트럼을 취득한다. 전반사 형광 X선 분석 장치(100)는, 해당 스펙트럼을 이용하여 시료(110)에 포함되는 원소를 분석한다. 구체적으로는, 예를 들면, 전반사 형광 X선 분석 장치(100)는, X선원(線源)(102)과, 분광 소자(104)와, 시료대(106)와, 검출부(108)를 포함한다.
X선원(102)은 1차 X선을 발생시킨다. 이하, 발생한 1차 X선의 조사 방향(조사의 중심 방향)과 직교하고, 시료(110)의 표면에 평행한 방향을 y축 방향으로 한다. 또 시료(110)의 표면에 평행하고 y축과 직교되는 방향을 x축 방향으로 한다. 또한 시료(110)의 표면에 수직인 방향을 z축 방향으로 한다. 예를 들면 도 2에 도시한 것처럼, X선원(102)은 전자 선원(202)과, 타겟(204)과, 전원(208)을 가진다.
구체적으로는, 예를 들면 X선원(102)이 열(熱)음극형인 경우, 전자 선원(202)는 필라멘트이며, 전원(208)에 의해 음전압이 인가되어 전자선(203)을 발생시킨다. 타겟(204)에는 전원(208)에 의해 양전압이 인가되고 전자 선원(202)에서 발생한 전자선(203)이 조사된다. 전자선(203)이 조사된 타겟(204)상의 전자선 초점(201)으로부터 1차 X선(205)이 발생한다. 타겟(204)의 재료로서 측정 원소의 흡수단의 에너지에 따라 여기 효율이 높은 1차 X선을 발생시키는 재료가 적절히 선택된다. 필라멘트 및 타겟(204)은 진공 배기된 케이스 내부에 배치된다. 해당 케이스는 필요에 따라 개구를 가지고, 개구에 1차 X선을 투과하는 재료로 형성된 막이 펴진다. 해당 막은, 예를 들면 베릴륨으로 형성된다. 단, 사용하는 X선의 파장에 의해, 창재(窓材)에서의 흡수가 문제가 되는 경우는, X선원(102)과 광학 소자(104) 및 시료(110)를 같은 진공실에 넣고 창재를 생략할 수도 있다. 도 2에 도시한 예에서는, 타겟(204)에서 발생한 1차 X선(205)은 적절한 취출 각도로 취출되어 분광 소자(104)가 배치된 방향으로 출사된다.
여기서, 타겟(204)상의 전자선 초점(201)은, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향(즉 y축 방향)의 X선을 발생시키는 유효폭이 X선 조사 방향의 치수보다 크다. 구체적으로는, 예를 들면, 전자 선원(202)이 필라멘트인 경우, y축 방향을 감는 축의 중심축으로 하여 텅스텐의 와이어를 나선형으로 감은 형상이다. 타겟(204)은, x축 및 y축의 치수가 모두 필라멘트의 치수보다 커지도록 형성되고, 전자 선원(202)에서 발생한 전자선(203)이, 예를 들면 y축 방향의 길이가 15 mm인 영역에 조사된다.
분광 소자(104)는, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향(즉 y축 방향)의 X선을 분광하는 유효폭이 전자선 초점(201)의 유효폭보다 크고, 조사 방향으로 만곡된 면을 가진다. 구체적으로는, 예를 들면, 도 3(a) 및 도 3(b)을 이용하여 설명하기로 한다. 도 3(a)는, 1차 X선의 광로를 설명하기 위한 도면으로서, 시료(110)의 위쪽(즉 z축 방향)에서 본 도면이다. 도 3(b)는, 1차 X선의 광로를 설명하기 위한 도면으로서, 시료(110)의 측면에서(즉 y축 방향을 향해) 본 도면이다.
도 3(a) 및 도 3(b)에 도시한 것처럼, 분광 소자(104)는, X선 조사 방향을 포함한 시료 표면에 수직인 면 내에, 만곡된 단면을 가진 오목한 상태의 만곡 결정이다. 해당 만곡면은, xz평면에서의 타원의 일부로서, 해당 타원의 한쪽 초점이 X선원(102)이고, 다른쪽 초점이 시료(110)상의 측정 위치이다. 만곡된 표면에는 인공 다층막이 형성되어 다층막 간섭에 의해 특정 파장의 X선만을 반사한다. 분광 소자(104)는, 다층막이 아닌, 요한슨형 만곡 결정이나 만곡면이 로그 스파이럴 곡선인 로그 스파이럴형 만곡 결정이어도 좋다. 아울러 도 3(a)에 도시한 예에서는, 측정 위치는, 원판형 기판의 중앙을 중심으로 하여 y축 방향으로 일정한 길이를 가진 영역이다.
또 분광 소자(104)는, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향(즉 y축 방향)의 유효폭이 전자선 초점의 유효폭보다 크다. 이로써, X선원(102)에서 출사된 1차 X선 중 y축 방향으로 확대된 성분을 분광 소자(104)에 의해 반사시켜 시료(110)의 표면에 조사할 수 있다. 분광 소자의 y축 방향의 길이는, 예를 들면, 40 mm이다. 아울러 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향의 분광 소자의 유효폭은 30 mm 이상인 것이 바람직하다. 이로써, 도 3(a)에 도시한 것처럼, 시료(110)의 넓은 범위에 걸쳐 충분한 강도의 X선이 조사된다. 예를 들면, 시료 표면에서 X선 조사 방향으로 직교되는 방향의 X선 조사폭이 60 mm 이상인 것이 바람직하다.
실제로, 측정 영역의 y축 방향의 길이를 80 mm 정도까지 넓힐 수 있고, 시료(110)의 표면에 조사되는 1차 X선의 강도의 총합을 증가시킬 수 있다. 종래에는, 전자선 초점(201) 및 분광 소자(104)의 y축 방향의 길이가 짧았기 때문에, X선의 시료면에서의 y축 방향의 조사 영역은 시료(110)의 중앙 부근으로 한정되었다. 따라서 시료 표면에서 충분한 강도로 X선이 조사되는 영역은, 예를 들면 20 mm 내지 30 mm 정도였다. 후술하는 바와 같이 본 실시 형태에 의하면, 종래에 비해, X선 강도를 유지한 채로 3배 정도 넓은 영역에 1차 X선을 조사할 수 있게 되었다.
아울러 분광 소자(104)는, 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향(즉 y축 방향)의 반사면의 단면이 직선이 되는 원통형 형상이어도 좋다.
시료대(106)는, 분석 대상이 되는 시료(110)가 재치된다. 구체적으로는, 예를 들면, 시료대(106)는 반도체 제품을 제조하기 위해 이용되는 실리콘 기판이 재치된다. 또 시료대(106)는, 측정 위치가 검출기(302)의 바로 아래에 위치하도록 기판을 이동시킨다. 실리콘 기판에는, 실리콘 기판을 제조 또는 가공 처리하는 반도체 공장에서, Ni 등의 불순물이 부착될 우려가 있다. 시료대(106)가 실리콘 기판을 이동시킴으로써 실리콘 기판의 복수의 위치에 1차 X선이 조사된다. 이로써, 전반사 형광 X선 분석 장치(100)는, 실리콘 기판의 표면에 불순물이 부착되어 있는지 분석할 수 있다.
검출부(108)는 검출기(302)와 계수기를 포함한다. 검출기(302)는, 예를 들면, SDD(Silicon Drift Detector) 검출기 등의 반도체 검출기이다. 검출기(302)는, 시료 표면에 대향하고 또한 조사 방향으로 직교되는 방향으로 복수 나열하여 배치되고, 분광 소자(104)에 의해 집광된 1차 X선이 조사된 시료(110)에서 출사되는 형광 X선(형광 X선이나 산란선)의 강도를 측정한다. 또한 검출기(302)는, 측정한 형광 X선의 에너지에 따른 파고치(波高値)를 가진 펄스 신호를 출력한다. 아울러 도 3(a)에 도시한 예에서는, 시료 표면에서, X선 조사 방향으로 직교되는 방향의 X선 조사폭이 60 mm 이상이다. 일정한 X선 강도로 조사되는 영역이 y축 방향으로 길기 때문에, 검출기(302)는 y축 방향으로 3대 나열하여 배치된다. 이로써, 동시에 복수 개소, 도 3(a)에 도시한 예에서는 동시에 3개소로부터의 형광 X선을 검출할 수 있어 오염 분석의 스루풋을 큰폭으로 향상시킬 수 있다.
계수기는, 검출기(302)로부터 출력되는 펄스 신호를 파고치에 따라 계수한다. 구체적으로는, 예를 들면, 계수기는 멀티 채널 애널라이저로서, 검출기(302)의 출력 펄스 신호를, 에너지에 대응한 채널마다 계수하여 형광 X선의 강도로서 출력한다. 검출부(108)는, 계수기의 출력을 스펙트럼으로서 취득한다.
시료대(106), X선원(102), 및 검출부(108)의 동작은, 제어부(미도시)에 의해 제어된다. 구체적으로는, 예를 들면, 제어부는 퍼스널 컴퓨터이다. 제어부는, 각 구성과의 사이에서 지시 커맨드를 송수신함으로써 시료대(106), X선원(102), 및 검출부(108)의 동작을 제어한다. 또 제어부는, 검출부(108)가 출력한 스펙트럼에 기초하여 시료(110)를 분석한다.
이상과 같이, 본 실시 형태에 의하면, 1차 X선은, y축 방향으로 일정한 길이를 가진 영역으로부터 발생한다. 따라서, X선원(102)이 발생시키는 1차 X선의 강도의 총합을 증가시킬 수 있다. 또, 도 3(a)에 도시한 것처럼, 일정한 길이로부터 발생한 X선을 y축 방향으로 폭이 넓은 분광 소자(104)를 이용함으로써 시료상의 넓은 범위에 일정 강도의 1차 X선을 조사할 수 있어 시료상에 조사되는 X선 강도의 총합을 더욱 증가시킬 수 있다. 아울러 도 3(a)에는, 각 검출기(302)가 검출하는 시야의 중심에 대응하는 시료(110)상의 점에 조사되는 1차 X선을 모식적으로 도시하였으나, 실제로는 y축 방향으로 긴 연속한 영역에 조사된다.
또, 1차 X선은 xz평면에서 국소적인 영역으로부터 출사된다. 즉, xz평면에서, X선원(102)은 점광원으로 간주할 수 있다. 따라서, 도 3(b)에 도시한 것처럼, 조사 방향으로 만곡면을 가진 분광 소자(104)에 의해, 1차 X선의 xz면 내에 발산하는 성분을 집광할 수 있다. 이로써, 시료(110)의 표면에 조사되는 단위 면적 근처의 1차 X선의 강도를 증가시킬 수 있다.
시료(110)에 조사되는 1차 X선의 강도가 높을수록, 시료(110)에서 발생하는 형광 X선의 강도는 높아진다. 본 실시 형태에 의하면, 시료(110)의 표면에 조사되는 단위 면적당 1차 X선의 강도를 증가시킬 뿐 아니라, 그 증가한 강도로 조사되는 시료상의 면적을 증가시킴으로써 분석 감도를 높게 또한 측정 시간을 짧게 할 수 있다.
계속해서, 본 실시 형태의 효과에 대해 실험 결과와 함께 설명하기로 한다. 시료(110)는, 원판형 실리콘 기판으로서, 기판의 중앙부에 미량 불순물로서 Ni가 부착된 기판이다. 기판은, 1차 X선의 조사 영역의 중심이 실리콘 기판의 중심에 위치하도록 배치되어 있다. 분광 소자(104)에 의해 반사된 1차 X선은, 기판의 표면에 대해 0.1도의 입사각으로 조사된다. 도 4 및 도 5는, 해당 측정 조건하에서 측정된 Si-Kα선(도 4) 및 Ni-Kα선(도 5)의 네트 강도의 분포를 도시한 도면이다. 원형의 라인은 8인치 직경의 실리콘 기판의 윤곽을 나타내고, 1차 X선은 마이너스 x방향에서 입사되어 x=0의 라인을 중심으로 집광되어 있다. 아울러 도 4의 좌측의 그래프는, Si-Kα선 및 Ni-Kα선의 x=0 단면의 강도 분포를 도시한 도면이며, 상측의 그래프는, y=0 단면의 강도 분포를 도시한 도면이다.
도 4 및 도 5에 도시한 것처럼, 분광 소자(104)에 의해 x축 방향의 좁은 영역에 1차 X선을 집광함으로써 높은 형광 X선 강도를 얻을 수 있었다. 또한 y축 방향으로 긴 전자 선원(202)에 의해 y축 방향으로 긴 전자선 초점(201)을 가진 X선원(102)을 이용함으로써, y축 방향으로 넓은 영역에서 높은 형광 X선 강도를 얻을 수 있었다. 구체적으로는, 기판 중앙을 중심으로 하여 x축 방향으로 30 mm, y축 방향으로 80 mm의 영역에서, 분석에 충분한 강도의 형광 X선이 측정되었다. 아울러 분석에 충분한 강도의 형광 X선은, 분석의 목적이나 시료(110)에 포함되는 원소에 따라 적절히 설정된다. 여기에서는, 미량 불순물인 Ni를 분석하기에 충분한 네트 강도를 2300으로 하였다.
본 발명은, 상기 실시예로 한정되지는 않으며, 다양한 변형이 가능하다. 상기 전반사 형광 X선 분석 장치(100)의 구성은 일례이며, 이에 한정되지는 않는다. 상기 실시예에서 나타낸 구성과 실질적으로 동일한 구성, 동일한 작용 효과를 발휘하는 구성 또는 동일한 목적을 달성하는 구성으로 치환해도 좋다.
예를 들면, 상기 실시 형태에서는, 검출기(302)가 y축 방향으로 3개 나열하여 배치되는 경우에 대해 설명하였으나, 복수의 검출기(302)의 배치 레이아웃은 이에 한정되지 않는다. 도 6(a) 내지 (k)는, 도 3(a)와 마찬가지로, 시료(110)의 위쪽에서 본 검출기(302)의 배치 레이아웃의 변형예를 도시한 도면이다. 아울러 도 6(a) 내지 (k)의 각 동그라미는 1개의 검출기(302)의 검출 영역이다. 또, 도 6(a) 내지 (k)의 도면상 좌우 방향이 x축 방향이며, 도면상 상하 방향이 y축 방향이다.
구체적으로는, 예를 들면, 도 6(a) 내지 (c)에 도시한 것처럼, y축 방향으로 나열하여 배치되는 검출기(302)의 개수는, 2개 내지 4개 중 어느 것이어도 좋다. 또, 해당 개수는 4개 이상이어도 좋다.
또, 도 6(d) 내지 (f)에 도시한 것처럼, 검출기(302)는, x축 방향으로 2열 배치되어도 좋다. 이 때, 도면상 좌열의 검출기(302)와 우열의 검출기(302)를 y축 방향으로 2분의 1개만큼 엇갈리게 배치함으로써 검출 영역의 틈(간격)을 작게 할 수 있다. 아울러 검출기(302)는 x축 방향으로 2열 이상 배치되어도 좋다.
또 복수의 검출기(302)는, 특성이 다른 검출기(302)를 포함해도 좋다. 구체적으로는, 예를 들면, 해당 특성은 검출 면적, 에너지 분해 능력, 공간 분해 능력, 또는 에너지 감도이다. 도 6(g) 내지 (k)에 도시한 것처럼, 복수의 검출기(302)는, 검출 면적이 크고 감도가 높지만, 에너지 분해 능력 및 공간 분해 능력이 낮은 검출기(302)(도면 중의 큰 원)와, 검출 면적이 작고 감도가 낮지만, 에너지 분해 능력 및 공간 분해 능력이 높은 검출기(302)(도면 중 작은 원)를 포함해도 좋다. 또, 고에너지의 X선에 대한 에너지 감도가 높은 검출기와 저에너지의 X선에 대한 에너지 감도가 높은 검출기를 포함해도 좋다.
도 6(g)에 도시한 예에서는, 중앙에 검출 면적이 큰 검출기(302)가 배치되고, y축 방향의 양옆에 검출 면적이 작은 검출기(302)가 배치된다. 도 6(h)에 도시한 예에서는, 중앙에 검출 면적이 큰 검출기(302)가 배치되고, 경사 방향의 4곳에 각각 검출 면적이 작은 검출기(302)가 배치된다. 도 6(i)에 도시한 예에서는, 검출 면적이 큰 검출기(302)가 y축 방향으로 3개 나열하여 배치되고, 중앙에 배치된 검출기(302)의 경사 방향의 4곳에 각각 검출 면적이 작은 검출기(302)가 배치된다. 도 6(j)에 도시한 예에서는, 중앙에 검출 면적이 작은 검출기(302)가 배치되고, y축 방향의 양옆에 검출 면적이 큰 검출기(302)가 배치된다. 도 6(k)에 도시한 예에서는, 중앙에 검출 면적이 작은 검출기(302)가 배치되고, 경사 방향의 4곳에 각각 검출 면적이 큰 검출기(302)가 배치된다.
이상과 같이, 검출기(302)는, 복수의 검출기(302)로 형성되는 전체의 검출 영역이, 분석을 하기에 충분한 강도의 형광 X선이 출사되는 영역을 덮도록 배치되는 것이 바람직하다. 예를 들면, 복수의 검출기(302)는, 분광 소자(104)의 중심을 통과하여 조사 방향으로 평행한 선분을 대칭축으로 하여 선대칭으로 배치되는 것이 바람직하다. 상기 구성을 가진 X선원(102) 및 분광 소자(104)에 의하면, 1차 X선은, 시료(110)의 해당 대칭축에 선대칭인 영역에 조사된다. 따라서, 도 6(a) 내지 (k)(도 6(f) 제외)에 도시한 예에서는, 복수의 검출기(302)로 형성되는 전체의 검출 영역에 의해, 분석을 하기에 충분한 강도의 형광 X선이 출사되는 영역을 효율적으로 덮을 수 있다.
100 전반사 형광 X선 분석 장치, 102 X선원, 104 분광 소자, 106 시료대, 108 검출부, 110 시료, 201 전자선 초점, 202 전자 선원, 203 전자선, 204 타겟, 205 1차 X선, 208 전원, 302 검출기.

Claims (8)

  1. 시료 표면에 평행하고 또한 X선 조사 방향으로 직교되는 방향의 유효폭이 X선 조사 방향의 치수보다 큰 전자선 초점을 가진 X선원과,
    상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 유효폭이 상기 전자선 초점의 유효폭보다 크고, 상기 X선 조사 방향을 포함한 상기 시료 표면에 수직인 면 내에, 만곡된 단면을 가진 분광 소자와,
    상기 시료 표면을 향해 상기 X선 조사 방향으로 직교되는 방향으로 나열하여 복수 배치되고, 상기 분광 소자에 의해 집광된 상기 X선이 조사된 상기 시료에서 발생하는 형광 X선의 강도를 측정하는 검출기,
    를 가진 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  2. 청구항 1에 있어서,
    상기 시료 표면에서 상기 X선 조사 방향으로 직교되는 방향의 상기 X선 조사폭이 60 mm 이상인 것을 특징으로 하는, 전반사 형광 X선 분석 장치.
  3. 청구항 1 또는 2에 있어서,
    상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 분광 소자의 유효폭이 30 mm 이상인 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 전자선 초점의 유효폭이 15 mm 이상인 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서, 상기 시료 표면에 평행하고 또한 상기 X선 조사 방향으로 직교되는 방향의 상기 분광 소자의 반사면의 단면이 직선인 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서, 상기 복수의 검출기는, 특성이 다른 검출기를 포함한 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  7. 청구항 6에 있어서, 상기 특성은 검출 면적, 에너지 분해 능력, 공간 분해 능력, 또는 에너지 감도인 것을 특징으로 하는 전반사 형광 X선 분석 장치.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서, 상기 복수의 검출기는, 상기 X선 조사 방향을 포함한 상기 시료 표면에 수직인 면에 대해 대칭으로 배치되는 것을 특징으로 하는 전반사 형광 X선 분석 장치.
KR1020237013895A 2020-12-01 2021-11-01 전반사 형광 x선 분석 장치 KR102539723B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020199366A JP7100910B2 (ja) 2020-12-01 2020-12-01 全反射蛍光x線分析装置
JPJP-P-2020-199366 2020-12-01
PCT/JP2021/040221 WO2022118585A1 (ja) 2020-12-01 2021-11-01 全反射蛍光x線分析装置

Publications (2)

Publication Number Publication Date
KR20230065351A true KR20230065351A (ko) 2023-05-11
KR102539723B1 KR102539723B1 (ko) 2023-06-02

Family

ID=81853143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013895A KR102539723B1 (ko) 2020-12-01 2021-11-01 전반사 형광 x선 분석 장치

Country Status (7)

Country Link
US (1) US11867646B2 (ko)
EP (1) EP4257961A4 (ko)
JP (1) JP7100910B2 (ko)
KR (1) KR102539723B1 (ko)
CN (1) CN116868048A (ko)
IL (1) IL302813A (ko)
WO (1) WO2022118585A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682400A (ja) 1992-04-09 1994-03-22 Rigaku Denki Kogyo Kk 全反射蛍光x線分析装置
JPH085584A (ja) * 1994-06-22 1996-01-12 Rigaku Ind Co 蛍光x線分析装置
JPH0961382A (ja) 1995-08-24 1997-03-07 Hitachi Ltd 全反射蛍光x線分析装置
JPH11108861A (ja) * 1997-10-02 1999-04-23 Technos Kenkyusho:Kk 蛍光x線分析装置および蛍光x線検出器
JP2001165875A (ja) 1999-10-07 2001-06-22 Gemetec Ges Fuer Messtechnik & Technologie Mbh 大型ウエーハ表面用検出器
KR20110040632A (ko) 2009-10-12 2011-04-20 한국전자통신연구원 파장 분할 다중화 방식의 수동형 광가입자망 시스템

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921910B2 (ja) 1990-03-30 1999-07-19 株式会社東芝 全反射蛍光x線分析装置
GB2266040B (en) 1992-04-09 1996-03-13 Rigaku Ind Corp X-ray analysis apparatus
US5742658A (en) 1996-05-23 1998-04-21 Advanced Micro Devices, Inc. Apparatus and method for determining the elemental compositions and relative locations of particles on the surface of a semiconductor wafer
US5930586A (en) 1997-07-03 1999-07-27 Motorola, Inc. Method and apparatus for in-line measuring backside wafer-level contamination of a semiconductor wafer
DE60213994T2 (de) 2001-06-19 2006-12-07 X-Ray Optical Systems, Inc., East Greenbush Wellenlängen-dispersives röntgenfluoreszenz-system mit fokusierender anregungsoptik und einem fokusierenden monochromator zum auffangen
US20060153332A1 (en) * 2003-03-27 2006-07-13 Hisayuki Kohno X-ray fluorescence analyzer
JP3944546B2 (ja) 2005-01-11 2007-07-11 理学電機工業株式会社 全反射蛍光x線分析装置
JP4669428B2 (ja) 2005-04-19 2011-04-13 株式会社リガク X線管
JP5214361B2 (ja) 2008-07-31 2013-06-19 株式会社東芝 X線管およびx線分析装置
US9551677B2 (en) 2014-01-21 2017-01-24 Bruker Jv Israel Ltd. Angle calibration for grazing-incidence X-ray fluorescence (GIXRF)
EP3239701B1 (en) * 2014-12-25 2019-05-15 Rigaku Corporation Grazing incidence x-ray fluorescence spectrometer and grazing incidence x-ray fluorescence analyzing method
WO2018012527A1 (ja) 2016-07-15 2018-01-18 株式会社リガク X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法
JP6467600B2 (ja) * 2016-09-30 2019-02-13 株式会社リガク 波長分散型蛍光x線分析装置
US20220120698A1 (en) 2020-10-16 2022-04-21 Axiomatique Technologies, Inc. Methods and apparatus for detecting defects in semiconductor systems
US20220120699A1 (en) 2020-10-16 2022-04-21 Axiomatique Technologies, Inc. Methods and apparatus for detecting defects in semiconductor systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682400A (ja) 1992-04-09 1994-03-22 Rigaku Denki Kogyo Kk 全反射蛍光x線分析装置
JPH085584A (ja) * 1994-06-22 1996-01-12 Rigaku Ind Co 蛍光x線分析装置
JPH0961382A (ja) 1995-08-24 1997-03-07 Hitachi Ltd 全反射蛍光x線分析装置
JPH11108861A (ja) * 1997-10-02 1999-04-23 Technos Kenkyusho:Kk 蛍光x線分析装置および蛍光x線検出器
JP2001165875A (ja) 1999-10-07 2001-06-22 Gemetec Ges Fuer Messtechnik & Technologie Mbh 大型ウエーハ表面用検出器
KR20110040632A (ko) 2009-10-12 2011-04-20 한국전자통신연구원 파장 분할 다중화 방식의 수동형 광가입자망 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
[특허 문헌 2] 일본 특개평8-5584호 공보

Also Published As

Publication number Publication date
JP7100910B2 (ja) 2022-07-14
EP4257961A4 (en) 2023-12-06
US11867646B2 (en) 2024-01-09
US20230400423A1 (en) 2023-12-14
EP4257961A1 (en) 2023-10-11
IL302813A (en) 2023-07-01
CN116868048A (zh) 2023-10-10
KR102539723B1 (ko) 2023-06-02
WO2022118585A1 (ja) 2022-06-09
JP2022087438A (ja) 2022-06-13

Similar Documents

Publication Publication Date Title
US10976273B2 (en) X-ray spectrometer system
US10180404B2 (en) X-ray analysis device
US7508907B2 (en) X-ray analysis apparatus
JP6142135B2 (ja) 斜入射蛍光x線分析装置および方法
JP6851107B2 (ja) X線分析装置
US9213007B2 (en) Foreign matter detector
KR102539723B1 (ko) 전반사 형광 x선 분석 장치
JP2002189004A (ja) X線分析装置
TWI827060B (zh) 全反射螢光x射線分析裝置
JP2001235437A (ja) 全反射蛍光x線分析装置
US11444213B2 (en) Radiation detector and radiation detection apparatus
JP2002243671A (ja) X線フィルタ、及び蛍光x線分析装置
JP4349146B2 (ja) X線分析装置
JPH08220027A (ja) 蛍光x線分析装置
JP5895812B2 (ja) X線分析装置
JP2017211290A (ja) X線照射装置
JPH06283585A (ja) 半導体評価装置
JP2014196925A (ja) 蛍光x線分析装置及びそれに用いられる深さ方向分析方法
US20240044821A1 (en) Combined xrf analysis device
US20220404297A1 (en) X-ray fluorescence analyzer
KR101769709B1 (ko) 파장분산형 엑스선 형광분석장치의 분광 모듈의 정렬 방법
KR20170116522A (ko) 파장분산형 엑스선 형광분석장치용 콜리메이터 모듈 및 이를 구비하는 파장분산형 엑스선 형광분석장치
JP2002093594A (ja) X線管およびx線分析装置
JPH03282243A (ja) 全反射蛍光x線分析装置
JP2002090320A (ja) X線照射装置

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant